/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright (c) 2010, Intel Corporation. * All rights reserved. * Copyright 2018 Joyent, Inc. */ /* * To understand how the apix module interacts with the interrupt subsystem read * the theory statement in uts/i86pc/os/intr.c. */ /* * PSMI 1.1 extensions are supported only in 2.6 and later versions. * PSMI 1.2 extensions are supported only in 2.7 and later versions. * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. * PSMI 1.5 extensions are supported in Solaris Nevada. * PSMI 1.6 extensions are supported in Solaris Nevada. * PSMI 1.7 extensions are supported in Solaris Nevada. */ #define PSMI_1_7 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int apix_probe(); static void apix_init(); static void apix_picinit(void); static int apix_intr_enter(int, int *); static void apix_intr_exit(int, int); static void apix_setspl(int); static int apix_disable_intr(processorid_t); static void apix_enable_intr(processorid_t); static int apix_get_clkvect(int); static int apix_get_ipivect(int, int); static void apix_post_cyclic_setup(void *); static int apix_post_cpu_start(); static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, int *); /* * Helper functions for apix_intr_ops() */ static void apix_redistribute_compute(void); static int apix_get_pending(apix_vector_t *); static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t); static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *); static char *apix_get_apic_type(void); static int apix_intx_get_pending(int); static void apix_intx_set_mask(int irqno); static void apix_intx_clear_mask(int irqno); static int apix_intx_get_shared(int irqno); static void apix_intx_set_shared(int irqno, int delta); static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int, struct intrspec *); static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *); extern int apic_clkinit(int); /* IRM initialization for APIX PSM module */ extern void apix_irm_init(void); extern int irm_enable; /* * Local static data */ static struct psm_ops apix_ops = { apix_probe, apix_init, apix_picinit, apix_intr_enter, apix_intr_exit, apix_setspl, apix_addspl, apix_delspl, apix_disable_intr, apix_enable_intr, NULL, /* psm_softlvl_to_irq */ NULL, /* psm_set_softintr */ apic_set_idlecpu, apic_unset_idlecpu, apic_clkinit, apix_get_clkvect, NULL, /* psm_hrtimeinit */ apic_gethrtime, apic_get_next_processorid, apic_cpu_start, apix_post_cpu_start, apic_shutdown, apix_get_ipivect, apic_send_ipi, NULL, /* psm_translate_irq */ NULL, /* psm_notify_error */ NULL, /* psm_notify_func */ apic_timer_reprogram, apic_timer_enable, apic_timer_disable, apix_post_cyclic_setup, apic_preshutdown, apix_intr_ops, /* Advanced DDI Interrupt framework */ apic_state, /* save, restore apic state for S3 */ apic_cpu_ops, /* CPU control interface. */ apic_get_pir_ipivect, apic_send_pir_ipi, apic_cmci_setup }; struct psm_ops *psmops = &apix_ops; static struct psm_info apix_psm_info = { PSM_INFO_VER01_7, /* version */ PSM_OWN_EXCLUSIVE, /* ownership */ &apix_ops, /* operation */ APIX_NAME, /* machine name */ "apix MPv1.4 compatible", }; static void *apix_hdlp; static int apix_is_enabled = 0; /* * Flag to indicate if APIX is to be enabled only for platforms * with specific hw feature(s). */ int apix_hw_chk_enable = 1; /* * Hw features that are checked for enabling APIX support. */ #define APIX_SUPPORT_X2APIC 0x00000001 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC; /* * apix_lock is used for cpu selection and vector re-binding */ lock_t apix_lock; apix_impl_t *apixs[NCPU]; /* * Mapping between device interrupt and the allocated vector. Indexed * by major number. */ apix_dev_vector_t **apix_dev_vector; /* * Mapping between device major number and cpu id. It gets used * when interrupt binding policy round robin with affinity is * applied. With that policy, devices with the same major number * will be bound to the same CPU. */ processorid_t *apix_major_to_cpu; /* major to cpu mapping */ kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */ int apix_nipis = 16; /* Maximum number of IPIs */ /* * Maximum number of vectors in a CPU that can be used for interrupt * allocation (including IPIs and the reserved vectors). */ int apix_cpu_nvectors = APIX_NVECTOR; /* number of CPUs in power-on transition state */ static int apic_poweron_cnt = 0; /* gcpu.h */ extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp); extern void apic_change_eoi(); /* * This is the loadable module wrapper */ int _init(void) { if (apic_coarse_hrtime) apix_ops.psm_gethrtime = &apic_gettime; return (psm_mod_init(&apix_hdlp, &apix_psm_info)); } int _fini(void) { return (psm_mod_fini(&apix_hdlp, &apix_psm_info)); } int _info(struct modinfo *modinfop) { return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop)); } static int apix_probe() { int rval; if (apix_enable == 0) return (PSM_FAILURE); /* * FIXME Temporarily disable apix module on Xen HVM platform due to * known hang during boot (see #3605). * * Please remove when/if the issue is resolved. */ if (get_hwenv() & HW_XEN_HVM) return (PSM_FAILURE); /* check for hw features if specified */ if (apix_hw_chk_enable) { /* check if x2APIC mode is supported */ if ((apix_supported_hw & APIX_SUPPORT_X2APIC) == APIX_SUPPORT_X2APIC) { if (apic_local_mode() == LOCAL_X2APIC) { /* x2APIC mode activated by BIOS, switch ops */ apic_mode = LOCAL_X2APIC; apic_change_ops(); } else if (!apic_detect_x2apic()) { /* x2APIC mode is not supported in the hw */ apix_enable = 0; } } if (apix_enable == 0) return (PSM_FAILURE); } rval = apic_probe_common(apix_psm_info.p_mach_idstring); if (rval == PSM_SUCCESS) apix_is_enabled = 1; else apix_is_enabled = 0; return (rval); } /* * Initialize the data structures needed by pcplusmpx module. * Specifically, the data structures used by addspl() and delspl() * routines. */ static void apix_softinit() { int i, *iptr; apix_impl_t *hdlp; int nproc; nproc = max(apic_nproc, apic_max_nproc); hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP); for (i = 0; i < nproc; i++) { apixs[i] = &hdlp[i]; apixs[i]->x_cpuid = i; LOCK_INIT_CLEAR(&apixs[i]->x_lock); } /* cpu 0 is always up (for now) */ apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; iptr = (int *)&apic_irq_table[0]; for (i = 0; i <= APIC_MAX_VECTOR; i++) { apic_level_intr[i] = 0; *iptr++ = 0; } mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt, KM_SLEEP); if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt, KM_SLEEP); for (i = 0; i < devcnt; i++) apix_major_to_cpu[i] = IRQ_UNINIT; } mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL); } static int apix_get_pending_spl(void) { int cpuid = CPU->cpu_id; return (bsrw_insn(apixs[cpuid]->x_intr_pending)); } static uintptr_t apix_get_intr_handler(int cpu, short vec) { apix_vector_t *apix_vector; ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR); if (cpu >= apic_nproc || vec >= APIX_NVECTOR) return (0); apix_vector = apixs[cpu]->x_vectbl[vec]; return ((uintptr_t)(apix_vector->v_autovect)); } static void apix_init() { extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *); APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n")); do_interrupt_common = apix_do_interrupt; addintr = apix_add_avintr; remintr = apix_rem_avintr; get_pending_spl = apix_get_pending_spl; get_intr_handler = apix_get_intr_handler; psm_get_localapicid = apic_get_localapicid; psm_get_ioapicid = apic_get_ioapicid; apix_softinit(); #if !defined(__amd64) if (cpuid_have_cr8access(CPU)) apic_have_32bit_cr8 = 1; #endif apic_pir_vect = apix_get_ipivect(XC_CPUPOKE_PIL, -1); /* * Initialize IRM pool parameters */ if (irm_enable) { int i; int lowest_irq; int highest_irq; /* number of CPUs present */ apix_irminfo.apix_ncpus = apic_nproc; /* total number of entries in all of the IOAPICs present */ lowest_irq = apic_io_vectbase[0]; highest_irq = apic_io_vectend[0]; for (i = 1; i < apic_io_max; i++) { if (apic_io_vectbase[i] < lowest_irq) lowest_irq = apic_io_vectbase[i]; if (apic_io_vectend[i] > highest_irq) highest_irq = apic_io_vectend[i]; } apix_irminfo.apix_ioapic_max_vectors = highest_irq - lowest_irq + 1; /* * Number of available per-CPU vectors excluding * reserved vectors for Dtrace, int80, system-call, * fast-trap, etc. */ apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR - APIX_SW_RESERVED_VECTORS; /* Number of vectors (pre) allocated (SCI and HPET) */ apix_irminfo.apix_vectors_allocated = 0; if (apic_hpet_vect != -1) apix_irminfo.apix_vectors_allocated++; if (apic_sci_vect != -1) apix_irminfo.apix_vectors_allocated++; } } static void apix_init_intr() { processorid_t cpun = psm_get_cpu_id(); uint_t nlvt; uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR; extern void cmi_cmci_trap(void); apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); if (apic_mode == LOCAL_APIC) { /* * We are running APIC in MMIO mode. */ if (apic_flat_model) { apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_FLAT_MODEL); } else { apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_CLUSTER_MODEL); } apic_reg_ops->apic_write(APIC_DEST_REG, AV_HIGH_ORDER >> cpun); } if (apic_directed_EOI_supported()) { /* * Setting the 12th bit in the Spurious Interrupt Vector * Register suppresses broadcast EOIs generated by the local * APIC. The suppression of broadcast EOIs happens only when * interrupts are level-triggered. */ svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI; } /* need to enable APIC before unmasking NMI */ apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr); /* * Presence of an invalid vector with delivery mode AV_FIXED can * cause an error interrupt, even if the entry is masked...so * write a valid vector to LVT entries along with the mask bit */ /* All APICs have timer and LINT0/1 */ apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ); apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ); apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */ /* * On integrated APICs, the number of LVT entries is * 'Max LVT entry' + 1; on 82489DX's (non-integrated * APICs), nlvt is "3" (LINT0, LINT1, and timer) */ if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { nlvt = 3; } else { nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) & 0xFF) + 1; } if (nlvt >= 5) { /* Enable performance counter overflow interrupt */ if (!is_x86_feature(x86_featureset, X86FSET_MSR)) apic_enable_cpcovf_intr = 0; if (apic_enable_cpcovf_intr) { if (apic_cpcovf_vect == 0) { int ipl = APIC_PCINT_IPL; apic_cpcovf_vect = apix_get_ipivect(ipl, -1); ASSERT(apic_cpcovf_vect); (void) add_avintr(NULL, ipl, (avfunc)kcpc_hw_overflow_intr, "apic pcint", apic_cpcovf_vect, NULL, NULL, NULL, NULL); kcpc_hw_overflow_intr_installed = 1; kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear; } apic_reg_ops->apic_write(APIC_PCINT_VECT, apic_cpcovf_vect); } } if (nlvt >= 6) { /* Only mask TM intr if the BIOS apparently doesn't use it */ uint32_t lvtval; lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT); if (((lvtval & AV_MASK) == AV_MASK) || ((lvtval & AV_DELIV_MODE) != AV_SMI)) { apic_reg_ops->apic_write(APIC_THERM_VECT, AV_MASK|APIC_RESV_IRQ); } } /* Enable error interrupt */ if (nlvt >= 4 && apic_enable_error_intr) { if (apic_errvect == 0) { int ipl = 0xf; /* get highest priority intr */ apic_errvect = apix_get_ipivect(ipl, -1); ASSERT(apic_errvect); /* * Not PSMI compliant, but we are going to merge * with ON anyway */ (void) add_avintr(NULL, ipl, (avfunc)apic_error_intr, "apic error intr", apic_errvect, NULL, NULL, NULL, NULL); } apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); } /* * Ensure a CMCI interrupt is allocated, regardless of whether it is * enabled or not. */ if (apic_cmci_vect == 0) { const int ipl = 0x2; apic_cmci_vect = apix_get_ipivect(ipl, -1); ASSERT(apic_cmci_vect); (void) add_avintr(NULL, ipl, (avfunc)cmi_cmci_trap, "apic cmci intr", apic_cmci_vect, NULL, NULL, NULL, NULL); } apic_reg_ops->apic_write_task_reg(0); } static void apix_picinit(void) { int i, j; uint_t isr; APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n")); /* * initialize interrupt remapping before apic * hardware initialization */ apic_intrmap_init(apic_mode); if (apic_vt_ops == psm_vt_ops) apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR; /* * On UniSys Model 6520, the BIOS leaves vector 0x20 isr * bit on without clearing it with EOI. Since softint * uses vector 0x20 to interrupt itself, so softint will * not work on this machine. In order to fix this problem * a check is made to verify all the isr bits are clear. * If not, EOIs are issued to clear the bits. */ for (i = 7; i >= 1; i--) { isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4)); if (isr != 0) for (j = 0; ((j < 32) && (isr != 0)); j++) if (isr & (1 << j)) { apic_reg_ops->apic_write( APIC_EOI_REG, 0); isr &= ~(1 << j); apic_error |= APIC_ERR_BOOT_EOI; } } /* set a flag so we know we have run apic_picinit() */ apic_picinit_called = 1; LOCK_INIT_CLEAR(&apic_gethrtime_lock); LOCK_INIT_CLEAR(&apic_ioapic_lock); LOCK_INIT_CLEAR(&apic_error_lock); LOCK_INIT_CLEAR(&apic_mode_switch_lock); picsetup(); /* initialise the 8259 */ /* add nmi handler - least priority nmi handler */ LOCK_INIT_CLEAR(&apic_nmi_lock); if (!psm_add_nmintr(0, apic_nmi_intr, "apix NMI handler", (caddr_t)NULL)) cmn_err(CE_WARN, "apix: Unable to add nmi handler"); apix_init_intr(); /* enable apic mode if imcr present */ if (apic_imcrp) { outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); } ioapix_init_intr(IOAPIC_MASK); /* setup global IRM pool if applicable */ if (irm_enable) apix_irm_init(); } static __inline__ void apix_send_eoi(void) { if (apic_mode == LOCAL_APIC) LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0); else X2APIC_WRITE(APIC_EOI_REG, 0); } /* * platform_intr_enter * * Called at the beginning of the interrupt service routine, but unlike * pcplusmp, does not mask interrupts. An EOI is given to the interrupt * controller to enable other HW interrupts but interrupts are still * masked by the IF flag. * * Return -1 for spurious interrupts * */ static int apix_intr_enter(int ipl, int *vectorp) { struct cpu *cpu = CPU; uint32_t cpuid = CPU->cpu_id; apic_cpus_info_t *cpu_infop; uchar_t vector; apix_vector_t *vecp; int nipl = -1; /* * The real vector delivered is (*vectorp + 0x20), but our caller * subtracts 0x20 from the vector before passing it to us. * (That's why APIC_BASE_VECT is 0x20.) */ vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT; cpu_infop = &apic_cpus[cpuid]; if (vector == APIC_SPUR_INTR) { cpu_infop->aci_spur_cnt++; return (APIC_INT_SPURIOUS); } vecp = xv_vector(cpuid, vector); if (vecp == NULL) { if (APIX_IS_FAKE_INTR(vector)) nipl = apix_rebindinfo.i_pri; apix_send_eoi(); return (nipl); } nipl = vecp->v_pri; /* if interrupted by the clock, increment apic_nsec_since_boot */ if (vector == (apic_clkvect + APIC_BASE_VECT)) { if (!apic_oneshot) { /* NOTE: this is not MT aware */ apic_hrtime_stamp++; apic_nsec_since_boot += apic_nsec_per_intr; apic_hrtime_stamp++; last_count_read = apic_hertz_count; apix_redistribute_compute(); } apix_send_eoi(); return (nipl); } ASSERT(vecp->v_state != APIX_STATE_OBSOLETED); /* pre-EOI handling for level-triggered interrupts */ if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) && (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum]) apix_level_intr_pre_eoi(vecp->v_inum); /* send back EOI */ apix_send_eoi(); cpu_infop->aci_current[nipl] = vector; if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) { cpu_infop->aci_curipl = (uchar_t)nipl; cpu_infop->aci_ISR_in_progress |= 1 << nipl; } #ifdef DEBUG if (vector >= APIX_IPI_MIN) return (nipl); /* skip IPI */ APIC_DEBUG_BUF_PUT(vector); APIC_DEBUG_BUF_PUT(vecp->v_inum); APIC_DEBUG_BUF_PUT(nipl); APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) drv_usecwait(apic_stretch_interrupts); #endif /* DEBUG */ return (nipl); } /* * Any changes made to this function must also change X2APIC * version of intr_exit. */ static void apix_intr_exit(int prev_ipl, int arg2) { int cpuid = psm_get_cpu_id(); apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid]; apix_impl_t *apixp = apixs[cpuid]; UNREFERENCED_1PARAMETER(arg2); cpu_infop->aci_curipl = (uchar_t)prev_ipl; /* ISR above current pri could not be in progress */ cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; if (apixp->x_obsoletes != NULL) { if (APIX_CPU_LOCK_HELD(cpuid)) return; APIX_ENTER_CPU_LOCK(cpuid); (void) apix_obsolete_vector(apixp->x_obsoletes); APIX_LEAVE_CPU_LOCK(cpuid); } } /* * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the * given ipl, but apix never uses the TPR and we never mask a subset of the * interrupts. They are either all blocked by the IF flag or all can come in. * * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts * can come in if currently enabled by the IF flag. This table shows the state * of the IF flag when we leave this function. * * curr IF | ipl == 15 ipl != 15 * --------+--------------------------- * 0 | 0 0 * 1 | 0 1 */ static void apix_setspl(int ipl) { /* * Interrupts at ipl above this cannot be in progress, so the following * mask is ok. */ apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; if (ipl == XC_HI_PIL) cli(); } int apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl) { uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); apix_vector_t *vecp = xv_vector(cpuid, vector); UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); if (vecp->v_type == APIX_TYPE_FIXED) apix_intx_set_shared(vecp->v_inum, 1); /* There are more interrupts, so it's already been enabled */ if (vecp->v_share > 1) return (PSM_SUCCESS); /* return if it is not hardware interrupt */ if (vecp->v_type == APIX_TYPE_IPI) return (PSM_SUCCESS); /* * if apix_picinit() has not been called yet, just return. * At the end of apic_picinit(), we will call setup_io_intr(). */ if (!apic_picinit_called) return (PSM_SUCCESS); (void) apix_setup_io_intr(vecp); return (PSM_SUCCESS); } int apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl) { uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec); uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec); apix_vector_t *vecp = xv_vector(cpuid, vector); UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl); ASSERT(vecp != NULL && LOCK_HELD(&apix_lock)); if (vecp->v_type == APIX_TYPE_FIXED) apix_intx_set_shared(vecp->v_inum, -1); /* There are more interrupts */ if (vecp->v_share > 1) return (PSM_SUCCESS); /* return if it is not hardware interrupt */ if (vecp->v_type == APIX_TYPE_IPI) return (PSM_SUCCESS); if (!apic_picinit_called) { cmn_err(CE_WARN, "apix: delete 0x%x before apic init", virtvec); return (PSM_SUCCESS); } apix_disable_vector(vecp); return (PSM_SUCCESS); } /* * Try and disable all interrupts. We just assign interrupts to other * processors based on policy. If any were bound by user request, we * let them continue and return failure. We do not bother to check * for cache affinity while rebinding. */ static int apix_disable_intr(processorid_t cpun) { apix_impl_t *apixp = apixs[cpun]; apix_vector_t *vecp, *newp; int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type; lock_set(&apix_lock); apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; apic_cpus[cpun].aci_curipl = 0; /* if this is for SUSPEND operation, skip rebinding */ if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { vecp = apixp->x_vectbl[i]; if (!IS_VECT_ENABLED(vecp)) continue; apix_disable_vector(vecp); } lock_clear(&apix_lock); return (PSM_SUCCESS); } for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { vecp = apixp->x_vectbl[i]; if (!IS_VECT_ENABLED(vecp)) continue; if (vecp->v_flags & APIX_VECT_USER_BOUND) { hardbound++; continue; } type = vecp->v_type; /* * If there are bound interrupts on this cpu, then * rebind them to other processors. */ loop = 0; do { bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE); if (type != APIX_TYPE_MSI) newp = apix_set_cpu(vecp, bindcpu, &ret); else newp = apix_grp_set_cpu(vecp, bindcpu, &ret); } while ((newp == NULL) && (loop++ < apic_nproc)); if (loop >= apic_nproc) { errbound++; cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x", vecp->v_cpuid, vecp->v_vector); } } lock_clear(&apix_lock); if (hardbound || errbound) { cmn_err(CE_WARN, "Could not disable interrupts on %d" "due to user bound interrupts or failed operation", cpun); return (PSM_FAILURE); } return (PSM_SUCCESS); } /* * Bind interrupts to specified CPU */ static void apix_enable_intr(processorid_t cpun) { apix_vector_t *vecp; int i, ret; processorid_t n; lock_set(&apix_lock); apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; /* interrupt enabling for system resume */ if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) { for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { vecp = xv_vector(cpun, i); if (!IS_VECT_ENABLED(vecp)) continue; apix_enable_vector(vecp); } apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND; } for (n = 0; n < apic_nproc; n++) { if (!apic_cpu_in_range(n) || n == cpun || (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0) continue; for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) { vecp = xv_vector(n, i); if (!IS_VECT_ENABLED(vecp) || vecp->v_bound_cpuid != cpun) continue; if (vecp->v_type != APIX_TYPE_MSI) (void) apix_set_cpu(vecp, cpun, &ret); else (void) apix_grp_set_cpu(vecp, cpun, &ret); } } lock_clear(&apix_lock); } /* * Allocate vector for IPI * type == -1 indicates it is an internal request. Do not change * resv_vector for these requests. */ static int apix_get_ipivect(int ipl, int type) { uchar_t vector; if ((vector = apix_alloc_ipi(ipl)) > 0) { if (type != -1) apic_resv_vector[ipl] = vector; return (vector); } apic_error |= APIC_ERR_GET_IPIVECT_FAIL; return (-1); /* shouldn't happen */ } static int apix_get_clkvect(int ipl) { int vector; if ((vector = apix_get_ipivect(ipl, -1)) == -1) return (-1); apic_clkvect = vector - APIC_BASE_VECT; APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n", apic_clkvect)); return (vector); } static int apix_post_cpu_start() { int cpun; static int cpus_started = 1; /* We know this CPU + BSP started successfully. */ cpus_started++; /* * On BSP we would have enabled X2APIC, if supported by processor, * in acpi_probe(), but on AP we do it here. * * We enable X2APIC mode only if BSP is running in X2APIC & the * local APIC mode of the current CPU is MMIO (xAPIC). */ if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() && apic_local_mode() == LOCAL_APIC) { apic_enable_x2apic(); } /* * Switch back to x2apic IPI sending method for performance when target * CPU has entered x2apic mode. */ if (apic_mode == LOCAL_X2APIC) { apic_switch_ipi_callback(B_FALSE); } splx(ipltospl(LOCK_LEVEL)); apix_init_intr(); /* * since some systems don't enable the internal cache on the non-boot * cpus, so we have to enable them here */ setcr0(getcr0() & ~(CR0_CD | CR0_NW)); #ifdef DEBUG APIC_AV_PENDING_SET(); #else if (apic_mode == LOCAL_APIC) APIC_AV_PENDING_SET(); #endif /* DEBUG */ /* * We may be booting, or resuming from suspend; aci_status will * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the * APIC_CPU_ONLINE flag here rather than setting aci_status completely. */ cpun = psm_get_cpu_id(); apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE; apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init); return (PSM_SUCCESS); } /* * If this module needs a periodic handler for the interrupt distribution, it * can be added here. The argument to the periodic handler is not currently * used, but is reserved for future. */ static void apix_post_cyclic_setup(void *arg) { UNREFERENCED_1PARAMETER(arg); cyc_handler_t cyh; cyc_time_t cyt; /* cpu_lock is held */ /* set up a periodic handler for intr redistribution */ /* * In peridoc mode intr redistribution processing is done in * apic_intr_enter during clk intr processing */ if (!apic_oneshot) return; /* * Register a periodical handler for the redistribution processing. * Though we would generally prefer to use the DDI interface for * periodic handler invocation, ddi_periodic_add(9F), we are * unfortunately already holding cpu_lock, which ddi_periodic_add will * attempt to take for us. Thus, we add our own cyclic directly: */ cyh.cyh_func = (void (*)(void *))apix_redistribute_compute; cyh.cyh_arg = NULL; cyh.cyh_level = CY_LOW_LEVEL; cyt.cyt_when = 0; cyt.cyt_interval = apic_redistribute_sample_interval; apic_cyclic_id = cyclic_add(&cyh, &cyt); } /* * Called the first time we enable x2apic mode on this cpu. * Update some of the function pointers to use x2apic routines. */ void x2apic_update_psm() { struct psm_ops *pops = &apix_ops; ASSERT(pops != NULL); /* * The pcplusmp module's version of x2apic_update_psm makes additional * changes that we do not have to make here. It needs to make those * changes because pcplusmp relies on the TPR register and the means of * addressing that changes when using the local apic versus the x2apic. * It's also worth noting that the apix driver specific function end up * being apix_foo as opposed to apic_foo and x2apic_foo. */ pops->psm_send_ipi = x2apic_send_ipi; send_dirintf = pops->psm_send_ipi; pops->psm_send_pir_ipi = x2apic_send_pir_ipi; psm_send_pir_ipi = pops->psm_send_pir_ipi; apic_mode = LOCAL_X2APIC; apic_change_ops(); } /* * This function provides external interface to the nexus for all * functionalities related to the new DDI interrupt framework. * * Input: * dip - pointer to the dev_info structure of the requested device * hdlp - pointer to the internal interrupt handle structure for the * requested interrupt * intr_op - opcode for this call * result - pointer to the integer that will hold the result to be * passed back if return value is PSM_SUCCESS * * Output: * return value is either PSM_SUCCESS or PSM_FAILURE */ static int apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, psm_intr_op_t intr_op, int *result) { int cap; apix_vector_t *vecp, *newvecp; struct intrspec *ispec, intr_spec; processorid_t target; ispec = &intr_spec; ispec->intrspec_pri = hdlp->ih_pri; ispec->intrspec_vec = hdlp->ih_inum; ispec->intrspec_func = hdlp->ih_cb_func; switch (intr_op) { case PSM_INTR_OP_ALLOC_VECTORS: switch (hdlp->ih_type) { case DDI_INTR_TYPE_MSI: /* allocate MSI vectors */ *result = apix_alloc_msi(dip, hdlp->ih_inum, hdlp->ih_scratch1, (int)(uintptr_t)hdlp->ih_scratch2); break; case DDI_INTR_TYPE_MSIX: /* allocate MSI-X vectors */ *result = apix_alloc_msix(dip, hdlp->ih_inum, hdlp->ih_scratch1, (int)(uintptr_t)hdlp->ih_scratch2); break; case DDI_INTR_TYPE_FIXED: /* allocate or share vector for fixed */ if ((ihdl_plat_t *)hdlp->ih_private == NULL) { return (PSM_FAILURE); } ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; *result = apix_intx_alloc_vector(dip, hdlp->ih_inum, ispec); break; default: return (PSM_FAILURE); } break; case PSM_INTR_OP_FREE_VECTORS: apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1, hdlp->ih_type); break; case PSM_INTR_OP_XLATE_VECTOR: /* * Vectors are allocated by ALLOC and freed by FREE. * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector). */ *result = APIX_INVALID_VECT; vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); if (vecp != NULL) { *result = APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector); break; } /* * No vector to device mapping exists. If this is FIXED type * then check if this IRQ is already mapped for another device * then return the vector number for it (i.e. shared IRQ case). * Otherwise, return PSM_FAILURE. */ if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) { vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum, ispec); *result = (vecp == NULL) ? APIX_INVALID_VECT : APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector); } if (*result == APIX_INVALID_VECT) return (PSM_FAILURE); break; case PSM_INTR_OP_GET_PENDING: vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); if (vecp == NULL) return (PSM_FAILURE); *result = apix_get_pending(vecp); break; case PSM_INTR_OP_CLEAR_MASK: if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) return (PSM_FAILURE); vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); if (vecp == NULL) return (PSM_FAILURE); apix_intx_clear_mask(vecp->v_inum); break; case PSM_INTR_OP_SET_MASK: if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) return (PSM_FAILURE); vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); if (vecp == NULL) return (PSM_FAILURE); apix_intx_set_mask(vecp->v_inum); break; case PSM_INTR_OP_GET_SHARED: if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) return (PSM_FAILURE); vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type); if (vecp == NULL) return (PSM_FAILURE); *result = apix_intx_get_shared(vecp->v_inum); break; case PSM_INTR_OP_SET_PRI: /* * Called prior to adding the interrupt handler or when * an interrupt handler is unassigned. */ if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) return (PSM_SUCCESS); if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL) return (PSM_FAILURE); break; case PSM_INTR_OP_SET_CPU: case PSM_INTR_OP_GRP_SET_CPU: /* * The interrupt handle given here has been allocated * specifically for this command, and ih_private carries * a CPU value. */ *result = EINVAL; target = (int)(intptr_t)hdlp->ih_private; if (!apic_cpu_in_range(target)) { DDI_INTR_IMPLDBG((CE_WARN, "[grp_]set_cpu: cpu out of range: %d\n", target)); return (PSM_FAILURE); } lock_set(&apix_lock); vecp = apix_get_req_vector(hdlp, hdlp->ih_flags); if (!IS_VECT_ENABLED(vecp)) { DDI_INTR_IMPLDBG((CE_WARN, "[grp]_set_cpu: invalid vector 0x%x\n", hdlp->ih_vector)); lock_clear(&apix_lock); return (PSM_FAILURE); } *result = 0; if (intr_op == PSM_INTR_OP_SET_CPU) newvecp = apix_set_cpu(vecp, target, result); else newvecp = apix_grp_set_cpu(vecp, target, result); lock_clear(&apix_lock); if (newvecp == NULL) { *result = EIO; return (PSM_FAILURE); } newvecp->v_bound_cpuid = target; hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid, newvecp->v_vector); break; case PSM_INTR_OP_GET_INTR: /* * The interrupt handle given here has been allocated * specifically for this command, and ih_private carries * a pointer to a apic_get_intr_t. */ if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS) return (PSM_FAILURE); break; case PSM_INTR_OP_CHECK_MSI: /* * Check MSI/X is supported or not at APIC level and * masked off the MSI/X bits in hdlp->ih_type if not * supported before return. If MSI/X is supported, * leave the ih_type unchanged and return. * * hdlp->ih_type passed in from the nexus has all the * interrupt types supported by the device. */ if (apic_support_msi == 0) { /* uninitialized */ /* * if apic_support_msi is not set, call * apic_check_msi_support() to check whether msi * is supported first */ if (apic_check_msi_support() == PSM_SUCCESS) apic_support_msi = 1; /* supported */ else apic_support_msi = -1; /* not-supported */ } if (apic_support_msi == 1) { if (apic_msix_enable) *result = hdlp->ih_type; else *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX; } else *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX); break; case PSM_INTR_OP_GET_CAP: cap = DDI_INTR_FLAG_PENDING; if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) cap |= DDI_INTR_FLAG_MASKABLE; *result = cap; break; case PSM_INTR_OP_APIC_TYPE: ((apic_get_type_t *)(hdlp->ih_private))->avgi_type = apix_get_apic_type(); ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr = APIX_IPI_MIN; ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu = apic_nproc; hdlp->ih_ver = apic_get_apic_version(); break; case PSM_INTR_OP_SET_CAP: default: return (PSM_FAILURE); } return (PSM_SUCCESS); } static void apix_cleanup_busy(void) { int i, j; apix_vector_t *vecp; for (i = 0; i < apic_nproc; i++) { if (!apic_cpu_in_range(i)) continue; apic_cpus[i].aci_busy = 0; for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) { if ((vecp = xv_vector(i, j)) != NULL) vecp->v_busy = 0; } } } static void apix_redistribute_compute(void) { int i, j, max_busy; if (!apic_enable_dynamic_migration) return; if (++apic_nticks == apic_sample_factor_redistribution) { /* * Time to call apic_intr_redistribute(). * reset apic_nticks. This will cause max_busy * to be calculated below and if it is more than * apic_int_busy, we will do the whole thing */ apic_nticks = 0; } max_busy = 0; for (i = 0; i < apic_nproc; i++) { if (!apic_cpu_in_range(i)) continue; /* * Check if curipl is non zero & if ISR is in * progress */ if (((j = apic_cpus[i].aci_curipl) != 0) && (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { int vect; apic_cpus[i].aci_busy++; vect = apic_cpus[i].aci_current[j]; apixs[i]->x_vectbl[vect]->v_busy++; } if (!apic_nticks && (apic_cpus[i].aci_busy > max_busy)) max_busy = apic_cpus[i].aci_busy; } if (!apic_nticks) { if (max_busy > apic_int_busy_mark) { /* * We could make the following check be * skipped > 1 in which case, we get a * redistribution at half the busy mark (due to * double interval). Need to be able to collect * more empirical data to decide if that is a * good strategy. Punt for now. */ apix_cleanup_busy(); apic_skipped_redistribute = 0; } else apic_skipped_redistribute++; } } /* * intr_ops() service routines */ static int apix_get_pending(apix_vector_t *vecp) { int bit, index, irr, pending; /* need to get on the bound cpu */ mutex_enter(&cpu_lock); affinity_set(vecp->v_cpuid); index = vecp->v_vector / 32; bit = vecp->v_vector % 32; irr = apic_reg_ops->apic_read(APIC_IRR_REG + index); affinity_clear(); mutex_exit(&cpu_lock); pending = (irr & (1 << bit)) ? 1 : 0; if (!pending && vecp->v_type == APIX_TYPE_FIXED) pending = apix_intx_get_pending(vecp->v_inum); return (pending); } static apix_vector_t * apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags) { apix_vector_t *vecp; processorid_t cpuid; int32_t virt_vec = 0; switch (flags & PSMGI_INTRBY_FLAGS) { case PSMGI_INTRBY_IRQ: return (apix_intx_get_vector(hdlp->ih_vector)); case PSMGI_INTRBY_VEC: virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec; cpuid = APIX_VIRTVEC_CPU(virt_vec); if (!apic_cpu_in_range(cpuid)) return (NULL); vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec)); break; case PSMGI_INTRBY_DEFAULT: vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum, hdlp->ih_type); break; default: return (NULL); } return (vecp); } static int apix_get_intr_info(ddi_intr_handle_impl_t *hdlp, apic_get_intr_t *intr_params_p) { apix_vector_t *vecp; struct autovec *av_dev; int i; vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags); if (IS_VECT_FREE(vecp)) { intr_params_p->avgi_num_devs = 0; intr_params_p->avgi_cpu_id = 0; intr_params_p->avgi_req_flags = 0; return (PSM_SUCCESS); } if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) { intr_params_p->avgi_cpu_id = vecp->v_cpuid; /* Return user bound info for intrd. */ if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) { intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND; intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND; } } if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) intr_params_p->avgi_vector = vecp->v_vector; if (intr_params_p->avgi_req_flags & (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) /* Get number of devices from apic_irq table shared field. */ intr_params_p->avgi_num_devs = vecp->v_share; if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) { intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS; /* Some devices have NULL dip. Don't count these. */ if (intr_params_p->avgi_num_devs > 0) { for (i = 0, av_dev = vecp->v_autovect; av_dev; av_dev = av_dev->av_link) { if (av_dev->av_vector && av_dev->av_dip) i++; } intr_params_p->avgi_num_devs = (uint8_t)MIN(intr_params_p->avgi_num_devs, i); } /* There are no viable dips to return. */ if (intr_params_p->avgi_num_devs == 0) { intr_params_p->avgi_dip_list = NULL; } else { /* Return list of dips */ /* Allocate space in array for that number of devs. */ intr_params_p->avgi_dip_list = kmem_zalloc( intr_params_p->avgi_num_devs * sizeof (dev_info_t *), KM_NOSLEEP); if (intr_params_p->avgi_dip_list == NULL) { DDI_INTR_IMPLDBG((CE_WARN, "apix_get_vector_intr_info: no memory")); return (PSM_FAILURE); } /* * Loop through the device list of the autovec table * filling in the dip array. * * Note that the autovect table may have some special * entries which contain NULL dips. These will be * ignored. */ for (i = 0, av_dev = vecp->v_autovect; av_dev; av_dev = av_dev->av_link) { if (av_dev->av_vector && av_dev->av_dip) intr_params_p->avgi_dip_list[i++] = av_dev->av_dip; } } } return (PSM_SUCCESS); } static char * apix_get_apic_type(void) { return (apix_psm_info.p_mach_idstring); } apix_vector_t * apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) { apix_vector_t *newp = NULL; dev_info_t *dip; int inum, cap_ptr; ddi_acc_handle_t handle; ddi_intr_msix_t *msix_p = NULL; ushort_t msix_ctrl; uintptr_t off = 0; uint32_t mask = 0; ASSERT(LOCK_HELD(&apix_lock)); *result = ENXIO; /* Fail if this is an MSI intr and is part of a group. */ if (vecp->v_type == APIX_TYPE_MSI) { if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1) return (NULL); else return (apix_grp_set_cpu(vecp, new_cpu, result)); } /* * Mask MSI-X. It's unmasked when MSI-X gets enabled. */ if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) { if ((dip = APIX_GET_DIP(vecp)) == NULL) return (NULL); inum = vecp->v_devp->dv_inum; handle = i_ddi_get_pci_config_handle(dip); cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) { /* * Function is not masked, then mask "inum"th * entry in the MSI-X table */ msix_p = i_ddi_get_msix(dip); off = (uintptr_t)msix_p->msix_tbl_addr + (inum * PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask | 1); } } *result = 0; if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL) *result = EIO; /* Restore mask bit */ if (msix_p != NULL) ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask); return (newp); } /* * Set cpu for MSIs */ apix_vector_t * apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result) { apix_vector_t *newp, *vp; uint32_t orig_cpu = vecp->v_cpuid; int orig_vect = vecp->v_vector; int i, num_vectors, cap_ptr, msi_mask_off = 0; uint32_t msi_pvm = 0; ushort_t msi_ctrl; ddi_acc_handle_t handle; dev_info_t *dip; APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x," " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu)); ASSERT(LOCK_HELD(&apix_lock)); *result = ENXIO; if (vecp->v_type != APIX_TYPE_MSI) { DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n")); return (NULL); } if ((dip = APIX_GET_DIP(vecp)) == NULL) return (NULL); num_vectors = i_ddi_intr_get_current_nintrs(dip); if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) { APIC_VERBOSE(INTR, (CE_WARN, "set_grp: base vec not part of a grp or not aligned: " "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors)); return (NULL); } if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type)) return (NULL); *result = EIO; for (i = 1; i < num_vectors; i++) { if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL) return (NULL); #ifdef DEBUG /* * Sanity check: CPU and dip is the same for all entries. * May be called when first msi to be enabled, at this time * add_avintr() is not called for other msi */ if ((vp->v_share != 0) && ((APIX_GET_DIP(vp) != dip) || (vp->v_cpuid != vecp->v_cpuid))) { APIC_VERBOSE(INTR, (CE_WARN, "set_grp: cpu or dip for vec 0x%x difft than for " "vec 0x%x\n", orig_vect, orig_vect + i)); APIC_VERBOSE(INTR, (CE_WARN, " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu, vp->v_cpuid, (void *)dip, (void *)APIX_GET_DIP(vp))); return (NULL); } #endif /* DEBUG */ } cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip); handle = i_ddi_get_pci_config_handle(dip); msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); /* MSI Per vector masking is supported. */ if (msi_ctrl & PCI_MSI_PVM_MASK) { if (msi_ctrl & PCI_MSI_64BIT_MASK) msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS; else msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK; msi_pvm = pci_config_get32(handle, msi_mask_off); pci_config_put32(handle, msi_mask_off, (uint32_t)-1); APIC_VERBOSE(INTR, (CE_CONT, "set_grp: pvm supported. Mask set to 0x%x\n", pci_config_get32(handle, msi_mask_off))); } if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL) *result = 0; /* Reenable vectors if per vector masking is supported. */ if (msi_ctrl & PCI_MSI_PVM_MASK) { pci_config_put32(handle, msi_mask_off, msi_pvm); APIC_VERBOSE(INTR, (CE_CONT, "set_grp: pvm supported. Mask restored to 0x%x\n", pci_config_get32(handle, msi_mask_off))); } return (newp); } void apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector) { apic_irq_t *irqp; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno]; irqp->airq_cpu = cpuid; irqp->airq_vector = vector; apic_record_rdt_entry(irqp, irqno); mutex_exit(&airq_mutex); } apix_vector_t * apix_intx_get_vector(int irqno) { apic_irq_t *irqp; uint32_t cpuid; uchar_t vector; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno & 0xff]; if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { mutex_exit(&airq_mutex); return (NULL); } cpuid = irqp->airq_cpu; vector = irqp->airq_vector; mutex_exit(&airq_mutex); return (xv_vector(cpuid, vector)); } /* * Must called with interrupts disabled and apic_ioapic_lock held */ void apix_intx_enable(int irqno) { uchar_t ioapicindex, intin; apic_irq_t *irqp = apic_irq_table[irqno]; ioapic_rdt_t irdt; apic_cpus_info_t *cpu_infop; apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector); ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); ioapicindex = irqp->airq_ioapicindex; intin = irqp->airq_intin_no; cpu_infop = &apic_cpus[irqp->airq_cpu]; irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry; irdt.ir_hi = cpu_infop->aci_local_id; apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL, vecp->v_type, 1, ioapicindex); apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private, (void *)&irdt, vecp->v_type, 1); apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt); /* write RDT entry high dword - destination */ WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin, irdt.ir_hi); /* Write the vector, trigger, and polarity portion of the RDT */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo); vecp->v_state = APIX_STATE_ENABLED; APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x" " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n", ioapicindex, intin, irdt.ir_lo, irdt.ir_hi)); } /* * Must called with interrupts disabled and apic_ioapic_lock held */ void apix_intx_disable(int irqno) { apic_irq_t *irqp = apic_irq_table[irqno]; int ioapicindex, intin; ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp)); /* * The assumption here is that this is safe, even for * systems with IOAPICs that suffer from the hardware * erratum because all devices have been quiesced before * they unregister their interrupt handlers. If that * assumption turns out to be false, this mask operation * can induce the same erratum result we're trying to * avoid. */ ioapicindex = irqp->airq_ioapicindex; intin = irqp->airq_intin_no; ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK); APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x" " intin 0x%x\n", ioapicindex, intin)); } void apix_intx_free(int irqno) { apic_irq_t *irqp; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno]; if (IS_IRQ_FREE(irqp)) { mutex_exit(&airq_mutex); return; } irqp->airq_mps_intr_index = FREE_INDEX; irqp->airq_cpu = IRQ_UNINIT; irqp->airq_vector = APIX_INVALID_VECT; mutex_exit(&airq_mutex); } #ifdef DEBUG int apix_intr_deliver_timeouts = 0; int apix_intr_rirr_timeouts = 0; int apix_intr_rirr_reset_failure = 0; #endif int apix_max_reps_irr_pending = 10; #define GET_RDT_BITS(ioapic, intin, bits) \ (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits)) #define APIX_CHECK_IRR_DELAY drv_usectohz(5000) int apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector) { apic_irq_t *irqp = apic_irq_table[irqno]; ulong_t iflag; int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked; ASSERT(irqp != NULL); iflag = intr_clear(); lock_set(&apic_ioapic_lock); ioapic_ix = irqp->airq_ioapicindex; intin_no = irqp->airq_intin_no; level = apic_level_intr[irqno]; /* * Wait for the delivery status bit to be cleared. This should * be a very small amount of time. */ repeats = 0; do { repeats++; for (waited = 0; waited < apic_max_reps_clear_pending; waited++) { if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0) break; } if (!level) break; /* * Mask the RDT entry for level-triggered interrupts. */ irqp->airq_rdt_entry |= AV_MASK; rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no); if ((masked = (rdt_entry & AV_MASK)) == 0) { /* Mask it */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, AV_MASK | rdt_entry); } /* * If there was a race and an interrupt was injected * just before we masked, check for that case here. * Then, unmask the RDT entry and try again. If we're * on our last try, don't unmask (because we want the * RDT entry to remain masked for the rest of the * function). */ rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no); if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) && (repeats < apic_max_reps_clear_pending)) { /* Unmask it */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, rdt_entry & ~AV_MASK); irqp->airq_rdt_entry &= ~AV_MASK; } } while ((rdt_entry & AV_PENDING) && (repeats < apic_max_reps_clear_pending)); #ifdef DEBUG if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0) apix_intr_deliver_timeouts++; #endif if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method)) goto done; /* * wait for remote IRR to be cleared for level-triggered * interrupts */ repeats = 0; do { repeats++; for (waited = 0; waited < apic_max_reps_clear_pending; waited++) { if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) == 0) break; } if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { lock_clear(&apic_ioapic_lock); intr_restore(iflag); delay(APIX_CHECK_IRR_DELAY); iflag = intr_clear(); lock_set(&apic_ioapic_lock); } } while (repeats < apix_max_reps_irr_pending); if (repeats >= apix_max_reps_irr_pending) { #ifdef DEBUG apix_intr_rirr_timeouts++; #endif /* * If we waited and the Remote IRR bit is still not cleared, * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS * times for this interrupt, try the last-ditch workaround: */ if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { /* * Trying to clear the bit through normal * channels has failed. So as a last-ditch * effort, try to set the trigger mode to * edge, then to level. This has been * observed to work on many systems. */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) & ~AV_LEVEL); WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no, READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no) | AV_LEVEL); } if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) { #ifdef DEBUG apix_intr_rirr_reset_failure++; #endif lock_clear(&apic_ioapic_lock); intr_restore(iflag); prom_printf("apix: Remote IRR still " "not clear for IOAPIC %d intin %d.\n" "\tInterrupts to this pin may cease " "functioning.\n", ioapic_ix, intin_no); return (1); /* return failure */ } } done: /* change apic_irq_table */ lock_clear(&apic_ioapic_lock); intr_restore(iflag); apix_intx_set_vector(irqno, cpuid, vector); iflag = intr_clear(); lock_set(&apic_ioapic_lock); /* reprogramme IO-APIC RDT entry */ apix_intx_enable(irqno); lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (0); } static int apix_intx_get_pending(int irqno) { apic_irq_t *irqp; int intin, ioapicindex, pending; ulong_t iflag; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno]; if (IS_IRQ_FREE(irqp)) { mutex_exit(&airq_mutex); return (0); } /* check IO-APIC delivery status */ intin = irqp->airq_intin_no; ioapicindex = irqp->airq_ioapicindex; mutex_exit(&airq_mutex); iflag = intr_clear(); lock_set(&apic_ioapic_lock); pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) & AV_PENDING) ? 1 : 0; lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (pending); } /* * This function will mask the interrupt on the I/O APIC */ static void apix_intx_set_mask(int irqno) { int intin, ioapixindex, rdt_entry; ulong_t iflag; apic_irq_t *irqp; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno]; ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); intin = irqp->airq_intin_no; ioapixindex = irqp->airq_ioapicindex; mutex_exit(&airq_mutex); iflag = intr_clear(); lock_set(&apic_ioapic_lock); rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); /* clear mask */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, (AV_MASK | rdt_entry)); lock_clear(&apic_ioapic_lock); intr_restore(iflag); } /* * This function will clear the mask for the interrupt on the I/O APIC */ static void apix_intx_clear_mask(int irqno) { int intin, ioapixindex, rdt_entry; ulong_t iflag; apic_irq_t *irqp; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno]; ASSERT(irqp->airq_mps_intr_index != FREE_INDEX); intin = irqp->airq_intin_no; ioapixindex = irqp->airq_ioapicindex; mutex_exit(&airq_mutex); iflag = intr_clear(); lock_set(&apic_ioapic_lock); rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin); /* clear mask */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin, ((~AV_MASK) & rdt_entry)); lock_clear(&apic_ioapic_lock); intr_restore(iflag); } /* * For level-triggered interrupt, mask the IRQ line. Mask means * new interrupts will not be delivered. The interrupt already * accepted by a local APIC is not affected */ void apix_level_intr_pre_eoi(int irq) { apic_irq_t *irqp = apic_irq_table[irq]; int apic_ix, intin_ix; if (irqp == NULL) return; ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL); lock_set(&apic_ioapic_lock); intin_ix = irqp->airq_intin_no; apic_ix = irqp->airq_ioapicindex; if (irqp->airq_cpu != CPU->cpu_id) { if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method)) ioapic_write_eoi(apic_ix, irqp->airq_vector); lock_clear(&apic_ioapic_lock); return; } if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) { /* * This is a IOxAPIC and there is EOI register: * Change the vector to reserved unused vector, so that * the EOI from Local APIC won't clear the Remote IRR for * this level trigger interrupt. Instead, we'll manually * clear it in apix_post_hardint() after ISR handling. */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR); } else { WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, AV_MASK | irqp->airq_rdt_entry); } lock_clear(&apic_ioapic_lock); } /* * For level-triggered interrupt, unmask the IRQ line * or restore the original vector number. */ void apix_level_intr_post_dispatch(int irq) { apic_irq_t *irqp = apic_irq_table[irq]; int apic_ix, intin_ix; if (irqp == NULL) return; lock_set(&apic_ioapic_lock); intin_ix = irqp->airq_intin_no; apic_ix = irqp->airq_ioapicindex; if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) { /* * Already sent EOI back to Local APIC. * Send EOI to IO-APIC */ ioapic_write_eoi(apic_ix, irqp->airq_vector); } else { /* clear the mask or restore the vector */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix, irqp->airq_rdt_entry); /* send EOI to IOxAPIC */ if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) ioapic_write_eoi(apic_ix, irqp->airq_vector); } lock_clear(&apic_ioapic_lock); } static int apix_intx_get_shared(int irqno) { apic_irq_t *irqp; int share; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno]; if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) { mutex_exit(&airq_mutex); return (0); } share = irqp->airq_share; mutex_exit(&airq_mutex); return (share); } static void apix_intx_set_shared(int irqno, int delta) { apic_irq_t *irqp; mutex_enter(&airq_mutex); irqp = apic_irq_table[irqno]; if (IS_IRQ_FREE(irqp)) { mutex_exit(&airq_mutex); return; } irqp->airq_share += delta; mutex_exit(&airq_mutex); } /* * Setup IRQ table. Return IRQ no or -1 on failure */ static int apix_intx_setup(dev_info_t *dip, int inum, int irqno, struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp) { int origirq = ispec->intrspec_vec; int newirq; short intr_index; uchar_t ipin, ioapic, ioapicindex; apic_irq_t *irqp; UNREFERENCED_1PARAMETER(inum); if (intrp != NULL) { intr_index = (short)(intrp - apic_io_intrp); ioapic = intrp->intr_destid; ipin = intrp->intr_destintin; /* Find ioapicindex. If destid was ALL, we will exit with 0. */ for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) if (apic_io_id[ioapicindex] == ioapic) break; ASSERT((ioapic == apic_io_id[ioapicindex]) || (ioapic == INTR_ALL_APIC)); /* check whether this intin# has been used by another irqno */ if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) return (newirq); } else if (iflagp != NULL) { /* ACPI */ intr_index = ACPI_INDEX; ioapicindex = acpi_find_ioapic(irqno); ASSERT(ioapicindex != 0xFF); ioapic = apic_io_id[ioapicindex]; ipin = irqno - apic_io_vectbase[ioapicindex]; if (apic_irq_table[irqno] && apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && apic_irq_table[irqno]->airq_ioapicindex == ioapicindex); return (irqno); } } else { /* default configuration */ intr_index = DEFAULT_INDEX; ioapicindex = 0; ioapic = apic_io_id[ioapicindex]; ipin = (uchar_t)irqno; } /* allocate a new IRQ no */ if ((irqp = apic_irq_table[irqno]) == NULL) { irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); apic_irq_table[irqno] = irqp; } else { if (irqp->airq_mps_intr_index != FREE_INDEX) { newirq = apic_allocate_irq(apic_first_avail_irq); if (newirq == -1) { return (-1); } irqno = newirq; irqp = apic_irq_table[irqno]; ASSERT(irqp != NULL); } } apic_max_device_irq = max(irqno, apic_max_device_irq); apic_min_device_irq = min(irqno, apic_min_device_irq); irqp->airq_mps_intr_index = intr_index; irqp->airq_ioapicindex = ioapicindex; irqp->airq_intin_no = ipin; irqp->airq_dip = dip; irqp->airq_origirq = (uchar_t)origirq; if (iflagp != NULL) irqp->airq_iflag = *iflagp; irqp->airq_cpu = IRQ_UNINIT; irqp->airq_vector = 0; return (irqno); } /* * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error */ static int apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype, struct intrspec *ispec) { int irqno = ispec->intrspec_vec; int newirq, i; iflag_t intr_flag; ACPI_SUBTABLE_HEADER *hp; ACPI_MADT_INTERRUPT_OVERRIDE *isop; struct apic_io_intr *intrp; if (!apic_enable_acpi || apic_use_acpi_madt_only) { int busid; if (bustype == 0) bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; /* loop checking BUS_ISA/BUS_EISA */ for (i = 0; i < 2; i++) { if (((busid = apic_find_bus_id(bustype)) != -1) && ((intrp = apic_find_io_intr_w_busid(irqno, busid)) != NULL)) { return (apix_intx_setup(dip, inum, irqno, intrp, ispec, NULL)); } bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; } /* fall back to default configuration */ return (-1); } /* search iso entries first */ if (acpi_iso_cnt != 0) { hp = (ACPI_SUBTABLE_HEADER *)acpi_isop; i = 0; while (i < acpi_iso_cnt) { if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) { isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp; if (isop->Bus == 0 && isop->SourceIrq == irqno) { newirq = isop->GlobalIrq; intr_flag.intr_po = isop->IntiFlags & ACPI_MADT_POLARITY_MASK; intr_flag.intr_el = (isop->IntiFlags & ACPI_MADT_TRIGGER_MASK) >> 2; intr_flag.bustype = BUS_ISA; return (apix_intx_setup(dip, inum, newirq, NULL, ispec, &intr_flag)); } i++; } hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) + hp->Length); } } intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; intr_flag.intr_el = INTR_EL_EDGE; intr_flag.bustype = BUS_ISA; return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag)); } /* * Setup IRQ table for pci devices. Return IRQ no or -1 on error */ static int apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype, struct intrspec *ispec) { int busid, devid, pci_irq; ddi_acc_handle_t cfg_handle; uchar_t ipin; iflag_t intr_flag; struct apic_io_intr *intrp; if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) return (-1); if (busid == 0 && apic_pci_bus_total == 1) busid = (int)apic_single_pci_busid; if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) return (-1); ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; pci_config_teardown(&cfg_handle); if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */ if (apic_acpi_translate_pci_irq(dip, busid, devid, ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) return (-1); intr_flag.bustype = (uchar_t)bustype; return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec, &intr_flag)); } /* MP configuration table */ pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp); if (pci_irq == -1) return (-1); } return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL)); } /* * Translate and return IRQ no */ static int apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec) { int newirq, irqno = ispec->intrspec_vec; int parent_is_pci_or_pciex = 0, child_is_pciex = 0; int bustype = 0, dev_len; char dev_type[16]; if (apic_defconf) { mutex_enter(&airq_mutex); goto defconf; } if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) { mutex_enter(&airq_mutex); goto nonpci; } /* * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string() * to avoid extra buffer allocation. */ dev_len = sizeof (dev_type); if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, &dev_len) == DDI_PROP_SUCCESS) { if ((strcmp(dev_type, "pci") == 0) || (strcmp(dev_type, "pciex") == 0)) parent_is_pci_or_pciex = 1; } if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type, &dev_len) == DDI_PROP_SUCCESS) { if (strstr(dev_type, "pciex")) child_is_pciex = 1; } mutex_enter(&airq_mutex); if (parent_is_pci_or_pciex) { bustype = child_is_pciex ? BUS_PCIE : BUS_PCI; newirq = apix_intx_setup_pci(dip, inum, bustype, ispec); if (newirq != -1) goto done; bustype = 0; } else if (strcmp(dev_type, "isa") == 0) bustype = BUS_ISA; else if (strcmp(dev_type, "eisa") == 0) bustype = BUS_EISA; nonpci: newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec); if (newirq != -1) goto done; defconf: newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL); if (newirq == -1) { mutex_exit(&airq_mutex); return (-1); } done: ASSERT(apic_irq_table[newirq]); mutex_exit(&airq_mutex); return (newirq); } static int apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec) { int irqno; apix_vector_t *vecp; if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) return (0); if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL) return (0); DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s " "irqno=0x%x cpuid=%d vector=0x%x\n", (void *)dip, ddi_driver_name(dip), irqno, vecp->v_cpuid, vecp->v_vector)); return (1); } /* * Return the vector number if the translated IRQ for this device * has a vector mapping setup. If no IRQ setup exists or no vector is * allocated to it then return 0. */ static apix_vector_t * apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec) { int irqno; apix_vector_t *vecp; /* get the IRQ number */ if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1) return (NULL); /* get the vector number if a vector is allocated to this irqno */ vecp = apix_intx_get_vector(irqno); return (vecp); } /* * Switch between safe and x2APIC IPI sending method. * The CPU may power on in xapic mode or x2apic mode. If the CPU needs to send * an IPI to other CPUs before entering x2APIC mode, it still needs to use the * xAPIC method. Before sending a StartIPI to the target CPU, psm_send_ipi will * be changed to apic_common_send_ipi, which detects current local APIC mode and * use the right method to send an IPI. If some CPUs fail to start up, * apic_poweron_cnt won't return to zero, so apic_common_send_ipi will always be * used. psm_send_ipi can't be simply changed back to x2apic_send_ipi if some * CPUs failed to start up because those failed CPUs may recover itself later at * unpredictable time. */ void apic_switch_ipi_callback(boolean_t enter) { ulong_t iflag; struct psm_ops *pops = psmops; iflag = intr_clear(); lock_set(&apic_mode_switch_lock); if (enter) { ASSERT(apic_poweron_cnt >= 0); if (apic_poweron_cnt == 0) { pops->psm_send_ipi = apic_common_send_ipi; send_dirintf = pops->psm_send_ipi; pops->psm_send_pir_ipi = apic_common_send_pir_ipi; psm_send_pir_ipi = pops->psm_send_pir_ipi; } apic_poweron_cnt++; } else { ASSERT(apic_poweron_cnt > 0); apic_poweron_cnt--; if (apic_poweron_cnt == 0) { pops->psm_send_ipi = x2apic_send_ipi; send_dirintf = pops->psm_send_ipi; pops->psm_send_pir_ipi = x2apic_send_pir_ipi; psm_send_pir_ipi = pops->psm_send_pir_ipi; } } lock_clear(&apic_mode_switch_lock); intr_restore(iflag); } /* stub function */ int apix_loaded(void) { return (apix_is_enabled); }