/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ao.h" #include "ao_mca_disp.h" errorq_t *ao_mca_queue; /* machine-check ereport queue */ int ao_mca_stack_flag = 0; /* record stack trace in ereports */ int ao_mca_smi_disable = 1; /* attempt to disable SMI polling */ ao_bank_regs_t ao_bank_regs[AMD_MCA_BANK_COUNT] = { { AMD_MSR_DC_STATUS, AMD_MSR_DC_ADDR }, { AMD_MSR_IC_STATUS, AMD_MSR_IC_ADDR }, { AMD_MSR_BU_STATUS, AMD_MSR_BU_ADDR }, { AMD_MSR_LS_STATUS, AMD_MSR_LS_ADDR }, { AMD_MSR_NB_STATUS, AMD_MSR_NB_ADDR } }; typedef struct ao_bank_cfg { uint_t bank_ctl; uint_t bank_ctl_mask; uint64_t bank_ctl_init; uint_t bank_status; uint_t bank_addr; } ao_bank_cfg_t; static const ao_bank_cfg_t ao_bank_cfgs[] = { { AMD_MSR_DC_CTL, AMD_MSR_DC_MASK, AMD_DC_CTL_INIT, AMD_MSR_DC_STATUS, AMD_MSR_DC_ADDR }, { AMD_MSR_IC_CTL, AMD_MSR_IC_MASK, AMD_IC_CTL_INIT, AMD_MSR_IC_STATUS, AMD_MSR_IC_ADDR }, { AMD_MSR_BU_CTL, AMD_MSR_BU_MASK, AMD_BU_CTL_INIT, AMD_MSR_BU_STATUS, AMD_MSR_BU_ADDR }, { AMD_MSR_LS_CTL, AMD_MSR_LS_MASK, AMD_LS_CTL_INIT, AMD_MSR_LS_STATUS, AMD_MSR_LS_ADDR }, { AMD_MSR_NB_CTL, AMD_MSR_NB_MASK, AMD_NB_CTL_INIT, AMD_MSR_NB_STATUS, AMD_MSR_NB_ADDR } }; static const ao_error_disp_t ao_disp_unknown = { FM_EREPORT_CPU_AMD_UNKNOWN, FM_EREPORT_PAYLOAD_FLAGS_CPU_AMD_UNKNOWN }; /* * This is quite awful but necessary to work around x86 system vendor's view of * the world. Other operating systems (you know who you are) don't understand * Opteron-specific error handling, so BIOS and system vendors often hide these * conditions from them by using SMI polling to copy out any errors from the * machine-check registers. When Solaris runs on a system with this feature, * we want to disable the SMI polling so we can use FMA instead. Sadly, there * isn't even a standard self-describing way to express the whole situation, * so we have to resort to hard-coded values. This should all be changed to * be a self-describing vendor-specific SMBIOS structure in the future. */ static const struct ao_smi_disable { const char *asd_sys_vendor; /* SMB_TYPE_SYSTEM vendor prefix */ const char *asd_bios_vendor; /* SMB_TYPE_BIOS vendor prefix */ uint8_t asd_code; /* output code for SMI disable */ } ao_smi_disable[] = { { "Sun Microsystems", "American Megatrends", 0x59 }, { NULL, NULL, 0 } }; static int ao_disp_match_r4(uint16_t ref, uint8_t r4) { static const uint16_t ao_r4_map[] = { AO_MCA_R4_BIT_GEN, /* AMD_ERRCODE_R4_GEN */ AO_MCA_R4_BIT_RD, /* AMD_ERRCODE_R4_RD */ AO_MCA_R4_BIT_WR, /* AMD_ERRCODE_R4_WR */ AO_MCA_R4_BIT_DRD, /* AMD_ERRCODE_R4_DRD */ AO_MCA_R4_BIT_DWR, /* AMD_ERRCODE_R4_DWR */ AO_MCA_R4_BIT_IRD, /* AMD_ERRCODE_R4_IRD */ AO_MCA_R4_BIT_PREFETCH, /* AMD_ERRCODE_R4_PREFETCH */ AO_MCA_R4_BIT_EVICT, /* AMD_ERRCODE_R4_EVICT */ AO_MCA_R4_BIT_SNOOP /* AMD_ERRCODE_R4_SNOOP */ }; ASSERT(r4 < sizeof (ao_r4_map) / sizeof (uint16_t)); return ((ref & ao_r4_map[r4]) != 0); } static int ao_disp_match_pp(uint8_t ref, uint8_t pp) { static const uint8_t ao_pp_map[] = { AO_MCA_PP_BIT_SRC, /* AMD_ERRCODE_PP_SRC */ AO_MCA_PP_BIT_RSP, /* AMD_ERRCODE_PP_RSP */ AO_MCA_PP_BIT_OBS, /* AMD_ERRCODE_PP_OBS */ AO_MCA_PP_BIT_GEN /* AMD_ERRCODE_PP_GEN */ }; ASSERT(pp < sizeof (ao_pp_map) / sizeof (uint8_t)); return ((ref & ao_pp_map[pp]) != 0); } static int ao_disp_match_ii(uint8_t ref, uint8_t ii) { static const uint8_t ao_ii_map[] = { AO_MCA_II_BIT_MEM, /* AMD_ERRCODE_II_MEM */ 0, AO_MCA_II_BIT_IO, /* AMD_ERRCODE_II_IO */ AO_MCA_II_BIT_GEN /* AMD_ERRCODE_II_GEN */ }; ASSERT(ii < sizeof (ao_ii_map) / sizeof (uint8_t)); return ((ref & ao_ii_map[ii]) != 0); } static uint8_t bit_strip(uint16_t *codep, uint16_t mask, uint16_t shift) { uint8_t val = (*codep & mask) >> shift; *codep &= ~mask; return (val); } #define BIT_STRIP(codep, name) \ bit_strip(codep, AMD_ERRCODE_##name##_MASK, AMD_ERRCODE_##name##_SHIFT) static int ao_disp_match_one(const ao_error_disp_t *aed, uint64_t status) { uint16_t code = status & AMD_ERRCODE_MASK; uint8_t extcode = (status & AMD_ERREXT_MASK) >> AMD_ERREXT_SHIFT; uint64_t stat_mask = aed->aed_stat_mask; uint64_t stat_mask_res = aed->aed_stat_mask_res; /* * If the bank's status register indicates overflow, then we can no * longer rely on the value of CECC: our experience with actual fault * injection has shown that multiple CE's overwriting each other shows * AMD_BANK_STAT_CECC and AMD_BANK_STAT_UECC both set to zero. This * should be clarified in a future BKDG or by the Revision Guide. */ if (status & AMD_BANK_STAT_OVER) { stat_mask &= ~AMD_BANK_STAT_CECC; stat_mask_res &= ~AMD_BANK_STAT_CECC; } if ((status & stat_mask) != stat_mask_res) return (0); /* * r4 and pp bits are stored separately, so we mask off and compare them * for the code types that use them. Once we've taken the r4 and pp * bits out of the equation, we can directly compare the resulting code * with the one stored in the ao_error_disp_t. */ if (AMD_ERRCODE_ISMEM(code)) { uint8_t r4 = BIT_STRIP(&code, R4); if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4)) return (0); } else if (AMD_ERRCODE_ISBUS(code)) { uint8_t r4 = BIT_STRIP(&code, R4); uint8_t pp = BIT_STRIP(&code, PP); uint8_t ii = BIT_STRIP(&code, II); if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4) || !ao_disp_match_pp(aed->aed_stat_pp_bits, pp) || !ao_disp_match_ii(aed->aed_stat_ii_bits, ii)) return (0); } return (code == aed->aed_stat_code && extcode == aed->aed_stat_extcode); } static const ao_error_disp_t * ao_disp_match(uint_t bankno, uint64_t status) { const ao_error_disp_t *aed; for (aed = ao_error_disp[bankno]; aed->aed_stat_mask != 0; aed++) { if (ao_disp_match_one(aed, status)) return (aed); } return (&ao_disp_unknown); } void ao_pcicfg_write(uint_t chipid, uint_t func, uint_t reg, uint32_t val) { ASSERT(chipid + 24 <= 31); ASSERT((func & 7) == func); ASSERT((reg & 3) == 0 && reg < 256); pci_mech1_putl(0, chipid + 24, func, reg, val); } uint32_t ao_pcicfg_read(uint_t chipid, uint_t func, uint_t reg) { ASSERT(chipid + 24 <= 31); ASSERT((func & 7) == func); ASSERT((reg & 3) == 0 && reg < 256); return (pci_mech1_getl(0, chipid + 24, func, reg)); } /* * Setup individual bank detectors after stashing their bios settings. */ static void ao_bank_cfg(ao_mca_t *mca) { ao_bios_cfg_t *bioscfg = &mca->ao_mca_bios_cfg; const ao_bank_cfg_t *bankcfg = ao_bank_cfgs; int i; for (i = 0; i < AMD_MCA_BANK_COUNT; i++, bankcfg++) { bioscfg->bcfg_bank_ctl[i] = rdmsr(bankcfg->bank_ctl); bioscfg->bcfg_bank_mask[i] = rdmsr(bankcfg->bank_ctl_mask); wrmsr(bankcfg->bank_ctl, bankcfg->bank_ctl_init); } } /* * Bits to be added to the NorthBridge (NB) configuration register. * See BKDG 3.29 Section 3.6.4.2 for more information. */ uint32_t ao_nb_cfg_add = AMD_NB_CFG_NBMCATOMSTCPUEN | AMD_NB_CFG_DISPCICFGCPUERRRSP | AMD_NB_CFG_SYNCONUCECCEN | AMD_NB_CFG_CPUECCERREN; /* * Bits to be cleared from the NorthBridge (NB) configuration register. * See BKDG 3.29 Section 3.6.4.2 for more information. */ uint32_t ao_nb_cfg_remove = AMD_NB_CFG_IORDDATERREN | AMD_NB_CFG_SYNCONANYERREN | AMD_NB_CFG_SYNCONWDOGEN | AMD_NB_CFG_IOERRDIS | AMD_NB_CFG_IOMSTABORTDIS | AMD_NB_CFG_SYNCPKTPROPDIS | AMD_NB_CFG_SYNCPKTGENDIS; /* * Bits to be used if we configure the NorthBridge (NB) Watchdog. The watchdog * triggers a machine check exception when no response to an NB system access * occurs within a specified time interval. If the BIOS (i.e. platform design) * has enabled the watchdog, we leave its rate alone. If the BIOS has not * enabled the watchdog, we enable it and set the rate to one specified below. * To disable the watchdog, add the AMD_NB_CFG_WDOGTMRDIS bit to ao_nb_cfg_add. */ uint32_t ao_nb_cfg_wdog = AMD_NB_CFG_WDOGTMRCNTSEL_4095 | AMD_NB_CFG_WDOGTMRBASESEL_1MS; static void ao_nb_cfg(ao_mca_t *mca) { uint_t chipid = chip_plat_get_chipid(CPU); uint32_t val; if (chip_plat_get_clogid(CPU) != 0) return; /* only configure NB once per CPU */ /* * Read the NorthBridge (NB) configuration register in PCI space, * modify the settings accordingly, and store the new value back. */ mca->ao_mca_bios_cfg.bcfg_nb_cfg = val = ao_pcicfg_read(chipid, AMD_NB_FUNC, AMD_NB_REG_CFG); /* * If the watchdog was disabled, enable it according to the policy * described above. Then apply the ao_nb_cfg_[add|remove] masks. */ if (val & AMD_NB_CFG_WDOGTMRDIS) { val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK; val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK; val &= ~AMD_NB_CFG_WDOGTMRDIS; val |= ao_nb_cfg_wdog; } val &= ~ao_nb_cfg_remove; val |= ao_nb_cfg_add; ao_pcicfg_write(chipid, AMD_NB_FUNC, AMD_NB_REG_CFG, val); } /* * Capture the machine-check exception state into our per-CPU logout area, and * dispatch a copy of the logout area to our error queue for ereport creation. * If 'rp' is non-NULL, we're being called from trap context; otherwise we're * being polled or poked by the injector. We return the number of errors * found through 'np', and a boolean indicating whether the error is fatal. * The caller is expected to call fm_panic() if we return fatal (non-zero). */ int ao_mca_logout(ao_cpu_logout_t *acl, struct regs *rp, int *np) { int i, fatal = 0, n = 0; acl->acl_timestamp = gethrtime_waitfree(); acl->acl_mcg_status = rdmsr(IA32_MSR_MCG_STATUS); acl->acl_ip = rp ? rp->r_pc : 0; acl->acl_flags = 0; /* * Iterate over the banks of machine-check registers, read the address * and status registers into the logout area, and clear them as we go. */ for (i = 0; i < AMD_MCA_BANK_COUNT; i++) { ao_bank_logout_t *abl = &acl->acl_banks[i]; abl->abl_addr = rdmsr(ao_bank_regs[i].abr_addr); abl->abl_status = rdmsr(ao_bank_regs[i].abr_status); if (abl->abl_status & AMD_BANK_STAT_VALID) wrmsr(ao_bank_regs[i].abr_status, 0); } if (rp == NULL || !USERMODE(rp->r_cs)) acl->acl_flags |= AO_ACL_F_PRIV; if (ao_mca_stack_flag) acl->acl_stackdepth = getpcstack(acl->acl_stack, FM_STK_DEPTH); else acl->acl_stackdepth = 0; /* * Clear MCG_STATUS, indicating that machine-check trap processing is * complete. Once we do this, another machine-check trap can occur. */ wrmsr(IA32_MSR_MCG_STATUS, 0); /* * If we took a machine-check trap, then the error is fatal if the * return instruction pointer is not valid in the global register. */ if (rp != NULL && !(acl->acl_mcg_status & MCG_STATUS_RIPV)) fatal++; /* * Now iterate over the saved logout area, determining whether the * error that we saw is fatal or not based upon our dispositions * and the hardware's indicators of whether or not we can resume. */ for (i = 0; i < AMD_MCA_BANK_COUNT; i++) { ao_bank_logout_t *abl = &acl->acl_banks[i]; const ao_error_disp_t *aed; uint8_t when; if (!(abl->abl_status & AMD_BANK_STAT_VALID)) continue; aed = ao_disp_match(i, abl->abl_status); if ((when = aed->aed_panic_when) != AO_AED_PANIC_NEVER) { if ((when & AO_AED_PANIC_ALWAYS) || ((when & AO_AED_PANIC_IFMCE) && rp != NULL)) { fatal++; } } /* * If we are taking a machine-check exception and the overflow * bit is set or our context is corrupt, then we must die. * NOTE: This code assumes that if the overflow bit is set and * we didn't take a #mc exception (i.e. the poller found it), * then multiple correctable errors overwrote each other. * This will need to change if we eventually use the Opteron * Rev E exception mechanism for detecting correctable errors. */ if (rp != NULL && (abl->abl_status & (AMD_BANK_STAT_OVER | AMD_BANK_STAT_PCC))) fatal++; /* * If we are taking a machine-check exception and we don't * recognize the error case at all, then assume it's fatal. * This will need to change if we eventually use the Opteron * Rev E exception mechanism for detecting correctable errors. */ if (rp != NULL && aed == &ao_disp_unknown) fatal++; n++; } if (n > 0) { errorq_dispatch(ao_mca_queue, acl, sizeof (ao_cpu_logout_t), fatal && cmi_panic_on_uncorrectable_error ? ERRORQ_SYNC : ERRORQ_ASYNC); } if (np != NULL) *np = n; /* return number of errors found to caller */ return (fatal != 0); } static uint_t ao_ereport_synd(ao_mca_t *mca, const ao_bank_logout_t *abl, uint_t *typep, int is_nb) { if (is_nb) { if ((mca->ao_mca_bios_cfg.bcfg_nb_cfg & AMD_NB_CFG_CHIPKILLECCEN) != 0) { *typep = AMD_SYNDTYPE_CHIPKILL; return (AMD_NB_STAT_CKSYND(abl->abl_status)); } else { *typep = AMD_SYNDTYPE_ECC; return (AMD_BANK_SYND(abl->abl_status)); } } else { *typep = AMD_SYNDTYPE_ECC; return (AMD_BANK_SYND(abl->abl_status)); } } static void ao_ereport_create_resource_elem(nvlist_t **nvlp, nv_alloc_t *nva, mc_unum_t *unump, int dimmnum) { nvlist_t *snvl; *nvlp = fm_nvlist_create(nva); /* freed by caller */ snvl = fm_nvlist_create(nva); (void) nvlist_add_uint64(snvl, FM_FMRI_HC_SPECIFIC_OFFSET, unump->unum_offset); fm_fmri_hc_set(*nvlp, FM_HC_SCHEME_VERSION, NULL, snvl, 4, "motherboard", unump->unum_board, "chip", unump->unum_chip, "memory-controller", unump->unum_mc, "dimm", unump->unum_dimms[dimmnum]); fm_nvlist_destroy(snvl, nva ? FM_NVA_RETAIN : FM_NVA_FREE); } static void ao_ereport_add_resource(nvlist_t *payload, nv_alloc_t *nva, mc_unum_t *unump) { nvlist_t *elems[MC_UNUM_NDIMM]; int nelems = 0; int i; for (i = 0; i < MC_UNUM_NDIMM; i++) { if (unump->unum_dimms[i] == -1) break; ao_ereport_create_resource_elem(&elems[nelems++], nva, unump, i); } fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE, DATA_TYPE_NVLIST_ARRAY, nelems, elems, NULL); for (i = 0; i < nelems; i++) fm_nvlist_destroy(elems[i], nva ? FM_NVA_RETAIN : FM_NVA_FREE); } static void ao_ereport_add_logout(ao_data_t *ao, nvlist_t *payload, nv_alloc_t *nva, const ao_cpu_logout_t *acl, uint_t bankno, const ao_error_disp_t *aed) { uint64_t members = aed->aed_ereport_members; ao_mca_t *mca = &ao->ao_mca; const ao_bank_logout_t *abl = &acl->acl_banks[bankno]; uint_t synd, syndtype; synd = ao_ereport_synd(mca, abl, &syndtype, bankno == AMD_MCA_BANK_NB); if (members & FM_EREPORT_PAYLOAD_FLAG_BANK_STAT) { fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_BANK_STAT, DATA_TYPE_UINT64, abl->abl_status, NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_BANK_NUM) { fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_BANK_NUM, DATA_TYPE_UINT8, bankno, NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_ADDR) { fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ADDR, DATA_TYPE_UINT64, abl->abl_addr, NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_ADDR_VALID) { fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_ADDR_VALID, DATA_TYPE_BOOLEAN_VALUE, (abl->abl_status & AMD_BANK_STAT_ADDRV) ? B_TRUE : B_FALSE, NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_SYND) { fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND, DATA_TYPE_UINT16, synd, NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_SYND_TYPE) { fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_SYND_TYPE, DATA_TYPE_STRING, (syndtype == AMD_SYNDTYPE_CHIPKILL ? "C" : "E"), NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_IP) { uint64_t ip = (acl->acl_mcg_status & MCG_STATUS_EIPV) ? acl->acl_ip : 0; fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_IP, DATA_TYPE_UINT64, ip, NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_PRIV) { fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_PRIV, DATA_TYPE_BOOLEAN_VALUE, (acl->acl_flags & AO_ACL_F_PRIV) ? B_TRUE : B_FALSE, NULL); } if (members & FM_EREPORT_PAYLOAD_FLAG_RESOURCE) { mc_unum_t unum; int addrvalid; addrvalid = (members & FM_EREPORT_PAYLOAD_FLAG_ADDR) && (members & FM_EREPORT_PAYLOAD_FLAG_ADDR_VALID) && (abl->abl_status & AMD_BANK_STAT_ADDRV); if (addrvalid && ao_mc_patounum(ao, abl->abl_addr, synd, syndtype, &unum)) ao_ereport_add_resource(payload, nva, &unum); } if (ao_mca_stack_flag && members & FM_EREPORT_PAYLOAD_FLAG_STACK) { fm_payload_stack_add(payload, acl->acl_stack, acl->acl_stackdepth); } } static void ao_ereport_post(const ao_cpu_logout_t *acl, int bankno, const ao_error_disp_t *aed) { ao_data_t *ao = acl->acl_ao; errorq_elem_t *eqep, *scr_eqep; nvlist_t *ereport, *detector; nv_alloc_t *nva = NULL; char buf[FM_MAX_CLASS]; if (panicstr) { if ((eqep = errorq_reserve(ereport_errorq)) == NULL) return; ereport = errorq_elem_nvl(ereport_errorq, eqep); /* * Now try to allocate another element for scratch space and * use that for further scratch space (eg for constructing * nvlists to add the main ereport). If we can't reserve * a scratch element just fallback to working within the * element we already have, and hope for the best. All this * is necessary because the fixed buffer nv allocator does * not reclaim freed space and nvlist construction is * expensive. */ if ((scr_eqep = errorq_reserve(ereport_errorq)) != NULL) nva = errorq_elem_nva(ereport_errorq, scr_eqep); else nva = errorq_elem_nva(ereport_errorq, eqep); } else { ereport = fm_nvlist_create(NULL); } /* * Create the scheme "cpu" FMRI */ detector = ao_fmri_create(ao, nva); /* * Encode all the common data into the ereport. */ (void) snprintf(buf, FM_MAX_CLASS, "%s.%s.%s", FM_ERROR_CPU, "amd", aed->aed_class); fm_ereport_set(ereport, FM_EREPORT_VERSION, buf, fm_ena_generate_cpu(acl->acl_timestamp, ao->ao_cpu->cpu_id, FM_ENA_FMT1), detector, NULL); /* * We're done with 'detector' so reclaim the scratch space. */ if (panicstr) { fm_nvlist_destroy(detector, FM_NVA_RETAIN); nv_alloc_reset(nva); } else { fm_nvlist_destroy(detector, FM_NVA_FREE); } /* * Encode the error-specific data that was saved in the logout area. */ ao_ereport_add_logout(ao, ereport, nva, acl, bankno, aed); if (panicstr) { errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC); if (scr_eqep) errorq_cancel(ereport_errorq, scr_eqep); } else { (void) fm_ereport_post(ereport, EVCH_TRYHARD); fm_nvlist_destroy(ereport, FM_NVA_FREE); } } /*ARGSUSED*/ void ao_mca_drain(void *ignored, const void *data, const errorq_elem_t *eqe) { const ao_cpu_logout_t *acl = data; int i; for (i = 0; i < AMD_MCA_BANK_COUNT; i++) { const ao_bank_logout_t *abl = &acl->acl_banks[i]; const ao_error_disp_t *aed; if (abl->abl_status & AMD_BANK_STAT_VALID) { aed = ao_disp_match(i, abl->abl_status); ao_ereport_post(acl, i, aed); } } } int ao_mca_trap(void *data, struct regs *rp) { ao_data_t *ao = data; ao_mca_t *mca = &ao->ao_mca; ao_cpu_logout_t *acl = &mca->ao_mca_logout[AO_MCA_LOGOUT_EXCEPTION]; return (ao_mca_logout(acl, rp, NULL)); } /*ARGSUSED*/ int ao_mca_inject(void *data, cmi_mca_regs_t *regs, uint_t nregs) { uint64_t hwcr, oldhwcr; int i; oldhwcr = rdmsr(MSR_AMD_HWCR); hwcr = oldhwcr | AMD_HWCR_MCI_STATUS_WREN; wrmsr(MSR_AMD_HWCR, hwcr); for (i = 0; i < nregs; i++) wrmsr(regs[i].cmr_msrnum, regs[i].cmr_msrval); wrmsr(MSR_AMD_HWCR, oldhwcr); return (0); } void ao_mca_init(void *data) { ao_data_t *ao = data; ao_mca_t *mca = &ao->ao_mca; uint64_t cap; int i; ao_mca_poll_init(mca); ASSERT(x86_feature & X86_MCA); cap = rdmsr(IA32_MSR_MCG_CAP); ASSERT(cap & MCG_CAP_CTL_P); /* * If the hardware's bank count is different than what we expect, then * we're running on some Opteron variant that we don't understand yet. */ if ((cap & MCG_CAP_COUNT_MASK) != AMD_MCA_BANK_COUNT) { cmn_err(CE_WARN, "CPU %d has %llu MCA banks; expected %u: " "disabling MCA on this CPU", ao->ao_cpu->cpu_id, (u_longlong_t)cap & MCG_CAP_COUNT_MASK, AMD_MCA_BANK_COUNT); return; } /* * Configure the logout areas. We preset every logout area's acl_ao * pointer to refer back to our per-CPU state for errorq drain usage. */ for (i = 0; i < AO_MCA_LOGOUT_NUM; i++) mca->ao_mca_logout[i].acl_ao = ao; ao_bank_cfg(mca); ao_nb_cfg(mca); wrmsr(IA32_MSR_MCG_CTL, AMD_MCG_EN_ALL); /* * Throw away all existing bank state. We do this because some BIOSes, * perhaps during POST, do things to the machine that cause MCA state * to be updated. If we interpret this state as an actual error, we * may end up indicting something that's not actually broken. */ for (i = 0; i < sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfg_t); i++) wrmsr(ao_bank_cfgs[i].bank_status, 0ULL); wrmsr(IA32_MSR_MCG_STATUS, 0ULL); membar_producer(); setcr4(getcr4() | CR4_MCE); /* enable #mc exceptions */ } /* * Note that although this cpu module is loaded before the PSMs are * loaded (and hence before acpica is loaded), this function is * called from post_startup(), after PSMs are initialized and acpica * is loaded. */ static int ao_acpi_find_smicmd(int *asd_port) { FADT_DESCRIPTOR *fadt = NULL; /* * AcpiGetFirmwareTable works even if ACPI is disabled, so a failure * here means we weren't able to retreive a pointer to the FADT. */ if (AcpiGetFirmwareTable(FADT_SIG, 1, ACPI_LOGICAL_ADDRESSING, (ACPI_TABLE_HEADER **)&fadt) != AE_OK) return (-1); ASSERT(fadt != NULL); *asd_port = fadt->SmiCmd; return (0); } /*ARGSUSED*/ void ao_mca_post_init(void *data) { const struct ao_smi_disable *asd; id_t id; int rv = -1, asd_port; smbios_system_t sy; smbios_bios_t sb; smbios_info_t si; /* * Fetch the System and BIOS vendor strings from SMBIOS and see if they * match a value in our table. If so, disable SMI error polling. This * is grotesque and should be replaced by self-describing vendor- * specific SMBIOS data or a specification enhancement instead. */ if (ao_mca_smi_disable && ksmbios != NULL && smbios_info_bios(ksmbios, &sb) != SMB_ERR && (id = smbios_info_system(ksmbios, &sy)) != SMB_ERR && smbios_info_common(ksmbios, id, &si) != SMB_ERR) { for (asd = ao_smi_disable; asd->asd_sys_vendor != NULL; asd++) { if (strncmp(asd->asd_sys_vendor, si.smbi_manufacturer, strlen(asd->asd_sys_vendor)) != 0 || strncmp(asd->asd_bios_vendor, sb.smbb_vendor, strlen(asd->asd_bios_vendor)) != 0) continue; /* * Look for the SMI_CMD port in the ACPI FADT, * if the port is 0, this platform doesn't support * SMM, so there is no SMI error polling to disable. */ if ((rv = ao_acpi_find_smicmd(&asd_port)) == 0 && asd_port != 0) { cmn_err(CE_CONT, "?SMI polling disabled in " "favor of Solaris Fault Management for " "AMD Processors\n"); outb(asd_port, asd->asd_code); } else if (rv < 0) { cmn_err(CE_CONT, "?Solaris Fault Management " "for AMD Processors could not disable SMI " "polling because an error occurred while " "trying to determine the SMI command port " "from the ACPI FADT table\n"); } break; } } ao_mca_poll_start(); } /* * Called after a CPU has been marked with CPU_FAULTED. Not called on the * faulted CPU. cpu_lock is held. */ /*ARGSUSED*/ void ao_faulted_enter(void *data) { /* * Nothing to do here. We'd like to turn off the faulted CPU's * correctable error detectors, but that can only be done by the * faulted CPU itself. cpu_get_state() will now return P_FAULTED, * allowing the poller to skip this CPU until it is re-enabled. */ } /* * Called after the CPU_FAULTED bit has been cleared from a previously-faulted * CPU. Not called on the faulted CPU. cpu_lock is held. */ void ao_faulted_exit(void *data) { ao_data_t *ao = data; /* * We'd like to clear the faulted CPU's MCi_STATUS registers so as to * avoid generating ereports for errors which occurred while the CPU was * officially faulted. Unfortunately, those registers can only be * cleared by the CPU itself, so we can't do it here. * * We're going to set the UNFAULTING bit on the formerly-faulted CPU's * MCA state. This will tell the poller that the MCi_STATUS registers * can't yet be trusted. The poller, which is the first thing we * control that'll execute on that CPU, will clear the registers, and * will then clear the bit. */ ao->ao_mca.ao_mca_flags |= AO_MCA_F_UNFAULTING; }