/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * VM - anonymous pages. * * This layer sits immediately above the vm_swap layer. It manages * physical pages that have no permanent identity in the file system * name space, using the services of the vm_swap layer to allocate * backing storage for these pages. Since these pages have no external * identity, they are discarded when the last reference is removed. * * An important function of this layer is to manage low-level sharing * of pages that are logically distinct but that happen to be * physically identical (e.g., the corresponding pages of the processes * resulting from a fork before one process or the other changes their * contents). This pseudo-sharing is present only as an optimization * and is not to be confused with true sharing in which multiple * address spaces deliberately contain references to the same object; * such sharing is managed at a higher level. * * The key data structure here is the anon struct, which contains a * reference count for its associated physical page and a hint about * the identity of that page. Anon structs typically live in arrays, * with an instance's position in its array determining where the * corresponding backing storage is allocated; however, the swap_xlate() * routine abstracts away this representation information so that the * rest of the anon layer need not know it. (See the swap layer for * more details on anon struct layout.) * * In the future versions of the system, the association between an * anon struct and its position on backing store will change so that * we don't require backing store all anonymous pages in the system. * This is important for consideration for large memory systems. * We can also use this technique to delay binding physical locations * to anonymous pages until pageout/swapout time where we can make * smarter allocation decisions to improve anonymous klustering. * * Many of the routines defined here take a (struct anon **) argument, * which allows the code at this level to manage anon pages directly, * so that callers can regard anon structs as opaque objects and not be * concerned with assigning or inspecting their contents. * * Clients of this layer refer to anon pages indirectly. That is, they * maintain arrays of pointers to anon structs rather than maintaining * anon structs themselves. The (struct anon **) arguments mentioned * above are pointers to entries in these arrays. It is these arrays * that capture the mapping between offsets within a given segment and * the corresponding anonymous backing storage address. */ #ifdef DEBUG #define ANON_DEBUG #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct vnode *anon_vp; int anon_debug; kmutex_t anoninfo_lock; struct k_anoninfo k_anoninfo; ani_free_t ani_free_pool[ANI_MAX_POOL]; pad_mutex_t anon_array_lock[ANON_LOCKSIZE]; kcondvar_t anon_array_cv[ANON_LOCKSIZE]; /* * Global hash table for (vp, off) -> anon slot */ extern int swap_maxcontig; size_t anon_hash_size; struct anon **anon_hash; static struct kmem_cache *anon_cache; static struct kmem_cache *anonmap_cache; #ifdef VM_STATS static struct anonvmstats_str { ulong_t getpages[30]; ulong_t privatepages[10]; ulong_t demotepages[9]; ulong_t decrefpages[9]; ulong_t dupfillholes[4]; ulong_t freepages[1]; } anonvmstats; #endif /* VM_STATS */ /*ARGSUSED*/ static int anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags) { struct anon_map *amp = buf; rw_init(&->a_rwlock, NULL, RW_DEFAULT, NULL); return (0); } /*ARGSUSED1*/ static void anonmap_cache_destructor(void *buf, void *cdrarg) { struct anon_map *amp = buf; rw_destroy(&->a_rwlock); } kmutex_t anonhash_lock[AH_LOCK_SIZE]; kmutex_t anonpages_hash_lock[AH_LOCK_SIZE]; void anon_init(void) { int i; anon_hash_size = 1L << highbit(physmem / ANON_HASHAVELEN); for (i = 0; i < AH_LOCK_SIZE; i++) { mutex_init(&anonhash_lock[i], NULL, MUTEX_DEFAULT, NULL); mutex_init(&anonpages_hash_lock[i], NULL, MUTEX_DEFAULT, NULL); } for (i = 0; i < ANON_LOCKSIZE; i++) { mutex_init(&anon_array_lock[i].pad_mutex, NULL, MUTEX_DEFAULT, NULL); cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL); } anon_hash = (struct anon **) kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP); anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon), AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); anonmap_cache = kmem_cache_create("anonmap_cache", sizeof (struct anon_map), 0, anonmap_cache_constructor, anonmap_cache_destructor, NULL, NULL, NULL, 0); swap_maxcontig = (1024 * 1024) >> PAGESHIFT; /* 1MB of pages */ anon_vp = vn_alloc(KM_SLEEP); vn_setops(anon_vp, swap_vnodeops); anon_vp->v_type = VREG; anon_vp->v_flag |= (VISSWAP|VISSWAPFS); } /* * Global anon slot hash table manipulation. */ static void anon_addhash(struct anon *ap) { int index; ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)])); index = ANON_HASH(ap->an_vp, ap->an_off); ap->an_hash = anon_hash[index]; anon_hash[index] = ap; } static void anon_rmhash(struct anon *ap) { struct anon **app; ASSERT(MUTEX_HELD(&anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)])); for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)]; *app; app = &((*app)->an_hash)) { if (*app == ap) { *app = ap->an_hash; break; } } } /* * The anon array interfaces. Functions allocating, * freeing array of pointers, and returning/setting * entries in the array of pointers for a given offset. * * Create the list of pointers */ struct anon_hdr * anon_create(pgcnt_t npages, int flags) { struct anon_hdr *ahp; ulong_t nchunks; int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) { return (NULL); } mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL); /* * Single level case. */ ahp->size = npages; if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) { if (flags & ANON_ALLOC_FORCE) ahp->flags |= ANON_ALLOC_FORCE; ahp->array_chunk = kmem_zalloc( ahp->size * sizeof (struct anon *), kmemflags); if (ahp->array_chunk == NULL) { kmem_free(ahp, sizeof (struct anon_hdr)); return (NULL); } } else { /* * 2 Level case. */ nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *), kmemflags); if (ahp->array_chunk == NULL) { kmem_free(ahp, sizeof (struct anon_hdr)); return (NULL); } } return (ahp); } /* * Free the array of pointers */ void anon_release(struct anon_hdr *ahp, pgcnt_t npages) { ulong_t i; void **ppp; ulong_t nchunks; ASSERT(npages == ahp->size); /* * Single level case. */ if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *)); } else { /* * 2 level case. */ nchunks = (ahp->size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; for (i = 0; i < nchunks; i++) { ppp = &ahp->array_chunk[i]; if (*ppp != NULL) kmem_free(*ppp, PAGESIZE); } kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *)); } mutex_destroy(&ahp->serial_lock); kmem_free(ahp, sizeof (struct anon_hdr)); } /* * Return the pointer from the list for a * specified anon index. */ struct anon * anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx) { struct anon **app; ASSERT(an_idx < ahp->size); /* * Single level case. */ if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { return ((struct anon *) ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK)); } else { /* * 2 level case. */ app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; if (app) { return ((struct anon *) ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] & ANON_PTRMASK)); } else { return (NULL); } } } /* * Return the anon pointer for the first valid entry in the anon list, * starting from the given index. */ struct anon * anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index) { struct anon *ap; struct anon **app; ulong_t chunkoff; ulong_t i; ulong_t j; pgcnt_t size; i = *index; size = ahp->size; ASSERT(i < size); if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { /* * 1 level case */ while (i < size) { ap = (struct anon *) ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK); if (ap) { *index = i; return (ap); } i++; } } else { /* * 2 level case */ chunkoff = i & ANON_CHUNK_OFF; while (i < size) { app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT]; if (app) for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) { ap = (struct anon *) ((uintptr_t)app[j] & ANON_PTRMASK); if (ap) { *index = i + (j - chunkoff); return (ap); } } chunkoff = 0; i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF; } } *index = size; return (NULL); } /* * Set list entry with a given pointer for a specified offset */ int anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags) { void **ppp; struct anon **app; int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; uintptr_t *ap_addr; ASSERT(an_idx < ahp->size); /* * Single level case. */ if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx]; } else { /* * 2 level case. */ ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; ASSERT(ppp != NULL); if (*ppp == NULL) { mutex_enter(&ahp->serial_lock); ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; if (*ppp == NULL) { *ppp = kmem_zalloc(PAGESIZE, kmemflags); if (*ppp == NULL) { mutex_exit(&ahp->serial_lock); return (ENOMEM); } } mutex_exit(&ahp->serial_lock); } app = *ppp; ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF]; } *ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap; return (0); } /* * Copy anon array into a given new anon array */ int anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx, struct anon_hdr *dahp, ulong_t d_idx, pgcnt_t npages, int flags) { void **sapp, **dapp; void *ap; int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; ASSERT((s_idx < sahp->size) && (d_idx < dahp->size)); ASSERT((npages <= sahp->size) && (npages <= dahp->size)); /* * Both arrays are 1 level. */ if (((sahp->size <= ANON_CHUNK_SIZE) && (dahp->size <= ANON_CHUNK_SIZE)) || ((sahp->flags & ANON_ALLOC_FORCE) && (dahp->flags & ANON_ALLOC_FORCE))) { bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx], npages * sizeof (struct anon *)); return (0); } /* * Both arrays are 2 levels. */ if (sahp->size > ANON_CHUNK_SIZE && dahp->size > ANON_CHUNK_SIZE && ((sahp->flags & ANON_ALLOC_FORCE) == 0) && ((dahp->flags & ANON_ALLOC_FORCE) == 0)) { ulong_t sapidx, dapidx; ulong_t *sap, *dap; ulong_t chknp; while (npages != 0) { sapidx = s_idx & ANON_CHUNK_OFF; dapidx = d_idx & ANON_CHUNK_OFF; chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx); if (chknp > npages) chknp = npages; sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT]; if ((sap = *sapp) != NULL) { dapp = &dahp->array_chunk[d_idx >> ANON_CHUNK_SHIFT]; if ((dap = *dapp) == NULL) { *dapp = kmem_zalloc(PAGESIZE, kmemflags); if ((dap = *dapp) == NULL) return (ENOMEM); } bcopy((sap + sapidx), (dap + dapidx), chknp << ANON_PTRSHIFT); } s_idx += chknp; d_idx += chknp; npages -= chknp; } return (0); } /* * At least one of the arrays is 2 level. */ while (npages--) { if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) { ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx))); if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM) return (ENOMEM); } s_idx++; d_idx++; } return (0); } /* * ANON_INITBUF is a convenience macro for anon_grow() below. It * takes a buffer dst, which is at least as large as buffer src. It * does a bcopy from src into dst, and then bzeros the extra bytes * of dst. If tail is set, the data in src is tail aligned within * dst instead of head aligned. */ #define ANON_INITBUF(src, srclen, dst, dstsize, tail) \ if (tail) { \ bzero((dst), (dstsize) - (srclen)); \ bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \ } else { \ bcopy((src), (dst), (srclen)); \ bzero((char *)(dst) + (srclen), (dstsize) - (srclen)); \ } #define ANON_1_LEVEL_INC (ANON_CHUNK_SIZE / 8) #define ANON_2_LEVEL_INC (ANON_1_LEVEL_INC * ANON_CHUNK_SIZE) /* * anon_grow() is used to efficiently extend an existing anon array. * startidx_p points to the index into the anon array of the first page * that is in use. oldseg_pgs is the number of pages in use, starting at * *startidx_p. newpages is the number of additional pages desired. * * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed. * * The growth is done by creating a new top level of the anon array, * and (if the array is 2-level) reusing the existing second level arrays. * * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN. * * Returns the new number of pages in the anon array. */ pgcnt_t anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs, pgcnt_t newseg_pgs, int flags) { ulong_t startidx = startidx_p ? *startidx_p : 0; pgcnt_t oldamp_pgs = ahp->size, newamp_pgs; pgcnt_t oelems, nelems, totpages; void **level1; int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; int growdown = (flags & ANON_GROWDOWN); size_t newarrsz, oldarrsz; void *level2; ASSERT(!(startidx_p == NULL && growdown)); ASSERT(startidx + oldseg_pgs <= ahp->size); /* * Determine the total number of pages needed in the new * anon array. If growing down, totpages is all pages from * startidx through the end of the array, plus * pages. If growing up, keep all pages from page 0 through * the last page currently in use, plus pages. */ if (growdown) totpages = oldamp_pgs - startidx + newseg_pgs; else totpages = startidx + oldseg_pgs + newseg_pgs; /* If the array is already large enough, just return. */ if (oldamp_pgs >= totpages) { if (growdown) *startidx_p = oldamp_pgs - totpages; return (oldamp_pgs); } /* * oldamp_pgs/newamp_pgs are the total numbers of pages represented * by the corresponding arrays. * oelems/nelems are the number of pointers in the top level arrays * which may be either level 1 or level 2. * Will the new anon array be one level or two levels? */ if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) { newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC); oelems = oldamp_pgs; nelems = newamp_pgs; } else { newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC); oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; nelems = newamp_pgs >> ANON_CHUNK_SHIFT; } newarrsz = nelems * sizeof (void *); level1 = kmem_alloc(newarrsz, kmemflags); if (level1 == NULL) return (0); /* Are we converting from a one level to a two level anon array? */ if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE && !(ahp->flags & ANON_ALLOC_FORCE)) { /* * Yes, we're converting to a two level. Reuse old level 1 * as new level 2 if it is exactly PAGESIZE. Otherwise * alloc a new level 2 and copy the old level 1 data into it. */ if (oldamp_pgs == ANON_CHUNK_SIZE) { level2 = (void *)ahp->array_chunk; } else { level2 = kmem_alloc(PAGESIZE, kmemflags); if (level2 == NULL) { kmem_free(level1, newarrsz); return (0); } oldarrsz = oldamp_pgs * sizeof (void *); ANON_INITBUF(ahp->array_chunk, oldarrsz, level2, PAGESIZE, growdown); kmem_free(ahp->array_chunk, oldarrsz); } bzero(level1, newarrsz); if (growdown) level1[nelems - 1] = level2; else level1[0] = level2; } else { oldarrsz = oelems * sizeof (void *); ANON_INITBUF(ahp->array_chunk, oldarrsz, level1, newarrsz, growdown); kmem_free(ahp->array_chunk, oldarrsz); } ahp->array_chunk = level1; ahp->size = newamp_pgs; if (growdown) { *startidx_p = newamp_pgs - totpages; if (oldamp_pgs > ANON_CHUNK_SIZE) *startidx_p -= P2NPHASE(oldseg_pgs, ANON_CHUNK_SIZE); } return (newamp_pgs); } /* * Called from clock handler to sync ani_free value. */ void set_anoninfo(void) { int ix; pgcnt_t total = 0; for (ix = 0; ix < ANI_MAX_POOL; ix++) { total += ani_free_pool[ix].ani_count; } k_anoninfo.ani_free = total; } /* * Reserve anon space. * * It's no longer simply a matter of incrementing ani_resv to * reserve swap space, we need to check memory-based as well * as disk-backed (physical) swap. The following algorithm * is used: * Check the space on physical swap * i.e. amount needed < ani_max - ani_phys_resv * If we are swapping on swapfs check * amount needed < (availrmem - swapfs_minfree) * Since the algorithm to check for the quantity of swap space is * almost the same as that for reserving it, we'll just use anon_resvmem * with a flag to decrement availrmem. * * Return non-zero on success. */ int anon_resvmem(size_t size, uint_t takemem) { pgcnt_t npages = btopr(size); pgcnt_t mswap_pages = 0; pgcnt_t pswap_pages = 0; mutex_enter(&anoninfo_lock); /* * pswap_pages is the number of pages we can take from * physical (i.e. disk-backed) swap. */ ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv; ANON_PRINT(A_RESV, ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n", npages, takemem, pswap_pages, (void *)caller())); if (npages <= pswap_pages) { /* * we have enough space on a physical swap */ if (takemem) k_anoninfo.ani_phys_resv += npages; mutex_exit(&anoninfo_lock); return (1); } else if (pswap_pages != 0) { /* * we have some space on a physical swap */ if (takemem) { /* * use up remainder of phys swap */ k_anoninfo.ani_phys_resv += pswap_pages; ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max); } } /* * since (npages > pswap_pages) we need mem swap * mswap_pages is the number of pages needed from availrmem */ ASSERT(npages > pswap_pages); mswap_pages = npages - pswap_pages; ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n", mswap_pages)); /* * priv processes can reserve memory as swap as long as availrmem * remains greater than swapfs_minfree; in the case of non-priv * processes, memory can be reserved as swap only if availrmem * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus, * swapfs_reserve amount of memswap is not available to non-priv * processes. This protects daemons such as automounter dying * as a result of application processes eating away almost entire * membased swap. This safeguard becomes useless if apps are run * with root access. * * swapfs_reserve is minimum of 4Mb or 1/16 of physmem. * */ mutex_enter(&freemem_lock); if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) || (availrmem > (swapfs_minfree + mswap_pages) && secpolicy_resource(CRED()) == 0)) { if (takemem) { /* * Take the memory from the rest of the system. */ availrmem -= mswap_pages; mutex_exit(&freemem_lock); k_anoninfo.ani_mem_resv += mswap_pages; ANI_ADD(mswap_pages); ANON_PRINT((A_RESV | A_MRESV), ("anon_resvmem: took %ld pages of availrmem\n", mswap_pages)); } else { mutex_exit(&freemem_lock); } ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); mutex_exit(&anoninfo_lock); return (1); } else { /* * Fail if not enough memory */ if (takemem) { k_anoninfo.ani_phys_resv -= pswap_pages; } mutex_exit(&freemem_lock); mutex_exit(&anoninfo_lock); ANON_PRINT(A_RESV, ("anon_resvmem: not enough space from swapfs\n")); return (0); } } /* * Give back an anon reservation. */ void anon_unresv(size_t size) { pgcnt_t npages = btopr(size); spgcnt_t mem_free_pages = 0; pgcnt_t phys_free_slots; #ifdef ANON_DEBUG pgcnt_t mem_resv; #endif mutex_enter(&anoninfo_lock); ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); /* * If some of this reservation belonged to swapfs * give it back to availrmem. * ani_mem_resv is the amount of availrmem swapfs has reserved. * but some of that memory could be locked by segspt so we can only * return non locked ani_mem_resv back to availrmem */ if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) { ANON_PRINT((A_RESV | A_MRESV), ("anon_unresv: growing availrmem by %ld pages\n", MIN(k_anoninfo.ani_mem_resv, npages))); mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv - k_anoninfo.ani_locked_swap), npages); mutex_enter(&freemem_lock); availrmem += mem_free_pages; mutex_exit(&freemem_lock); k_anoninfo.ani_mem_resv -= mem_free_pages; ANI_ADD(-mem_free_pages); } /* * The remainder of the pages is returned to phys swap */ ASSERT(npages >= mem_free_pages); phys_free_slots = npages - mem_free_pages; if (phys_free_slots) { k_anoninfo.ani_phys_resv -= phys_free_slots; } #ifdef ANON_DEBUG mem_resv = k_anoninfo.ani_mem_resv; #endif ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); mutex_exit(&anoninfo_lock); ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n", npages, mem_resv, (void *)caller())); } /* * Allocate an anon slot and return it with the lock held. */ struct anon * anon_alloc(struct vnode *vp, anoff_t off) { struct anon *ap; kmutex_t *ahm; ap = kmem_cache_alloc(anon_cache, KM_SLEEP); if (vp == NULL) { swap_alloc(ap); } else { ap->an_vp = vp; ap->an_off = off; } ap->an_refcnt = 1; ap->an_pvp = NULL; ap->an_poff = 0; ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahm); anon_addhash(ap); mutex_exit(ahm); ANI_ADD(-1); ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n", (void *)ap, (ap ? (void *)ap->an_vp : NULL))); return (ap); } /* * Decrement the reference count of an anon page. * If reference count goes to zero, free it and * its associated page (if any). */ void anon_decref(struct anon *ap) { page_t *pp; struct vnode *vp; anoff_t off; kmutex_t *ahm; ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahm); ASSERT(ap->an_refcnt != 0); if (ap->an_refcnt == 0) panic("anon_decref: slot count 0"); if (--ap->an_refcnt == 0) { swap_xlate(ap, &vp, &off); mutex_exit(ahm); /* * If there is a page for this anon slot we will need to * call VN_DISPOSE to get rid of the vp association and * put the page back on the free list as really free. * Acquire the "exclusive" lock to ensure that any * pending i/o always completes before the swap slot * is freed. */ pp = page_lookup(vp, (u_offset_t)off, SE_EXCL); /* * If there was a page, we've synchronized on it (getting * the exclusive lock is as good as gettting the iolock) * so now we can free the physical backing store. Also, this * is where we would free the name of the anonymous page * (swap_free(ap)), a no-op in the current implementation. */ mutex_enter(ahm); ASSERT(ap->an_refcnt == 0); anon_rmhash(ap); if (ap->an_pvp) swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); mutex_exit(ahm); if (pp != NULL) { /*LINTED: constant in conditional context */ VN_DISPOSE(pp, B_INVAL, 0, kcred); } ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n", (void *)ap, (void *)ap->an_vp)); kmem_cache_free(anon_cache, ap); ANI_ADD(1); } else { mutex_exit(ahm); } } static int anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots) { struct anon *ap; while (nslots-- > 0) { if ((ap = anon_get_ptr(ahp, anon_index)) != NULL && ap->an_refcnt > 1) return (1); anon_index++; } return (0); } static void anon_decref_pages( struct anon_hdr *ahp, ulong_t an_idx, uint_t szc) { struct anon *ap = anon_get_ptr(ahp, an_idx); kmutex_t *ahmpages = NULL; page_t *pp; pgcnt_t pgcnt = page_get_pagecnt(szc); pgcnt_t i; struct vnode *vp; anoff_t off; kmutex_t *ahm; #ifdef DEBUG int refcnt = 1; #endif ASSERT(szc != 0); ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); VM_STAT_ADD(anonvmstats.decrefpages[0]); if (ap != NULL) { ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahmpages); ASSERT((refcnt = ap->an_refcnt) != 0); VM_STAT_ADD(anonvmstats.decrefpages[1]); if (ap->an_refcnt == 1) { VM_STAT_ADD(anonvmstats.decrefpages[2]); ASSERT(!anon_share(ahp, an_idx, pgcnt)); mutex_exit(ahmpages); ahmpages = NULL; } } i = 0; while (i < pgcnt) { if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) { ASSERT(refcnt == 1 && ahmpages == NULL); i++; continue; } ASSERT(ap->an_refcnt == refcnt); ASSERT(ahmpages != NULL || ap->an_refcnt == 1); ASSERT(ahmpages == NULL || ap->an_refcnt > 1); if (ahmpages == NULL) { swap_xlate(ap, &vp, &off); pp = page_lookup(vp, (u_offset_t)off, SE_EXCL); if (pp == NULL || pp->p_szc == 0) { VM_STAT_ADD(anonvmstats.decrefpages[3]); ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; (void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP); mutex_enter(ahm); ap->an_refcnt--; ASSERT(ap->an_refcnt == 0); anon_rmhash(ap); if (ap->an_pvp) swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); mutex_exit(ahm); if (pp != NULL) { VM_STAT_ADD(anonvmstats.decrefpages[4]); /*LINTED*/ VN_DISPOSE(pp, B_INVAL, 0, kcred); } kmem_cache_free(anon_cache, ap); ANI_ADD(1); i++; } else { pgcnt_t j; pgcnt_t curpgcnt = page_get_pagecnt(pp->p_szc); size_t ppasize = curpgcnt * sizeof (page_t *); page_t **ppa = kmem_alloc(ppasize, KM_SLEEP); int dispose = 0; VM_STAT_ADD(anonvmstats.decrefpages[5]); ASSERT(pp->p_szc <= szc); ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt)); ASSERT(IS_P2ALIGNED(i, curpgcnt)); ASSERT(i + curpgcnt <= pgcnt); ASSERT(!(page_pptonum(pp) & (curpgcnt - 1))); ppa[0] = pp; for (j = i + 1; j < i + curpgcnt; j++) { ap = anon_get_ptr(ahp, an_idx + j); ASSERT(ap != NULL && ap->an_refcnt == 1); swap_xlate(ap, &vp, &off); pp = page_lookup(vp, (u_offset_t)off, SE_EXCL); if (pp == NULL) panic("anon_decref_pages: " "no page"); (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); ASSERT(pp->p_szc == ppa[0]->p_szc); ASSERT(page_pptonum(pp) - 1 == page_pptonum(ppa[j - i - 1])); ppa[j - i] = pp; if (ap->an_pvp != NULL && !vn_matchopval(ap->an_pvp, VOPNAME_DISPOSE, (fs_generic_func_p)fs_dispose)) dispose = 1; } if (!dispose) { VM_STAT_ADD(anonvmstats.decrefpages[6]); page_destroy_pages(ppa[0]); } else { VM_STAT_ADD(anonvmstats.decrefpages[7]); for (j = 0; j < curpgcnt; j++) { ASSERT(PAGE_EXCL(ppa[j])); ppa[j]->p_szc = 0; } for (j = 0; j < curpgcnt; j++) { ASSERT(!hat_page_is_mapped( ppa[j])); /*LINTED*/ VN_DISPOSE(ppa[j], B_INVAL, 0, kcred); } } kmem_free(ppa, ppasize); for (j = i; j < i + curpgcnt; j++) { ap = anon_get_ptr(ahp, an_idx + j); ASSERT(ap != NULL && ap->an_refcnt == 1); ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; (void) anon_set_ptr(ahp, an_idx + j, NULL, ANON_SLEEP); mutex_enter(ahm); ap->an_refcnt--; ASSERT(ap->an_refcnt == 0); anon_rmhash(ap); if (ap->an_pvp) swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); mutex_exit(ahm); kmem_cache_free(anon_cache, ap); ANI_ADD(1); } i += curpgcnt; } } else { VM_STAT_ADD(anonvmstats.decrefpages[8]); (void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP); ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahm); ap->an_refcnt--; mutex_exit(ahm); i++; } } if (ahmpages != NULL) { mutex_exit(ahmpages); } } /* * Duplicate references to size bytes worth of anon pages. * Used when duplicating a segment that contains private anon pages. * This code assumes that procedure calling this one has already used * hat_chgprot() to disable write access to the range of addresses that * that *old actually refers to. */ void anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new, ulong_t new_idx, size_t size) { spgcnt_t npages; kmutex_t *ahm; struct anon *ap; ulong_t off; ulong_t index; npages = btopr(size); while (npages > 0) { index = old_idx; if ((ap = anon_get_next_ptr(old, &index)) == NULL) break; ASSERT(!ANON_ISBUSY(anon_get_slot(old, index))); off = index - old_idx; npages -= off; if (npages <= 0) break; (void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP); ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahm); ap->an_refcnt++; mutex_exit(ahm); off++; new_idx += off; old_idx += off; npages--; } } /* * Just like anon_dup but also guarantees there are no holes (unallocated anon * slots) within any large page region. That means if a large page region is * empty in the old array it will skip it. If there are 1 or more valid slots * in the large page region of the old array it will make sure to fill in any * unallocated ones and also copy them to the new array. If noalloc is 1 large * page region should either have no valid anon slots or all slots should be * valid. */ void anon_dup_fill_holes( struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new, ulong_t new_idx, size_t size, uint_t szc, int noalloc) { struct anon *ap; spgcnt_t npages; kmutex_t *ahm, *ahmpages = NULL; pgcnt_t pgcnt, i; ulong_t index, off; #ifdef DEBUG int refcnt; #endif ASSERT(szc != 0); pgcnt = page_get_pagecnt(szc); ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); npages = btopr(size); ASSERT(IS_P2ALIGNED(npages, pgcnt)); ASSERT(IS_P2ALIGNED(old_idx, pgcnt)); VM_STAT_ADD(anonvmstats.dupfillholes[0]); while (npages > 0) { index = old_idx; /* * Find the next valid slot. */ if (anon_get_next_ptr(old, &index) == NULL) break; ASSERT(!ANON_ISBUSY(anon_get_slot(old, index))); /* * Now backup index to the beginning of the * current large page region of the old array. */ index = P2ALIGN(index, pgcnt); off = index - old_idx; ASSERT(IS_P2ALIGNED(off, pgcnt)); npages -= off; if (npages <= 0) break; /* * Fill and copy a large page regions worth * of anon slots. */ for (i = 0; i < pgcnt; i++) { if ((ap = anon_get_ptr(old, index + i)) == NULL) { if (noalloc) { panic("anon_dup_fill_holes: " "empty anon slot\n"); } VM_STAT_ADD(anonvmstats.dupfillholes[1]); ap = anon_alloc(NULL, 0); (void) anon_set_ptr(old, index + i, ap, ANON_SLEEP); } else if (i == 0) { /* * make the increment of all refcnts of all * anon slots of a large page appear atomic by * getting an anonpages_hash_lock for the * first anon slot of a large page. */ int hash = AH_LOCK(ap->an_vp, ap->an_off); VM_STAT_ADD(anonvmstats.dupfillholes[2]); ahmpages = &anonpages_hash_lock[hash]; mutex_enter(ahmpages); /*LINTED*/ ASSERT(refcnt = ap->an_refcnt); VM_STAT_COND_ADD(ap->an_refcnt > 1, anonvmstats.dupfillholes[3]); } (void) anon_set_ptr(new, new_idx + off + i, ap, ANON_SLEEP); ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahm); ASSERT(ahmpages != NULL || ap->an_refcnt == 1); ASSERT(i == 0 || ahmpages == NULL || refcnt == ap->an_refcnt); ap->an_refcnt++; mutex_exit(ahm); } if (ahmpages != NULL) { mutex_exit(ahmpages); ahmpages = NULL; } off += pgcnt; new_idx += off; old_idx += off; npages -= pgcnt; } } /* * Used when a segment with a vnode changes szc. similarly to * anon_dup_fill_holes() makes sure each large page region either has no anon * slots or all of them. but new slots are created by COWing the file * pages. on entrance no anon slots should be shared. */ int anon_fill_cow_holes( struct seg *seg, caddr_t addr, struct anon_hdr *ahp, ulong_t an_idx, struct vnode *vp, u_offset_t vp_off, size_t size, uint_t szc, uint_t prot, struct vpage vpage[], struct cred *cred) { struct anon *ap; spgcnt_t npages; pgcnt_t pgcnt, i; ulong_t index, off; int err = 0; int pageflags = 0; ASSERT(szc != 0); pgcnt = page_get_pagecnt(szc); ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); npages = btopr(size); ASSERT(IS_P2ALIGNED(npages, pgcnt)); ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); while (npages > 0) { index = an_idx; /* * Find the next valid slot. */ if (anon_get_next_ptr(ahp, &index) == NULL) { break; } ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); /* * Now backup index to the beginning of the * current large page region of the anon array. */ index = P2ALIGN(index, pgcnt); off = index - an_idx; ASSERT(IS_P2ALIGNED(off, pgcnt)); npages -= off; if (npages <= 0) break; an_idx += off; vp_off += ptob(off); addr += ptob(off); if (vpage != NULL) { vpage += off; } for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) { if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) { page_t *pl[1 + 1]; page_t *pp; err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL, pl, PAGESIZE, seg, addr, S_READ, cred); if (err) { break; } if (vpage != NULL) { prot = VPP_PROT(vpage); pageflags = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0; } pp = anon_private(&ap, seg, addr, prot, pl[0], pageflags, cred); if (pp == NULL) { err = ENOMEM; break; } (void) anon_set_ptr(ahp, an_idx, ap, ANON_SLEEP); page_unlock(pp); } ASSERT(ap->an_refcnt == 1); addr += PAGESIZE; if (vpage != NULL) { vpage++; } } npages -= pgcnt; } return (err); } /* * Free a group of "size" anon pages, size in bytes, * and clear out the pointers to the anon entries. */ void anon_free(struct anon_hdr *ahp, ulong_t index, size_t size) { spgcnt_t npages; struct anon *ap; ulong_t old; npages = btopr(size); while (npages > 0) { old = index; if ((ap = anon_get_next_ptr(ahp, &index)) == NULL) break; ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); npages -= index - old; if (npages <= 0) break; (void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP); anon_decref(ap); /* * Bump index and decrement page count */ index++; npages--; } } void anon_free_pages( struct anon_hdr *ahp, ulong_t an_idx, size_t size, uint_t szc) { spgcnt_t npages; pgcnt_t pgcnt; ulong_t index, off; ASSERT(szc != 0); pgcnt = page_get_pagecnt(szc); ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); npages = btopr(size); ASSERT(IS_P2ALIGNED(npages, pgcnt)); ASSERT(IS_P2ALIGNED(an_idx, pgcnt)); VM_STAT_ADD(anonvmstats.freepages[0]); while (npages > 0) { index = an_idx; /* * Find the next valid slot. */ if (anon_get_next_ptr(ahp, &index) == NULL) break; ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index))); /* * Now backup index to the beginning of the * current large page region of the old array. */ index = P2ALIGN(index, pgcnt); off = index - an_idx; ASSERT(IS_P2ALIGNED(off, pgcnt)); npages -= off; if (npages <= 0) break; anon_decref_pages(ahp, index, szc); off += pgcnt; an_idx += off; npages -= pgcnt; } } /* * Make anonymous pages discardable */ void anon_disclaim(struct anon_map *amp, ulong_t index, size_t size, int flags) { spgcnt_t npages = btopr(size); struct anon *ap; struct vnode *vp; anoff_t off; page_t *pp, *root_pp; kmutex_t *ahm; pgcnt_t pgcnt; ulong_t old_idx, idx, i; struct anon_hdr *ahp = amp->ahp; anon_sync_obj_t cookie; ASSERT(RW_READ_HELD(&->a_rwlock)); pgcnt = 1; for (; npages > 0; index = (pgcnt == 1) ? index + 1: P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) { /* * get anon pointer and index for the first valid entry * in the anon list, starting from "index" */ old_idx = index; if ((ap = anon_get_next_ptr(ahp, &index)) == NULL) break; /* * decrement npages by number of NULL anon slots we skipped */ npages -= index - old_idx; if (npages <= 0) break; anon_array_enter(amp, index, &cookie); ap = anon_get_ptr(ahp, index); ASSERT(ap != NULL); /* * Get anonymous page and try to lock it SE_EXCL; * For non blocking case if we couldn't grab the lock * we skip to next page. * For blocking case (ANON_PGLOOKUP_BLK) block * until we grab SE_EXCL lock. */ swap_xlate(ap, &vp, &off); if (flags & ANON_PGLOOKUP_BLK) pp = page_lookup_create(vp, (u_offset_t)off, SE_EXCL, NULL, NULL, SE_EXCL_WANTED); else pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL); if (pp == NULL) { segadvstat.MADV_FREE_miss.value.ul++; pgcnt = 1; anon_array_exit(&cookie); continue; } pgcnt = page_get_pagecnt(pp->p_szc); /* * we cannot free a page which is permanently locked. * The page_struct_lock need not be acquired to examine * these fields since the page has an "exclusive" lock. */ if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { page_unlock(pp); segadvstat.MADV_FREE_miss.value.ul++; anon_array_exit(&cookie); continue; } ahm = &anonhash_lock[AH_LOCK(vp, off)]; mutex_enter(ahm); ASSERT(ap->an_refcnt != 0); /* * skip this one if copy-on-write is not yet broken. */ if (ap->an_refcnt > 1) { mutex_exit(ahm); page_unlock(pp); segadvstat.MADV_FREE_miss.value.ul++; anon_array_exit(&cookie); continue; } if (pp->p_szc == 0) { pgcnt = 1; /* * free swap slot; */ if (ap->an_pvp) { swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); ap->an_pvp = NULL; ap->an_poff = 0; } mutex_exit(ahm); segadvstat.MADV_FREE_hit.value.ul++; /* * while we are at it, unload all the translations * and attempt to free the page. */ (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); /*LINTED: constant in conditional context */ VN_DISPOSE(pp, B_FREE, 0, kcred); anon_array_exit(&cookie); continue; } pgcnt = page_get_pagecnt(pp->p_szc); if (!IS_P2ALIGNED(index, pgcnt)) { if (!page_try_demote_pages(pp)) { mutex_exit(ahm); page_unlock(pp); segadvstat.MADV_FREE_miss.value.ul++; anon_array_exit(&cookie); continue; } else { pgcnt = 1; if (ap->an_pvp) { swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); ap->an_pvp = NULL; ap->an_poff = 0; } mutex_exit(ahm); (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); /*LINTED*/ VN_DISPOSE(pp, B_FREE, 0, kcred); segadvstat.MADV_FREE_hit.value.ul++; anon_array_exit(&cookie); continue; } } mutex_exit(ahm); root_pp = pp; /* * try to lock remaining pages */ for (idx = 1; idx < pgcnt; idx++) { pp++; if (!page_trylock(pp, SE_EXCL)) break; if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { page_unlock(pp); break; } } if (idx == pgcnt) { for (i = 0; i < pgcnt; i++) { ap = anon_get_ptr(ahp, index + i); if (ap == NULL) break; swap_xlate(ap, &vp, &off); ahm = &anonhash_lock[AH_LOCK(vp, off)]; mutex_enter(ahm); ASSERT(ap->an_refcnt != 0); /* * skip this one if copy-on-write * is not yet broken. */ if (ap->an_refcnt > 1) { mutex_exit(ahm); goto skiplp; } if (ap->an_pvp) { swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE); ap->an_pvp = NULL; ap->an_poff = 0; } mutex_exit(ahm); } page_destroy_pages(root_pp); segadvstat.MADV_FREE_hit.value.ul += pgcnt; anon_array_exit(&cookie); continue; } skiplp: segadvstat.MADV_FREE_miss.value.ul += pgcnt; for (i = 0, pp = root_pp; i < idx; pp++, i++) page_unlock(pp); anon_array_exit(&cookie); } } /* * Return the kept page(s) and protections back to the segment driver. */ int anon_getpage( struct anon **app, uint_t *protp, page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, struct cred *cred) { page_t *pp; struct anon *ap = *app; struct vnode *vp; anoff_t off; int err; kmutex_t *ahm; swap_xlate(ap, &vp, &off); /* * Lookup the page. If page is being paged in, * wait for it to finish as we must return a list of * pages since this routine acts like the VOP_GETPAGE * routine does. */ if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) { ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahm); if (ap->an_refcnt == 1) *protp = PROT_ALL; else *protp = PROT_ALL & ~PROT_WRITE; mutex_exit(ahm); pl[0] = pp; pl[1] = NULL; return (0); } /* * Simply treat it as a vnode fault on the anon vp. */ TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE, "anon_getpage:seg %x addr %x vp %x", seg, addr, vp); err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz, seg, addr, rw, cred); if (err == 0 && pl != NULL) { ahm = &anonhash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahm); if (ap->an_refcnt != 1) *protp &= ~PROT_WRITE; /* make read-only */ mutex_exit(ahm); } return (err); } /* * Creates or returns kept pages to the segment driver. returns -1 if a large * page cannot be allocated. returns -2 if some other process has allocated a * larger page. * * For cowfault it will alocate any size pages to fill the requested area to * avoid partially overwritting anon slots (i.e. sharing only some of the anon * slots within a large page with other processes). This policy greatly * simplifies large page freeing (which is only freed when all anon slot * refcnts are 0). */ int anon_map_getpages( struct anon_map *amp, ulong_t start_idx, uint_t szc, struct seg *seg, caddr_t addr, uint_t prot, uint_t *protp, page_t *ppa[], uint_t *ppa_szc, struct vpage vpage[], enum seg_rw rw, int brkcow, int anypgsz, struct cred *cred) { pgcnt_t pgcnt; struct anon *ap; struct vnode *vp; anoff_t off; page_t *pp, *pl[2], *conpp = NULL; caddr_t vaddr; ulong_t pg_idx, an_idx, i; spgcnt_t nreloc = 0; int prealloc = 1; int err, slotcreate; uint_t vpprot; #if !defined(__i386) && !defined(__amd64) ASSERT(seg->s_szc != 0); #endif ASSERT(szc <= seg->s_szc); ASSERT(ppa_szc != NULL); ASSERT(rw != S_CREATE); *protp = PROT_ALL; VM_STAT_ADD(anonvmstats.getpages[0]); if (szc == 0) { VM_STAT_ADD(anonvmstats.getpages[1]); if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) { err = anon_getpage(&ap, protp, pl, PAGESIZE, seg, addr, rw, cred); if (err) return (err); ppa[0] = pl[0]; if (brkcow == 0 || (*protp & PROT_WRITE)) { VM_STAT_ADD(anonvmstats.getpages[2]); if (ppa[0]->p_szc != 0) { VM_STAT_ADD(anonvmstats.getpages[3]); *ppa_szc = ppa[0]->p_szc; page_unlock(ppa[0]); return (-2); } return (0); } panic("anon_map_getpages: cowfault for szc 0"); } else { VM_STAT_ADD(anonvmstats.getpages[4]); ppa[0] = anon_zero(seg, addr, &ap, cred); if (ppa[0] == NULL) return (ENOMEM); (void) anon_set_ptr(amp->ahp, start_idx, ap, ANON_SLEEP); return (0); } } pgcnt = page_get_pagecnt(szc); ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); /* * First we check for the case that the requtested large * page or larger page already exists in the system. * Actually we only check if the first constituent page * exists and only preallocate if it's not found. */ ap = anon_get_ptr(amp->ahp, start_idx); if (ap) { uint_t pszc; swap_xlate(ap, &vp, &off); if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) { if (pszc > szc) { *ppa_szc = pszc; return (-2); } if (pszc == szc) { prealloc = 0; } } } VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]); VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]); top: /* * If a smaller page or no page at all was found, * grab a large page off the freelist. */ if (prealloc) { ASSERT(conpp == NULL); if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa, szc, 0) != 0) { VM_STAT_ADD(anonvmstats.getpages[7]); if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) { /* * If the refcnt's of all anon slots are <= 1 * they can't increase since we are holding * the address space's lock. So segvn can * safely decrease szc without risking to * generate a cow fault for the region smaller * than the segment's largest page size. */ VM_STAT_ADD(anonvmstats.getpages[8]); return (-1); } docow: /* * This is a cow fault. Copy away the entire 1 large * page region of this segment. */ if (szc != seg->s_szc) panic("anon_map_getpages: cowfault for szc %d", szc); vaddr = addr; for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) { if ((ap = anon_get_ptr(amp->ahp, an_idx)) != NULL) { err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr, rw, cred); if (err) { for (i = 0; i < pg_idx; i++) { if ((pp = ppa[i]) != NULL) page_unlock(pp); } return (err); } ppa[pg_idx] = pl[0]; } else { /* * Since this is a cowfault we know * that this address space has a * parent or children which means * anon_dup_fill_holes() has initialized * all anon slots within a large page * region that had at least one anon * slot at the time of fork(). */ panic("anon_map_getpages: " "cowfault but anon slot is empty"); } } VM_STAT_ADD(anonvmstats.getpages[9]); *protp = PROT_ALL; return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa, vpage, anypgsz, cred)); } } VM_STAT_ADD(anonvmstats.getpages[10]); an_idx = start_idx; pg_idx = 0; vaddr = addr; while (pg_idx < pgcnt) { slotcreate = 0; if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) { VM_STAT_ADD(anonvmstats.getpages[11]); /* * For us to have decided not to preallocate * would have meant that a large page * was found. Which also means that all of the * anon slots for that page would have been * already created for us. */ if (prealloc == 0) panic("anon_map_getpages: prealloc = 0"); slotcreate = 1; ap = anon_alloc(NULL, 0); } swap_xlate(ap, &vp, &off); /* * Now setup our preallocated page to pass down * to swap_getpage(). */ if (prealloc) { ASSERT(ppa[pg_idx]->p_szc == szc); conpp = ppa[pg_idx]; } ASSERT(prealloc || conpp == NULL); /* * If we just created this anon slot then call * with S_CREATE to prevent doing IO on the page. * Similar to the anon_zero case. */ err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr, slotcreate == 1 ? S_CREATE : rw, cred); if (err) { VM_STAT_ADD(anonvmstats.getpages[12]); ASSERT(slotcreate == 0); goto io_err; } pp = pl[0]; if (pp->p_szc != szc) { VM_STAT_ADD(anonvmstats.getpages[13]); ASSERT(slotcreate == 0); ASSERT(prealloc == 0); ASSERT(pg_idx == 0); if (pp->p_szc > szc) { page_unlock(pp); VM_STAT_ADD(anonvmstats.getpages[14]); return (-2); } page_unlock(pp); prealloc = 1; goto top; } /* * If we decided to preallocate but VOP_GETPAGE * found a page in the system that satisfies our * request then free up our preallocated large page * and continue looping accross the existing large * page via VOP_GETPAGE. */ if (prealloc && pp != ppa[pg_idx]) { VM_STAT_ADD(anonvmstats.getpages[15]); ASSERT(slotcreate == 0); ASSERT(pg_idx == 0); conpp = NULL; prealloc = 0; page_free_pages(ppa[0]); } if (prealloc && nreloc > 1) { /* * we have relocated out of a smaller large page. * skip npgs - 1 iterations and continue which will * increment by one the loop indices. */ spgcnt_t npgs = nreloc; VM_STAT_ADD(anonvmstats.getpages[16]); ASSERT(pp == ppa[pg_idx]); ASSERT(slotcreate == 0); ASSERT(pg_idx + npgs <= pgcnt); if ((*protp & PROT_WRITE) && anon_share(amp->ahp, an_idx, npgs)) { *protp &= ~PROT_WRITE; } pg_idx += npgs; an_idx += npgs; vaddr += PAGESIZE * npgs; continue; } VM_STAT_ADD(anonvmstats.getpages[17]); /* * Anon_zero case. */ if (slotcreate) { ASSERT(prealloc); pagezero(pp, 0, PAGESIZE); CPU_STATS_ADD_K(vm, zfod, 1); hat_setrefmod(pp); } ASSERT(prealloc == 0 || ppa[pg_idx] == pp); ASSERT(prealloc != 0 || PAGE_SHARED(pp)); ASSERT(prealloc == 0 || PAGE_EXCL(pp)); if (pg_idx > 0 && ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) || (pp->p_szc != ppa[pg_idx - 1]->p_szc))) panic("anon_map_getpages: unexpected page"); if (prealloc == 0) { ppa[pg_idx] = pp; } if (ap->an_refcnt > 1) { VM_STAT_ADD(anonvmstats.getpages[18]); *protp &= ~PROT_WRITE; } /* * If this is a new anon slot then initialize * the anon array entry. */ if (slotcreate) { (void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP); } pg_idx++; an_idx++; vaddr += PAGESIZE; } /* * Since preallocated pages come off the freelist * they are locked SE_EXCL. Simply downgrade and return. */ if (prealloc) { VM_STAT_ADD(anonvmstats.getpages[19]); conpp = NULL; for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { page_downgrade(ppa[pg_idx]); } } ASSERT(conpp == NULL); if (brkcow == 0 || (*protp & PROT_WRITE)) { VM_STAT_ADD(anonvmstats.getpages[20]); return (0); } if (szc < seg->s_szc) panic("anon_map_getpages: cowfault for szc %d", szc); VM_STAT_ADD(anonvmstats.getpages[21]); *protp = PROT_ALL; return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa, vpage, anypgsz, cred)); io_err: /* * We got an IO error somewhere in our large page. * If we were using a preallocated page then just demote * all the constituent pages that we've succeeded with sofar * to PAGESIZE pages and leave them in the system * unlocked. */ ASSERT(err != -2 || pg_idx == 0); VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]); VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]); VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]); if (prealloc) { conpp = NULL; if (pg_idx > 0) { VM_STAT_ADD(anonvmstats.getpages[25]); for (i = 0; i < pgcnt; i++) { pp = ppa[i]; ASSERT(PAGE_EXCL(pp)); ASSERT(pp->p_szc == szc); pp->p_szc = 0; } for (i = 0; i < pg_idx; i++) { ASSERT(!hat_page_is_mapped(ppa[i])); page_unlock(ppa[i]); } /* * Now free up the remaining unused constituent * pages. */ while (pg_idx < pgcnt) { ASSERT(!hat_page_is_mapped(ppa[pg_idx])); page_free(ppa[pg_idx], 0); pg_idx++; } } else { VM_STAT_ADD(anonvmstats.getpages[26]); page_free_pages(ppa[0]); } } else { VM_STAT_ADD(anonvmstats.getpages[27]); ASSERT(err > 0); for (i = 0; i < pg_idx; i++) page_unlock(ppa[i]); } ASSERT(conpp == NULL); if (err != -1) return (err); /* * we are here because we failed to relocate. */ ASSERT(prealloc); if (brkcow == 0 || !anon_share(amp->ahp, start_idx, pgcnt)) { VM_STAT_ADD(anonvmstats.getpages[28]); return (-1); } VM_STAT_ADD(anonvmstats.getpages[29]); goto docow; } /* * Turn a reference to an object or shared anon page * into a private page with a copy of the data from the * original page which is always locked by the caller. * This routine unloads the translation and unlocks the * original page, if it isn't being stolen, before returning * to the caller. * * NOTE: The original anon slot is not freed by this routine * It must be freed by the caller while holding the * "anon_map" lock to prevent races which can occur if * a process has multiple lwps in its address space. */ page_t * anon_private( struct anon **app, struct seg *seg, caddr_t addr, uint_t prot, page_t *opp, int oppflags, struct cred *cred) { struct anon *old = *app; struct anon *new; page_t *pp = NULL; struct vnode *vp; anoff_t off; page_t *anon_pl[1 + 1]; int err; if (oppflags & STEAL_PAGE) ASSERT(PAGE_EXCL(opp)); else ASSERT(PAGE_LOCKED(opp)); CPU_STATS_ADD_K(vm, cow_fault, 1); /* Kernel probe */ TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */, tnf_opaque, address, addr); *app = new = anon_alloc(NULL, 0); swap_xlate(new, &vp, &off); if (oppflags & STEAL_PAGE) { page_rename(opp, vp, (u_offset_t)off); pp = opp; TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE, "anon_private:seg %p addr %x pp %p vp %p off %lx", seg, addr, pp, vp, off); hat_setmod(pp); /* bug 4026339 */ page_downgrade(pp); return (pp); } /* * Call the VOP_GETPAGE routine to create the page, thereby * enabling the vnode driver to allocate any filesystem * space (e.g., disk block allocation for UFS). This also * prevents more than one page from being added to the * vnode at the same time. */ err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL, anon_pl, PAGESIZE, seg, addr, S_CREATE, cred); if (err) goto out; pp = anon_pl[0]; /* * If the original page was locked, we need to move the lock * to the new page by transfering 'cowcnt/lckcnt' of the original * page to 'cowcnt/lckcnt' of the new page. * * See Statement at the beginning of segvn_lockop() and * comments in page_pp_useclaim() regarding the way * cowcnts/lckcnts are handled. * * Also availrmem must be decremented up front for read only mapping * before calling page_pp_useclaim. page_pp_useclaim will bump it back * if availrmem did not need to be decremented after all. */ if (oppflags & LOCK_PAGE) { if ((prot & PROT_WRITE) == 0) { mutex_enter(&freemem_lock); if (availrmem > pages_pp_maximum) { availrmem--; pages_useclaim++; } else { mutex_exit(&freemem_lock); goto out; } mutex_exit(&freemem_lock); } page_pp_useclaim(opp, pp, prot & PROT_WRITE); } /* * Now copy the contents from the original page, * which is locked and loaded in the MMU by * the caller to prevent yet another page fault. */ ppcopy(opp, pp); /* XXX - should set mod bit in here */ hat_setrefmod(pp); /* mark as modified */ /* * Unload the old translation. */ hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD); /* * Free unmapped, unmodified original page. * or release the lock on the original page, * otherwise the process will sleep forever in * anon_decref() waiting for the "exclusive" lock * on the page. */ (void) page_release(opp, 1); /* * we are done with page creation so downgrade the new * page's selock to shared, this helps when multiple * as_fault(...SOFTLOCK...) are done to the same * page(aio) */ page_downgrade(pp); /* * NOTE: The original anon slot must be freed by the * caller while holding the "anon_map" lock, if we * copied away from an anonymous page. */ return (pp); out: *app = old; if (pp) page_unlock(pp); anon_decref(new); page_unlock(opp); return ((page_t *)NULL); } int anon_map_privatepages( struct anon_map *amp, ulong_t start_idx, uint_t szc, struct seg *seg, caddr_t addr, uint_t prot, page_t *ppa[], struct vpage vpage[], int anypgsz, struct cred *cred) { pgcnt_t pgcnt; struct vnode *vp; anoff_t off; page_t *pl[2], *conpp = NULL; int err; int prealloc = 1; struct anon *ap, *oldap; caddr_t vaddr; page_t *pplist, *pp; ulong_t pg_idx, an_idx; spgcnt_t nreloc = 0; int pagelock = 0; kmutex_t *ahmpages = NULL; #ifdef DEBUG int refcnt; #endif ASSERT(szc != 0); ASSERT(szc == seg->s_szc); VM_STAT_ADD(anonvmstats.privatepages[0]); pgcnt = page_get_pagecnt(szc); ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); ASSERT(amp != NULL); ap = anon_get_ptr(amp->ahp, start_idx); ASSERT(ap == NULL || ap->an_refcnt >= 1); VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]); /* * Now try and allocate the large page. If we fail then just * let VOP_GETPAGE give us PAGESIZE pages. Normally we let * the caller make this decision but to avoid added complexity * it's simplier to handle that case here. */ if (anypgsz == -1) { VM_STAT_ADD(anonvmstats.privatepages[2]); prealloc = 0; } else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc, anypgsz) != 0) { VM_STAT_ADD(anonvmstats.privatepages[3]); prealloc = 0; } /* * make the decrement of all refcnts of all * anon slots of a large page appear atomic by * getting an anonpages_hash_lock for the * first anon slot of a large page. */ if (ap != NULL) { ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahmpages); if (ap->an_refcnt == 1) { VM_STAT_ADD(anonvmstats.privatepages[4]); ASSERT(!anon_share(amp->ahp, start_idx, pgcnt)); mutex_exit(ahmpages); if (prealloc) { page_free_replacement_page(pplist); page_create_putback(pgcnt); } ASSERT(ppa[0]->p_szc <= szc); if (ppa[0]->p_szc == szc) { VM_STAT_ADD(anonvmstats.privatepages[5]); return (0); } for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { ASSERT(ppa[pg_idx] != NULL); page_unlock(ppa[pg_idx]); } return (-1); } } /* * If we are passed in the vpage array and this is * not PROT_WRITE then we need to decrement availrmem * up front before we try anything. If we need to and * can't decrement availrmem then its better to fail now * than in the middle of processing the new large page. * page_pp_usclaim() on behalf of each constituent page * below will adjust availrmem back for the cases not needed. */ if (vpage != NULL && (prot & PROT_WRITE) == 0) { for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { if (VPP_ISPPLOCK(&vpage[pg_idx])) { pagelock = 1; break; } } if (pagelock) { VM_STAT_ADD(anonvmstats.privatepages[6]); mutex_enter(&freemem_lock); if (availrmem >= pages_pp_maximum + pgcnt) { availrmem -= pgcnt; pages_useclaim += pgcnt; } else { VM_STAT_ADD(anonvmstats.privatepages[7]); mutex_exit(&freemem_lock); if (ahmpages != NULL) { mutex_exit(ahmpages); } if (prealloc) { page_free_replacement_page(pplist); page_create_putback(pgcnt); } for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) if (ppa[pg_idx] != NULL) page_unlock(ppa[pg_idx]); return (ENOMEM); } mutex_exit(&freemem_lock); } } CPU_STATS_ADD_K(vm, cow_fault, pgcnt); VM_STAT_ADD(anonvmstats.privatepages[8]); an_idx = start_idx; pg_idx = 0; vaddr = addr; for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) { ASSERT(ppa[pg_idx] != NULL); oldap = anon_get_ptr(amp->ahp, an_idx); ASSERT(ahmpages != NULL || oldap == NULL); ASSERT(ahmpages == NULL || oldap != NULL); ASSERT(ahmpages == NULL || oldap->an_refcnt > 1); ASSERT(ahmpages == NULL || pg_idx != 0 || (refcnt = oldap->an_refcnt)); ASSERT(ahmpages == NULL || pg_idx == 0 || refcnt == oldap->an_refcnt); ap = anon_alloc(NULL, 0); swap_xlate(ap, &vp, &off); /* * Now setup our preallocated page to pass down to * swap_getpage(). */ if (prealloc) { pp = pplist; page_sub(&pplist, pp); conpp = pp; } err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl, PAGESIZE, conpp, &nreloc, seg, vaddr, S_CREATE, cred); /* * Impossible to fail this is S_CREATE. */ if (err) panic("anon_map_privatepages: VOP_GETPAGE failed"); ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0); ASSERT(prealloc == 0 || nreloc == 1); pp = pl[0]; /* * If the original page was locked, we need to move * the lock to the new page by transfering * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt' * of the new page. pg_idx can be used to index * into the vpage array since the caller will guarentee * that vpage struct passed in corresponds to addr * and forward. */ if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) { page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE); } else if (pagelock) { mutex_enter(&freemem_lock); availrmem++; pages_useclaim--; mutex_exit(&freemem_lock); } /* * Now copy the contents from the original page. */ ppcopy(ppa[pg_idx], pp); hat_setrefmod(pp); /* mark as modified */ /* * Release the lock on the original page, * derement the old slot, and down grade the lock * on the new copy. */ page_unlock(ppa[pg_idx]); if (!prealloc) page_downgrade(pp); ppa[pg_idx] = pp; /* * Now reflect the copy in the new anon array. */ ASSERT(ahmpages == NULL || oldap->an_refcnt > 1); if (oldap != NULL) anon_decref(oldap); (void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP); } if (ahmpages != NULL) { mutex_exit(ahmpages); } ASSERT(prealloc == 0 || pplist == NULL); if (prealloc) { VM_STAT_ADD(anonvmstats.privatepages[9]); for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) { page_downgrade(ppa[pg_idx]); } } /* * Unload the old large page translation. */ hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD); return (0); } /* * Allocate a private zero-filled anon page. */ page_t * anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred) { struct anon *ap; page_t *pp; struct vnode *vp; anoff_t off; page_t *anon_pl[1 + 1]; int err; /* Kernel probe */ TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */, tnf_opaque, address, addr); *app = ap = anon_alloc(NULL, 0); swap_xlate(ap, &vp, &off); /* * Call the VOP_GETPAGE routine to create the page, thereby * enabling the vnode driver to allocate any filesystem * dependent structures (e.g., disk block allocation for UFS). * This also prevents more than on page from being added to * the vnode at the same time since it is locked. */ err = VOP_GETPAGE(vp, off, PAGESIZE, NULL, anon_pl, PAGESIZE, seg, addr, S_CREATE, cred); if (err) { *app = NULL; anon_decref(ap); return (NULL); } pp = anon_pl[0]; pagezero(pp, 0, PAGESIZE); /* XXX - should set mod bit */ page_downgrade(pp); CPU_STATS_ADD_K(vm, zfod, 1); hat_setrefmod(pp); /* mark as modified so pageout writes back */ return (pp); } /* * Allocate array of private zero-filled anon pages for empty slots * and kept pages for non empty slots within given range. * * NOTE: This rontine will try and use large pages * if available and supported by underlying platform. */ int anon_map_createpages( struct anon_map *amp, ulong_t start_index, size_t len, page_t *ppa[], struct seg *seg, caddr_t addr, enum seg_rw rw, struct cred *cred) { struct anon *ap; struct vnode *ap_vp; page_t *pp, *pplist, *anon_pl[1 + 1], *conpp = NULL; int err = 0; ulong_t p_index, index; pgcnt_t npgs, pg_cnt; spgcnt_t nreloc = 0; uint_t l_szc, szc, prot; anoff_t ap_off; size_t pgsz; lgrp_t *lgrp; /* * XXX For now only handle S_CREATE. */ ASSERT(rw == S_CREATE); index = start_index; p_index = 0; npgs = btopr(len); /* * If this platform supports multiple page sizes * then try and allocate directly from the free * list for pages larger than PAGESIZE. * * NOTE:When we have page_create_ru we can stop * directly allocating from the freelist. */ l_szc = seg->s_szc; ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); while (npgs) { /* * if anon slot already exists * (means page has been created) * so 1) look up the page * 2) if the page is still in memory, get it. * 3) if not, create a page and * page in from physical swap device. * These are done in anon_getpage(). */ ap = anon_get_ptr(amp->ahp, index); if (ap) { err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE, seg, addr, S_READ, cred); if (err) { ANON_LOCK_EXIT(&->a_rwlock); panic("anon_map_createpages: anon_getpage"); } pp = anon_pl[0]; ppa[p_index++] = pp; addr += PAGESIZE; index++; npgs--; continue; } /* * Now try and allocate the largest page possible * for the current address and range. * Keep dropping down in page size until: * * 1) Properly aligned * 2) Does not overlap existing anon pages * 3) Fits in remaining range. * 4) able to allocate one. * * NOTE: XXX When page_create_ru is completed this code * will change. */ szc = l_szc; pplist = NULL; pg_cnt = 0; while (szc) { pgsz = page_get_pagesize(szc); pg_cnt = pgsz >> PAGESHIFT; if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs && anon_pages(amp->ahp, index, pg_cnt) == 0) { /* * XXX * Since we are faking page_create() * we also need to do the freemem and * pcf accounting. */ (void) page_create_wait(pg_cnt, PG_WAIT); /* * Get lgroup to allocate next page of shared * memory from and use it to specify where to * allocate the physical memory */ lgrp = lgrp_mem_choose(seg, addr, pgsz); pplist = page_get_freelist( anon_vp, (u_offset_t)0, seg, addr, pgsz, 0, lgrp); if (pplist == NULL) { page_create_putback(pg_cnt); } /* * If a request for a page of size * larger than PAGESIZE failed * then don't try that size anymore. */ if (pplist == NULL) { l_szc = szc - 1; } else { break; } } szc--; } /* * If just using PAGESIZE pages then don't * directly allocate from the free list. */ if (pplist == NULL) { ASSERT(szc == 0); pp = anon_zero(seg, addr, &ap, cred); if (pp == NULL) { ANON_LOCK_EXIT(&->a_rwlock); panic("anon_map_createpages: anon_zero"); } ppa[p_index++] = pp; ASSERT(anon_get_ptr(amp->ahp, index) == NULL); (void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP); addr += PAGESIZE; index++; npgs--; continue; } /* * pplist is a list of pg_cnt PAGESIZE pages. * These pages are locked SE_EXCL since they * came directly off the free list. */ ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt)); ASSERT(IS_P2ALIGNED(index, pg_cnt)); ASSERT(conpp == NULL); while (pg_cnt--) { ap = anon_alloc(NULL, 0); swap_xlate(ap, &ap_vp, &ap_off); ASSERT(pplist != NULL); pp = pplist; page_sub(&pplist, pp); PP_CLRFREE(pp); PP_CLRAGED(pp); conpp = pp; err = swap_getconpage(ap_vp, ap_off, PAGESIZE, (uint_t *)NULL, anon_pl, PAGESIZE, conpp, &nreloc, seg, addr, S_CREATE, cred); if (err) { ANON_LOCK_EXIT(&->a_rwlock); panic("anon_map_createpages: S_CREATE"); } ASSERT(anon_pl[0] == pp); ASSERT(nreloc == 1); pagezero(pp, 0, PAGESIZE); CPU_STATS_ADD_K(vm, zfod, 1); hat_setrefmod(pp); ASSERT(anon_get_ptr(amp->ahp, index) == NULL); (void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP); ppa[p_index++] = pp; addr += PAGESIZE; index++; npgs--; } conpp = NULL; pg_cnt = pgsz >> PAGESHIFT; p_index = p_index - pg_cnt; while (pg_cnt--) { page_downgrade(ppa[p_index++]); } } ANON_LOCK_EXIT(&->a_rwlock); return (0); } int anon_map_demotepages( struct anon_map *amp, ulong_t start_idx, struct seg *seg, caddr_t addr, uint_t prot, struct vpage vpage[], struct cred *cred) { struct anon *ap; uint_t szc = seg->s_szc; pgcnt_t pgcnt = page_get_pagecnt(szc); size_t ppasize = pgcnt * sizeof (page_t *); page_t **ppa = kmem_alloc(ppasize, KM_SLEEP); page_t *pp; page_t *pl[2]; pgcnt_t i, pg_idx; ulong_t an_idx; caddr_t vaddr; kmutex_t *ahmpages = NULL; int err; int retry = 0; uint_t vpprot; ASSERT(RW_WRITE_HELD(&->a_rwlock)); ASSERT(IS_P2ALIGNED(pgcnt, pgcnt)); ASSERT(IS_P2ALIGNED(start_idx, pgcnt)); ASSERT(ppa != NULL); VM_STAT_ADD(anonvmstats.demotepages[0]); ap = anon_get_ptr(amp->ahp, start_idx); if (ap != NULL) { VM_STAT_ADD(anonvmstats.demotepages[1]); ahmpages = &anonpages_hash_lock[AH_LOCK(ap->an_vp, ap->an_off)]; mutex_enter(ahmpages); } top: if (ap == NULL || ap->an_refcnt <= 1) { int root = 0; pgcnt_t npgs, curnpgs = 0; VM_STAT_ADD(anonvmstats.demotepages[2]); ASSERT(retry == 0 || ap != NULL); if (ahmpages != NULL) mutex_exit(ahmpages); an_idx = start_idx; for (i = 0; i < pgcnt; i++, an_idx++) { ap = anon_get_ptr(amp->ahp, an_idx); if (ap != NULL) { ASSERT(ap->an_refcnt == 1); pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off, SE_EXCL); if (pp != NULL) { (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); } } else { ppa[i] = NULL; } } for (i = 0; i < pgcnt; i++) { if ((pp = ppa[i]) != NULL && pp->p_szc != 0) { ASSERT(pp->p_szc <= szc); if (!root) { VM_STAT_ADD(anonvmstats.demotepages[3]); if (curnpgs != 0) panic("anon_map_demotepages: " "bad large page"); root = 1; curnpgs = npgs = page_get_pagecnt(pp->p_szc); ASSERT(npgs <= pgcnt); ASSERT(IS_P2ALIGNED(npgs, npgs)); ASSERT(!(page_pptonum(pp) & (npgs - 1))); } else { ASSERT(i > 0); ASSERT(page_pptonum(pp) - 1 == page_pptonum(ppa[i - 1])); if ((page_pptonum(pp) & (npgs - 1)) == npgs - 1) root = 0; } ASSERT(PAGE_EXCL(pp)); pp->p_szc = 0; curnpgs--; } } if (root != 0 || curnpgs != 0) panic("anon_map_demotepages: bad large page"); for (i = 0; i < pgcnt; i++) { if ((pp = ppa[i]) != NULL) { ASSERT(!hat_page_is_mapped(pp)); ASSERT(pp->p_szc == 0); page_unlock(pp); } } kmem_free(ppa, ppasize); return (0); } ASSERT(ahmpages != NULL); mutex_exit(ahmpages); ahmpages = NULL; VM_STAT_ADD(anonvmstats.demotepages[4]); ASSERT(retry == 0); /* we can be here only once */ vaddr = addr; for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) { ap = anon_get_ptr(amp->ahp, an_idx); if (ap == NULL) panic("anon_map_demotepages: no anon slot"); err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr, S_READ, cred); if (err) { for (i = 0; i < pg_idx; i++) { if ((pp = ppa[i]) != NULL) page_unlock(pp); } kmem_free(ppa, ppasize); return (err); } ppa[pg_idx] = pl[0]; } err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa, vpage, -1, cred); if (err > 0) { VM_STAT_ADD(anonvmstats.demotepages[5]); kmem_free(ppa, ppasize); return (err); } ASSERT(err == 0 || err == -1); if (err == -1) { VM_STAT_ADD(anonvmstats.demotepages[6]); retry = 1; goto top; } for (i = 0; i < pgcnt; i++) { ASSERT(ppa[i] != NULL); if (ppa[i]->p_szc != 0) retry = 1; page_unlock(ppa[i]); } if (retry) { VM_STAT_ADD(anonvmstats.demotepages[7]); goto top; } VM_STAT_ADD(anonvmstats.demotepages[8]); kmem_free(ppa, ppasize); return (0); } /* * Allocate and initialize an anon_map structure for seg * associating the given swap reservation with the new anon_map. */ struct anon_map * anonmap_alloc(size_t size, size_t swresv) { struct anon_map *amp; amp = kmem_cache_alloc(anonmap_cache, KM_SLEEP); amp->refcnt = 1; amp->size = size; amp->ahp = anon_create(btopr(size), ANON_SLEEP); amp->swresv = swresv; amp->locality = 0; amp->a_szc = 0; return (amp); } void anonmap_free(struct anon_map *amp) { ASSERT(amp->ahp); ASSERT(amp->refcnt == 0); lgrp_shm_policy_fini(amp, NULL); anon_release(amp->ahp, btopr(amp->size)); kmem_cache_free(anonmap_cache, amp); } /* * Returns true if the app array has some empty slots. * The offp and lenp paramters are in/out paramters. On entry * these values represent the starting offset and length of the * mapping. When true is returned, these values may be modified * to be the largest range which includes empty slots. */ int non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp, size_t *lenp) { ulong_t i, el; ssize_t low, high; struct anon *ap; low = -1; for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) { ap = anon_get_ptr(ahp, anon_idx); if (ap == NULL) { if (low == -1) low = i; high = i; } } if (low != -1) { /* * Found at least one non-anon page. * Set up the off and len return values. */ if (low != 0) *offp += low; *lenp = high - low + PAGESIZE; return (1); } return (0); } /* * Return a count of the number of existing anon pages in the anon array * app in the range (off, off+len). The array and slots must be guaranteed * stable by the caller. */ pgcnt_t anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots) { pgcnt_t cnt = 0; while (nslots-- > 0) { if ((anon_get_ptr(ahp, anon_index)) != NULL) cnt++; anon_index++; } return (cnt); } /* * Move reserved phys swap into memory swap (unreserve phys swap * and reserve mem swap by the same amount). * Used by segspt when it needs to lock resrved swap npages in memory */ int anon_swap_adjust(pgcnt_t npages) { pgcnt_t unlocked_mem_swap; mutex_enter(&anoninfo_lock); ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); unlocked_mem_swap = k_anoninfo.ani_mem_resv - k_anoninfo.ani_locked_swap; if (npages > unlocked_mem_swap) { spgcnt_t adjusted_swap = npages - unlocked_mem_swap; /* * if there is not enough unlocked mem swap we take missing * amount from phys swap and give it to mem swap */ mutex_enter(&freemem_lock); if (availrmem < adjusted_swap + segspt_minfree) { mutex_exit(&freemem_lock); mutex_exit(&anoninfo_lock); return (ENOMEM); } availrmem -= adjusted_swap; mutex_exit(&freemem_lock); k_anoninfo.ani_mem_resv += adjusted_swap; ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap); k_anoninfo.ani_phys_resv -= adjusted_swap; ANI_ADD(adjusted_swap); } k_anoninfo.ani_locked_swap += npages; ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap); ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); mutex_exit(&anoninfo_lock); return (0); } /* * 'unlocked' reserved mem swap so when it is unreserved it * can be moved back phys (disk) swap */ void anon_swap_restore(pgcnt_t npages) { mutex_enter(&anoninfo_lock); ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv); ASSERT(k_anoninfo.ani_locked_swap >= npages); k_anoninfo.ani_locked_swap -= npages; ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv); mutex_exit(&anoninfo_lock); } /* * Return the pointer from the list for a * specified anon index. */ ulong_t * anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx) { struct anon **app; void **ppp; ASSERT(an_idx < ahp->size); /* * Single level case. */ if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) { return ((ulong_t *)&ahp->array_chunk[an_idx]); } else { /* * 2 level case. */ ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; if (*ppp == NULL) { mutex_enter(&ahp->serial_lock); ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT]; if (*ppp == NULL) *ppp = kmem_zalloc(PAGESIZE, KM_SLEEP); mutex_exit(&ahp->serial_lock); } app = *ppp; return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]); } } void anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj) { ulong_t *ap_slot; kmutex_t *mtx; kcondvar_t *cv; int hash; /* * Use szc to determine anon slot(s) to appear atomic. * If szc = 0, then lock the anon slot and mark it busy. * If szc > 0, then lock the range of slots by getting the * anon_array_lock for the first anon slot, and mark only the * first anon slot busy to represent whole range being busy. */ ASSERT(RW_READ_HELD(&->a_rwlock)); an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc)); hash = ANON_ARRAY_HASH(amp, an_idx); sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex; sobj->sync_cv = cv = &anon_array_cv[hash]; mutex_enter(mtx); ap_slot = anon_get_slot(amp->ahp, an_idx); while (ANON_ISBUSY(ap_slot)) cv_wait(cv, mtx); ANON_SETBUSY(ap_slot); sobj->sync_data = ap_slot; mutex_exit(mtx); } int anon_array_try_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj) { ulong_t *ap_slot; kmutex_t *mtx; int hash; /* * Try to lock a range of anon slots. * Use szc to determine anon slot(s) to appear atomic. * If szc = 0, then lock the anon slot and mark it busy. * If szc > 0, then lock the range of slots by getting the * anon_array_lock for the first anon slot, and mark only the * first anon slot busy to represent whole range being busy. * Fail if the mutex or the anon_array are busy. */ ASSERT(RW_READ_HELD(&->a_rwlock)); an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc)); hash = ANON_ARRAY_HASH(amp, an_idx); sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex; sobj->sync_cv = &anon_array_cv[hash]; if (!mutex_tryenter(mtx)) { return (EWOULDBLOCK); } ap_slot = anon_get_slot(amp->ahp, an_idx); if (ANON_ISBUSY(ap_slot)) { mutex_exit(mtx); return (EWOULDBLOCK); } ANON_SETBUSY(ap_slot); sobj->sync_data = ap_slot; mutex_exit(mtx); return (0); } void anon_array_exit(anon_sync_obj_t *sobj) { mutex_enter(sobj->sync_mutex); ASSERT(ANON_ISBUSY(sobj->sync_data)); ANON_CLRBUSY(sobj->sync_data); if (CV_HAS_WAITERS(sobj->sync_cv)) cv_broadcast(sobj->sync_cv); mutex_exit(sobj->sync_mutex); }