/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. */ /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Portions of this source code were derived from Berkeley 4.3 BSD * under license from the Regents of the University of California. */ /* * svc_clts.c * Server side for RPC in the kernel. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Routines exported through ops vector. */ static bool_t svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *); static bool_t svc_clts_ksend(SVCXPRT *, struct rpc_msg *); static bool_t svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t); static bool_t svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t); static void svc_clts_kdestroy(SVCMASTERXPRT *); static int svc_clts_kdup(struct svc_req *, caddr_t, int, struct dupreq **, bool_t *); static void svc_clts_kdupdone(struct dupreq *, caddr_t, void (*)(), int, int); static int32_t *svc_clts_kgetres(SVCXPRT *, int); static void svc_clts_kclone_destroy(SVCXPRT *); static void svc_clts_kfreeres(SVCXPRT *); static void svc_clts_kstart(SVCMASTERXPRT *); static void svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *); static void svc_clts_ktattrs(SVCXPRT *, int, void **); /* * Server transport operations vector. */ struct svc_ops svc_clts_op = { svc_clts_krecv, /* Get requests */ svc_clts_kgetargs, /* Deserialize arguments */ svc_clts_ksend, /* Send reply */ svc_clts_kfreeargs, /* Free argument data space */ svc_clts_kdestroy, /* Destroy transport handle */ svc_clts_kdup, /* Check entry in dup req cache */ svc_clts_kdupdone, /* Mark entry in dup req cache as done */ svc_clts_kgetres, /* Get pointer to response buffer */ svc_clts_kfreeres, /* Destroy pre-serialized response header */ svc_clts_kclone_destroy, /* Destroy a clone xprt */ svc_clts_kstart, /* Tell `ready-to-receive' to rpcmod */ svc_clts_kclone_xprt, /* transport specific clone xprt function */ svc_clts_ktattrs /* Transport specific attributes. */ }; /* * Transport private data. * Kept in xprt->xp_p2buf. */ struct udp_data { mblk_t *ud_resp; /* buffer for response */ mblk_t *ud_inmp; /* mblk chain of request */ }; #define UD_MAXSIZE 8800 #define UD_INITSIZE 2048 /* * Connectionless server statistics */ static const struct rpc_clts_server { kstat_named_t rscalls; kstat_named_t rsbadcalls; kstat_named_t rsnullrecv; kstat_named_t rsbadlen; kstat_named_t rsxdrcall; kstat_named_t rsdupchecks; kstat_named_t rsdupreqs; } clts_rsstat_tmpl = { { "calls", KSTAT_DATA_UINT64 }, { "badcalls", KSTAT_DATA_UINT64 }, { "nullrecv", KSTAT_DATA_UINT64 }, { "badlen", KSTAT_DATA_UINT64 }, { "xdrcall", KSTAT_DATA_UINT64 }, { "dupchecks", KSTAT_DATA_UINT64 }, { "dupreqs", KSTAT_DATA_UINT64 } }; static uint_t clts_rsstat_ndata = sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t); #define CLONE2STATS(clone_xprt) \ (struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2 #define RSSTAT_INCR(stats, x) \ atomic_add_64(&(stats)->x.value.ui64, 1) /* * Create a transport record. * The transport record, output buffer, and private data structure * are allocated. The output buffer is serialized into using xdrmem. * There is one transport record per user process which implements a * set of services. */ /* ARGSUSED */ int svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo, SVCMASTERXPRT **nxprt) { SVCMASTERXPRT *xprt; struct rpcstat *rpcstat; if (nxprt == NULL) return (EINVAL); rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone); ASSERT(rpcstat != NULL); xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP); xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP); xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server; xprt->xp_ops = &svc_clts_op; xprt->xp_msg_size = tinfo->TSDU_size; xprt->xp_rtaddr.buf = NULL; xprt->xp_rtaddr.maxlen = tinfo->ADDR_size; xprt->xp_rtaddr.len = 0; *nxprt = xprt; return (0); } /* * Destroy a transport record. * Frees the space allocated for a transport record. */ static void svc_clts_kdestroy(SVCMASTERXPRT *xprt) { if (xprt->xp_netid) kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1); if (xprt->xp_addrmask.maxlen) kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen); mutex_destroy(&xprt->xp_req_lock); mutex_destroy(&xprt->xp_thread_lock); kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t)); kmem_free(xprt, sizeof (SVCMASTERXPRT)); } /* * Transport-type specific part of svc_xprt_cleanup(). * Frees the message buffer space allocated for a clone of a transport record */ static void svc_clts_kclone_destroy(SVCXPRT *clone_xprt) { /* LINTED pointer alignment */ struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; if (ud->ud_resp) { /* * There should not be any left over results buffer. */ ASSERT(ud->ud_resp->b_cont == NULL); /* * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv * saved. */ freeb(ud->ud_resp); } if (ud->ud_inmp) freemsg(ud->ud_inmp); } /* * svc_tli_kcreate() calls this function at the end to tell * rpcmod that the transport is ready to receive requests. */ /* ARGSUSED */ static void svc_clts_kstart(SVCMASTERXPRT *xprt) { } static void svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt) { struct udp_data *ud_src = (struct udp_data *)src_xprt->xp_p2buf; struct udp_data *ud_dst = (struct udp_data *)dst_xprt->xp_p2buf; if (ud_src->ud_resp) ud_dst->ud_resp = dupb(ud_src->ud_resp); } static void svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr) { *tattr = NULL; switch (attrflag) { case SVC_TATTR_ADDRMASK: *tattr = (void *)&clone_xprt->xp_master->xp_addrmask; } } /* * Receive rpc requests. * Pulls a request in off the socket, checks if the packet is intact, * and deserializes the call packet. */ static bool_t svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg) { /* LINTED pointer alignment */ struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; XDR *xdrs = &clone_xprt->xp_xdrin; struct rpc_clts_server *stats = CLONE2STATS(clone_xprt); union T_primitives *pptr; int hdrsz; cred_t *cr; TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START, "svc_clts_krecv_start:"); RSSTAT_INCR(stats, rscalls); /* * The incoming request should start with an M_PROTO message. */ if (mp->b_datap->db_type != M_PROTO) { goto bad; } /* * The incoming request should be an T_UNITDTA_IND. There * might be other messages coming up the stream, but we can * ignore them. */ pptr = (union T_primitives *)mp->b_rptr; if (pptr->type != T_UNITDATA_IND) { goto bad; } /* * Do some checking to make sure that the header at least looks okay. */ hdrsz = (int)(mp->b_wptr - mp->b_rptr); if (hdrsz < TUNITDATAINDSZ || hdrsz < (pptr->unitdata_ind.OPT_offset + pptr->unitdata_ind.OPT_length) || hdrsz < (pptr->unitdata_ind.SRC_offset + pptr->unitdata_ind.SRC_length)) { goto bad; } /* * Make sure that the transport provided a usable address. */ if (pptr->unitdata_ind.SRC_length <= 0) { goto bad; } /* * Point the remote transport address in the service_transport * handle at the address in the request. */ clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr + pptr->unitdata_ind.SRC_offset; clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length; /* * Copy the local transport address in the service_transport * handle at the address in the request. We will have only * the local IP address in options. */ ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC; if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) { char *dstopt = (char *)mp->b_rptr + pptr->unitdata_ind.OPT_offset; struct T_opthdr *toh = (struct T_opthdr *)dstopt; if (toh->level == IPPROTO_IPV6 && toh->status == 0 && toh->name == IPV6_PKTINFO) { struct in6_pktinfo *pkti; dstopt += sizeof (struct T_opthdr); pkti = (struct in6_pktinfo *)dstopt; ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr = pkti->ipi6_addr; ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family = AF_INET6; } else if (toh->level == IPPROTO_IP && toh->status == 0 && toh->name == IP_RECVDSTADDR) { dstopt += sizeof (struct T_opthdr); ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr = *(struct in_addr *)dstopt; ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_INET; } } /* * Save the first mblk which contains the T_unidata_ind in * ud_resp. It will be used to generate the T_unitdata_req * during the reply. * We reuse any options in the T_unitdata_ind for the T_unitdata_req * since we must pass any SCM_UCRED across in order for TX to * work. We also make sure any cred_t is carried across. */ if (ud->ud_resp) { if (ud->ud_resp->b_cont != NULL) { cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, " "b_cont %p", (void *)ud->ud_resp, (void *)ud->ud_resp->b_cont); } freeb(ud->ud_resp); } /* Move any cred_t to the first mblk in the message */ cr = msg_getcred(mp, NULL); if (cr != NULL) mblk_setcred(mp, cr, NOPID); ud->ud_resp = mp; mp = mp->b_cont; ud->ud_resp->b_cont = NULL; xdrmblk_init(xdrs, mp, XDR_DECODE, 0); TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START, "xdr_callmsg_start:"); if (! xdr_callmsg(xdrs, msg)) { TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, "xdr_callmsg_end:(%S)", "bad"); RSSTAT_INCR(stats, rsxdrcall); goto bad; } TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END, "xdr_callmsg_end:(%S)", "good"); clone_xprt->xp_xid = msg->rm_xid; ud->ud_inmp = mp; TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, "svc_clts_krecv_end:(%S)", "good"); return (TRUE); bad: freemsg(mp); if (ud->ud_resp) { /* * There should not be any left over results buffer. */ ASSERT(ud->ud_resp->b_cont == NULL); freeb(ud->ud_resp); ud->ud_resp = NULL; } RSSTAT_INCR(stats, rsbadcalls); TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END, "svc_clts_krecv_end:(%S)", "bad"); return (FALSE); } /* * Send rpc reply. * Serialize the reply packet into the output buffer then * call t_ksndudata to send it. */ static bool_t svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg) { /* LINTED pointer alignment */ struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; XDR *xdrs = &clone_xprt->xp_xdrout; int stat = FALSE; mblk_t *mp; int msgsz; struct T_unitdata_req *udreq; xdrproc_t xdr_results; caddr_t xdr_location; bool_t has_args; TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START, "svc_clts_ksend_start:"); ASSERT(ud->ud_resp != NULL); /* * If there is a result procedure specified in the reply message, * it will be processed in the xdr_replymsg and SVCAUTH_WRAP. * We need to make sure it won't be processed twice, so we null * it for xdr_replymsg here. */ has_args = FALSE; if (msg->rm_reply.rp_stat == MSG_ACCEPTED && msg->rm_reply.rp_acpt.ar_stat == SUCCESS) { if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) { has_args = TRUE; xdr_location = msg->acpted_rply.ar_results.where; msg->acpted_rply.ar_results.proc = xdr_void; msg->acpted_rply.ar_results.where = NULL; } } if (ud->ud_resp->b_cont == NULL) { /* * Allocate an initial mblk for the response data. */ while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, "svc_clts_ksend_end:(%S)", "strwaitbuf"); return (FALSE); } } /* * Initialize the XDR decode stream. Additional mblks * will be allocated if necessary. They will be UD_MAXSIZE * sized. */ xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); /* * Leave some space for protocol headers. */ (void) XDR_SETPOS(xdrs, 512); mp->b_rptr += 512; msg->rm_xid = clone_xprt->xp_xid; ud->ud_resp->b_cont = mp; TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START, "xdr_replymsg_start:"); if (!(xdr_replymsg(xdrs, msg) && (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, xdr_results, xdr_location)))) { TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, "xdr_replymsg_end:(%S)", "bad"); RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n"); goto out; } TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END, "xdr_replymsg_end:(%S)", "good"); } else if (!(xdr_replymsg_body(xdrs, msg) && (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs, xdr_results, xdr_location)))) { RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n"); goto out; } msgsz = (int)xmsgsize(ud->ud_resp->b_cont); if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 && msgsz > clone_xprt->xp_msg_size)) { #ifdef DEBUG cmn_err(CE_NOTE, "KRPC: server response message of %d bytes; transport limits are [0, %d]", msgsz, clone_xprt->xp_msg_size); #endif goto out; } /* * Construct the T_unitdata_req. We take advantage of the fact that * T_unitdata_ind looks just like T_unitdata_req, except for the * primitive type. Reusing it means we preserve the SCM_UCRED, and * we must preserve it for TX to work. * * This has the side effect that we can also pass certain receive-side * options like IPV6_PKTINFO back down the send side. This implies * that we can not ASSERT on a non-NULL db_credp when we have send-side * options in UDP. */ ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ); udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr; ASSERT(udreq->PRIM_type == T_UNITDATA_IND); udreq->PRIM_type = T_UNITDATA_REQ; /* * If the local IPv4 transport address is known use it as a source * address for the outgoing UDP packet. */ if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) { struct T_opthdr *opthdr; in_pktinfo_t *pktinfo; size_t size; if (udreq->DEST_length == 0) udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ); else udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset + udreq->DEST_length); udreq->OPT_length = sizeof (struct T_opthdr) + sizeof (in_pktinfo_t); size = udreq->OPT_length + udreq->OPT_offset; /* make sure we have enough space for the option data */ mp = reallocb(ud->ud_resp, size, 1); if (mp == NULL) goto out; ud->ud_resp = mp; udreq = (struct T_unitdata_req *)mp->b_rptr; /* set desired option header */ opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset); opthdr->len = udreq->OPT_length; opthdr->level = IPPROTO_IP; opthdr->name = IP_PKTINFO; /* * 1. set source IP of outbound packet * 2. value '0' for index means IP layer uses this as source * address */ pktinfo = (in_pktinfo_t *)(opthdr + 1); (void) memset(pktinfo, 0, sizeof (in_pktinfo_t)); pktinfo->ipi_spec_dst.s_addr = ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr; pktinfo->ipi_ifindex = 0; /* adjust the end of active data */ mp->b_wptr = mp->b_rptr + size; } put(clone_xprt->xp_wq, ud->ud_resp); stat = TRUE; ud->ud_resp = NULL; out: if (stat == FALSE) { freemsg(ud->ud_resp); ud->ud_resp = NULL; } /* * This is completely disgusting. If public is set it is * a pointer to a structure whose first field is the address * of the function to free that structure and any related * stuff. (see rrokfree in nfs_xdr.c). */ if (xdrs->x_public) { /* LINTED pointer alignment */ (**((int (**)())xdrs->x_public))(xdrs->x_public); } TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END, "svc_clts_ksend_end:(%S)", "done"); return (stat); } /* * Deserialize arguments. */ static bool_t svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, caddr_t args_ptr) { /* LINTED pointer alignment */ return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin, xdr_args, args_ptr)); } static bool_t svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, caddr_t args_ptr) { /* LINTED pointer alignment */ struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; XDR *xdrs = &clone_xprt->xp_xdrin; bool_t retval; if (args_ptr) { xdrs->x_op = XDR_FREE; retval = (*xdr_args)(xdrs, args_ptr); } else retval = TRUE; if (ud->ud_inmp) { freemsg(ud->ud_inmp); ud->ud_inmp = NULL; } return (retval); } static int32_t * svc_clts_kgetres(SVCXPRT *clone_xprt, int size) { /* LINTED pointer alignment */ struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; XDR *xdrs = &clone_xprt->xp_xdrout; mblk_t *mp; int32_t *buf; struct rpc_msg rply; /* * Allocate an initial mblk for the response data. */ while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) { if (strwaitbuf(UD_INITSIZE, BPRI_LO)) { return (FALSE); } } mp->b_cont = NULL; /* * Initialize the XDR decode stream. Additional mblks * will be allocated if necessary. They will be UD_MAXSIZE * sized. */ xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE); /* * Leave some space for protocol headers. */ (void) XDR_SETPOS(xdrs, 512); mp->b_rptr += 512; /* * Assume a successful RPC since most of them are. */ rply.rm_xid = clone_xprt->xp_xid; rply.rm_direction = REPLY; rply.rm_reply.rp_stat = MSG_ACCEPTED; rply.acpted_rply.ar_verf = clone_xprt->xp_verf; rply.acpted_rply.ar_stat = SUCCESS; if (!xdr_replymsg_hdr(xdrs, &rply)) { freeb(mp); return (NULL); } buf = XDR_INLINE(xdrs, size); if (buf == NULL) freeb(mp); else ud->ud_resp->b_cont = mp; return (buf); } static void svc_clts_kfreeres(SVCXPRT *clone_xprt) { /* LINTED pointer alignment */ struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf; if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL) return; /* * SVC_FREERES() is called whenever the server decides not to * send normal reply. Thus, we expect only one mblk to be allocated, * because we have not attempted any XDR encoding. * If we do any XDR encoding and we get an error, then SVC_REPLY() * will freemsg(ud->ud_resp); */ ASSERT(ud->ud_resp->b_cont->b_cont == NULL); freeb(ud->ud_resp->b_cont); ud->ud_resp->b_cont = NULL; } /* * the dup cacheing routines below provide a cache of non-failure * transaction id's. rpc service routines can use this to detect * retransmissions and re-send a non-failure response. */ /* * MAXDUPREQS is the number of cached items. It should be adjusted * to the service load so that there is likely to be a response entry * when the first retransmission comes in. */ #define MAXDUPREQS 1024 /* * This should be appropriately scaled to MAXDUPREQS. */ #define DRHASHSZ 257 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0) #define XIDHASH(xid) ((xid) & (DRHASHSZ - 1)) #else #define XIDHASH(xid) ((xid) % DRHASHSZ) #endif #define DRHASH(dr) XIDHASH((dr)->dr_xid) #define REQTOXID(req) ((req)->rq_xprt->xp_xid) static int ndupreqs = 0; int maxdupreqs = MAXDUPREQS; static kmutex_t dupreq_lock; static struct dupreq *drhashtbl[DRHASHSZ]; static int drhashstat[DRHASHSZ]; static void unhash(struct dupreq *); /* * drmru points to the head of a circular linked list in lru order. * drmru->dr_next == drlru */ struct dupreq *drmru; /* * PSARC 2003/523 Contract Private Interface * svc_clts_kdup * Changes must be reviewed by Solaris File Sharing * Changes must be communicated to contract-2003-523@sun.com * * svc_clts_kdup searches the request cache and returns 0 if the * request is not found in the cache. If it is found, then it * returns the state of the request (in progress or done) and * the status or attributes that were part of the original reply. * * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the * value of the response. In that case, also return in *dupcachedp * whether the response free routine is cached in the dupreq - in which case * the caller should not be freeing it, because it will be done later * in the svc_clts_kdup code when the dupreq is reused. */ static int svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp, bool_t *dupcachedp) { struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt); struct dupreq *dr; uint32_t xid; uint32_t drhash; int status; xid = REQTOXID(req); mutex_enter(&dupreq_lock); RSSTAT_INCR(stats, rsdupchecks); /* * Check to see whether an entry already exists in the cache. */ dr = drhashtbl[XIDHASH(xid)]; while (dr != NULL) { if (dr->dr_xid == xid && dr->dr_proc == req->rq_proc && dr->dr_prog == req->rq_prog && dr->dr_vers == req->rq_vers && dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len && bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.len) == 0) { status = dr->dr_status; if (status == DUP_DONE) { bcopy(dr->dr_resp.buf, res, size); if (dupcachedp != NULL) *dupcachedp = (dr->dr_resfree != NULL); } else { dr->dr_status = DUP_INPROGRESS; *drpp = dr; } RSSTAT_INCR(stats, rsdupreqs); mutex_exit(&dupreq_lock); return (status); } dr = dr->dr_chain; } /* * There wasn't an entry, either allocate a new one or recycle * an old one. */ if (ndupreqs < maxdupreqs) { dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP); if (dr == NULL) { mutex_exit(&dupreq_lock); return (DUP_ERROR); } dr->dr_resp.buf = NULL; dr->dr_resp.maxlen = 0; dr->dr_addr.buf = NULL; dr->dr_addr.maxlen = 0; if (drmru) { dr->dr_next = drmru->dr_next; drmru->dr_next = dr; } else { dr->dr_next = dr; } ndupreqs++; } else { dr = drmru->dr_next; while (dr->dr_status == DUP_INPROGRESS) { dr = dr->dr_next; if (dr == drmru->dr_next) { cmn_err(CE_WARN, "svc_clts_kdup no slots free"); mutex_exit(&dupreq_lock); return (DUP_ERROR); } } unhash(dr); if (dr->dr_resfree) { (*dr->dr_resfree)(dr->dr_resp.buf); } } dr->dr_resfree = NULL; drmru = dr; dr->dr_xid = REQTOXID(req); dr->dr_prog = req->rq_prog; dr->dr_vers = req->rq_vers; dr->dr_proc = req->rq_proc; if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) { if (dr->dr_addr.buf != NULL) kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen); dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len; dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP); if (dr->dr_addr.buf == NULL) { dr->dr_addr.maxlen = 0; dr->dr_status = DUP_DROP; mutex_exit(&dupreq_lock); return (DUP_ERROR); } } dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len; bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len); if (dr->dr_resp.maxlen < size) { if (dr->dr_resp.buf != NULL) kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen); dr->dr_resp.maxlen = (unsigned int)size; dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP); if (dr->dr_resp.buf == NULL) { dr->dr_resp.maxlen = 0; dr->dr_status = DUP_DROP; mutex_exit(&dupreq_lock); return (DUP_ERROR); } } dr->dr_status = DUP_INPROGRESS; drhash = (uint32_t)DRHASH(dr); dr->dr_chain = drhashtbl[drhash]; drhashtbl[drhash] = dr; drhashstat[drhash]++; mutex_exit(&dupreq_lock); *drpp = dr; return (DUP_NEW); } /* * PSARC 2003/523 Contract Private Interface * svc_clts_kdupdone * Changes must be reviewed by Solaris File Sharing * Changes must be communicated to contract-2003-523@sun.com * * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP) * and stores the response. */ static void svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(), int size, int status) { ASSERT(dr->dr_resfree == NULL); if (status == DUP_DONE) { bcopy(res, dr->dr_resp.buf, size); dr->dr_resfree = dis_resfree; } dr->dr_status = status; } /* * This routine expects that the mutex, dupreq_lock, is already held. */ static void unhash(struct dupreq *dr) { struct dupreq *drt; struct dupreq *drtprev = NULL; uint32_t drhash; ASSERT(MUTEX_HELD(&dupreq_lock)); drhash = (uint32_t)DRHASH(dr); drt = drhashtbl[drhash]; while (drt != NULL) { if (drt == dr) { drhashstat[drhash]--; if (drtprev == NULL) { drhashtbl[drhash] = drt->dr_chain; } else { drtprev->dr_chain = drt->dr_chain; } return; } drtprev = drt; drt = drt->dr_chain; } } void svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp) { kstat_t *ksp; kstat_named_t *knp; knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server", (const kstat_named_t *)&clts_rsstat_tmpl, sizeof (clts_rsstat_tmpl)); /* * Backwards compatibility for old kstat clients */ ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc", KSTAT_TYPE_NAMED, clts_rsstat_ndata, KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid); if (ksp) { ksp->ks_data = knp; kstat_install(ksp); } *statsp = (struct rpc_clts_server *)knp; } void svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp) { rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server"); kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid); kmem_free(*statsp, sizeof (clts_rsstat_tmpl)); } void svc_clts_init() { /* * Check to make sure that the clts private data will fit into * the stack buffer allocated by svc_run. The compiler should * remove this check, but it's a safety net if the udp_data * structure ever changes. */ /*CONSTANTCONDITION*/ ASSERT(sizeof (struct udp_data) <= SVC_P2LEN); mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL); }