/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2017 by Delphix. All rights reserved. * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright 2018, Joyent, Inc. */ /* * Kernel memory allocator, as described in the following two papers and a * statement about the consolidator: * * Jeff Bonwick, * The Slab Allocator: An Object-Caching Kernel Memory Allocator. * Proceedings of the Summer 1994 Usenix Conference. * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf. * * Jeff Bonwick and Jonathan Adams, * Magazines and vmem: Extending the Slab Allocator to Many CPUs and * Arbitrary Resources. * Proceedings of the 2001 Usenix Conference. * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. * * kmem Slab Consolidator Big Theory Statement: * * 1. Motivation * * As stated in Bonwick94, slabs provide the following advantages over other * allocation structures in terms of memory fragmentation: * * - Internal fragmentation (per-buffer wasted space) is minimal. * - Severe external fragmentation (unused buffers on the free list) is * unlikely. * * Segregating objects by size eliminates one source of external fragmentation, * and according to Bonwick: * * The other reason that slabs reduce external fragmentation is that all * objects in a slab are of the same type, so they have the same lifetime * distribution. The resulting segregation of short-lived and long-lived * objects at slab granularity reduces the likelihood of an entire page being * held hostage due to a single long-lived allocation [Barrett93, Hanson90]. * * While unlikely, severe external fragmentation remains possible. Clients that * allocate both short- and long-lived objects from the same cache cannot * anticipate the distribution of long-lived objects within the allocator's slab * implementation. Even a small percentage of long-lived objects distributed * randomly across many slabs can lead to a worst case scenario where the client * frees the majority of its objects and the system gets back almost none of the * slabs. Despite the client doing what it reasonably can to help the system * reclaim memory, the allocator cannot shake free enough slabs because of * lonely allocations stubbornly hanging on. Although the allocator is in a * position to diagnose the fragmentation, there is nothing that the allocator * by itself can do about it. It only takes a single allocated object to prevent * an entire slab from being reclaimed, and any object handed out by * kmem_cache_alloc() is by definition in the client's control. Conversely, * although the client is in a position to move a long-lived object, it has no * way of knowing if the object is causing fragmentation, and if so, where to * move it. A solution necessarily requires further cooperation between the * allocator and the client. * * 2. Move Callback * * The kmem slab consolidator therefore adds a move callback to the * allocator/client interface, improving worst-case external fragmentation in * kmem caches that supply a function to move objects from one memory location * to another. In a situation of low memory kmem attempts to consolidate all of * a cache's slabs at once; otherwise it works slowly to bring external * fragmentation within the 1/8 limit guaranteed for internal fragmentation, * thereby helping to avoid a low memory situation in the future. * * The callback has the following signature: * * kmem_cbrc_t move(void *old, void *new, size_t size, void *user_arg) * * It supplies the kmem client with two addresses: the allocated object that * kmem wants to move and a buffer selected by kmem for the client to use as the * copy destination. The callback is kmem's way of saying "Please get off of * this buffer and use this one instead." kmem knows where it wants to move the * object in order to best reduce fragmentation. All the client needs to know * about the second argument (void *new) is that it is an allocated, constructed * object ready to take the contents of the old object. When the move function * is called, the system is likely to be low on memory, and the new object * spares the client from having to worry about allocating memory for the * requested move. The third argument supplies the size of the object, in case a * single move function handles multiple caches whose objects differ only in * size (such as zio_buf_512, zio_buf_1024, etc). Finally, the same optional * user argument passed to the constructor, destructor, and reclaim functions is * also passed to the move callback. * * 2.1 Setting the Move Callback * * The client sets the move callback after creating the cache and before * allocating from it: * * object_cache = kmem_cache_create(...); * kmem_cache_set_move(object_cache, object_move); * * 2.2 Move Callback Return Values * * Only the client knows about its own data and when is a good time to move it. * The client is cooperating with kmem to return unused memory to the system, * and kmem respectfully accepts this help at the client's convenience. When * asked to move an object, the client can respond with any of the following: * * typedef enum kmem_cbrc { * KMEM_CBRC_YES, * KMEM_CBRC_NO, * KMEM_CBRC_LATER, * KMEM_CBRC_DONT_NEED, * KMEM_CBRC_DONT_KNOW * } kmem_cbrc_t; * * The client must not explicitly kmem_cache_free() either of the objects passed * to the callback, since kmem wants to free them directly to the slab layer * (bypassing the per-CPU magazine layer). The response tells kmem which of the * objects to free: * * YES: (Did it) The client moved the object, so kmem frees the old one. * NO: (Never) The client refused, so kmem frees the new object (the * unused copy destination). kmem also marks the slab of the old * object so as not to bother the client with further callbacks for * that object as long as the slab remains on the partial slab list. * (The system won't be getting the slab back as long as the * immovable object holds it hostage, so there's no point in moving * any of its objects.) * LATER: The client is using the object and cannot move it now, so kmem * frees the new object (the unused copy destination). kmem still * attempts to move other objects off the slab, since it expects to * succeed in clearing the slab in a later callback. The client * should use LATER instead of NO if the object is likely to become * movable very soon. * DONT_NEED: The client no longer needs the object, so kmem frees the old along * with the new object (the unused copy destination). This response * is the client's opportunity to be a model citizen and give back as * much as it can. * DONT_KNOW: The client does not know about the object because * a) the client has just allocated the object and not yet put it * wherever it expects to find known objects * b) the client has removed the object from wherever it expects to * find known objects and is about to free it, or * c) the client has freed the object. * In all these cases (a, b, and c) kmem frees the new object (the * unused copy destination). In the first case, the object is in * use and the correct action is that for LATER; in the latter two * cases, we know that the object is either freed or about to be * freed, in which case it is either already in a magazine or about * to be in one. In these cases, we know that the object will either * be reallocated and reused, or it will end up in a full magazine * that will be reaped (thereby liberating the slab). Because it * is prohibitively expensive to differentiate these cases, and * because the defrag code is executed when we're low on memory * (thereby biasing the system to reclaim full magazines) we treat * all DONT_KNOW cases as LATER and rely on cache reaping to * generally clean up full magazines. While we take the same action * for these cases, we maintain their semantic distinction: if * defragmentation is not occurring, it is useful to know if this * is due to objects in use (LATER) or objects in an unknown state * of transition (DONT_KNOW). * * 2.3 Object States * * Neither kmem nor the client can be assumed to know the object's whereabouts * at the time of the callback. An object belonging to a kmem cache may be in * any of the following states: * * 1. Uninitialized on the slab * 2. Allocated from the slab but not constructed (still uninitialized) * 3. Allocated from the slab, constructed, but not yet ready for business * (not in a valid state for the move callback) * 4. In use (valid and known to the client) * 5. About to be freed (no longer in a valid state for the move callback) * 6. Freed to a magazine (still constructed) * 7. Allocated from a magazine, not yet ready for business (not in a valid * state for the move callback), and about to return to state #4 * 8. Deconstructed on a magazine that is about to be freed * 9. Freed to the slab * * Since the move callback may be called at any time while the object is in any * of the above states (except state #1), the client needs a safe way to * determine whether or not it knows about the object. Specifically, the client * needs to know whether or not the object is in state #4, the only state in * which a move is valid. If the object is in any other state, the client should * immediately return KMEM_CBRC_DONT_KNOW, since it is unsafe to access any of * the object's fields. * * Note that although an object may be in state #4 when kmem initiates the move * request, the object may no longer be in that state by the time kmem actually * calls the move function. Not only does the client free objects * asynchronously, kmem itself puts move requests on a queue where thay are * pending until kmem processes them from another context. Also, objects freed * to a magazine appear allocated from the point of view of the slab layer, so * kmem may even initiate requests for objects in a state other than state #4. * * 2.3.1 Magazine Layer * * An important insight revealed by the states listed above is that the magazine * layer is populated only by kmem_cache_free(). Magazines of constructed * objects are never populated directly from the slab layer (which contains raw, * unconstructed objects). Whenever an allocation request cannot be satisfied * from the magazine layer, the magazines are bypassed and the request is * satisfied from the slab layer (creating a new slab if necessary). kmem calls * the object constructor only when allocating from the slab layer, and only in * response to kmem_cache_alloc() or to prepare the destination buffer passed in * the move callback. kmem does not preconstruct objects in anticipation of * kmem_cache_alloc(). * * 2.3.2 Object Constructor and Destructor * * If the client supplies a destructor, it must be valid to call the destructor * on a newly created object (immediately after the constructor). * * 2.4 Recognizing Known Objects * * There is a simple test to determine safely whether or not the client knows * about a given object in the move callback. It relies on the fact that kmem * guarantees that the object of the move callback has only been touched by the * client itself or else by kmem. kmem does this by ensuring that none of the * cache's slabs are freed to the virtual memory (VM) subsystem while a move * callback is pending. When the last object on a slab is freed, if there is a * pending move, kmem puts the slab on a per-cache dead list and defers freeing * slabs on that list until all pending callbacks are completed. That way, * clients can be certain that the object of a move callback is in one of the * states listed above, making it possible to distinguish known objects (in * state #4) using the two low order bits of any pointer member (with the * exception of 'char *' or 'short *' which may not be 4-byte aligned on some * platforms). * * The test works as long as the client always transitions objects from state #4 * (known, in use) to state #5 (about to be freed, invalid) by setting the low * order bit of the client-designated pointer member. Since kmem only writes * invalid memory patterns, such as 0xbaddcafe to uninitialized memory and * 0xdeadbeef to freed memory, any scribbling on the object done by kmem is * guaranteed to set at least one of the two low order bits. Therefore, given an * object with a back pointer to a 'container_t *o_container', the client can * test * * container_t *container = object->o_container; * if ((uintptr_t)container & 0x3) { * return (KMEM_CBRC_DONT_KNOW); * } * * Typically, an object will have a pointer to some structure with a list or * hash where objects from the cache are kept while in use. Assuming that the * client has some way of knowing that the container structure is valid and will * not go away during the move, and assuming that the structure includes a lock * to protect whatever collection is used, then the client would continue as * follows: * * // Ensure that the container structure does not go away. * if (container_hold(container) == 0) { * return (KMEM_CBRC_DONT_KNOW); * } * mutex_enter(&container->c_objects_lock); * if (container != object->o_container) { * mutex_exit(&container->c_objects_lock); * container_rele(container); * return (KMEM_CBRC_DONT_KNOW); * } * * At this point the client knows that the object cannot be freed as long as * c_objects_lock is held. Note that after acquiring the lock, the client must * recheck the o_container pointer in case the object was removed just before * acquiring the lock. * * When the client is about to free an object, it must first remove that object * from the list, hash, or other structure where it is kept. At that time, to * mark the object so it can be distinguished from the remaining, known objects, * the client sets the designated low order bit: * * mutex_enter(&container->c_objects_lock); * object->o_container = (void *)((uintptr_t)object->o_container | 0x1); * list_remove(&container->c_objects, object); * mutex_exit(&container->c_objects_lock); * * In the common case, the object is freed to the magazine layer, where it may * be reused on a subsequent allocation without the overhead of calling the * constructor. While in the magazine it appears allocated from the point of * view of the slab layer, making it a candidate for the move callback. Most * objects unrecognized by the client in the move callback fall into this * category and are cheaply distinguished from known objects by the test * described earlier. Because searching magazines is prohibitively expensive * for kmem, clients that do not mark freed objects (and therefore return * KMEM_CBRC_DONT_KNOW for large numbers of objects) may find defragmentation * efficacy reduced. * * Invalidating the designated pointer member before freeing the object marks * the object to be avoided in the callback, and conversely, assigning a valid * value to the designated pointer member after allocating the object makes the * object fair game for the callback: * * ... allocate object ... * ... set any initial state not set by the constructor ... * * mutex_enter(&container->c_objects_lock); * list_insert_tail(&container->c_objects, object); * membar_producer(); * object->o_container = container; * mutex_exit(&container->c_objects_lock); * * Note that everything else must be valid before setting o_container makes the * object fair game for the move callback. The membar_producer() call ensures * that all the object's state is written to memory before setting the pointer * that transitions the object from state #3 or #7 (allocated, constructed, not * yet in use) to state #4 (in use, valid). That's important because the move * function has to check the validity of the pointer before it can safely * acquire the lock protecting the collection where it expects to find known * objects. * * This method of distinguishing known objects observes the usual symmetry: * invalidating the designated pointer is the first thing the client does before * freeing the object, and setting the designated pointer is the last thing the * client does after allocating the object. Of course, the client is not * required to use this method. Fundamentally, how the client recognizes known * objects is completely up to the client, but this method is recommended as an * efficient and safe way to take advantage of the guarantees made by kmem. If * the entire object is arbitrary data without any markable bits from a suitable * pointer member, then the client must find some other method, such as * searching a hash table of known objects. * * 2.5 Preventing Objects From Moving * * Besides a way to distinguish known objects, the other thing that the client * needs is a strategy to ensure that an object will not move while the client * is actively using it. The details of satisfying this requirement tend to be * highly cache-specific. It might seem that the same rules that let a client * remove an object safely should also decide when an object can be moved * safely. However, any object state that makes a removal attempt invalid is * likely to be long-lasting for objects that the client does not expect to * remove. kmem knows nothing about the object state and is equally likely (from * the client's point of view) to request a move for any object in the cache, * whether prepared for removal or not. Even a low percentage of objects stuck * in place by unremovability will defeat the consolidator if the stuck objects * are the same long-lived allocations likely to hold slabs hostage. * Fundamentally, the consolidator is not aimed at common cases. Severe external * fragmentation is a worst case scenario manifested as sparsely allocated * slabs, by definition a low percentage of the cache's objects. When deciding * what makes an object movable, keep in mind the goal of the consolidator: to * bring worst-case external fragmentation within the limits guaranteed for * internal fragmentation. Removability is a poor criterion if it is likely to * exclude more than an insignificant percentage of objects for long periods of * time. * * A tricky general solution exists, and it has the advantage of letting you * move any object at almost any moment, practically eliminating the likelihood * that an object can hold a slab hostage. However, if there is a cache-specific * way to ensure that an object is not actively in use in the vast majority of * cases, a simpler solution that leverages this cache-specific knowledge is * preferred. * * 2.5.1 Cache-Specific Solution * * As an example of a cache-specific solution, the ZFS znode cache takes * advantage of the fact that the vast majority of znodes are only being * referenced from the DNLC. (A typical case might be a few hundred in active * use and a hundred thousand in the DNLC.) In the move callback, after the ZFS * client has established that it recognizes the znode and can access its fields * safely (using the method described earlier), it then tests whether the znode * is referenced by anything other than the DNLC. If so, it assumes that the * znode may be in active use and is unsafe to move, so it drops its locks and * returns KMEM_CBRC_LATER. The advantage of this strategy is that everywhere * else znodes are used, no change is needed to protect against the possibility * of the znode moving. The disadvantage is that it remains possible for an * application to hold a znode slab hostage with an open file descriptor. * However, this case ought to be rare and the consolidator has a way to deal * with it: If the client responds KMEM_CBRC_LATER repeatedly for the same * object, kmem eventually stops believing it and treats the slab as if the * client had responded KMEM_CBRC_NO. Having marked the hostage slab, kmem can * then focus on getting it off of the partial slab list by allocating rather * than freeing all of its objects. (Either way of getting a slab off the * free list reduces fragmentation.) * * 2.5.2 General Solution * * The general solution, on the other hand, requires an explicit hold everywhere * the object is used to prevent it from moving. To keep the client locking * strategy as uncomplicated as possible, kmem guarantees the simplifying * assumption that move callbacks are sequential, even across multiple caches. * Internally, a global queue processed by a single thread supports all caches * implementing the callback function. No matter how many caches supply a move * function, the consolidator never moves more than one object at a time, so the * client does not have to worry about tricky lock ordering involving several * related objects from different kmem caches. * * The general solution implements the explicit hold as a read-write lock, which * allows multiple readers to access an object from the cache simultaneously * while a single writer is excluded from moving it. A single rwlock for the * entire cache would lock out all threads from using any of the cache's objects * even though only a single object is being moved, so to reduce contention, * the client can fan out the single rwlock into an array of rwlocks hashed by * the object address, making it probable that moving one object will not * prevent other threads from using a different object. The rwlock cannot be a * member of the object itself, because the possibility of the object moving * makes it unsafe to access any of the object's fields until the lock is * acquired. * * Assuming a small, fixed number of locks, it's possible that multiple objects * will hash to the same lock. A thread that needs to use multiple objects in * the same function may acquire the same lock multiple times. Since rwlocks are * reentrant for readers, and since there is never more than a single writer at * a time (assuming that the client acquires the lock as a writer only when * moving an object inside the callback), there would seem to be no problem. * However, a client locking multiple objects in the same function must handle * one case of potential deadlock: Assume that thread A needs to prevent both * object 1 and object 2 from moving, and thread B, the callback, meanwhile * tries to move object 3. It's possible, if objects 1, 2, and 3 all hash to the * same lock, that thread A will acquire the lock for object 1 as a reader * before thread B sets the lock's write-wanted bit, preventing thread A from * reacquiring the lock for object 2 as a reader. Unable to make forward * progress, thread A will never release the lock for object 1, resulting in * deadlock. * * There are two ways of avoiding the deadlock just described. The first is to * use rw_tryenter() rather than rw_enter() in the callback function when * attempting to acquire the lock as a writer. If tryenter discovers that the * same object (or another object hashed to the same lock) is already in use, it * aborts the callback and returns KMEM_CBRC_LATER. The second way is to use * rprwlock_t (declared in common/fs/zfs/sys/rprwlock.h) instead of rwlock_t, * since it allows a thread to acquire the lock as a reader in spite of a * waiting writer. This second approach insists on moving the object now, no * matter how many readers the move function must wait for in order to do so, * and could delay the completion of the callback indefinitely (blocking * callbacks to other clients). In practice, a less insistent callback using * rw_tryenter() returns KMEM_CBRC_LATER infrequently enough that there seems * little reason to use anything else. * * Avoiding deadlock is not the only problem that an implementation using an * explicit hold needs to solve. Locking the object in the first place (to * prevent it from moving) remains a problem, since the object could move * between the time you obtain a pointer to the object and the time you acquire * the rwlock hashed to that pointer value. Therefore the client needs to * recheck the value of the pointer after acquiring the lock, drop the lock if * the value has changed, and try again. This requires a level of indirection: * something that points to the object rather than the object itself, that the * client can access safely while attempting to acquire the lock. (The object * itself cannot be referenced safely because it can move at any time.) * The following lock-acquisition function takes whatever is safe to reference * (arg), follows its pointer to the object (using function f), and tries as * often as necessary to acquire the hashed lock and verify that the object * still has not moved: * * object_t * * object_hold(object_f f, void *arg) * { * object_t *op; * * op = f(arg); * if (op == NULL) { * return (NULL); * } * * rw_enter(OBJECT_RWLOCK(op), RW_READER); * while (op != f(arg)) { * rw_exit(OBJECT_RWLOCK(op)); * op = f(arg); * if (op == NULL) { * break; * } * rw_enter(OBJECT_RWLOCK(op), RW_READER); * } * * return (op); * } * * The OBJECT_RWLOCK macro hashes the object address to obtain the rwlock. The * lock reacquisition loop, while necessary, almost never executes. The function * pointer f (used to obtain the object pointer from arg) has the following type * definition: * * typedef object_t *(*object_f)(void *arg); * * An object_f implementation is likely to be as simple as accessing a structure * member: * * object_t * * s_object(void *arg) * { * something_t *sp = arg; * return (sp->s_object); * } * * The flexibility of a function pointer allows the path to the object to be * arbitrarily complex and also supports the notion that depending on where you * are using the object, you may need to get it from someplace different. * * The function that releases the explicit hold is simpler because it does not * have to worry about the object moving: * * void * object_rele(object_t *op) * { * rw_exit(OBJECT_RWLOCK(op)); * } * * The caller is spared these details so that obtaining and releasing an * explicit hold feels like a simple mutex_enter()/mutex_exit() pair. The caller * of object_hold() only needs to know that the returned object pointer is valid * if not NULL and that the object will not move until released. * * Although object_hold() prevents an object from moving, it does not prevent it * from being freed. The caller must take measures before calling object_hold() * (afterwards is too late) to ensure that the held object cannot be freed. The * caller must do so without accessing the unsafe object reference, so any lock * or reference count used to ensure the continued existence of the object must * live outside the object itself. * * Obtaining a new object is a special case where an explicit hold is impossible * for the caller. Any function that returns a newly allocated object (either as * a return value, or as an in-out paramter) must return it already held; after * the caller gets it is too late, since the object cannot be safely accessed * without the level of indirection described earlier. The following * object_alloc() example uses the same code shown earlier to transition a new * object into the state of being recognized (by the client) as a known object. * The function must acquire the hold (rw_enter) before that state transition * makes the object movable: * * static object_t * * object_alloc(container_t *container) * { * object_t *object = kmem_cache_alloc(object_cache, 0); * ... set any initial state not set by the constructor ... * rw_enter(OBJECT_RWLOCK(object), RW_READER); * mutex_enter(&container->c_objects_lock); * list_insert_tail(&container->c_objects, object); * membar_producer(); * object->o_container = container; * mutex_exit(&container->c_objects_lock); * return (object); * } * * Functions that implicitly acquire an object hold (any function that calls * object_alloc() to supply an object for the caller) need to be carefully noted * so that the matching object_rele() is not neglected. Otherwise, leaked holds * prevent all objects hashed to the affected rwlocks from ever being moved. * * The pointer to a held object can be hashed to the holding rwlock even after * the object has been freed. Although it is possible to release the hold * after freeing the object, you may decide to release the hold implicitly in * whatever function frees the object, so as to release the hold as soon as * possible, and for the sake of symmetry with the function that implicitly * acquires the hold when it allocates the object. Here, object_free() releases * the hold acquired by object_alloc(). Its implicit object_rele() forms a * matching pair with object_hold(): * * void * object_free(object_t *object) * { * container_t *container; * * ASSERT(object_held(object)); * container = object->o_container; * mutex_enter(&container->c_objects_lock); * object->o_container = * (void *)((uintptr_t)object->o_container | 0x1); * list_remove(&container->c_objects, object); * mutex_exit(&container->c_objects_lock); * object_rele(object); * kmem_cache_free(object_cache, object); * } * * Note that object_free() cannot safely accept an object pointer as an argument * unless the object is already held. Any function that calls object_free() * needs to be carefully noted since it similarly forms a matching pair with * object_hold(). * * To complete the picture, the following callback function implements the * general solution by moving objects only if they are currently unheld: * * static kmem_cbrc_t * object_move(void *buf, void *newbuf, size_t size, void *arg) * { * object_t *op = buf, *np = newbuf; * container_t *container; * * container = op->o_container; * if ((uintptr_t)container & 0x3) { * return (KMEM_CBRC_DONT_KNOW); * } * * // Ensure that the container structure does not go away. * if (container_hold(container) == 0) { * return (KMEM_CBRC_DONT_KNOW); * } * * mutex_enter(&container->c_objects_lock); * if (container != op->o_container) { * mutex_exit(&container->c_objects_lock); * container_rele(container); * return (KMEM_CBRC_DONT_KNOW); * } * * if (rw_tryenter(OBJECT_RWLOCK(op), RW_WRITER) == 0) { * mutex_exit(&container->c_objects_lock); * container_rele(container); * return (KMEM_CBRC_LATER); * } * * object_move_impl(op, np); // critical section * rw_exit(OBJECT_RWLOCK(op)); * * op->o_container = (void *)((uintptr_t)op->o_container | 0x1); * list_link_replace(&op->o_link_node, &np->o_link_node); * mutex_exit(&container->c_objects_lock); * container_rele(container); * return (KMEM_CBRC_YES); * } * * Note that object_move() must invalidate the designated o_container pointer of * the old object in the same way that object_free() does, since kmem will free * the object in response to the KMEM_CBRC_YES return value. * * The lock order in object_move() differs from object_alloc(), which locks * OBJECT_RWLOCK first and &container->c_objects_lock second, but as long as the * callback uses rw_tryenter() (preventing the deadlock described earlier), it's * not a problem. Holding the lock on the object list in the example above * through the entire callback not only prevents the object from going away, it * also allows you to lock the list elsewhere and know that none of its elements * will move during iteration. * * Adding an explicit hold everywhere an object from the cache is used is tricky * and involves much more change to client code than a cache-specific solution * that leverages existing state to decide whether or not an object is * movable. However, this approach has the advantage that no object remains * immovable for any significant length of time, making it extremely unlikely * that long-lived allocations can continue holding slabs hostage; and it works * for any cache. * * 3. Consolidator Implementation * * Once the client supplies a move function that a) recognizes known objects and * b) avoids moving objects that are actively in use, the remaining work is up * to the consolidator to decide which objects to move and when to issue * callbacks. * * The consolidator relies on the fact that a cache's slabs are ordered by * usage. Each slab has a fixed number of objects. Depending on the slab's * "color" (the offset of the first object from the beginning of the slab; * offsets are staggered to mitigate false sharing of cache lines) it is either * the maximum number of objects per slab determined at cache creation time or * else the number closest to the maximum that fits within the space remaining * after the initial offset. A completely allocated slab may contribute some * internal fragmentation (per-slab overhead) but no external fragmentation, so * it is of no interest to the consolidator. At the other extreme, slabs whose * objects have all been freed to the slab are released to the virtual memory * (VM) subsystem (objects freed to magazines are still allocated as far as the * slab is concerned). External fragmentation exists when there are slabs * somewhere between these extremes. A partial slab has at least one but not all * of its objects allocated. The more partial slabs, and the fewer allocated * objects on each of them, the higher the fragmentation. Hence the * consolidator's overall strategy is to reduce the number of partial slabs by * moving allocated objects from the least allocated slabs to the most allocated * slabs. * * Partial slabs are kept in an AVL tree ordered by usage. Completely allocated * slabs are kept separately in an unordered list. Since the majority of slabs * tend to be completely allocated (a typical unfragmented cache may have * thousands of complete slabs and only a single partial slab), separating * complete slabs improves the efficiency of partial slab ordering, since the * complete slabs do not affect the depth or balance of the AVL tree. This * ordered sequence of partial slabs acts as a "free list" supplying objects for * allocation requests. * * Objects are always allocated from the first partial slab in the free list, * where the allocation is most likely to eliminate a partial slab (by * completely allocating it). Conversely, when a single object from a completely * allocated slab is freed to the slab, that slab is added to the front of the * free list. Since most free list activity involves highly allocated slabs * coming and going at the front of the list, slabs tend naturally toward the * ideal order: highly allocated at the front, sparsely allocated at the back. * Slabs with few allocated objects are likely to become completely free if they * keep a safe distance away from the front of the free list. Slab misorders * interfere with the natural tendency of slabs to become completely free or * completely allocated. For example, a slab with a single allocated object * needs only a single free to escape the cache; its natural desire is * frustrated when it finds itself at the front of the list where a second * allocation happens just before the free could have released it. Another slab * with all but one object allocated might have supplied the buffer instead, so * that both (as opposed to neither) of the slabs would have been taken off the * free list. * * Although slabs tend naturally toward the ideal order, misorders allowed by a * simple list implementation defeat the consolidator's strategy of merging * least- and most-allocated slabs. Without an AVL tree to guarantee order, kmem * needs another way to fix misorders to optimize its callback strategy. One * approach is to periodically scan a limited number of slabs, advancing a * marker to hold the current scan position, and to move extreme misorders to * the front or back of the free list and to the front or back of the current * scan range. By making consecutive scan ranges overlap by one slab, the least * allocated slab in the current range can be carried along from the end of one * scan to the start of the next. * * Maintaining partial slabs in an AVL tree relieves kmem of this additional * task, however. Since most of the cache's activity is in the magazine layer, * and allocations from the slab layer represent only a startup cost, the * overhead of maintaining a balanced tree is not a significant concern compared * to the opportunity of reducing complexity by eliminating the partial slab * scanner just described. The overhead of an AVL tree is minimized by * maintaining only partial slabs in the tree and keeping completely allocated * slabs separately in a list. To avoid increasing the size of the slab * structure the AVL linkage pointers are reused for the slab's list linkage, * since the slab will always be either partial or complete, never stored both * ways at the same time. To further minimize the overhead of the AVL tree the * compare function that orders partial slabs by usage divides the range of * allocated object counts into bins such that counts within the same bin are * considered equal. Binning partial slabs makes it less likely that allocating * or freeing a single object will change the slab's order, requiring a tree * reinsertion (an avl_remove() followed by an avl_add(), both potentially * requiring some rebalancing of the tree). Allocation counts closest to * completely free and completely allocated are left unbinned (finely sorted) to * better support the consolidator's strategy of merging slabs at either * extreme. * * 3.1 Assessing Fragmentation and Selecting Candidate Slabs * * The consolidator piggybacks on the kmem maintenance thread and is called on * the same interval as kmem_cache_update(), once per cache every fifteen * seconds. kmem maintains a running count of unallocated objects in the slab * layer (cache_bufslab). The consolidator checks whether that number exceeds * 12.5% (1/8) of the total objects in the cache (cache_buftotal), and whether * there is a significant number of slabs in the cache (arbitrarily a minimum * 101 total slabs). Unused objects that have fallen out of the magazine layer's * working set are included in the assessment, and magazines in the depot are * reaped if those objects would lift cache_bufslab above the fragmentation * threshold. Once the consolidator decides that a cache is fragmented, it looks * for a candidate slab to reclaim, starting at the end of the partial slab free * list and scanning backwards. At first the consolidator is choosy: only a slab * with fewer than 12.5% (1/8) of its objects allocated qualifies (or else a * single allocated object, regardless of percentage). If there is difficulty * finding a candidate slab, kmem raises the allocation threshold incrementally, * up to a maximum 87.5% (7/8), so that eventually the consolidator will reduce * external fragmentation (unused objects on the free list) below 12.5% (1/8), * even in the worst case of every slab in the cache being almost 7/8 allocated. * The threshold can also be lowered incrementally when candidate slabs are easy * to find, and the threshold is reset to the minimum 1/8 as soon as the cache * is no longer fragmented. * * 3.2 Generating Callbacks * * Once an eligible slab is chosen, a callback is generated for every allocated * object on the slab, in the hope that the client will move everything off the * slab and make it reclaimable. Objects selected as move destinations are * chosen from slabs at the front of the free list. Assuming slabs in the ideal * order (most allocated at the front, least allocated at the back) and a * cooperative client, the consolidator will succeed in removing slabs from both * ends of the free list, completely allocating on the one hand and completely * freeing on the other. Objects selected as move destinations are allocated in * the kmem maintenance thread where move requests are enqueued. A separate * callback thread removes pending callbacks from the queue and calls the * client. The separate thread ensures that client code (the move function) does * not interfere with internal kmem maintenance tasks. A map of pending * callbacks keyed by object address (the object to be moved) is checked to * ensure that duplicate callbacks are not generated for the same object. * Allocating the move destination (the object to move to) prevents subsequent * callbacks from selecting the same destination as an earlier pending callback. * * Move requests can also be generated by kmem_cache_reap() when the system is * desperate for memory and by kmem_cache_move_notify(), called by the client to * notify kmem that a move refused earlier with KMEM_CBRC_LATER is now possible. * The map of pending callbacks is protected by the same lock that protects the * slab layer. * * When the system is desperate for memory, kmem does not bother to determine * whether or not the cache exceeds the fragmentation threshold, but tries to * consolidate as many slabs as possible. Normally, the consolidator chews * slowly, one sparsely allocated slab at a time during each maintenance * interval that the cache is fragmented. When desperate, the consolidator * starts at the last partial slab and enqueues callbacks for every allocated * object on every partial slab, working backwards until it reaches the first * partial slab. The first partial slab, meanwhile, advances in pace with the * consolidator as allocations to supply move destinations for the enqueued * callbacks use up the highly allocated slabs at the front of the free list. * Ideally, the overgrown free list collapses like an accordion, starting at * both ends and ending at the center with a single partial slab. * * 3.3 Client Responses * * When the client returns KMEM_CBRC_NO in response to the move callback, kmem * marks the slab that supplied the stuck object non-reclaimable and moves it to * front of the free list. The slab remains marked as long as it remains on the * free list, and it appears more allocated to the partial slab compare function * than any unmarked slab, no matter how many of its objects are allocated. * Since even one immovable object ties up the entire slab, the goal is to * completely allocate any slab that cannot be completely freed. kmem does not * bother generating callbacks to move objects from a marked slab unless the * system is desperate. * * When the client responds KMEM_CBRC_LATER, kmem increments a count for the * slab. If the client responds LATER too many times, kmem disbelieves and * treats the response as a NO. The count is cleared when the slab is taken off * the partial slab list or when the client moves one of the slab's objects. * * 4. Observability * * A kmem cache's external fragmentation is best observed with 'mdb -k' using * the ::kmem_slabs dcmd. For a complete description of the command, enter * '::help kmem_slabs' at the mdb prompt. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #include #endif extern void streams_msg_init(void); extern int segkp_fromheap; extern void segkp_cache_free(void); extern int callout_init_done; struct kmem_cache_kstat { kstat_named_t kmc_buf_size; kstat_named_t kmc_align; kstat_named_t kmc_chunk_size; kstat_named_t kmc_slab_size; kstat_named_t kmc_alloc; kstat_named_t kmc_alloc_fail; kstat_named_t kmc_free; kstat_named_t kmc_depot_alloc; kstat_named_t kmc_depot_free; kstat_named_t kmc_depot_contention; kstat_named_t kmc_slab_alloc; kstat_named_t kmc_slab_free; kstat_named_t kmc_buf_constructed; kstat_named_t kmc_buf_avail; kstat_named_t kmc_buf_inuse; kstat_named_t kmc_buf_total; kstat_named_t kmc_buf_max; kstat_named_t kmc_slab_create; kstat_named_t kmc_slab_destroy; kstat_named_t kmc_vmem_source; kstat_named_t kmc_hash_size; kstat_named_t kmc_hash_lookup_depth; kstat_named_t kmc_hash_rescale; kstat_named_t kmc_full_magazines; kstat_named_t kmc_empty_magazines; kstat_named_t kmc_magazine_size; kstat_named_t kmc_reap; /* number of kmem_cache_reap() calls */ kstat_named_t kmc_defrag; /* attempts to defrag all partial slabs */ kstat_named_t kmc_scan; /* attempts to defrag one partial slab */ kstat_named_t kmc_move_callbacks; /* sum of yes, no, later, dn, dk */ kstat_named_t kmc_move_yes; kstat_named_t kmc_move_no; kstat_named_t kmc_move_later; kstat_named_t kmc_move_dont_need; kstat_named_t kmc_move_dont_know; /* obj unrecognized by client ... */ kstat_named_t kmc_move_hunt_found; /* ... but found in mag layer */ kstat_named_t kmc_move_slabs_freed; /* slabs freed by consolidator */ kstat_named_t kmc_move_reclaimable; /* buffers, if consolidator ran */ } kmem_cache_kstat = { { "buf_size", KSTAT_DATA_UINT64 }, { "align", KSTAT_DATA_UINT64 }, { "chunk_size", KSTAT_DATA_UINT64 }, { "slab_size", KSTAT_DATA_UINT64 }, { "alloc", KSTAT_DATA_UINT64 }, { "alloc_fail", KSTAT_DATA_UINT64 }, { "free", KSTAT_DATA_UINT64 }, { "depot_alloc", KSTAT_DATA_UINT64 }, { "depot_free", KSTAT_DATA_UINT64 }, { "depot_contention", KSTAT_DATA_UINT64 }, { "slab_alloc", KSTAT_DATA_UINT64 }, { "slab_free", KSTAT_DATA_UINT64 }, { "buf_constructed", KSTAT_DATA_UINT64 }, { "buf_avail", KSTAT_DATA_UINT64 }, { "buf_inuse", KSTAT_DATA_UINT64 }, { "buf_total", KSTAT_DATA_UINT64 }, { "buf_max", KSTAT_DATA_UINT64 }, { "slab_create", KSTAT_DATA_UINT64 }, { "slab_destroy", KSTAT_DATA_UINT64 }, { "vmem_source", KSTAT_DATA_UINT64 }, { "hash_size", KSTAT_DATA_UINT64 }, { "hash_lookup_depth", KSTAT_DATA_UINT64 }, { "hash_rescale", KSTAT_DATA_UINT64 }, { "full_magazines", KSTAT_DATA_UINT64 }, { "empty_magazines", KSTAT_DATA_UINT64 }, { "magazine_size", KSTAT_DATA_UINT64 }, { "reap", KSTAT_DATA_UINT64 }, { "defrag", KSTAT_DATA_UINT64 }, { "scan", KSTAT_DATA_UINT64 }, { "move_callbacks", KSTAT_DATA_UINT64 }, { "move_yes", KSTAT_DATA_UINT64 }, { "move_no", KSTAT_DATA_UINT64 }, { "move_later", KSTAT_DATA_UINT64 }, { "move_dont_need", KSTAT_DATA_UINT64 }, { "move_dont_know", KSTAT_DATA_UINT64 }, { "move_hunt_found", KSTAT_DATA_UINT64 }, { "move_slabs_freed", KSTAT_DATA_UINT64 }, { "move_reclaimable", KSTAT_DATA_UINT64 }, }; static kmutex_t kmem_cache_kstat_lock; /* * The default set of caches to back kmem_alloc(). * These sizes should be reevaluated periodically. * * We want allocations that are multiples of the coherency granularity * (64 bytes) to be satisfied from a cache which is a multiple of 64 * bytes, so that it will be 64-byte aligned. For all multiples of 64, * the next kmem_cache_size greater than or equal to it must be a * multiple of 64. * * We split the table into two sections: size <= 4k and size > 4k. This * saves a lot of space and cache footprint in our cache tables. */ static const int kmem_alloc_sizes[] = { 1 * 8, 2 * 8, 3 * 8, 4 * 8, 5 * 8, 6 * 8, 7 * 8, 4 * 16, 5 * 16, 6 * 16, 7 * 16, 4 * 32, 5 * 32, 6 * 32, 7 * 32, 4 * 64, 5 * 64, 6 * 64, 7 * 64, 4 * 128, 5 * 128, 6 * 128, 7 * 128, P2ALIGN(8192 / 7, 64), P2ALIGN(8192 / 6, 64), P2ALIGN(8192 / 5, 64), P2ALIGN(8192 / 4, 64), P2ALIGN(8192 / 3, 64), P2ALIGN(8192 / 2, 64), }; static const int kmem_big_alloc_sizes[] = { 2 * 4096, 3 * 4096, 2 * 8192, 3 * 8192, 4 * 8192, 5 * 8192, 6 * 8192, 7 * 8192, 8 * 8192, 9 * 8192, 10 * 8192, 11 * 8192, 12 * 8192, 13 * 8192, 14 * 8192, 15 * 8192, 16 * 8192 }; #define KMEM_MAXBUF 4096 #define KMEM_BIG_MAXBUF_32BIT 32768 #define KMEM_BIG_MAXBUF 131072 #define KMEM_BIG_MULTIPLE 4096 /* big_alloc_sizes must be a multiple */ #define KMEM_BIG_SHIFT 12 /* lg(KMEM_BIG_MULTIPLE) */ static kmem_cache_t *kmem_alloc_table[KMEM_MAXBUF >> KMEM_ALIGN_SHIFT]; static kmem_cache_t *kmem_big_alloc_table[KMEM_BIG_MAXBUF >> KMEM_BIG_SHIFT]; #define KMEM_ALLOC_TABLE_MAX (KMEM_MAXBUF >> KMEM_ALIGN_SHIFT) static size_t kmem_big_alloc_table_max = 0; /* # of filled elements */ static kmem_magtype_t kmem_magtype[] = { { 1, 8, 3200, 65536 }, { 3, 16, 256, 32768 }, { 7, 32, 64, 16384 }, { 15, 64, 0, 8192 }, { 31, 64, 0, 4096 }, { 47, 64, 0, 2048 }, { 63, 64, 0, 1024 }, { 95, 64, 0, 512 }, { 143, 64, 0, 0 }, }; static uint32_t kmem_reaping; static uint32_t kmem_reaping_idspace; /* * kmem tunables */ clock_t kmem_reap_interval; /* cache reaping rate [15 * HZ ticks] */ int kmem_depot_contention = 3; /* max failed tryenters per real interval */ pgcnt_t kmem_reapahead = 0; /* start reaping N pages before pageout */ int kmem_panic = 1; /* whether to panic on error */ int kmem_logging = 1; /* kmem_log_enter() override */ uint32_t kmem_mtbf = 0; /* mean time between failures [default: off] */ size_t kmem_transaction_log_size; /* transaction log size [2% of memory] */ size_t kmem_content_log_size; /* content log size [2% of memory] */ size_t kmem_failure_log_size; /* failure log [4 pages per CPU] */ size_t kmem_slab_log_size; /* slab create log [4 pages per CPU] */ size_t kmem_content_maxsave = 256; /* KMF_CONTENTS max bytes to log */ size_t kmem_lite_minsize = 0; /* minimum buffer size for KMF_LITE */ size_t kmem_lite_maxalign = 1024; /* maximum buffer alignment for KMF_LITE */ int kmem_lite_pcs = 4; /* number of PCs to store in KMF_LITE mode */ size_t kmem_maxverify; /* maximum bytes to inspect in debug routines */ size_t kmem_minfirewall; /* hardware-enforced redzone threshold */ #ifdef _LP64 size_t kmem_max_cached = KMEM_BIG_MAXBUF; /* maximum kmem_alloc cache */ #else size_t kmem_max_cached = KMEM_BIG_MAXBUF_32BIT; /* maximum kmem_alloc cache */ #endif #ifdef DEBUG int kmem_flags = KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS; #else int kmem_flags = 0; #endif int kmem_ready; static kmem_cache_t *kmem_slab_cache; static kmem_cache_t *kmem_bufctl_cache; static kmem_cache_t *kmem_bufctl_audit_cache; static kmutex_t kmem_cache_lock; /* inter-cache linkage only */ static list_t kmem_caches; static taskq_t *kmem_taskq; static kmutex_t kmem_flags_lock; static vmem_t *kmem_metadata_arena; static vmem_t *kmem_msb_arena; /* arena for metadata caches */ static vmem_t *kmem_cache_arena; static vmem_t *kmem_hash_arena; static vmem_t *kmem_log_arena; static vmem_t *kmem_oversize_arena; static vmem_t *kmem_va_arena; static vmem_t *kmem_default_arena; static vmem_t *kmem_firewall_va_arena; static vmem_t *kmem_firewall_arena; /* * kmem slab consolidator thresholds (tunables) */ size_t kmem_frag_minslabs = 101; /* minimum total slabs */ size_t kmem_frag_numer = 1; /* free buffers (numerator) */ size_t kmem_frag_denom = KMEM_VOID_FRACTION; /* buffers (denominator) */ /* * Maximum number of slabs from which to move buffers during a single * maintenance interval while the system is not low on memory. */ size_t kmem_reclaim_max_slabs = 1; /* * Number of slabs to scan backwards from the end of the partial slab list * when searching for buffers to relocate. */ size_t kmem_reclaim_scan_range = 12; /* consolidator knobs */ boolean_t kmem_move_noreap; boolean_t kmem_move_blocked; boolean_t kmem_move_fulltilt; boolean_t kmem_move_any_partial; #ifdef DEBUG /* * kmem consolidator debug tunables: * Ensure code coverage by occasionally running the consolidator even when the * caches are not fragmented (they may never be). These intervals are mean time * in cache maintenance intervals (kmem_cache_update). */ uint32_t kmem_mtb_move = 60; /* defrag 1 slab (~15min) */ uint32_t kmem_mtb_reap = 1800; /* defrag all slabs (~7.5hrs) */ #endif /* DEBUG */ static kmem_cache_t *kmem_defrag_cache; static kmem_cache_t *kmem_move_cache; static taskq_t *kmem_move_taskq; static void kmem_cache_scan(kmem_cache_t *); static void kmem_cache_defrag(kmem_cache_t *); static void kmem_slab_prefill(kmem_cache_t *, kmem_slab_t *); kmem_log_header_t *kmem_transaction_log; kmem_log_header_t *kmem_content_log; kmem_log_header_t *kmem_failure_log; kmem_log_header_t *kmem_slab_log; static int kmem_lite_count; /* # of PCs in kmem_buftag_lite_t */ #define KMEM_BUFTAG_LITE_ENTER(bt, count, caller) \ if ((count) > 0) { \ pc_t *_s = ((kmem_buftag_lite_t *)(bt))->bt_history; \ pc_t *_e; \ /* memmove() the old entries down one notch */ \ for (_e = &_s[(count) - 1]; _e > _s; _e--) \ *_e = *(_e - 1); \ *_s = (uintptr_t)(caller); \ } #define KMERR_MODIFIED 0 /* buffer modified while on freelist */ #define KMERR_REDZONE 1 /* redzone violation (write past end of buf) */ #define KMERR_DUPFREE 2 /* freed a buffer twice */ #define KMERR_BADADDR 3 /* freed a bad (unallocated) address */ #define KMERR_BADBUFTAG 4 /* buftag corrupted */ #define KMERR_BADBUFCTL 5 /* bufctl corrupted */ #define KMERR_BADCACHE 6 /* freed a buffer to the wrong cache */ #define KMERR_BADSIZE 7 /* alloc size != free size */ #define KMERR_BADBASE 8 /* buffer base address wrong */ struct { hrtime_t kmp_timestamp; /* timestamp of panic */ int kmp_error; /* type of kmem error */ void *kmp_buffer; /* buffer that induced panic */ void *kmp_realbuf; /* real start address for buffer */ kmem_cache_t *kmp_cache; /* buffer's cache according to client */ kmem_cache_t *kmp_realcache; /* actual cache containing buffer */ kmem_slab_t *kmp_slab; /* slab accoring to kmem_findslab() */ kmem_bufctl_t *kmp_bufctl; /* bufctl */ } kmem_panic_info; static void copy_pattern(uint64_t pattern, void *buf_arg, size_t size) { uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); uint64_t *buf = buf_arg; while (buf < bufend) *buf++ = pattern; } static void * verify_pattern(uint64_t pattern, void *buf_arg, size_t size) { uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); uint64_t *buf; for (buf = buf_arg; buf < bufend; buf++) if (*buf != pattern) return (buf); return (NULL); } static void * verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size) { uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); uint64_t *buf; for (buf = buf_arg; buf < bufend; buf++) { if (*buf != old) { copy_pattern(old, buf_arg, (char *)buf - (char *)buf_arg); return (buf); } *buf = new; } return (NULL); } static void kmem_cache_applyall(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) { kmem_cache_t *cp; mutex_enter(&kmem_cache_lock); for (cp = list_head(&kmem_caches); cp != NULL; cp = list_next(&kmem_caches, cp)) if (tq != NULL) (void) taskq_dispatch(tq, (task_func_t *)func, cp, tqflag); else func(cp); mutex_exit(&kmem_cache_lock); } static void kmem_cache_applyall_id(void (*func)(kmem_cache_t *), taskq_t *tq, int tqflag) { kmem_cache_t *cp; mutex_enter(&kmem_cache_lock); for (cp = list_head(&kmem_caches); cp != NULL; cp = list_next(&kmem_caches, cp)) { if (!(cp->cache_cflags & KMC_IDENTIFIER)) continue; if (tq != NULL) (void) taskq_dispatch(tq, (task_func_t *)func, cp, tqflag); else func(cp); } mutex_exit(&kmem_cache_lock); } /* * Debugging support. Given a buffer address, find its slab. */ static kmem_slab_t * kmem_findslab(kmem_cache_t *cp, void *buf) { kmem_slab_t *sp; mutex_enter(&cp->cache_lock); for (sp = list_head(&cp->cache_complete_slabs); sp != NULL; sp = list_next(&cp->cache_complete_slabs, sp)) { if (KMEM_SLAB_MEMBER(sp, buf)) { mutex_exit(&cp->cache_lock); return (sp); } } for (sp = avl_first(&cp->cache_partial_slabs); sp != NULL; sp = AVL_NEXT(&cp->cache_partial_slabs, sp)) { if (KMEM_SLAB_MEMBER(sp, buf)) { mutex_exit(&cp->cache_lock); return (sp); } } mutex_exit(&cp->cache_lock); return (NULL); } static void kmem_error(int error, kmem_cache_t *cparg, void *bufarg) { kmem_buftag_t *btp = NULL; kmem_bufctl_t *bcp = NULL; kmem_cache_t *cp = cparg; kmem_slab_t *sp; uint64_t *off; void *buf = bufarg; kmem_logging = 0; /* stop logging when a bad thing happens */ kmem_panic_info.kmp_timestamp = gethrtime(); sp = kmem_findslab(cp, buf); if (sp == NULL) { for (cp = list_tail(&kmem_caches); cp != NULL; cp = list_prev(&kmem_caches, cp)) { if ((sp = kmem_findslab(cp, buf)) != NULL) break; } } if (sp == NULL) { cp = NULL; error = KMERR_BADADDR; } else { if (cp != cparg) error = KMERR_BADCACHE; else buf = (char *)bufarg - ((uintptr_t)bufarg - (uintptr_t)sp->slab_base) % cp->cache_chunksize; if (buf != bufarg) error = KMERR_BADBASE; if (cp->cache_flags & KMF_BUFTAG) btp = KMEM_BUFTAG(cp, buf); if (cp->cache_flags & KMF_HASH) { mutex_enter(&cp->cache_lock); for (bcp = *KMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next) if (bcp->bc_addr == buf) break; mutex_exit(&cp->cache_lock); if (bcp == NULL && btp != NULL) bcp = btp->bt_bufctl; if (kmem_findslab(cp->cache_bufctl_cache, bcp) == NULL || P2PHASE((uintptr_t)bcp, KMEM_ALIGN) || bcp->bc_addr != buf) { error = KMERR_BADBUFCTL; bcp = NULL; } } } kmem_panic_info.kmp_error = error; kmem_panic_info.kmp_buffer = bufarg; kmem_panic_info.kmp_realbuf = buf; kmem_panic_info.kmp_cache = cparg; kmem_panic_info.kmp_realcache = cp; kmem_panic_info.kmp_slab = sp; kmem_panic_info.kmp_bufctl = bcp; printf("kernel memory allocator: "); switch (error) { case KMERR_MODIFIED: printf("buffer modified after being freed\n"); off = verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); if (off == NULL) /* shouldn't happen */ off = buf; printf("modification occurred at offset 0x%lx " "(0x%llx replaced by 0x%llx)\n", (uintptr_t)off - (uintptr_t)buf, (longlong_t)KMEM_FREE_PATTERN, (longlong_t)*off); break; case KMERR_REDZONE: printf("redzone violation: write past end of buffer\n"); break; case KMERR_BADADDR: printf("invalid free: buffer not in cache\n"); break; case KMERR_DUPFREE: printf("duplicate free: buffer freed twice\n"); break; case KMERR_BADBUFTAG: printf("boundary tag corrupted\n"); printf("bcp ^ bxstat = %lx, should be %lx\n", (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat, KMEM_BUFTAG_FREE); break; case KMERR_BADBUFCTL: printf("bufctl corrupted\n"); break; case KMERR_BADCACHE: printf("buffer freed to wrong cache\n"); printf("buffer was allocated from %s,\n", cp->cache_name); printf("caller attempting free to %s.\n", cparg->cache_name); break; case KMERR_BADSIZE: printf("bad free: free size (%u) != alloc size (%u)\n", KMEM_SIZE_DECODE(((uint32_t *)btp)[0]), KMEM_SIZE_DECODE(((uint32_t *)btp)[1])); break; case KMERR_BADBASE: printf("bad free: free address (%p) != alloc address (%p)\n", bufarg, buf); break; } printf("buffer=%p bufctl=%p cache: %s\n", bufarg, (void *)bcp, cparg->cache_name); if (bcp != NULL && (cp->cache_flags & KMF_AUDIT) && error != KMERR_BADBUFCTL) { int d; timestruc_t ts; kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; hrt2ts(kmem_panic_info.kmp_timestamp - bcap->bc_timestamp, &ts); printf("previous transaction on buffer %p:\n", buf); printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n", (void *)bcap->bc_thread, ts.tv_sec, ts.tv_nsec, (void *)sp, cp->cache_name); for (d = 0; d < MIN(bcap->bc_depth, KMEM_STACK_DEPTH); d++) { ulong_t off; char *sym = kobj_getsymname(bcap->bc_stack[d], &off); printf("%s+%lx\n", sym ? sym : "?", off); } } if (kmem_panic > 0) panic("kernel heap corruption detected"); if (kmem_panic == 0) debug_enter(NULL); kmem_logging = 1; /* resume logging */ } static kmem_log_header_t * kmem_log_init(size_t logsize) { kmem_log_header_t *lhp; int nchunks = 4 * max_ncpus; size_t lhsize = (size_t)&((kmem_log_header_t *)0)->lh_cpu[max_ncpus]; int i; /* * Make sure that lhp->lh_cpu[] is nicely aligned * to prevent false sharing of cache lines. */ lhsize = P2ROUNDUP(lhsize, KMEM_ALIGN); lhp = vmem_xalloc(kmem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0, NULL, NULL, VM_SLEEP); bzero(lhp, lhsize); mutex_init(&lhp->lh_lock, NULL, MUTEX_DEFAULT, NULL); lhp->lh_nchunks = nchunks; lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks + 1, PAGESIZE); lhp->lh_base = vmem_alloc(kmem_log_arena, lhp->lh_chunksize * nchunks, VM_SLEEP); lhp->lh_free = vmem_alloc(kmem_log_arena, nchunks * sizeof (int), VM_SLEEP); bzero(lhp->lh_base, lhp->lh_chunksize * nchunks); for (i = 0; i < max_ncpus; i++) { kmem_cpu_log_header_t *clhp = &lhp->lh_cpu[i]; mutex_init(&clhp->clh_lock, NULL, MUTEX_DEFAULT, NULL); clhp->clh_chunk = i; } for (i = max_ncpus; i < nchunks; i++) lhp->lh_free[i] = i; lhp->lh_head = max_ncpus; lhp->lh_tail = 0; return (lhp); } static void * kmem_log_enter(kmem_log_header_t *lhp, void *data, size_t size) { void *logspace; kmem_cpu_log_header_t *clhp; if (lhp == NULL || kmem_logging == 0 || panicstr) return (NULL); clhp = &lhp->lh_cpu[CPU->cpu_seqid]; mutex_enter(&clhp->clh_lock); clhp->clh_hits++; if (size > clhp->clh_avail) { mutex_enter(&lhp->lh_lock); lhp->lh_hits++; lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk; lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks; clhp->clh_chunk = lhp->lh_free[lhp->lh_head]; lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks; clhp->clh_current = lhp->lh_base + clhp->clh_chunk * lhp->lh_chunksize; clhp->clh_avail = lhp->lh_chunksize; if (size > lhp->lh_chunksize) size = lhp->lh_chunksize; mutex_exit(&lhp->lh_lock); } logspace = clhp->clh_current; clhp->clh_current += size; clhp->clh_avail -= size; bcopy(data, logspace, size); mutex_exit(&clhp->clh_lock); return (logspace); } #define KMEM_AUDIT(lp, cp, bcp) \ { \ kmem_bufctl_audit_t *_bcp = (kmem_bufctl_audit_t *)(bcp); \ _bcp->bc_timestamp = gethrtime(); \ _bcp->bc_thread = curthread; \ _bcp->bc_depth = getpcstack(_bcp->bc_stack, KMEM_STACK_DEPTH); \ _bcp->bc_lastlog = kmem_log_enter((lp), _bcp, sizeof (*_bcp)); \ } static void kmem_log_event(kmem_log_header_t *lp, kmem_cache_t *cp, kmem_slab_t *sp, void *addr) { kmem_bufctl_audit_t bca; bzero(&bca, sizeof (kmem_bufctl_audit_t)); bca.bc_addr = addr; bca.bc_slab = sp; bca.bc_cache = cp; KMEM_AUDIT(lp, cp, &bca); } /* * Create a new slab for cache cp. */ static kmem_slab_t * kmem_slab_create(kmem_cache_t *cp, int kmflag) { size_t slabsize = cp->cache_slabsize; size_t chunksize = cp->cache_chunksize; int cache_flags = cp->cache_flags; size_t color, chunks; char *buf, *slab; kmem_slab_t *sp; kmem_bufctl_t *bcp; vmem_t *vmp = cp->cache_arena; ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); color = cp->cache_color + cp->cache_align; if (color > cp->cache_maxcolor) color = cp->cache_mincolor; cp->cache_color = color; slab = vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS); if (slab == NULL) goto vmem_alloc_failure; ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0); /* * Reverify what was already checked in kmem_cache_set_move(), since the * consolidator depends (for correctness) on slabs being initialized * with the 0xbaddcafe memory pattern (setting a low order bit usable by * clients to distinguish uninitialized memory from known objects). */ ASSERT((cp->cache_move == NULL) || !(cp->cache_cflags & KMC_NOTOUCH)); if (!(cp->cache_cflags & KMC_NOTOUCH)) copy_pattern(KMEM_UNINITIALIZED_PATTERN, slab, slabsize); if (cache_flags & KMF_HASH) { if ((sp = kmem_cache_alloc(kmem_slab_cache, kmflag)) == NULL) goto slab_alloc_failure; chunks = (slabsize - color) / chunksize; } else { sp = KMEM_SLAB(cp, slab); chunks = (slabsize - sizeof (kmem_slab_t) - color) / chunksize; } sp->slab_cache = cp; sp->slab_head = NULL; sp->slab_refcnt = 0; sp->slab_base = buf = slab + color; sp->slab_chunks = chunks; sp->slab_stuck_offset = (uint32_t)-1; sp->slab_later_count = 0; sp->slab_flags = 0; ASSERT(chunks > 0); while (chunks-- != 0) { if (cache_flags & KMF_HASH) { bcp = kmem_cache_alloc(cp->cache_bufctl_cache, kmflag); if (bcp == NULL) goto bufctl_alloc_failure; if (cache_flags & KMF_AUDIT) { kmem_bufctl_audit_t *bcap = (kmem_bufctl_audit_t *)bcp; bzero(bcap, sizeof (kmem_bufctl_audit_t)); bcap->bc_cache = cp; } bcp->bc_addr = buf; bcp->bc_slab = sp; } else { bcp = KMEM_BUFCTL(cp, buf); } if (cache_flags & KMF_BUFTAG) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); btp->bt_redzone = KMEM_REDZONE_PATTERN; btp->bt_bufctl = bcp; btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; if (cache_flags & KMF_DEADBEEF) { copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); } } bcp->bc_next = sp->slab_head; sp->slab_head = bcp; buf += chunksize; } kmem_log_event(kmem_slab_log, cp, sp, slab); return (sp); bufctl_alloc_failure: while ((bcp = sp->slab_head) != NULL) { sp->slab_head = bcp->bc_next; kmem_cache_free(cp->cache_bufctl_cache, bcp); } kmem_cache_free(kmem_slab_cache, sp); slab_alloc_failure: vmem_free(vmp, slab, slabsize); vmem_alloc_failure: kmem_log_event(kmem_failure_log, cp, NULL, NULL); atomic_inc_64(&cp->cache_alloc_fail); return (NULL); } /* * Destroy a slab. */ static void kmem_slab_destroy(kmem_cache_t *cp, kmem_slab_t *sp) { vmem_t *vmp = cp->cache_arena; void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum); ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); ASSERT(sp->slab_refcnt == 0); if (cp->cache_flags & KMF_HASH) { kmem_bufctl_t *bcp; while ((bcp = sp->slab_head) != NULL) { sp->slab_head = bcp->bc_next; kmem_cache_free(cp->cache_bufctl_cache, bcp); } kmem_cache_free(kmem_slab_cache, sp); } vmem_free(vmp, slab, cp->cache_slabsize); } static void * kmem_slab_alloc_impl(kmem_cache_t *cp, kmem_slab_t *sp, boolean_t prefill) { kmem_bufctl_t *bcp, **hash_bucket; void *buf; boolean_t new_slab = (sp->slab_refcnt == 0); ASSERT(MUTEX_HELD(&cp->cache_lock)); /* * kmem_slab_alloc() drops cache_lock when it creates a new slab, so we * can't ASSERT(avl_is_empty(&cp->cache_partial_slabs)) here when the * slab is newly created. */ ASSERT(new_slab || (KMEM_SLAB_IS_PARTIAL(sp) && (sp == avl_first(&cp->cache_partial_slabs)))); ASSERT(sp->slab_cache == cp); cp->cache_slab_alloc++; cp->cache_bufslab--; sp->slab_refcnt++; bcp = sp->slab_head; sp->slab_head = bcp->bc_next; if (cp->cache_flags & KMF_HASH) { /* * Add buffer to allocated-address hash table. */ buf = bcp->bc_addr; hash_bucket = KMEM_HASH(cp, buf); bcp->bc_next = *hash_bucket; *hash_bucket = bcp; if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { KMEM_AUDIT(kmem_transaction_log, cp, bcp); } } else { buf = KMEM_BUF(cp, bcp); } ASSERT(KMEM_SLAB_MEMBER(sp, buf)); if (sp->slab_head == NULL) { ASSERT(KMEM_SLAB_IS_ALL_USED(sp)); if (new_slab) { ASSERT(sp->slab_chunks == 1); } else { ASSERT(sp->slab_chunks > 1); /* the slab was partial */ avl_remove(&cp->cache_partial_slabs, sp); sp->slab_later_count = 0; /* clear history */ sp->slab_flags &= ~KMEM_SLAB_NOMOVE; sp->slab_stuck_offset = (uint32_t)-1; } list_insert_head(&cp->cache_complete_slabs, sp); cp->cache_complete_slab_count++; return (buf); } ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); /* * Peek to see if the magazine layer is enabled before * we prefill. We're not holding the cpu cache lock, * so the peek could be wrong, but there's no harm in it. */ if (new_slab && prefill && (cp->cache_flags & KMF_PREFILL) && (KMEM_CPU_CACHE(cp)->cc_magsize != 0)) { kmem_slab_prefill(cp, sp); return (buf); } if (new_slab) { avl_add(&cp->cache_partial_slabs, sp); return (buf); } /* * The slab is now more allocated than it was, so the * order remains unchanged. */ ASSERT(!avl_update(&cp->cache_partial_slabs, sp)); return (buf); } /* * Allocate a raw (unconstructed) buffer from cp's slab layer. */ static void * kmem_slab_alloc(kmem_cache_t *cp, int kmflag) { kmem_slab_t *sp; void *buf; boolean_t test_destructor; mutex_enter(&cp->cache_lock); test_destructor = (cp->cache_slab_alloc == 0); sp = avl_first(&cp->cache_partial_slabs); if (sp == NULL) { ASSERT(cp->cache_bufslab == 0); /* * The freelist is empty. Create a new slab. */ mutex_exit(&cp->cache_lock); if ((sp = kmem_slab_create(cp, kmflag)) == NULL) { return (NULL); } mutex_enter(&cp->cache_lock); cp->cache_slab_create++; if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax) cp->cache_bufmax = cp->cache_buftotal; cp->cache_bufslab += sp->slab_chunks; } buf = kmem_slab_alloc_impl(cp, sp, B_TRUE); ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == (cp->cache_complete_slab_count + avl_numnodes(&cp->cache_partial_slabs) + (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); mutex_exit(&cp->cache_lock); if (test_destructor && cp->cache_destructor != NULL) { /* * On the first kmem_slab_alloc(), assert that it is valid to * call the destructor on a newly constructed object without any * client involvement. */ if ((cp->cache_constructor == NULL) || cp->cache_constructor(buf, cp->cache_private, kmflag) == 0) { cp->cache_destructor(buf, cp->cache_private); } copy_pattern(KMEM_UNINITIALIZED_PATTERN, buf, cp->cache_bufsize); if (cp->cache_flags & KMF_DEADBEEF) { copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); } } return (buf); } static void kmem_slab_move_yes(kmem_cache_t *, kmem_slab_t *, void *); /* * Free a raw (unconstructed) buffer to cp's slab layer. */ static void kmem_slab_free(kmem_cache_t *cp, void *buf) { kmem_slab_t *sp; kmem_bufctl_t *bcp, **prev_bcpp; ASSERT(buf != NULL); mutex_enter(&cp->cache_lock); cp->cache_slab_free++; if (cp->cache_flags & KMF_HASH) { /* * Look up buffer in allocated-address hash table. */ prev_bcpp = KMEM_HASH(cp, buf); while ((bcp = *prev_bcpp) != NULL) { if (bcp->bc_addr == buf) { *prev_bcpp = bcp->bc_next; sp = bcp->bc_slab; break; } cp->cache_lookup_depth++; prev_bcpp = &bcp->bc_next; } } else { bcp = KMEM_BUFCTL(cp, buf); sp = KMEM_SLAB(cp, buf); } if (bcp == NULL || sp->slab_cache != cp || !KMEM_SLAB_MEMBER(sp, buf)) { mutex_exit(&cp->cache_lock); kmem_error(KMERR_BADADDR, cp, buf); return; } if (KMEM_SLAB_OFFSET(sp, buf) == sp->slab_stuck_offset) { /* * If this is the buffer that prevented the consolidator from * clearing the slab, we can reset the slab flags now that the * buffer is freed. (It makes sense to do this in * kmem_cache_free(), where the client gives up ownership of the * buffer, but on the hot path the test is too expensive.) */ kmem_slab_move_yes(cp, sp, buf); } if ((cp->cache_flags & (KMF_AUDIT | KMF_BUFTAG)) == KMF_AUDIT) { if (cp->cache_flags & KMF_CONTENTS) ((kmem_bufctl_audit_t *)bcp)->bc_contents = kmem_log_enter(kmem_content_log, buf, cp->cache_contents); KMEM_AUDIT(kmem_transaction_log, cp, bcp); } bcp->bc_next = sp->slab_head; sp->slab_head = bcp; cp->cache_bufslab++; ASSERT(sp->slab_refcnt >= 1); if (--sp->slab_refcnt == 0) { /* * There are no outstanding allocations from this slab, * so we can reclaim the memory. */ if (sp->slab_chunks == 1) { list_remove(&cp->cache_complete_slabs, sp); cp->cache_complete_slab_count--; } else { avl_remove(&cp->cache_partial_slabs, sp); } cp->cache_buftotal -= sp->slab_chunks; cp->cache_bufslab -= sp->slab_chunks; /* * Defer releasing the slab to the virtual memory subsystem * while there is a pending move callback, since we guarantee * that buffers passed to the move callback have only been * touched by kmem or by the client itself. Since the memory * patterns baddcafe (uninitialized) and deadbeef (freed) both * set at least one of the two lowest order bits, the client can * test those bits in the move callback to determine whether or * not it knows about the buffer (assuming that the client also * sets one of those low order bits whenever it frees a buffer). */ if (cp->cache_defrag == NULL || (avl_is_empty(&cp->cache_defrag->kmd_moves_pending) && !(sp->slab_flags & KMEM_SLAB_MOVE_PENDING))) { cp->cache_slab_destroy++; mutex_exit(&cp->cache_lock); kmem_slab_destroy(cp, sp); } else { list_t *deadlist = &cp->cache_defrag->kmd_deadlist; /* * Slabs are inserted at both ends of the deadlist to * distinguish between slabs freed while move callbacks * are pending (list head) and a slab freed while the * lock is dropped in kmem_move_buffers() (list tail) so * that in both cases slab_destroy() is called from the * right context. */ if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { list_insert_tail(deadlist, sp); } else { list_insert_head(deadlist, sp); } cp->cache_defrag->kmd_deadcount++; mutex_exit(&cp->cache_lock); } return; } if (bcp->bc_next == NULL) { /* Transition the slab from completely allocated to partial. */ ASSERT(sp->slab_refcnt == (sp->slab_chunks - 1)); ASSERT(sp->slab_chunks > 1); list_remove(&cp->cache_complete_slabs, sp); cp->cache_complete_slab_count--; avl_add(&cp->cache_partial_slabs, sp); } else { (void) avl_update_gt(&cp->cache_partial_slabs, sp); } ASSERT((cp->cache_slab_create - cp->cache_slab_destroy) == (cp->cache_complete_slab_count + avl_numnodes(&cp->cache_partial_slabs) + (cp->cache_defrag == NULL ? 0 : cp->cache_defrag->kmd_deadcount))); mutex_exit(&cp->cache_lock); } /* * Return -1 if kmem_error, 1 if constructor fails, 0 if successful. */ static int kmem_cache_alloc_debug(kmem_cache_t *cp, void *buf, int kmflag, int construct, caddr_t caller) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; uint32_t mtbf; if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { kmem_error(KMERR_BADBUFTAG, cp, buf); return (-1); } btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_ALLOC; if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { kmem_error(KMERR_BADBUFCTL, cp, buf); return (-1); } if (cp->cache_flags & KMF_DEADBEEF) { if (!construct && (cp->cache_flags & KMF_LITE)) { if (*(uint64_t *)buf != KMEM_FREE_PATTERN) { kmem_error(KMERR_MODIFIED, cp, buf); return (-1); } if (cp->cache_constructor != NULL) *(uint64_t *)buf = btp->bt_redzone; else *(uint64_t *)buf = KMEM_UNINITIALIZED_PATTERN; } else { construct = 1; if (verify_and_copy_pattern(KMEM_FREE_PATTERN, KMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) { kmem_error(KMERR_MODIFIED, cp, buf); return (-1); } } } btp->bt_redzone = KMEM_REDZONE_PATTERN; if ((mtbf = kmem_mtbf | cp->cache_mtbf) != 0 && gethrtime() % mtbf == 0 && (kmflag & (KM_NOSLEEP | KM_PANIC)) == KM_NOSLEEP) { kmem_log_event(kmem_failure_log, cp, NULL, NULL); if (!construct && cp->cache_destructor != NULL) cp->cache_destructor(buf, cp->cache_private); } else { mtbf = 0; } if (mtbf || (construct && cp->cache_constructor != NULL && cp->cache_constructor(buf, cp->cache_private, kmflag) != 0)) { atomic_inc_64(&cp->cache_alloc_fail); btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; if (cp->cache_flags & KMF_DEADBEEF) copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); kmem_slab_free(cp, buf); return (1); } if (cp->cache_flags & KMF_AUDIT) { KMEM_AUDIT(kmem_transaction_log, cp, bcp); } if ((cp->cache_flags & KMF_LITE) && !(cp->cache_cflags & KMC_KMEM_ALLOC)) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); } return (0); } static int kmem_cache_free_debug(kmem_cache_t *cp, void *buf, caddr_t caller) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); kmem_bufctl_audit_t *bcp = (kmem_bufctl_audit_t *)btp->bt_bufctl; kmem_slab_t *sp; if (btp->bt_bxstat != ((intptr_t)bcp ^ KMEM_BUFTAG_ALLOC)) { if (btp->bt_bxstat == ((intptr_t)bcp ^ KMEM_BUFTAG_FREE)) { kmem_error(KMERR_DUPFREE, cp, buf); return (-1); } sp = kmem_findslab(cp, buf); if (sp == NULL || sp->slab_cache != cp) kmem_error(KMERR_BADADDR, cp, buf); else kmem_error(KMERR_REDZONE, cp, buf); return (-1); } btp->bt_bxstat = (intptr_t)bcp ^ KMEM_BUFTAG_FREE; if ((cp->cache_flags & KMF_HASH) && bcp->bc_addr != buf) { kmem_error(KMERR_BADBUFCTL, cp, buf); return (-1); } if (btp->bt_redzone != KMEM_REDZONE_PATTERN) { kmem_error(KMERR_REDZONE, cp, buf); return (-1); } if (cp->cache_flags & KMF_AUDIT) { if (cp->cache_flags & KMF_CONTENTS) bcp->bc_contents = kmem_log_enter(kmem_content_log, buf, cp->cache_contents); KMEM_AUDIT(kmem_transaction_log, cp, bcp); } if ((cp->cache_flags & KMF_LITE) && !(cp->cache_cflags & KMC_KMEM_ALLOC)) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller); } if (cp->cache_flags & KMF_DEADBEEF) { if (cp->cache_flags & KMF_LITE) btp->bt_redzone = *(uint64_t *)buf; else if (cp->cache_destructor != NULL) cp->cache_destructor(buf, cp->cache_private); copy_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify); } return (0); } /* * Free each object in magazine mp to cp's slab layer, and free mp itself. */ static void kmem_magazine_destroy(kmem_cache_t *cp, kmem_magazine_t *mp, int nrounds) { int round; ASSERT(!list_link_active(&cp->cache_link) || taskq_member(kmem_taskq, curthread)); for (round = 0; round < nrounds; round++) { void *buf = mp->mag_round[round]; if (cp->cache_flags & KMF_DEADBEEF) { if (verify_pattern(KMEM_FREE_PATTERN, buf, cp->cache_verify) != NULL) { kmem_error(KMERR_MODIFIED, cp, buf); continue; } if ((cp->cache_flags & KMF_LITE) && cp->cache_destructor != NULL) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); *(uint64_t *)buf = btp->bt_redzone; cp->cache_destructor(buf, cp->cache_private); *(uint64_t *)buf = KMEM_FREE_PATTERN; } } else if (cp->cache_destructor != NULL) { cp->cache_destructor(buf, cp->cache_private); } kmem_slab_free(cp, buf); } ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); kmem_cache_free(cp->cache_magtype->mt_cache, mp); } /* * Allocate a magazine from the depot. */ static kmem_magazine_t * kmem_depot_alloc(kmem_cache_t *cp, kmem_maglist_t *mlp) { kmem_magazine_t *mp; /* * If we can't get the depot lock without contention, * update our contention count. We use the depot * contention rate to determine whether we need to * increase the magazine size for better scalability. */ if (!mutex_tryenter(&cp->cache_depot_lock)) { mutex_enter(&cp->cache_depot_lock); cp->cache_depot_contention++; } if ((mp = mlp->ml_list) != NULL) { ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); mlp->ml_list = mp->mag_next; if (--mlp->ml_total < mlp->ml_min) mlp->ml_min = mlp->ml_total; mlp->ml_alloc++; } mutex_exit(&cp->cache_depot_lock); return (mp); } /* * Free a magazine to the depot. */ static void kmem_depot_free(kmem_cache_t *cp, kmem_maglist_t *mlp, kmem_magazine_t *mp) { mutex_enter(&cp->cache_depot_lock); ASSERT(KMEM_MAGAZINE_VALID(cp, mp)); mp->mag_next = mlp->ml_list; mlp->ml_list = mp; mlp->ml_total++; mutex_exit(&cp->cache_depot_lock); } /* * Update the working set statistics for cp's depot. */ static void kmem_depot_ws_update(kmem_cache_t *cp) { mutex_enter(&cp->cache_depot_lock); cp->cache_full.ml_reaplimit = cp->cache_full.ml_min; cp->cache_full.ml_min = cp->cache_full.ml_total; cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min; cp->cache_empty.ml_min = cp->cache_empty.ml_total; mutex_exit(&cp->cache_depot_lock); } /* * Set the working set statistics for cp's depot to zero. (Everything is * eligible for reaping.) */ static void kmem_depot_ws_zero(kmem_cache_t *cp) { mutex_enter(&cp->cache_depot_lock); cp->cache_full.ml_reaplimit = cp->cache_full.ml_total; cp->cache_full.ml_min = cp->cache_full.ml_total; cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_total; cp->cache_empty.ml_min = cp->cache_empty.ml_total; mutex_exit(&cp->cache_depot_lock); } /* * The number of bytes to reap before we call kpreempt(). The default (1MB) * causes us to preempt reaping up to hundreds of times per second. Using a * larger value (1GB) causes this to have virtually no effect. */ size_t kmem_reap_preempt_bytes = 1024 * 1024; /* * Reap all magazines that have fallen out of the depot's working set. */ static void kmem_depot_ws_reap(kmem_cache_t *cp) { size_t bytes = 0; long reap; kmem_magazine_t *mp; ASSERT(!list_link_active(&cp->cache_link) || taskq_member(kmem_taskq, curthread)); reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_full)) != NULL) { kmem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize); bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; if (bytes > kmem_reap_preempt_bytes) { kpreempt(KPREEMPT_SYNC); bytes = 0; } } reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min); while (reap-- && (mp = kmem_depot_alloc(cp, &cp->cache_empty)) != NULL) { kmem_magazine_destroy(cp, mp, 0); bytes += cp->cache_magtype->mt_magsize * cp->cache_bufsize; if (bytes > kmem_reap_preempt_bytes) { kpreempt(KPREEMPT_SYNC); bytes = 0; } } } static void kmem_cpu_reload(kmem_cpu_cache_t *ccp, kmem_magazine_t *mp, int rounds) { ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) || (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize)); ASSERT(ccp->cc_magsize > 0); ccp->cc_ploaded = ccp->cc_loaded; ccp->cc_prounds = ccp->cc_rounds; ccp->cc_loaded = mp; ccp->cc_rounds = rounds; } /* * Intercept kmem alloc/free calls during crash dump in order to avoid * changing kmem state while memory is being saved to the dump device. * Otherwise, ::kmem_verify will report "corrupt buffers". Note that * there are no locks because only one CPU calls kmem during a crash * dump. To enable this feature, first create the associated vmem * arena with VMC_DUMPSAFE. */ static void *kmem_dump_start; /* start of pre-reserved heap */ static void *kmem_dump_end; /* end of heap area */ static void *kmem_dump_curr; /* current free heap pointer */ static size_t kmem_dump_size; /* size of heap area */ /* append to each buf created in the pre-reserved heap */ typedef struct kmem_dumpctl { void *kdc_next; /* cache dump free list linkage */ } kmem_dumpctl_t; #define KMEM_DUMPCTL(cp, buf) \ ((kmem_dumpctl_t *)P2ROUNDUP((uintptr_t)(buf) + (cp)->cache_bufsize, \ sizeof (void *))) /* set non zero for full report */ uint_t kmem_dump_verbose = 0; /* stats for overize heap */ uint_t kmem_dump_oversize_allocs = 0; uint_t kmem_dump_oversize_max = 0; static void kmem_dumppr(char **pp, char *e, const char *format, ...) { char *p = *pp; if (p < e) { int n; va_list ap; va_start(ap, format); n = vsnprintf(p, e - p, format, ap); va_end(ap); *pp = p + n; } } /* * Called when dumpadm(1M) configures dump parameters. */ void kmem_dump_init(size_t size) { /* Our caller ensures size is always set. */ ASSERT3U(size, >, 0); if (kmem_dump_start != NULL) kmem_free(kmem_dump_start, kmem_dump_size); kmem_dump_start = kmem_alloc(size, KM_SLEEP); kmem_dump_size = size; kmem_dump_curr = kmem_dump_start; kmem_dump_end = (void *)((char *)kmem_dump_start + size); copy_pattern(KMEM_UNINITIALIZED_PATTERN, kmem_dump_start, size); } /* * Set flag for each kmem_cache_t if is safe to use alternate dump * memory. Called just before panic crash dump starts. Set the flag * for the calling CPU. */ void kmem_dump_begin(void) { kmem_cache_t *cp; ASSERT(panicstr != NULL); for (cp = list_head(&kmem_caches); cp != NULL; cp = list_next(&kmem_caches, cp)) { kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); if (cp->cache_arena->vm_cflags & VMC_DUMPSAFE) { cp->cache_flags |= KMF_DUMPDIVERT; ccp->cc_flags |= KMF_DUMPDIVERT; ccp->cc_dump_rounds = ccp->cc_rounds; ccp->cc_dump_prounds = ccp->cc_prounds; ccp->cc_rounds = ccp->cc_prounds = -1; } else { cp->cache_flags |= KMF_DUMPUNSAFE; ccp->cc_flags |= KMF_DUMPUNSAFE; } } } /* * finished dump intercept * print any warnings on the console * return verbose information to dumpsys() in the given buffer */ size_t kmem_dump_finish(char *buf, size_t size) { int percent = 0; size_t used; char *e = buf + size; char *p = buf; if (kmem_dump_curr == kmem_dump_end) { cmn_err(CE_WARN, "exceeded kmem_dump space of %lu " "bytes: kmem state in dump may be inconsistent", kmem_dump_size); } if (kmem_dump_verbose == 0) return (0); used = (char *)kmem_dump_curr - (char *)kmem_dump_start; percent = (used * 100) / kmem_dump_size; kmem_dumppr(&p, e, "%% heap used,%d\n", percent); kmem_dumppr(&p, e, "used bytes,%ld\n", used); kmem_dumppr(&p, e, "heap size,%ld\n", kmem_dump_size); kmem_dumppr(&p, e, "Oversize allocs,%d\n", kmem_dump_oversize_allocs); kmem_dumppr(&p, e, "Oversize max size,%ld\n", kmem_dump_oversize_max); /* return buffer size used */ if (p < e) bzero(p, e - p); return (p - buf); } /* * Allocate a constructed object from alternate dump memory. */ void * kmem_cache_alloc_dump(kmem_cache_t *cp, int kmflag) { void *buf; void *curr; char *bufend; /* return a constructed object */ if ((buf = cp->cache_dump.kd_freelist) != NULL) { cp->cache_dump.kd_freelist = KMEM_DUMPCTL(cp, buf)->kdc_next; return (buf); } /* create a new constructed object */ curr = kmem_dump_curr; buf = (void *)P2ROUNDUP((uintptr_t)curr, cp->cache_align); bufend = (char *)KMEM_DUMPCTL(cp, buf) + sizeof (kmem_dumpctl_t); /* hat layer objects cannot cross a page boundary */ if (cp->cache_align < PAGESIZE) { char *page = (char *)P2ROUNDUP((uintptr_t)buf, PAGESIZE); if (bufend > page) { bufend += page - (char *)buf; buf = (void *)page; } } /* fall back to normal alloc if reserved area is used up */ if (bufend > (char *)kmem_dump_end) { kmem_dump_curr = kmem_dump_end; cp->cache_dump.kd_alloc_fails++; return (NULL); } /* * Must advance curr pointer before calling a constructor that * may also allocate memory. */ kmem_dump_curr = bufend; /* run constructor */ if (cp->cache_constructor != NULL && cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { #ifdef DEBUG printf("name='%s' cache=0x%p: kmem cache constructor failed\n", cp->cache_name, (void *)cp); #endif /* reset curr pointer iff no allocs were done */ if (kmem_dump_curr == bufend) kmem_dump_curr = curr; cp->cache_dump.kd_alloc_fails++; /* fall back to normal alloc if the constructor fails */ return (NULL); } return (buf); } /* * Free a constructed object in alternate dump memory. */ int kmem_cache_free_dump(kmem_cache_t *cp, void *buf) { /* save constructed buffers for next time */ if ((char *)buf >= (char *)kmem_dump_start && (char *)buf < (char *)kmem_dump_end) { KMEM_DUMPCTL(cp, buf)->kdc_next = cp->cache_dump.kd_freelist; cp->cache_dump.kd_freelist = buf; return (0); } /* just drop buffers that were allocated before dump started */ if (kmem_dump_curr < kmem_dump_end) return (0); /* fall back to normal free if reserved area is used up */ return (1); } /* * Allocate a constructed object from cache cp. */ void * kmem_cache_alloc(kmem_cache_t *cp, int kmflag) { kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); kmem_magazine_t *fmp; void *buf; mutex_enter(&ccp->cc_lock); for (;;) { /* * If there's an object available in the current CPU's * loaded magazine, just take it and return. */ if (ccp->cc_rounds > 0) { buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds]; ccp->cc_alloc++; mutex_exit(&ccp->cc_lock); if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPUNSAFE)) { if (ccp->cc_flags & KMF_DUMPUNSAFE) { ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); cp->cache_dump.kd_unsafe++; } if ((ccp->cc_flags & KMF_BUFTAG) && kmem_cache_alloc_debug(cp, buf, kmflag, 0, caller()) != 0) { if (kmflag & KM_NOSLEEP) return (NULL); mutex_enter(&ccp->cc_lock); continue; } } return (buf); } /* * The loaded magazine is empty. If the previously loaded * magazine was full, exchange them and try again. */ if (ccp->cc_prounds > 0) { kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); continue; } /* * Return an alternate buffer at dump time to preserve * the heap. */ if (ccp->cc_flags & (KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { if (ccp->cc_flags & KMF_DUMPUNSAFE) { ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); /* log it so that we can warn about it */ cp->cache_dump.kd_unsafe++; } else { if ((buf = kmem_cache_alloc_dump(cp, kmflag)) != NULL) { mutex_exit(&ccp->cc_lock); return (buf); } break; /* fall back to slab layer */ } } /* * If the magazine layer is disabled, break out now. */ if (ccp->cc_magsize == 0) break; /* * Try to get a full magazine from the depot. */ fmp = kmem_depot_alloc(cp, &cp->cache_full); if (fmp != NULL) { if (ccp->cc_ploaded != NULL) kmem_depot_free(cp, &cp->cache_empty, ccp->cc_ploaded); kmem_cpu_reload(ccp, fmp, ccp->cc_magsize); continue; } /* * There are no full magazines in the depot, * so fall through to the slab layer. */ break; } mutex_exit(&ccp->cc_lock); /* * We couldn't allocate a constructed object from the magazine layer, * so get a raw buffer from the slab layer and apply its constructor. */ buf = kmem_slab_alloc(cp, kmflag); if (buf == NULL) return (NULL); if (cp->cache_flags & KMF_BUFTAG) { /* * Make kmem_cache_alloc_debug() apply the constructor for us. */ int rc = kmem_cache_alloc_debug(cp, buf, kmflag, 1, caller()); if (rc != 0) { if (kmflag & KM_NOSLEEP) return (NULL); /* * kmem_cache_alloc_debug() detected corruption * but didn't panic (kmem_panic <= 0). We should not be * here because the constructor failed (indicated by a * return code of 1). Try again. */ ASSERT(rc == -1); return (kmem_cache_alloc(cp, kmflag)); } return (buf); } if (cp->cache_constructor != NULL && cp->cache_constructor(buf, cp->cache_private, kmflag) != 0) { atomic_inc_64(&cp->cache_alloc_fail); kmem_slab_free(cp, buf); return (NULL); } return (buf); } /* * The freed argument tells whether or not kmem_cache_free_debug() has already * been called so that we can avoid the duplicate free error. For example, a * buffer on a magazine has already been freed by the client but is still * constructed. */ static void kmem_slab_free_constructed(kmem_cache_t *cp, void *buf, boolean_t freed) { if (!freed && (cp->cache_flags & KMF_BUFTAG)) if (kmem_cache_free_debug(cp, buf, caller()) == -1) return; /* * Note that if KMF_DEADBEEF is in effect and KMF_LITE is not, * kmem_cache_free_debug() will have already applied the destructor. */ if ((cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) != KMF_DEADBEEF && cp->cache_destructor != NULL) { if (cp->cache_flags & KMF_DEADBEEF) { /* KMF_LITE implied */ kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); *(uint64_t *)buf = btp->bt_redzone; cp->cache_destructor(buf, cp->cache_private); *(uint64_t *)buf = KMEM_FREE_PATTERN; } else { cp->cache_destructor(buf, cp->cache_private); } } kmem_slab_free(cp, buf); } /* * Used when there's no room to free a buffer to the per-CPU cache. * Drops and re-acquires &ccp->cc_lock, and returns non-zero if the * caller should try freeing to the per-CPU cache again. * Note that we don't directly install the magazine in the cpu cache, * since its state may have changed wildly while the lock was dropped. */ static int kmem_cpucache_magazine_alloc(kmem_cpu_cache_t *ccp, kmem_cache_t *cp) { kmem_magazine_t *emp; kmem_magtype_t *mtp; ASSERT(MUTEX_HELD(&ccp->cc_lock)); ASSERT(((uint_t)ccp->cc_rounds == ccp->cc_magsize || ((uint_t)ccp->cc_rounds == -1)) && ((uint_t)ccp->cc_prounds == ccp->cc_magsize || ((uint_t)ccp->cc_prounds == -1))); emp = kmem_depot_alloc(cp, &cp->cache_empty); if (emp != NULL) { if (ccp->cc_ploaded != NULL) kmem_depot_free(cp, &cp->cache_full, ccp->cc_ploaded); kmem_cpu_reload(ccp, emp, 0); return (1); } /* * There are no empty magazines in the depot, * so try to allocate a new one. We must drop all locks * across kmem_cache_alloc() because lower layers may * attempt to allocate from this cache. */ mtp = cp->cache_magtype; mutex_exit(&ccp->cc_lock); emp = kmem_cache_alloc(mtp->mt_cache, KM_NOSLEEP); mutex_enter(&ccp->cc_lock); if (emp != NULL) { /* * We successfully allocated an empty magazine. * However, we had to drop ccp->cc_lock to do it, * so the cache's magazine size may have changed. * If so, free the magazine and try again. */ if (ccp->cc_magsize != mtp->mt_magsize) { mutex_exit(&ccp->cc_lock); kmem_cache_free(mtp->mt_cache, emp); mutex_enter(&ccp->cc_lock); return (1); } /* * We got a magazine of the right size. Add it to * the depot and try the whole dance again. */ kmem_depot_free(cp, &cp->cache_empty, emp); return (1); } /* * We couldn't allocate an empty magazine, * so fall through to the slab layer. */ return (0); } /* * Free a constructed object to cache cp. */ void kmem_cache_free(kmem_cache_t *cp, void *buf) { kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); /* * The client must not free either of the buffers passed to the move * callback function. */ ASSERT(cp->cache_defrag == NULL || cp->cache_defrag->kmd_thread != curthread || (buf != cp->cache_defrag->kmd_from_buf && buf != cp->cache_defrag->kmd_to_buf)); if (ccp->cc_flags & (KMF_BUFTAG | KMF_DUMPDIVERT | KMF_DUMPUNSAFE)) { if (ccp->cc_flags & KMF_DUMPUNSAFE) { ASSERT(!(ccp->cc_flags & KMF_DUMPDIVERT)); /* log it so that we can warn about it */ cp->cache_dump.kd_unsafe++; } else if (KMEM_DUMPCC(ccp) && !kmem_cache_free_dump(cp, buf)) { return; } if (ccp->cc_flags & KMF_BUFTAG) { if (kmem_cache_free_debug(cp, buf, caller()) == -1) return; } } mutex_enter(&ccp->cc_lock); /* * Any changes to this logic should be reflected in kmem_slab_prefill() */ for (;;) { /* * If there's a slot available in the current CPU's * loaded magazine, just put the object there and return. */ if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; ccp->cc_free++; mutex_exit(&ccp->cc_lock); return; } /* * The loaded magazine is full. If the previously loaded * magazine was empty, exchange them and try again. */ if (ccp->cc_prounds == 0) { kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); continue; } /* * If the magazine layer is disabled, break out now. */ if (ccp->cc_magsize == 0) break; if (!kmem_cpucache_magazine_alloc(ccp, cp)) { /* * We couldn't free our constructed object to the * magazine layer, so apply its destructor and free it * to the slab layer. */ break; } } mutex_exit(&ccp->cc_lock); kmem_slab_free_constructed(cp, buf, B_TRUE); } static void kmem_slab_prefill(kmem_cache_t *cp, kmem_slab_t *sp) { kmem_cpu_cache_t *ccp = KMEM_CPU_CACHE(cp); int cache_flags = cp->cache_flags; kmem_bufctl_t *next, *head; size_t nbufs; /* * Completely allocate the newly created slab and put the pre-allocated * buffers in magazines. Any of the buffers that cannot be put in * magazines must be returned to the slab. */ ASSERT(MUTEX_HELD(&cp->cache_lock)); ASSERT((cache_flags & (KMF_PREFILL|KMF_BUFTAG)) == KMF_PREFILL); ASSERT(cp->cache_constructor == NULL); ASSERT(sp->slab_cache == cp); ASSERT(sp->slab_refcnt == 1); ASSERT(sp->slab_head != NULL && sp->slab_chunks > sp->slab_refcnt); ASSERT(avl_find(&cp->cache_partial_slabs, sp, NULL) == NULL); head = sp->slab_head; nbufs = (sp->slab_chunks - sp->slab_refcnt); sp->slab_head = NULL; sp->slab_refcnt += nbufs; cp->cache_bufslab -= nbufs; cp->cache_slab_alloc += nbufs; list_insert_head(&cp->cache_complete_slabs, sp); cp->cache_complete_slab_count++; mutex_exit(&cp->cache_lock); mutex_enter(&ccp->cc_lock); while (head != NULL) { void *buf = KMEM_BUF(cp, head); /* * If there's a slot available in the current CPU's * loaded magazine, just put the object there and * continue. */ if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) { ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf; ccp->cc_free++; nbufs--; head = head->bc_next; continue; } /* * The loaded magazine is full. If the previously * loaded magazine was empty, exchange them and try * again. */ if (ccp->cc_prounds == 0) { kmem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds); continue; } /* * If the magazine layer is disabled, break out now. */ if (ccp->cc_magsize == 0) { break; } if (!kmem_cpucache_magazine_alloc(ccp, cp)) break; } mutex_exit(&ccp->cc_lock); if (nbufs != 0) { ASSERT(head != NULL); /* * If there was a failure, return remaining objects to * the slab */ while (head != NULL) { ASSERT(nbufs != 0); next = head->bc_next; head->bc_next = NULL; kmem_slab_free(cp, KMEM_BUF(cp, head)); head = next; nbufs--; } } ASSERT(head == NULL); ASSERT(nbufs == 0); mutex_enter(&cp->cache_lock); } void * kmem_zalloc(size_t size, int kmflag) { size_t index; void *buf; if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { kmem_cache_t *cp = kmem_alloc_table[index]; buf = kmem_cache_alloc(cp, kmflag); if (buf != NULL) { if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); if (cp->cache_flags & KMF_LITE) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); } } bzero(buf, size); } } else { buf = kmem_alloc(size, kmflag); if (buf != NULL) bzero(buf, size); } return (buf); } void * kmem_alloc(size_t size, int kmflag) { size_t index; kmem_cache_t *cp; void *buf; if ((index = ((size - 1) >> KMEM_ALIGN_SHIFT)) < KMEM_ALLOC_TABLE_MAX) { cp = kmem_alloc_table[index]; /* fall through to kmem_cache_alloc() */ } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < kmem_big_alloc_table_max) { cp = kmem_big_alloc_table[index]; /* fall through to kmem_cache_alloc() */ } else { if (size == 0) return (NULL); buf = vmem_alloc(kmem_oversize_arena, size, kmflag & KM_VMFLAGS); if (buf == NULL) kmem_log_event(kmem_failure_log, NULL, NULL, (void *)size); else if (KMEM_DUMP(kmem_slab_cache)) { /* stats for dump intercept */ kmem_dump_oversize_allocs++; if (size > kmem_dump_oversize_max) kmem_dump_oversize_max = size; } return (buf); } buf = kmem_cache_alloc(cp, kmflag); if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp) && buf != NULL) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); ((uint8_t *)buf)[size] = KMEM_REDZONE_BYTE; ((uint32_t *)btp)[1] = KMEM_SIZE_ENCODE(size); if (cp->cache_flags & KMF_LITE) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); } } return (buf); } void kmem_free(void *buf, size_t size) { size_t index; kmem_cache_t *cp; if ((index = (size - 1) >> KMEM_ALIGN_SHIFT) < KMEM_ALLOC_TABLE_MAX) { cp = kmem_alloc_table[index]; /* fall through to kmem_cache_free() */ } else if ((index = ((size - 1) >> KMEM_BIG_SHIFT)) < kmem_big_alloc_table_max) { cp = kmem_big_alloc_table[index]; /* fall through to kmem_cache_free() */ } else { EQUIV(buf == NULL, size == 0); if (buf == NULL && size == 0) return; vmem_free(kmem_oversize_arena, buf, size); return; } if ((cp->cache_flags & KMF_BUFTAG) && !KMEM_DUMP(cp)) { kmem_buftag_t *btp = KMEM_BUFTAG(cp, buf); uint32_t *ip = (uint32_t *)btp; if (ip[1] != KMEM_SIZE_ENCODE(size)) { if (*(uint64_t *)buf == KMEM_FREE_PATTERN) { kmem_error(KMERR_DUPFREE, cp, buf); return; } if (KMEM_SIZE_VALID(ip[1])) { ip[0] = KMEM_SIZE_ENCODE(size); kmem_error(KMERR_BADSIZE, cp, buf); } else { kmem_error(KMERR_REDZONE, cp, buf); } return; } if (((uint8_t *)buf)[size] != KMEM_REDZONE_BYTE) { kmem_error(KMERR_REDZONE, cp, buf); return; } btp->bt_redzone = KMEM_REDZONE_PATTERN; if (cp->cache_flags & KMF_LITE) { KMEM_BUFTAG_LITE_ENTER(btp, kmem_lite_count, caller()); } } kmem_cache_free(cp, buf); } void * kmem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag) { size_t realsize = size + vmp->vm_quantum; void *addr; /* * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding * vm_quantum will cause integer wraparound. Check for this, and * blow off the firewall page in this case. Note that such a * giant allocation (the entire kernel address space) can never * be satisfied, so it will either fail immediately (VM_NOSLEEP) * or sleep forever (VM_SLEEP). Thus, there is no need for a * corresponding check in kmem_firewall_va_free(). */ if (realsize < size) realsize = size; /* * While boot still owns resource management, make sure that this * redzone virtual address allocation is properly accounted for in * OBPs "virtual-memory" "available" lists because we're * effectively claiming them for a red zone. If we don't do this, * the available lists become too fragmented and too large for the * current boot/kernel memory list interface. */ addr = vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT); if (addr != NULL && kvseg.s_base == NULL && realsize != size) (void) boot_virt_alloc((char *)addr + size, vmp->vm_quantum); return (addr); } void kmem_firewall_va_free(vmem_t *vmp, void *addr, size_t size) { ASSERT((kvseg.s_base == NULL ? va_to_pfn((char *)addr + size) : hat_getpfnum(kas.a_hat, (caddr_t)addr + size)) == PFN_INVALID); vmem_free(vmp, addr, size + vmp->vm_quantum); } /* * Try to allocate at least `size' bytes of memory without sleeping or * panicking. Return actual allocated size in `asize'. If allocation failed, * try final allocation with sleep or panic allowed. */ void * kmem_alloc_tryhard(size_t size, size_t *asize, int kmflag) { void *p; *asize = P2ROUNDUP(size, KMEM_ALIGN); do { p = kmem_alloc(*asize, (kmflag | KM_NOSLEEP) & ~KM_PANIC); if (p != NULL) return (p); *asize += KMEM_ALIGN; } while (*asize <= PAGESIZE); *asize = P2ROUNDUP(size, KMEM_ALIGN); return (kmem_alloc(*asize, kmflag)); } /* * Reclaim all unused memory from a cache. */ static void kmem_cache_reap(kmem_cache_t *cp) { ASSERT(taskq_member(kmem_taskq, curthread)); cp->cache_reap++; /* * Ask the cache's owner to free some memory if possible. * The idea is to handle things like the inode cache, which * typically sits on a bunch of memory that it doesn't truly * *need*. Reclaim policy is entirely up to the owner; this * callback is just an advisory plea for help. */ if (cp->cache_reclaim != NULL) { long delta; /* * Reclaimed memory should be reapable (not included in the * depot's working set). */ delta = cp->cache_full.ml_total; cp->cache_reclaim(cp->cache_private); delta = cp->cache_full.ml_total - delta; if (delta > 0) { mutex_enter(&cp->cache_depot_lock); cp->cache_full.ml_reaplimit += delta; cp->cache_full.ml_min += delta; mutex_exit(&cp->cache_depot_lock); } } kmem_depot_ws_reap(cp); if (cp->cache_defrag != NULL && !kmem_move_noreap) { kmem_cache_defrag(cp); } } static void kmem_reap_timeout(void *flag_arg) { uint32_t *flag = (uint32_t *)flag_arg; ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); *flag = 0; } static void kmem_reap_done(void *flag) { if (!callout_init_done) { /* can't schedule a timeout at this point */ kmem_reap_timeout(flag); } else { (void) timeout(kmem_reap_timeout, flag, kmem_reap_interval); } } static void kmem_reap_start(void *flag) { ASSERT(flag == &kmem_reaping || flag == &kmem_reaping_idspace); if (flag == &kmem_reaping) { kmem_cache_applyall(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); /* * if we have segkp under heap, reap segkp cache. */ if (segkp_fromheap) segkp_cache_free(); } else kmem_cache_applyall_id(kmem_cache_reap, kmem_taskq, TQ_NOSLEEP); /* * We use taskq_dispatch() to schedule a timeout to clear * the flag so that kmem_reap() becomes self-throttling: * we won't reap again until the current reap completes *and* * at least kmem_reap_interval ticks have elapsed. */ if (taskq_dispatch(kmem_taskq, kmem_reap_done, flag, TQ_NOSLEEP) == TASKQID_INVALID) kmem_reap_done(flag); } static void kmem_reap_common(void *flag_arg) { uint32_t *flag = (uint32_t *)flag_arg; if (MUTEX_HELD(&kmem_cache_lock) || kmem_taskq == NULL || atomic_cas_32(flag, 0, 1) != 0) return; /* * It may not be kosher to do memory allocation when a reap is called * (for example, if vmem_populate() is in the call chain). So we * start the reap going with a TQ_NOALLOC dispatch. If the dispatch * fails, we reset the flag, and the next reap will try again. */ if (taskq_dispatch(kmem_taskq, kmem_reap_start, flag, TQ_NOALLOC) == TASKQID_INVALID) *flag = 0; } /* * Reclaim all unused memory from all caches. Called from the VM system * when memory gets tight. */ void kmem_reap(void) { kmem_reap_common(&kmem_reaping); } /* * Reclaim all unused memory from identifier arenas, called when a vmem * arena not back by memory is exhausted. Since reaping memory-backed caches * cannot help with identifier exhaustion, we avoid both a large amount of * work and unwanted side-effects from reclaim callbacks. */ void kmem_reap_idspace(void) { kmem_reap_common(&kmem_reaping_idspace); } /* * Purge all magazines from a cache and set its magazine limit to zero. * All calls are serialized by the kmem_taskq lock, except for the final * call from kmem_cache_destroy(). */ static void kmem_cache_magazine_purge(kmem_cache_t *cp) { kmem_cpu_cache_t *ccp; kmem_magazine_t *mp, *pmp; int rounds, prounds, cpu_seqid; ASSERT(!list_link_active(&cp->cache_link) || taskq_member(kmem_taskq, curthread)); ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { ccp = &cp->cache_cpu[cpu_seqid]; mutex_enter(&ccp->cc_lock); mp = ccp->cc_loaded; pmp = ccp->cc_ploaded; rounds = ccp->cc_rounds; prounds = ccp->cc_prounds; ccp->cc_loaded = NULL; ccp->cc_ploaded = NULL; ccp->cc_rounds = -1; ccp->cc_prounds = -1; ccp->cc_magsize = 0; mutex_exit(&ccp->cc_lock); if (mp) kmem_magazine_destroy(cp, mp, rounds); if (pmp) kmem_magazine_destroy(cp, pmp, prounds); } kmem_depot_ws_zero(cp); kmem_depot_ws_reap(cp); } /* * Enable per-cpu magazines on a cache. */ static void kmem_cache_magazine_enable(kmem_cache_t *cp) { int cpu_seqid; if (cp->cache_flags & KMF_NOMAGAZINE) return; for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; mutex_enter(&ccp->cc_lock); ccp->cc_magsize = cp->cache_magtype->mt_magsize; mutex_exit(&ccp->cc_lock); } } /* * Allow our caller to determine if there are running reaps. * * This call is very conservative and may return B_TRUE even when * reaping activity isn't active. If it returns B_FALSE, then reaping * activity is definitely inactive. */ boolean_t kmem_cache_reap_active(void) { return (!taskq_empty(kmem_taskq)); } /* * Reap (almost) everything soon. * * Note: this does not wait for the reap-tasks to complete. Caller * should use kmem_cache_reap_active() (above) and/or moderation to * avoid scheduling too many reap-tasks. */ void kmem_cache_reap_soon(kmem_cache_t *cp) { ASSERT(list_link_active(&cp->cache_link)); kmem_depot_ws_zero(cp); (void) taskq_dispatch(kmem_taskq, (task_func_t *)kmem_depot_ws_reap, cp, TQ_SLEEP); } /* * Recompute a cache's magazine size. The trade-off is that larger magazines * provide a higher transfer rate with the depot, while smaller magazines * reduce memory consumption. Magazine resizing is an expensive operation; * it should not be done frequently. * * Changes to the magazine size are serialized by the kmem_taskq lock. * * Note: at present this only grows the magazine size. It might be useful * to allow shrinkage too. */ static void kmem_cache_magazine_resize(kmem_cache_t *cp) { kmem_magtype_t *mtp = cp->cache_magtype; ASSERT(taskq_member(kmem_taskq, curthread)); if (cp->cache_chunksize < mtp->mt_maxbuf) { kmem_cache_magazine_purge(cp); mutex_enter(&cp->cache_depot_lock); cp->cache_magtype = ++mtp; cp->cache_depot_contention_prev = cp->cache_depot_contention + INT_MAX; mutex_exit(&cp->cache_depot_lock); kmem_cache_magazine_enable(cp); } } /* * Rescale a cache's hash table, so that the table size is roughly the * cache size. We want the average lookup time to be extremely small. */ static void kmem_hash_rescale(kmem_cache_t *cp) { kmem_bufctl_t **old_table, **new_table, *bcp; size_t old_size, new_size, h; ASSERT(taskq_member(kmem_taskq, curthread)); new_size = MAX(KMEM_HASH_INITIAL, 1 << (highbit(3 * cp->cache_buftotal + 4) - 2)); old_size = cp->cache_hash_mask + 1; if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) return; new_table = vmem_alloc(kmem_hash_arena, new_size * sizeof (void *), VM_NOSLEEP); if (new_table == NULL) return; bzero(new_table, new_size * sizeof (void *)); mutex_enter(&cp->cache_lock); old_size = cp->cache_hash_mask + 1; old_table = cp->cache_hash_table; cp->cache_hash_mask = new_size - 1; cp->cache_hash_table = new_table; cp->cache_rescale++; for (h = 0; h < old_size; h++) { bcp = old_table[h]; while (bcp != NULL) { void *addr = bcp->bc_addr; kmem_bufctl_t *next_bcp = bcp->bc_next; kmem_bufctl_t **hash_bucket = KMEM_HASH(cp, addr); bcp->bc_next = *hash_bucket; *hash_bucket = bcp; bcp = next_bcp; } } mutex_exit(&cp->cache_lock); vmem_free(kmem_hash_arena, old_table, old_size * sizeof (void *)); } /* * Perform periodic maintenance on a cache: hash rescaling, depot working-set * update, magazine resizing, and slab consolidation. */ static void kmem_cache_update(kmem_cache_t *cp) { int need_hash_rescale = 0; int need_magazine_resize = 0; ASSERT(MUTEX_HELD(&kmem_cache_lock)); /* * If the cache has become much larger or smaller than its hash table, * fire off a request to rescale the hash table. */ mutex_enter(&cp->cache_lock); if ((cp->cache_flags & KMF_HASH) && (cp->cache_buftotal > (cp->cache_hash_mask << 1) || (cp->cache_buftotal < (cp->cache_hash_mask >> 1) && cp->cache_hash_mask > KMEM_HASH_INITIAL))) need_hash_rescale = 1; mutex_exit(&cp->cache_lock); /* * Update the depot working set statistics. */ kmem_depot_ws_update(cp); /* * If there's a lot of contention in the depot, * increase the magazine size. */ mutex_enter(&cp->cache_depot_lock); if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf && (int)(cp->cache_depot_contention - cp->cache_depot_contention_prev) > kmem_depot_contention) need_magazine_resize = 1; cp->cache_depot_contention_prev = cp->cache_depot_contention; mutex_exit(&cp->cache_depot_lock); if (need_hash_rescale) (void) taskq_dispatch(kmem_taskq, (task_func_t *)kmem_hash_rescale, cp, TQ_NOSLEEP); if (need_magazine_resize) (void) taskq_dispatch(kmem_taskq, (task_func_t *)kmem_cache_magazine_resize, cp, TQ_NOSLEEP); if (cp->cache_defrag != NULL) (void) taskq_dispatch(kmem_taskq, (task_func_t *)kmem_cache_scan, cp, TQ_NOSLEEP); } static void kmem_update(void *); static void kmem_update_timeout(void *dummy) { (void) timeout(kmem_update, dummy, kmem_reap_interval); } static void kmem_update(void *dummy) { kmem_cache_applyall(kmem_cache_update, NULL, TQ_NOSLEEP); /* * We use taskq_dispatch() to reschedule the timeout so that * kmem_update() becomes self-throttling: it won't schedule * new tasks until all previous tasks have completed. */ if (taskq_dispatch(kmem_taskq, kmem_update_timeout, dummy, TQ_NOSLEEP) == TASKQID_INVALID) kmem_update_timeout(NULL); } static int kmem_cache_kstat_update(kstat_t *ksp, int rw) { struct kmem_cache_kstat *kmcp = &kmem_cache_kstat; kmem_cache_t *cp = ksp->ks_private; uint64_t cpu_buf_avail; uint64_t buf_avail = 0; int cpu_seqid; long reap; ASSERT(MUTEX_HELD(&kmem_cache_kstat_lock)); if (rw == KSTAT_WRITE) return (EACCES); mutex_enter(&cp->cache_lock); kmcp->kmc_alloc_fail.value.ui64 = cp->cache_alloc_fail; kmcp->kmc_alloc.value.ui64 = cp->cache_slab_alloc; kmcp->kmc_free.value.ui64 = cp->cache_slab_free; kmcp->kmc_slab_alloc.value.ui64 = cp->cache_slab_alloc; kmcp->kmc_slab_free.value.ui64 = cp->cache_slab_free; for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; mutex_enter(&ccp->cc_lock); cpu_buf_avail = 0; if (ccp->cc_rounds > 0) cpu_buf_avail += ccp->cc_rounds; if (ccp->cc_prounds > 0) cpu_buf_avail += ccp->cc_prounds; kmcp->kmc_alloc.value.ui64 += ccp->cc_alloc; kmcp->kmc_free.value.ui64 += ccp->cc_free; buf_avail += cpu_buf_avail; mutex_exit(&ccp->cc_lock); } mutex_enter(&cp->cache_depot_lock); kmcp->kmc_depot_alloc.value.ui64 = cp->cache_full.ml_alloc; kmcp->kmc_depot_free.value.ui64 = cp->cache_empty.ml_alloc; kmcp->kmc_depot_contention.value.ui64 = cp->cache_depot_contention; kmcp->kmc_full_magazines.value.ui64 = cp->cache_full.ml_total; kmcp->kmc_empty_magazines.value.ui64 = cp->cache_empty.ml_total; kmcp->kmc_magazine_size.value.ui64 = (cp->cache_flags & KMF_NOMAGAZINE) ? 0 : cp->cache_magtype->mt_magsize; kmcp->kmc_alloc.value.ui64 += cp->cache_full.ml_alloc; kmcp->kmc_free.value.ui64 += cp->cache_empty.ml_alloc; buf_avail += cp->cache_full.ml_total * cp->cache_magtype->mt_magsize; reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); reap = MIN(reap, cp->cache_full.ml_total); mutex_exit(&cp->cache_depot_lock); kmcp->kmc_buf_size.value.ui64 = cp->cache_bufsize; kmcp->kmc_align.value.ui64 = cp->cache_align; kmcp->kmc_chunk_size.value.ui64 = cp->cache_chunksize; kmcp->kmc_slab_size.value.ui64 = cp->cache_slabsize; kmcp->kmc_buf_constructed.value.ui64 = buf_avail; buf_avail += cp->cache_bufslab; kmcp->kmc_buf_avail.value.ui64 = buf_avail; kmcp->kmc_buf_inuse.value.ui64 = cp->cache_buftotal - buf_avail; kmcp->kmc_buf_total.value.ui64 = cp->cache_buftotal; kmcp->kmc_buf_max.value.ui64 = cp->cache_bufmax; kmcp->kmc_slab_create.value.ui64 = cp->cache_slab_create; kmcp->kmc_slab_destroy.value.ui64 = cp->cache_slab_destroy; kmcp->kmc_hash_size.value.ui64 = (cp->cache_flags & KMF_HASH) ? cp->cache_hash_mask + 1 : 0; kmcp->kmc_hash_lookup_depth.value.ui64 = cp->cache_lookup_depth; kmcp->kmc_hash_rescale.value.ui64 = cp->cache_rescale; kmcp->kmc_vmem_source.value.ui64 = cp->cache_arena->vm_id; kmcp->kmc_reap.value.ui64 = cp->cache_reap; if (cp->cache_defrag == NULL) { kmcp->kmc_move_callbacks.value.ui64 = 0; kmcp->kmc_move_yes.value.ui64 = 0; kmcp->kmc_move_no.value.ui64 = 0; kmcp->kmc_move_later.value.ui64 = 0; kmcp->kmc_move_dont_need.value.ui64 = 0; kmcp->kmc_move_dont_know.value.ui64 = 0; kmcp->kmc_move_hunt_found.value.ui64 = 0; kmcp->kmc_move_slabs_freed.value.ui64 = 0; kmcp->kmc_defrag.value.ui64 = 0; kmcp->kmc_scan.value.ui64 = 0; kmcp->kmc_move_reclaimable.value.ui64 = 0; } else { int64_t reclaimable; kmem_defrag_t *kd = cp->cache_defrag; kmcp->kmc_move_callbacks.value.ui64 = kd->kmd_callbacks; kmcp->kmc_move_yes.value.ui64 = kd->kmd_yes; kmcp->kmc_move_no.value.ui64 = kd->kmd_no; kmcp->kmc_move_later.value.ui64 = kd->kmd_later; kmcp->kmc_move_dont_need.value.ui64 = kd->kmd_dont_need; kmcp->kmc_move_dont_know.value.ui64 = kd->kmd_dont_know; kmcp->kmc_move_hunt_found.value.ui64 = 0; kmcp->kmc_move_slabs_freed.value.ui64 = kd->kmd_slabs_freed; kmcp->kmc_defrag.value.ui64 = kd->kmd_defrags; kmcp->kmc_scan.value.ui64 = kd->kmd_scans; reclaimable = cp->cache_bufslab - (cp->cache_maxchunks - 1); reclaimable = MAX(reclaimable, 0); reclaimable += ((uint64_t)reap * cp->cache_magtype->mt_magsize); kmcp->kmc_move_reclaimable.value.ui64 = reclaimable; } mutex_exit(&cp->cache_lock); return (0); } /* * Return a named statistic about a particular cache. * This shouldn't be called very often, so it's currently designed for * simplicity (leverages existing kstat support) rather than efficiency. */ uint64_t kmem_cache_stat(kmem_cache_t *cp, char *name) { int i; kstat_t *ksp = cp->cache_kstat; kstat_named_t *knp = (kstat_named_t *)&kmem_cache_kstat; uint64_t value = 0; if (ksp != NULL) { mutex_enter(&kmem_cache_kstat_lock); (void) kmem_cache_kstat_update(ksp, KSTAT_READ); for (i = 0; i < ksp->ks_ndata; i++) { if (strcmp(knp[i].name, name) == 0) { value = knp[i].value.ui64; break; } } mutex_exit(&kmem_cache_kstat_lock); } return (value); } /* * Return an estimate of currently available kernel heap memory. * On 32-bit systems, physical memory may exceed virtual memory, * we just truncate the result at 1GB. */ size_t kmem_avail(void) { spgcnt_t rmem = availrmem - tune.t_minarmem; spgcnt_t fmem = freemem - minfree; return ((size_t)ptob(MIN(MAX(MIN(rmem, fmem), 0), 1 << (30 - PAGESHIFT)))); } /* * Return the maximum amount of memory that is (in theory) allocatable * from the heap. This may be used as an estimate only since there * is no guarentee this space will still be available when an allocation * request is made, nor that the space may be allocated in one big request * due to kernel heap fragmentation. */ size_t kmem_maxavail(void) { spgcnt_t pmem = availrmem - tune.t_minarmem; spgcnt_t vmem = btop(vmem_size(heap_arena, VMEM_FREE)); return ((size_t)ptob(MAX(MIN(pmem, vmem), 0))); } /* * Indicate whether memory-intensive kmem debugging is enabled. */ int kmem_debugging(void) { return (kmem_flags & (KMF_AUDIT | KMF_REDZONE)); } /* binning function, sorts finely at the two extremes */ #define KMEM_PARTIAL_SLAB_WEIGHT(sp, binshift) \ ((((sp)->slab_refcnt <= (binshift)) || \ (((sp)->slab_chunks - (sp)->slab_refcnt) <= (binshift))) \ ? -(sp)->slab_refcnt \ : -((binshift) + ((sp)->slab_refcnt >> (binshift)))) /* * Minimizing the number of partial slabs on the freelist minimizes * fragmentation (the ratio of unused buffers held by the slab layer). There are * two ways to get a slab off of the freelist: 1) free all the buffers on the * slab, and 2) allocate all the buffers on the slab. It follows that we want * the most-used slabs at the front of the list where they have the best chance * of being completely allocated, and the least-used slabs at a safe distance * from the front to improve the odds that the few remaining buffers will all be * freed before another allocation can tie up the slab. For that reason a slab * with a higher slab_refcnt sorts less than than a slab with a lower * slab_refcnt. * * However, if a slab has at least one buffer that is deemed unfreeable, we * would rather have that slab at the front of the list regardless of * slab_refcnt, since even one unfreeable buffer makes the entire slab * unfreeable. If the client returns KMEM_CBRC_NO in response to a cache_move() * callback, the slab is marked unfreeable for as long as it remains on the * freelist. */ static int kmem_partial_slab_cmp(const void *p0, const void *p1) { const kmem_cache_t *cp; const kmem_slab_t *s0 = p0; const kmem_slab_t *s1 = p1; int w0, w1; size_t binshift; ASSERT(KMEM_SLAB_IS_PARTIAL(s0)); ASSERT(KMEM_SLAB_IS_PARTIAL(s1)); ASSERT(s0->slab_cache == s1->slab_cache); cp = s1->slab_cache; ASSERT(MUTEX_HELD(&cp->cache_lock)); binshift = cp->cache_partial_binshift; /* weight of first slab */ w0 = KMEM_PARTIAL_SLAB_WEIGHT(s0, binshift); if (s0->slab_flags & KMEM_SLAB_NOMOVE) { w0 -= cp->cache_maxchunks; } /* weight of second slab */ w1 = KMEM_PARTIAL_SLAB_WEIGHT(s1, binshift); if (s1->slab_flags & KMEM_SLAB_NOMOVE) { w1 -= cp->cache_maxchunks; } if (w0 < w1) return (-1); if (w0 > w1) return (1); /* compare pointer values */ if ((uintptr_t)s0 < (uintptr_t)s1) return (-1); if ((uintptr_t)s0 > (uintptr_t)s1) return (1); return (0); } /* * It must be valid to call the destructor (if any) on a newly created object. * That is, the constructor (if any) must leave the object in a valid state for * the destructor. */ kmem_cache_t * kmem_cache_create( char *name, /* descriptive name for this cache */ size_t bufsize, /* size of the objects it manages */ size_t align, /* required object alignment */ int (*constructor)(void *, void *, int), /* object constructor */ void (*destructor)(void *, void *), /* object destructor */ void (*reclaim)(void *), /* memory reclaim callback */ void *private, /* pass-thru arg for constr/destr/reclaim */ vmem_t *vmp, /* vmem source for slab allocation */ int cflags) /* cache creation flags */ { int cpu_seqid; size_t chunksize; kmem_cache_t *cp; kmem_magtype_t *mtp; size_t csize = KMEM_CACHE_SIZE(max_ncpus); #ifdef DEBUG /* * Cache names should conform to the rules for valid C identifiers */ if (!strident_valid(name)) { cmn_err(CE_CONT, "kmem_cache_create: '%s' is an invalid cache name\n" "cache names must conform to the rules for " "C identifiers\n", name); } #endif /* DEBUG */ if (vmp == NULL) vmp = kmem_default_arena; /* * If this kmem cache has an identifier vmem arena as its source, mark * it such to allow kmem_reap_idspace(). */ ASSERT(!(cflags & KMC_IDENTIFIER)); /* consumer should not set this */ if (vmp->vm_cflags & VMC_IDENTIFIER) cflags |= KMC_IDENTIFIER; /* * Get a kmem_cache structure. We arrange that cp->cache_cpu[] * is aligned on a KMEM_CPU_CACHE_SIZE boundary to prevent * false sharing of per-CPU data. */ cp = vmem_xalloc(kmem_cache_arena, csize, KMEM_CPU_CACHE_SIZE, P2NPHASE(csize, KMEM_CPU_CACHE_SIZE), 0, NULL, NULL, VM_SLEEP); bzero(cp, csize); list_link_init(&cp->cache_link); if (align == 0) align = KMEM_ALIGN; /* * If we're not at least KMEM_ALIGN aligned, we can't use free * memory to hold bufctl information (because we can't safely * perform word loads and stores on it). */ if (align < KMEM_ALIGN) cflags |= KMC_NOTOUCH; if (!ISP2(align) || align > vmp->vm_quantum) panic("kmem_cache_create: bad alignment %lu", align); mutex_enter(&kmem_flags_lock); if (kmem_flags & KMF_RANDOMIZE) kmem_flags = (((kmem_flags | ~KMF_RANDOM) + 1) & KMF_RANDOM) | KMF_RANDOMIZE; cp->cache_flags = (kmem_flags | cflags) & KMF_DEBUG; mutex_exit(&kmem_flags_lock); /* * Make sure all the various flags are reasonable. */ ASSERT(!(cflags & KMC_NOHASH) || !(cflags & KMC_NOTOUCH)); if (cp->cache_flags & KMF_LITE) { if (bufsize >= kmem_lite_minsize && align <= kmem_lite_maxalign && P2PHASE(bufsize, kmem_lite_maxalign) != 0) { cp->cache_flags |= KMF_BUFTAG; cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); } else { cp->cache_flags &= ~KMF_DEBUG; } } if (cp->cache_flags & KMF_DEADBEEF) cp->cache_flags |= KMF_REDZONE; if ((cflags & KMC_QCACHE) && (cp->cache_flags & KMF_AUDIT)) cp->cache_flags |= KMF_NOMAGAZINE; if (cflags & KMC_NODEBUG) cp->cache_flags &= ~KMF_DEBUG; if (cflags & KMC_NOTOUCH) cp->cache_flags &= ~KMF_TOUCH; if (cflags & KMC_PREFILL) cp->cache_flags |= KMF_PREFILL; if (cflags & KMC_NOHASH) cp->cache_flags &= ~(KMF_AUDIT | KMF_FIREWALL); if (cflags & KMC_NOMAGAZINE) cp->cache_flags |= KMF_NOMAGAZINE; if ((cp->cache_flags & KMF_AUDIT) && !(cflags & KMC_NOTOUCH)) cp->cache_flags |= KMF_REDZONE; if (!(cp->cache_flags & KMF_AUDIT)) cp->cache_flags &= ~KMF_CONTENTS; if ((cp->cache_flags & KMF_BUFTAG) && bufsize >= kmem_minfirewall && !(cp->cache_flags & KMF_LITE) && !(cflags & KMC_NOHASH)) cp->cache_flags |= KMF_FIREWALL; if (vmp != kmem_default_arena || kmem_firewall_arena == NULL) cp->cache_flags &= ~KMF_FIREWALL; if (cp->cache_flags & KMF_FIREWALL) { cp->cache_flags &= ~KMF_BUFTAG; cp->cache_flags |= KMF_NOMAGAZINE; ASSERT(vmp == kmem_default_arena); vmp = kmem_firewall_arena; } /* * Set cache properties. */ (void) strncpy(cp->cache_name, name, KMEM_CACHE_NAMELEN); strident_canon(cp->cache_name, KMEM_CACHE_NAMELEN + 1); cp->cache_bufsize = bufsize; cp->cache_align = align; cp->cache_constructor = constructor; cp->cache_destructor = destructor; cp->cache_reclaim = reclaim; cp->cache_private = private; cp->cache_arena = vmp; cp->cache_cflags = cflags; /* * Determine the chunk size. */ chunksize = bufsize; if (align >= KMEM_ALIGN) { chunksize = P2ROUNDUP(chunksize, KMEM_ALIGN); cp->cache_bufctl = chunksize - KMEM_ALIGN; } if (cp->cache_flags & KMF_BUFTAG) { cp->cache_bufctl = chunksize; cp->cache_buftag = chunksize; if (cp->cache_flags & KMF_LITE) chunksize += KMEM_BUFTAG_LITE_SIZE(kmem_lite_count); else chunksize += sizeof (kmem_buftag_t); } if (cp->cache_flags & KMF_DEADBEEF) { cp->cache_verify = MIN(cp->cache_buftag, kmem_maxverify); if (cp->cache_flags & KMF_LITE) cp->cache_verify = sizeof (uint64_t); } cp->cache_contents = MIN(cp->cache_bufctl, kmem_content_maxsave); cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align); /* * Now that we know the chunk size, determine the optimal slab size. */ if (vmp == kmem_firewall_arena) { cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum); cp->cache_mincolor = cp->cache_slabsize - chunksize; cp->cache_maxcolor = cp->cache_mincolor; cp->cache_flags |= KMF_HASH; ASSERT(!(cp->cache_flags & KMF_BUFTAG)); } else if ((cflags & KMC_NOHASH) || (!(cflags & KMC_NOTOUCH) && !(cp->cache_flags & KMF_AUDIT) && chunksize < vmp->vm_quantum / KMEM_VOID_FRACTION)) { cp->cache_slabsize = vmp->vm_quantum; cp->cache_mincolor = 0; cp->cache_maxcolor = (cp->cache_slabsize - sizeof (kmem_slab_t)) % chunksize; ASSERT(chunksize + sizeof (kmem_slab_t) <= cp->cache_slabsize); ASSERT(!(cp->cache_flags & KMF_AUDIT)); } else { size_t chunks, bestfit, waste, slabsize; size_t minwaste = LONG_MAX; for (chunks = 1; chunks <= KMEM_VOID_FRACTION; chunks++) { slabsize = P2ROUNDUP(chunksize * chunks, vmp->vm_quantum); chunks = slabsize / chunksize; waste = (slabsize % chunksize) / chunks; if (waste < minwaste) { minwaste = waste; bestfit = slabsize; } } if (cflags & KMC_QCACHE) bestfit = VMEM_QCACHE_SLABSIZE(vmp->vm_qcache_max); cp->cache_slabsize = bestfit; cp->cache_mincolor = 0; cp->cache_maxcolor = bestfit % chunksize; cp->cache_flags |= KMF_HASH; } cp->cache_maxchunks = (cp->cache_slabsize / cp->cache_chunksize); cp->cache_partial_binshift = highbit(cp->cache_maxchunks / 16) + 1; /* * Disallowing prefill when either the DEBUG or HASH flag is set or when * there is a constructor avoids some tricky issues with debug setup * that may be revisited later. We cannot allow prefill in a * metadata cache because of potential recursion. */ if (vmp == kmem_msb_arena || cp->cache_flags & (KMF_HASH | KMF_BUFTAG) || cp->cache_constructor != NULL) cp->cache_flags &= ~KMF_PREFILL; if (cp->cache_flags & KMF_HASH) { ASSERT(!(cflags & KMC_NOHASH)); cp->cache_bufctl_cache = (cp->cache_flags & KMF_AUDIT) ? kmem_bufctl_audit_cache : kmem_bufctl_cache; } if (cp->cache_maxcolor >= vmp->vm_quantum) cp->cache_maxcolor = vmp->vm_quantum - 1; cp->cache_color = cp->cache_mincolor; /* * Initialize the rest of the slab layer. */ mutex_init(&cp->cache_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&cp->cache_partial_slabs, kmem_partial_slab_cmp, sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); /* LINTED: E_TRUE_LOGICAL_EXPR */ ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); /* reuse partial slab AVL linkage for complete slab list linkage */ list_create(&cp->cache_complete_slabs, sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); if (cp->cache_flags & KMF_HASH) { cp->cache_hash_table = vmem_alloc(kmem_hash_arena, KMEM_HASH_INITIAL * sizeof (void *), VM_SLEEP); bzero(cp->cache_hash_table, KMEM_HASH_INITIAL * sizeof (void *)); cp->cache_hash_mask = KMEM_HASH_INITIAL - 1; cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1; } /* * Initialize the depot. */ mutex_init(&cp->cache_depot_lock, NULL, MUTEX_DEFAULT, NULL); for (mtp = kmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) continue; cp->cache_magtype = mtp; /* * Initialize the CPU layer. */ for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) { kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid]; mutex_init(&ccp->cc_lock, NULL, MUTEX_DEFAULT, NULL); ccp->cc_flags = cp->cache_flags; ccp->cc_rounds = -1; ccp->cc_prounds = -1; } /* * Create the cache's kstats. */ if ((cp->cache_kstat = kstat_create("unix", 0, cp->cache_name, "kmem_cache", KSTAT_TYPE_NAMED, sizeof (kmem_cache_kstat) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { cp->cache_kstat->ks_data = &kmem_cache_kstat; cp->cache_kstat->ks_update = kmem_cache_kstat_update; cp->cache_kstat->ks_private = cp; cp->cache_kstat->ks_lock = &kmem_cache_kstat_lock; kstat_install(cp->cache_kstat); } /* * Add the cache to the global list. This makes it visible * to kmem_update(), so the cache must be ready for business. */ mutex_enter(&kmem_cache_lock); list_insert_tail(&kmem_caches, cp); mutex_exit(&kmem_cache_lock); if (kmem_ready) kmem_cache_magazine_enable(cp); return (cp); } static int kmem_move_cmp(const void *buf, const void *p) { const kmem_move_t *kmm = p; uintptr_t v1 = (uintptr_t)buf; uintptr_t v2 = (uintptr_t)kmm->kmm_from_buf; return (v1 < v2 ? -1 : (v1 > v2 ? 1 : 0)); } static void kmem_reset_reclaim_threshold(kmem_defrag_t *kmd) { kmd->kmd_reclaim_numer = 1; } /* * Initially, when choosing candidate slabs for buffers to move, we want to be * very selective and take only slabs that are less than * (1 / KMEM_VOID_FRACTION) allocated. If we have difficulty finding candidate * slabs, then we raise the allocation ceiling incrementally. The reclaim * threshold is reset to (1 / KMEM_VOID_FRACTION) as soon as the cache is no * longer fragmented. */ static void kmem_adjust_reclaim_threshold(kmem_defrag_t *kmd, int direction) { if (direction > 0) { /* make it easier to find a candidate slab */ if (kmd->kmd_reclaim_numer < (KMEM_VOID_FRACTION - 1)) { kmd->kmd_reclaim_numer++; } } else { /* be more selective */ if (kmd->kmd_reclaim_numer > 1) { kmd->kmd_reclaim_numer--; } } } void kmem_cache_set_move(kmem_cache_t *cp, kmem_cbrc_t (*move)(void *, void *, size_t, void *)) { kmem_defrag_t *defrag; ASSERT(move != NULL); /* * The consolidator does not support NOTOUCH caches because kmem cannot * initialize their slabs with the 0xbaddcafe memory pattern, which sets * a low order bit usable by clients to distinguish uninitialized memory * from known objects (see kmem_slab_create). */ ASSERT(!(cp->cache_cflags & KMC_NOTOUCH)); ASSERT(!(cp->cache_cflags & KMC_IDENTIFIER)); /* * We should not be holding anyone's cache lock when calling * kmem_cache_alloc(), so allocate in all cases before acquiring the * lock. */ defrag = kmem_cache_alloc(kmem_defrag_cache, KM_SLEEP); mutex_enter(&cp->cache_lock); if (KMEM_IS_MOVABLE(cp)) { if (cp->cache_move == NULL) { ASSERT(cp->cache_slab_alloc == 0); cp->cache_defrag = defrag; defrag = NULL; /* nothing to free */ bzero(cp->cache_defrag, sizeof (kmem_defrag_t)); avl_create(&cp->cache_defrag->kmd_moves_pending, kmem_move_cmp, sizeof (kmem_move_t), offsetof(kmem_move_t, kmm_entry)); /* LINTED: E_TRUE_LOGICAL_EXPR */ ASSERT(sizeof (list_node_t) <= sizeof (avl_node_t)); /* reuse the slab's AVL linkage for deadlist linkage */ list_create(&cp->cache_defrag->kmd_deadlist, sizeof (kmem_slab_t), offsetof(kmem_slab_t, slab_link)); kmem_reset_reclaim_threshold(cp->cache_defrag); } cp->cache_move = move; } mutex_exit(&cp->cache_lock); if (defrag != NULL) { kmem_cache_free(kmem_defrag_cache, defrag); /* unused */ } } void kmem_cache_destroy(kmem_cache_t *cp) { int cpu_seqid; /* * Remove the cache from the global cache list so that no one else * can schedule tasks on its behalf, wait for any pending tasks to * complete, purge the cache, and then destroy it. */ mutex_enter(&kmem_cache_lock); list_remove(&kmem_caches, cp); mutex_exit(&kmem_cache_lock); if (kmem_taskq != NULL) taskq_wait(kmem_taskq); if (kmem_move_taskq != NULL && cp->cache_defrag != NULL) taskq_wait(kmem_move_taskq); kmem_cache_magazine_purge(cp); mutex_enter(&cp->cache_lock); if (cp->cache_buftotal != 0) cmn_err(CE_WARN, "kmem_cache_destroy: '%s' (%p) not empty", cp->cache_name, (void *)cp); if (cp->cache_defrag != NULL) { avl_destroy(&cp->cache_defrag->kmd_moves_pending); list_destroy(&cp->cache_defrag->kmd_deadlist); kmem_cache_free(kmem_defrag_cache, cp->cache_defrag); cp->cache_defrag = NULL; } /* * The cache is now dead. There should be no further activity. We * enforce this by setting land mines in the constructor, destructor, * reclaim, and move routines that induce a kernel text fault if * invoked. */ cp->cache_constructor = (int (*)(void *, void *, int))1; cp->cache_destructor = (void (*)(void *, void *))2; cp->cache_reclaim = (void (*)(void *))3; cp->cache_move = (kmem_cbrc_t (*)(void *, void *, size_t, void *))4; mutex_exit(&cp->cache_lock); kstat_delete(cp->cache_kstat); if (cp->cache_hash_table != NULL) vmem_free(kmem_hash_arena, cp->cache_hash_table, (cp->cache_hash_mask + 1) * sizeof (void *)); for (cpu_seqid = 0; cpu_seqid < max_ncpus; cpu_seqid++) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock); mutex_destroy(&cp->cache_depot_lock); mutex_destroy(&cp->cache_lock); vmem_free(kmem_cache_arena, cp, KMEM_CACHE_SIZE(max_ncpus)); } /*ARGSUSED*/ static int kmem_cpu_setup(cpu_setup_t what, int id, void *arg) { ASSERT(MUTEX_HELD(&cpu_lock)); if (what == CPU_UNCONFIG) { kmem_cache_applyall(kmem_cache_magazine_purge, kmem_taskq, TQ_SLEEP); kmem_cache_applyall(kmem_cache_magazine_enable, kmem_taskq, TQ_SLEEP); } return (0); } static void kmem_alloc_caches_create(const int *array, size_t count, kmem_cache_t **alloc_table, size_t maxbuf, uint_t shift) { char name[KMEM_CACHE_NAMELEN + 1]; size_t table_unit = (1 << shift); /* range of one alloc_table entry */ size_t size = table_unit; int i; for (i = 0; i < count; i++) { size_t cache_size = array[i]; size_t align = KMEM_ALIGN; kmem_cache_t *cp; /* if the table has an entry for maxbuf, we're done */ if (size > maxbuf) break; /* cache size must be a multiple of the table unit */ ASSERT(P2PHASE(cache_size, table_unit) == 0); /* * If they allocate a multiple of the coherency granularity, * they get a coherency-granularity-aligned address. */ if (IS_P2ALIGNED(cache_size, 64)) align = 64; if (IS_P2ALIGNED(cache_size, PAGESIZE)) align = PAGESIZE; (void) snprintf(name, sizeof (name), "kmem_alloc_%lu", cache_size); cp = kmem_cache_create(name, cache_size, align, NULL, NULL, NULL, NULL, NULL, KMC_KMEM_ALLOC); while (size <= cache_size) { alloc_table[(size - 1) >> shift] = cp; size += table_unit; } } ASSERT(size > maxbuf); /* i.e. maxbuf <= max(cache_size) */ } static void kmem_cache_init(int pass, int use_large_pages) { int i; size_t maxbuf; kmem_magtype_t *mtp; for (i = 0; i < sizeof (kmem_magtype) / sizeof (*mtp); i++) { char name[KMEM_CACHE_NAMELEN + 1]; mtp = &kmem_magtype[i]; (void) sprintf(name, "kmem_magazine_%d", mtp->mt_magsize); mtp->mt_cache = kmem_cache_create(name, (mtp->mt_magsize + 1) * sizeof (void *), mtp->mt_align, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); } kmem_slab_cache = kmem_cache_create("kmem_slab_cache", sizeof (kmem_slab_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); kmem_bufctl_cache = kmem_cache_create("kmem_bufctl_cache", sizeof (kmem_bufctl_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); kmem_bufctl_audit_cache = kmem_cache_create("kmem_bufctl_audit_cache", sizeof (kmem_bufctl_audit_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); if (pass == 2) { kmem_va_arena = vmem_create("kmem_va", NULL, 0, PAGESIZE, vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, VM_SLEEP); if (use_large_pages) { kmem_default_arena = vmem_xcreate("kmem_default", NULL, 0, PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, kmem_va_arena, 0, VMC_DUMPSAFE | VM_SLEEP); } else { kmem_default_arena = vmem_create("kmem_default", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_va_arena, 0, VMC_DUMPSAFE | VM_SLEEP); } /* Figure out what our maximum cache size is */ maxbuf = kmem_max_cached; if (maxbuf <= KMEM_MAXBUF) { maxbuf = 0; kmem_max_cached = KMEM_MAXBUF; } else { size_t size = 0; size_t max = sizeof (kmem_big_alloc_sizes) / sizeof (int); /* * Round maxbuf up to an existing cache size. If maxbuf * is larger than the largest cache, we truncate it to * the largest cache's size. */ for (i = 0; i < max; i++) { size = kmem_big_alloc_sizes[i]; if (maxbuf <= size) break; } kmem_max_cached = maxbuf = size; } /* * The big alloc table may not be completely overwritten, so * we clear out any stale cache pointers from the first pass. */ bzero(kmem_big_alloc_table, sizeof (kmem_big_alloc_table)); } else { /* * During the first pass, the kmem_alloc_* caches * are treated as metadata. */ kmem_default_arena = kmem_msb_arena; maxbuf = KMEM_BIG_MAXBUF_32BIT; } /* * Set up the default caches to back kmem_alloc() */ kmem_alloc_caches_create( kmem_alloc_sizes, sizeof (kmem_alloc_sizes) / sizeof (int), kmem_alloc_table, KMEM_MAXBUF, KMEM_ALIGN_SHIFT); kmem_alloc_caches_create( kmem_big_alloc_sizes, sizeof (kmem_big_alloc_sizes) / sizeof (int), kmem_big_alloc_table, maxbuf, KMEM_BIG_SHIFT); kmem_big_alloc_table_max = maxbuf >> KMEM_BIG_SHIFT; } void kmem_init(void) { kmem_cache_t *cp; int old_kmem_flags = kmem_flags; int use_large_pages = 0; size_t maxverify, minfirewall; kstat_init(); /* * Don't do firewalled allocations if the heap is less than 1TB * (i.e. on a 32-bit kernel) * The resulting VM_NEXTFIT allocations would create too much * fragmentation in a small heap. */ #if defined(_LP64) maxverify = minfirewall = PAGESIZE / 2; #else maxverify = minfirewall = ULONG_MAX; #endif /* LINTED */ ASSERT(sizeof (kmem_cpu_cache_t) == KMEM_CPU_CACHE_SIZE); list_create(&kmem_caches, sizeof (kmem_cache_t), offsetof(kmem_cache_t, cache_link)); kmem_metadata_arena = vmem_create("kmem_metadata", NULL, 0, PAGESIZE, vmem_alloc, vmem_free, heap_arena, 8 * PAGESIZE, VM_SLEEP | VMC_NO_QCACHE); kmem_msb_arena = vmem_create("kmem_msb", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VMC_DUMPSAFE | VM_SLEEP); kmem_cache_arena = vmem_create("kmem_cache", NULL, 0, KMEM_ALIGN, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); kmem_hash_arena = vmem_create("kmem_hash", NULL, 0, KMEM_ALIGN, segkmem_alloc, segkmem_free, kmem_metadata_arena, 0, VM_SLEEP); kmem_log_arena = vmem_create("kmem_log", NULL, 0, KMEM_ALIGN, segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); kmem_firewall_va_arena = vmem_create("kmem_firewall_va", NULL, 0, PAGESIZE, kmem_firewall_va_alloc, kmem_firewall_va_free, heap_arena, 0, VM_SLEEP); kmem_firewall_arena = vmem_create("kmem_firewall", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_firewall_va_arena, 0, VMC_DUMPSAFE | VM_SLEEP); /* temporary oversize arena for mod_read_system_file */ kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); kmem_reap_interval = 15 * hz; /* * Read /etc/system. This is a chicken-and-egg problem because * kmem_flags may be set in /etc/system, but mod_read_system_file() * needs to use the allocator. The simplest solution is to create * all the standard kmem caches, read /etc/system, destroy all the * caches we just created, and then create them all again in light * of the (possibly) new kmem_flags and other kmem tunables. */ kmem_cache_init(1, 0); mod_read_system_file(boothowto & RB_ASKNAME); while ((cp = list_tail(&kmem_caches)) != NULL) kmem_cache_destroy(cp); vmem_destroy(kmem_oversize_arena); if (old_kmem_flags & KMF_STICKY) kmem_flags = old_kmem_flags; if (!(kmem_flags & KMF_AUDIT)) vmem_seg_size = offsetof(vmem_seg_t, vs_thread); if (kmem_maxverify == 0) kmem_maxverify = maxverify; if (kmem_minfirewall == 0) kmem_minfirewall = minfirewall; /* * give segkmem a chance to figure out if we are using large pages * for the kernel heap */ use_large_pages = segkmem_lpsetup(); /* * To protect against corruption, we keep the actual number of callers * KMF_LITE records seperate from the tunable. We arbitrarily clamp * to 16, since the overhead for small buffers quickly gets out of * hand. * * The real limit would depend on the needs of the largest KMC_NOHASH * cache. */ kmem_lite_count = MIN(MAX(0, kmem_lite_pcs), 16); kmem_lite_pcs = kmem_lite_count; /* * Normally, we firewall oversized allocations when possible, but * if we are using large pages for kernel memory, and we don't have * any non-LITE debugging flags set, we want to allocate oversized * buffers from large pages, and so skip the firewalling. */ if (use_large_pages && ((kmem_flags & KMF_LITE) || !(kmem_flags & KMF_DEBUG))) { kmem_oversize_arena = vmem_xcreate("kmem_oversize", NULL, 0, PAGESIZE, segkmem_alloc_lp, segkmem_free_lp, heap_arena, 0, VMC_DUMPSAFE | VM_SLEEP); } else { kmem_oversize_arena = vmem_create("kmem_oversize", NULL, 0, PAGESIZE, segkmem_alloc, segkmem_free, kmem_minfirewall < ULONG_MAX? kmem_firewall_va_arena : heap_arena, 0, VMC_DUMPSAFE | VM_SLEEP); } kmem_cache_init(2, use_large_pages); if (kmem_flags & (KMF_AUDIT | KMF_RANDOMIZE)) { if (kmem_transaction_log_size == 0) kmem_transaction_log_size = kmem_maxavail() / 50; kmem_transaction_log = kmem_log_init(kmem_transaction_log_size); } if (kmem_flags & (KMF_CONTENTS | KMF_RANDOMIZE)) { if (kmem_content_log_size == 0) kmem_content_log_size = kmem_maxavail() / 50; kmem_content_log = kmem_log_init(kmem_content_log_size); } kmem_failure_log = kmem_log_init(kmem_failure_log_size); kmem_slab_log = kmem_log_init(kmem_slab_log_size); /* * Initialize STREAMS message caches so allocb() is available. * This allows us to initialize the logging framework (cmn_err(9F), * strlog(9F), etc) so we can start recording messages. */ streams_msg_init(); /* * Initialize the ZSD framework in Zones so modules loaded henceforth * can register their callbacks. */ zone_zsd_init(); log_init(); taskq_init(); /* * Warn about invalid or dangerous values of kmem_flags. * Always warn about unsupported values. */ if (((kmem_flags & ~(KMF_AUDIT | KMF_DEADBEEF | KMF_REDZONE | KMF_CONTENTS | KMF_LITE)) != 0) || ((kmem_flags & KMF_LITE) && kmem_flags != KMF_LITE)) cmn_err(CE_WARN, "kmem_flags set to unsupported value 0x%x. " "See the Solaris Tunable Parameters Reference Manual.", kmem_flags); #ifdef DEBUG if ((kmem_flags & KMF_DEBUG) == 0) cmn_err(CE_NOTE, "kmem debugging disabled."); #else /* * For non-debug kernels, the only "normal" flags are 0, KMF_LITE, * KMF_REDZONE, and KMF_CONTENTS (the last because it is only enabled * if KMF_AUDIT is set). We should warn the user about the performance * penalty of KMF_AUDIT or KMF_DEADBEEF if they are set and KMF_LITE * isn't set (since that disables AUDIT). */ if (!(kmem_flags & KMF_LITE) && (kmem_flags & (KMF_AUDIT | KMF_DEADBEEF)) != 0) cmn_err(CE_WARN, "High-overhead kmem debugging features " "enabled (kmem_flags = 0x%x). Performance degradation " "and large memory overhead possible. See the Solaris " "Tunable Parameters Reference Manual.", kmem_flags); #endif /* not DEBUG */ kmem_cache_applyall(kmem_cache_magazine_enable, NULL, TQ_SLEEP); kmem_ready = 1; /* * Initialize the platform-specific aligned/DMA memory allocator. */ ka_init(); /* * Initialize 32-bit ID cache. */ id32_init(); /* * Initialize the networking stack so modules loaded can * register their callbacks. */ netstack_init(); } static void kmem_move_init(void) { kmem_defrag_cache = kmem_cache_create("kmem_defrag_cache", sizeof (kmem_defrag_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); kmem_move_cache = kmem_cache_create("kmem_move_cache", sizeof (kmem_move_t), 0, NULL, NULL, NULL, NULL, kmem_msb_arena, KMC_NOHASH); /* * kmem guarantees that move callbacks are sequential and that even * across multiple caches no two moves ever execute simultaneously. * Move callbacks are processed on a separate taskq so that client code * does not interfere with internal maintenance tasks. */ kmem_move_taskq = taskq_create_instance("kmem_move_taskq", 0, 1, minclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE); } void kmem_thread_init(void) { kmem_move_init(); kmem_taskq = taskq_create_instance("kmem_taskq", 0, 1, minclsyspri, 300, INT_MAX, TASKQ_PREPOPULATE); } void kmem_mp_init(void) { mutex_enter(&cpu_lock); register_cpu_setup_func(kmem_cpu_setup, NULL); mutex_exit(&cpu_lock); kmem_update_timeout(NULL); taskq_mp_init(); } /* * Return the slab of the allocated buffer, or NULL if the buffer is not * allocated. This function may be called with a known slab address to determine * whether or not the buffer is allocated, or with a NULL slab address to obtain * an allocated buffer's slab. */ static kmem_slab_t * kmem_slab_allocated(kmem_cache_t *cp, kmem_slab_t *sp, void *buf) { kmem_bufctl_t *bcp, *bufbcp; ASSERT(MUTEX_HELD(&cp->cache_lock)); ASSERT(sp == NULL || KMEM_SLAB_MEMBER(sp, buf)); if (cp->cache_flags & KMF_HASH) { for (bcp = *KMEM_HASH(cp, buf); (bcp != NULL) && (bcp->bc_addr != buf); bcp = bcp->bc_next) { continue; } ASSERT(sp != NULL && bcp != NULL ? sp == bcp->bc_slab : 1); return (bcp == NULL ? NULL : bcp->bc_slab); } if (sp == NULL) { sp = KMEM_SLAB(cp, buf); } bufbcp = KMEM_BUFCTL(cp, buf); for (bcp = sp->slab_head; (bcp != NULL) && (bcp != bufbcp); bcp = bcp->bc_next) { continue; } return (bcp == NULL ? sp : NULL); } static boolean_t kmem_slab_is_reclaimable(kmem_cache_t *cp, kmem_slab_t *sp, int flags) { long refcnt = sp->slab_refcnt; ASSERT(cp->cache_defrag != NULL); /* * For code coverage we want to be able to move an object within the * same slab (the only partial slab) even if allocating the destination * buffer resulted in a completely allocated slab. */ if (flags & KMM_DEBUG) { return ((flags & KMM_DESPERATE) || ((sp->slab_flags & KMEM_SLAB_NOMOVE) == 0)); } /* If we're desperate, we don't care if the client said NO. */ if (flags & KMM_DESPERATE) { return (refcnt < sp->slab_chunks); /* any partial */ } if (sp->slab_flags & KMEM_SLAB_NOMOVE) { return (B_FALSE); } if ((refcnt == 1) || kmem_move_any_partial) { return (refcnt < sp->slab_chunks); } /* * The reclaim threshold is adjusted at each kmem_cache_scan() so that * slabs with a progressively higher percentage of used buffers can be * reclaimed until the cache as a whole is no longer fragmented. * * sp->slab_refcnt kmd_reclaim_numer * --------------- < ------------------ * sp->slab_chunks KMEM_VOID_FRACTION */ return ((refcnt * KMEM_VOID_FRACTION) < (sp->slab_chunks * cp->cache_defrag->kmd_reclaim_numer)); } /* * May be called from the kmem_move_taskq, from kmem_cache_move_notify_task(), * or when the buffer is freed. */ static void kmem_slab_move_yes(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) { ASSERT(MUTEX_HELD(&cp->cache_lock)); ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); if (!KMEM_SLAB_IS_PARTIAL(sp)) { return; } if (sp->slab_flags & KMEM_SLAB_NOMOVE) { if (KMEM_SLAB_OFFSET(sp, from_buf) == sp->slab_stuck_offset) { avl_remove(&cp->cache_partial_slabs, sp); sp->slab_flags &= ~KMEM_SLAB_NOMOVE; sp->slab_stuck_offset = (uint32_t)-1; avl_add(&cp->cache_partial_slabs, sp); } } else { sp->slab_later_count = 0; sp->slab_stuck_offset = (uint32_t)-1; } } static void kmem_slab_move_no(kmem_cache_t *cp, kmem_slab_t *sp, void *from_buf) { ASSERT(taskq_member(kmem_move_taskq, curthread)); ASSERT(MUTEX_HELD(&cp->cache_lock)); ASSERT(KMEM_SLAB_MEMBER(sp, from_buf)); if (!KMEM_SLAB_IS_PARTIAL(sp)) { return; } avl_remove(&cp->cache_partial_slabs, sp); sp->slab_later_count = 0; sp->slab_flags |= KMEM_SLAB_NOMOVE; sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, from_buf); avl_add(&cp->cache_partial_slabs, sp); } static void kmem_move_end(kmem_cache_t *, kmem_move_t *); /* * The move callback takes two buffer addresses, the buffer to be moved, and a * newly allocated and constructed buffer selected by kmem as the destination. * It also takes the size of the buffer and an optional user argument specified * at cache creation time. kmem guarantees that the buffer to be moved has not * been unmapped by the virtual memory subsystem. Beyond that, it cannot * guarantee the present whereabouts of the buffer to be moved, so it is up to * the client to safely determine whether or not it is still using the buffer. * The client must not free either of the buffers passed to the move callback, * since kmem wants to free them directly to the slab layer. The client response * tells kmem which of the two buffers to free: * * YES kmem frees the old buffer (the move was successful) * NO kmem frees the new buffer, marks the slab of the old buffer * non-reclaimable to avoid bothering the client again * LATER kmem frees the new buffer, increments slab_later_count * DONT_KNOW kmem frees the new buffer * DONT_NEED kmem frees both the old buffer and the new buffer * * The pending callback argument now being processed contains both of the * buffers (old and new) passed to the move callback function, the slab of the * old buffer, and flags related to the move request, such as whether or not the * system was desperate for memory. * * Slabs are not freed while there is a pending callback, but instead are kept * on a deadlist, which is drained after the last callback completes. This means * that slabs are safe to access until kmem_move_end(), no matter how many of * their buffers have been freed. Once slab_refcnt reaches zero, it stays at * zero for as long as the slab remains on the deadlist and until the slab is * freed. */ static void kmem_move_buffer(kmem_move_t *callback) { kmem_cbrc_t response; kmem_slab_t *sp = callback->kmm_from_slab; kmem_cache_t *cp = sp->slab_cache; boolean_t free_on_slab; ASSERT(taskq_member(kmem_move_taskq, curthread)); ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); ASSERT(KMEM_SLAB_MEMBER(sp, callback->kmm_from_buf)); /* * The number of allocated buffers on the slab may have changed since we * last checked the slab's reclaimability (when the pending move was * enqueued), or the client may have responded NO when asked to move * another buffer on the same slab. */ if (!kmem_slab_is_reclaimable(cp, sp, callback->kmm_flags)) { kmem_slab_free(cp, callback->kmm_to_buf); kmem_move_end(cp, callback); return; } /* * Checking the slab layer is easy, so we might as well do that here * in case we can avoid bothering the client. */ mutex_enter(&cp->cache_lock); free_on_slab = (kmem_slab_allocated(cp, sp, callback->kmm_from_buf) == NULL); mutex_exit(&cp->cache_lock); if (free_on_slab) { kmem_slab_free(cp, callback->kmm_to_buf); kmem_move_end(cp, callback); return; } if (cp->cache_flags & KMF_BUFTAG) { /* * Make kmem_cache_alloc_debug() apply the constructor for us. */ if (kmem_cache_alloc_debug(cp, callback->kmm_to_buf, KM_NOSLEEP, 1, caller()) != 0) { kmem_move_end(cp, callback); return; } } else if (cp->cache_constructor != NULL && cp->cache_constructor(callback->kmm_to_buf, cp->cache_private, KM_NOSLEEP) != 0) { atomic_inc_64(&cp->cache_alloc_fail); kmem_slab_free(cp, callback->kmm_to_buf); kmem_move_end(cp, callback); return; } cp->cache_defrag->kmd_callbacks++; cp->cache_defrag->kmd_thread = curthread; cp->cache_defrag->kmd_from_buf = callback->kmm_from_buf; cp->cache_defrag->kmd_to_buf = callback->kmm_to_buf; DTRACE_PROBE2(kmem__move__start, kmem_cache_t *, cp, kmem_move_t *, callback); response = cp->cache_move(callback->kmm_from_buf, callback->kmm_to_buf, cp->cache_bufsize, cp->cache_private); DTRACE_PROBE3(kmem__move__end, kmem_cache_t *, cp, kmem_move_t *, callback, kmem_cbrc_t, response); cp->cache_defrag->kmd_thread = NULL; cp->cache_defrag->kmd_from_buf = NULL; cp->cache_defrag->kmd_to_buf = NULL; if (response == KMEM_CBRC_YES) { cp->cache_defrag->kmd_yes++; kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); /* slab safe to access until kmem_move_end() */ if (sp->slab_refcnt == 0) cp->cache_defrag->kmd_slabs_freed++; mutex_enter(&cp->cache_lock); kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); mutex_exit(&cp->cache_lock); kmem_move_end(cp, callback); return; } switch (response) { case KMEM_CBRC_NO: cp->cache_defrag->kmd_no++; mutex_enter(&cp->cache_lock); kmem_slab_move_no(cp, sp, callback->kmm_from_buf); mutex_exit(&cp->cache_lock); break; case KMEM_CBRC_LATER: cp->cache_defrag->kmd_later++; mutex_enter(&cp->cache_lock); if (!KMEM_SLAB_IS_PARTIAL(sp)) { mutex_exit(&cp->cache_lock); break; } if (++sp->slab_later_count >= KMEM_DISBELIEF) { kmem_slab_move_no(cp, sp, callback->kmm_from_buf); } else if (!(sp->slab_flags & KMEM_SLAB_NOMOVE)) { sp->slab_stuck_offset = KMEM_SLAB_OFFSET(sp, callback->kmm_from_buf); } mutex_exit(&cp->cache_lock); break; case KMEM_CBRC_DONT_NEED: cp->cache_defrag->kmd_dont_need++; kmem_slab_free_constructed(cp, callback->kmm_from_buf, B_FALSE); if (sp->slab_refcnt == 0) cp->cache_defrag->kmd_slabs_freed++; mutex_enter(&cp->cache_lock); kmem_slab_move_yes(cp, sp, callback->kmm_from_buf); mutex_exit(&cp->cache_lock); break; case KMEM_CBRC_DONT_KNOW: /* * If we don't know if we can move this buffer or not, we'll * just assume that we can't: if the buffer is in fact free, * then it is sitting in one of the per-CPU magazines or in * a full magazine in the depot layer. Either way, because * defrag is induced in the same logic that reaps a cache, * it's likely that full magazines will be returned to the * system soon (thereby accomplishing what we're trying to * accomplish here: return those magazines to their slabs). * Given this, any work that we might do now to locate a buffer * in a magazine is wasted (and expensive!) work; we bump * a counter in this case and otherwise assume that we can't * move it. */ cp->cache_defrag->kmd_dont_know++; break; default: panic("'%s' (%p) unexpected move callback response %d\n", cp->cache_name, (void *)cp, response); } kmem_slab_free_constructed(cp, callback->kmm_to_buf, B_FALSE); kmem_move_end(cp, callback); } /* Return B_FALSE if there is insufficient memory for the move request. */ static boolean_t kmem_move_begin(kmem_cache_t *cp, kmem_slab_t *sp, void *buf, int flags) { void *to_buf; avl_index_t index; kmem_move_t *callback, *pending; ulong_t n; ASSERT(taskq_member(kmem_taskq, curthread)); ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); callback = kmem_cache_alloc(kmem_move_cache, KM_NOSLEEP); if (callback == NULL) return (B_FALSE); callback->kmm_from_slab = sp; callback->kmm_from_buf = buf; callback->kmm_flags = flags; mutex_enter(&cp->cache_lock); n = avl_numnodes(&cp->cache_partial_slabs); if ((n == 0) || ((n == 1) && !(flags & KMM_DEBUG))) { mutex_exit(&cp->cache_lock); kmem_cache_free(kmem_move_cache, callback); return (B_TRUE); /* there is no need for the move request */ } pending = avl_find(&cp->cache_defrag->kmd_moves_pending, buf, &index); if (pending != NULL) { /* * If the move is already pending and we're desperate now, * update the move flags. */ if (flags & KMM_DESPERATE) { pending->kmm_flags |= KMM_DESPERATE; } mutex_exit(&cp->cache_lock); kmem_cache_free(kmem_move_cache, callback); return (B_TRUE); } to_buf = kmem_slab_alloc_impl(cp, avl_first(&cp->cache_partial_slabs), B_FALSE); callback->kmm_to_buf = to_buf; avl_insert(&cp->cache_defrag->kmd_moves_pending, callback, index); mutex_exit(&cp->cache_lock); if (taskq_dispatch(kmem_move_taskq, (task_func_t *)kmem_move_buffer, callback, TQ_NOSLEEP) == TASKQID_INVALID) { mutex_enter(&cp->cache_lock); avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); mutex_exit(&cp->cache_lock); kmem_slab_free(cp, to_buf); kmem_cache_free(kmem_move_cache, callback); return (B_FALSE); } return (B_TRUE); } static void kmem_move_end(kmem_cache_t *cp, kmem_move_t *callback) { avl_index_t index; ASSERT(cp->cache_defrag != NULL); ASSERT(taskq_member(kmem_move_taskq, curthread)); ASSERT(MUTEX_NOT_HELD(&cp->cache_lock)); mutex_enter(&cp->cache_lock); VERIFY(avl_find(&cp->cache_defrag->kmd_moves_pending, callback->kmm_from_buf, &index) != NULL); avl_remove(&cp->cache_defrag->kmd_moves_pending, callback); if (avl_is_empty(&cp->cache_defrag->kmd_moves_pending)) { list_t *deadlist = &cp->cache_defrag->kmd_deadlist; kmem_slab_t *sp; /* * The last pending move completed. Release all slabs from the * front of the dead list except for any slab at the tail that * needs to be released from the context of kmem_move_buffers(). * kmem deferred unmapping the buffers on these slabs in order * to guarantee that buffers passed to the move callback have * been touched only by kmem or by the client itself. */ while ((sp = list_remove_head(deadlist)) != NULL) { if (sp->slab_flags & KMEM_SLAB_MOVE_PENDING) { list_insert_tail(deadlist, sp); break; } cp->cache_defrag->kmd_deadcount--; cp->cache_slab_destroy++; mutex_exit(&cp->cache_lock); kmem_slab_destroy(cp, sp); mutex_enter(&cp->cache_lock); } } mutex_exit(&cp->cache_lock); kmem_cache_free(kmem_move_cache, callback); } /* * Move buffers from least used slabs first by scanning backwards from the end * of the partial slab list. Scan at most max_scan candidate slabs and move * buffers from at most max_slabs slabs (0 for all partial slabs in both cases). * If desperate to reclaim memory, move buffers from any partial slab, otherwise * skip slabs with a ratio of allocated buffers at or above the current * threshold. Return the number of unskipped slabs (at most max_slabs, -1 if the * scan is aborted) so that the caller can adjust the reclaimability threshold * depending on how many reclaimable slabs it finds. * * kmem_move_buffers() drops and reacquires cache_lock every time it issues a * move request, since it is not valid for kmem_move_begin() to call * kmem_cache_alloc() or taskq_dispatch() with cache_lock held. */ static int kmem_move_buffers(kmem_cache_t *cp, size_t max_scan, size_t max_slabs, int flags) { kmem_slab_t *sp; void *buf; int i, j; /* slab index, buffer index */ int s; /* reclaimable slabs */ int b; /* allocated (movable) buffers on reclaimable slab */ boolean_t success; int refcnt; int nomove; ASSERT(taskq_member(kmem_taskq, curthread)); ASSERT(MUTEX_HELD(&cp->cache_lock)); ASSERT(kmem_move_cache != NULL); ASSERT(cp->cache_move != NULL && cp->cache_defrag != NULL); ASSERT((flags & KMM_DEBUG) ? !avl_is_empty(&cp->cache_partial_slabs) : avl_numnodes(&cp->cache_partial_slabs) > 1); if (kmem_move_blocked) { return (0); } if (kmem_move_fulltilt) { flags |= KMM_DESPERATE; } if (max_scan == 0 || (flags & KMM_DESPERATE)) { /* * Scan as many slabs as needed to find the desired number of * candidate slabs. */ max_scan = (size_t)-1; } if (max_slabs == 0 || (flags & KMM_DESPERATE)) { /* Find as many candidate slabs as possible. */ max_slabs = (size_t)-1; } sp = avl_last(&cp->cache_partial_slabs); ASSERT(KMEM_SLAB_IS_PARTIAL(sp)); for (i = 0, s = 0; (i < max_scan) && (s < max_slabs) && (sp != NULL) && ((sp != avl_first(&cp->cache_partial_slabs)) || (flags & KMM_DEBUG)); sp = AVL_PREV(&cp->cache_partial_slabs, sp), i++) { if (!kmem_slab_is_reclaimable(cp, sp, flags)) { continue; } s++; /* Look for allocated buffers to move. */ for (j = 0, b = 0, buf = sp->slab_base; (j < sp->slab_chunks) && (b < sp->slab_refcnt); buf = (((char *)buf) + cp->cache_chunksize), j++) { if (kmem_slab_allocated(cp, sp, buf) == NULL) { continue; } b++; /* * Prevent the slab from being destroyed while we drop * cache_lock and while the pending move is not yet * registered. Flag the pending move while * kmd_moves_pending may still be empty, since we can't * yet rely on a non-zero pending move count to prevent * the slab from being destroyed. */ ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; /* * Recheck refcnt and nomove after reacquiring the lock, * since these control the order of partial slabs, and * we want to know if we can pick up the scan where we * left off. */ refcnt = sp->slab_refcnt; nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); mutex_exit(&cp->cache_lock); success = kmem_move_begin(cp, sp, buf, flags); /* * Now, before the lock is reacquired, kmem could * process all pending move requests and purge the * deadlist, so that upon reacquiring the lock, sp has * been remapped. Or, the client may free all the * objects on the slab while the pending moves are still * on the taskq. Therefore, the KMEM_SLAB_MOVE_PENDING * flag causes the slab to be put at the end of the * deadlist and prevents it from being destroyed, since * we plan to destroy it here after reacquiring the * lock. */ mutex_enter(&cp->cache_lock); ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; if (sp->slab_refcnt == 0) { list_t *deadlist = &cp->cache_defrag->kmd_deadlist; list_remove(deadlist, sp); if (!avl_is_empty( &cp->cache_defrag->kmd_moves_pending)) { /* * A pending move makes it unsafe to * destroy the slab, because even though * the move is no longer needed, the * context where that is determined * requires the slab to exist. * Fortunately, a pending move also * means we don't need to destroy the * slab here, since it will get * destroyed along with any other slabs * on the deadlist after the last * pending move completes. */ list_insert_head(deadlist, sp); return (-1); } /* * Destroy the slab now if it was completely * freed while we dropped cache_lock and there * are no pending moves. Since slab_refcnt * cannot change once it reaches zero, no new * pending moves from that slab are possible. */ cp->cache_defrag->kmd_deadcount--; cp->cache_slab_destroy++; mutex_exit(&cp->cache_lock); kmem_slab_destroy(cp, sp); mutex_enter(&cp->cache_lock); /* * Since we can't pick up the scan where we left * off, abort the scan and say nothing about the * number of reclaimable slabs. */ return (-1); } if (!success) { /* * Abort the scan if there is not enough memory * for the request and say nothing about the * number of reclaimable slabs. */ return (-1); } /* * The slab's position changed while the lock was * dropped, so we don't know where we are in the * sequence any more. */ if (sp->slab_refcnt != refcnt) { /* * If this is a KMM_DEBUG move, the slab_refcnt * may have changed because we allocated a * destination buffer on the same slab. In that * case, we're not interested in counting it. */ return (-1); } if ((sp->slab_flags & KMEM_SLAB_NOMOVE) != nomove) return (-1); /* * Generating a move request allocates a destination * buffer from the slab layer, bumping the first partial * slab if it is completely allocated. If the current * slab becomes the first partial slab as a result, we * can't continue to scan backwards. * * If this is a KMM_DEBUG move and we allocated the * destination buffer from the last partial slab, then * the buffer we're moving is on the same slab and our * slab_refcnt has changed, causing us to return before * reaching here if there are no partial slabs left. */ ASSERT(!avl_is_empty(&cp->cache_partial_slabs)); if (sp == avl_first(&cp->cache_partial_slabs)) { /* * We're not interested in a second KMM_DEBUG * move. */ goto end_scan; } } } end_scan: return (s); } typedef struct kmem_move_notify_args { kmem_cache_t *kmna_cache; void *kmna_buf; } kmem_move_notify_args_t; static void kmem_cache_move_notify_task(void *arg) { kmem_move_notify_args_t *args = arg; kmem_cache_t *cp = args->kmna_cache; void *buf = args->kmna_buf; kmem_slab_t *sp; ASSERT(taskq_member(kmem_taskq, curthread)); ASSERT(list_link_active(&cp->cache_link)); kmem_free(args, sizeof (kmem_move_notify_args_t)); mutex_enter(&cp->cache_lock); sp = kmem_slab_allocated(cp, NULL, buf); /* Ignore the notification if the buffer is no longer allocated. */ if (sp == NULL) { mutex_exit(&cp->cache_lock); return; } /* Ignore the notification if there's no reason to move the buffer. */ if (avl_numnodes(&cp->cache_partial_slabs) > 1) { /* * So far the notification is not ignored. Ignore the * notification if the slab is not marked by an earlier refusal * to move a buffer. */ if (!(sp->slab_flags & KMEM_SLAB_NOMOVE) && (sp->slab_later_count == 0)) { mutex_exit(&cp->cache_lock); return; } kmem_slab_move_yes(cp, sp, buf); ASSERT(!(sp->slab_flags & KMEM_SLAB_MOVE_PENDING)); sp->slab_flags |= KMEM_SLAB_MOVE_PENDING; mutex_exit(&cp->cache_lock); /* see kmem_move_buffers() about dropping the lock */ (void) kmem_move_begin(cp, sp, buf, KMM_NOTIFY); mutex_enter(&cp->cache_lock); ASSERT(sp->slab_flags & KMEM_SLAB_MOVE_PENDING); sp->slab_flags &= ~KMEM_SLAB_MOVE_PENDING; if (sp->slab_refcnt == 0) { list_t *deadlist = &cp->cache_defrag->kmd_deadlist; list_remove(deadlist, sp); if (!avl_is_empty( &cp->cache_defrag->kmd_moves_pending)) { list_insert_head(deadlist, sp); mutex_exit(&cp->cache_lock); return; } cp->cache_defrag->kmd_deadcount--; cp->cache_slab_destroy++; mutex_exit(&cp->cache_lock); kmem_slab_destroy(cp, sp); return; } } else { kmem_slab_move_yes(cp, sp, buf); } mutex_exit(&cp->cache_lock); } void kmem_cache_move_notify(kmem_cache_t *cp, void *buf) { kmem_move_notify_args_t *args; args = kmem_alloc(sizeof (kmem_move_notify_args_t), KM_NOSLEEP); if (args != NULL) { args->kmna_cache = cp; args->kmna_buf = buf; if (taskq_dispatch(kmem_taskq, (task_func_t *)kmem_cache_move_notify_task, args, TQ_NOSLEEP) == TASKQID_INVALID) kmem_free(args, sizeof (kmem_move_notify_args_t)); } } static void kmem_cache_defrag(kmem_cache_t *cp) { size_t n; ASSERT(cp->cache_defrag != NULL); mutex_enter(&cp->cache_lock); n = avl_numnodes(&cp->cache_partial_slabs); if (n > 1) { /* kmem_move_buffers() drops and reacquires cache_lock */ cp->cache_defrag->kmd_defrags++; (void) kmem_move_buffers(cp, n, 0, KMM_DESPERATE); } mutex_exit(&cp->cache_lock); } /* Is this cache above the fragmentation threshold? */ static boolean_t kmem_cache_frag_threshold(kmem_cache_t *cp, uint64_t nfree) { /* * nfree kmem_frag_numer * ------------------ > --------------- * cp->cache_buftotal kmem_frag_denom */ return ((nfree * kmem_frag_denom) > (cp->cache_buftotal * kmem_frag_numer)); } static boolean_t kmem_cache_is_fragmented(kmem_cache_t *cp, boolean_t *doreap) { boolean_t fragmented; uint64_t nfree; ASSERT(MUTEX_HELD(&cp->cache_lock)); *doreap = B_FALSE; if (kmem_move_fulltilt) { if (avl_numnodes(&cp->cache_partial_slabs) > 1) { return (B_TRUE); } } else { if ((cp->cache_complete_slab_count + avl_numnodes( &cp->cache_partial_slabs)) < kmem_frag_minslabs) { return (B_FALSE); } } nfree = cp->cache_bufslab; fragmented = ((avl_numnodes(&cp->cache_partial_slabs) > 1) && kmem_cache_frag_threshold(cp, nfree)); /* * Free buffers in the magazine layer appear allocated from the point of * view of the slab layer. We want to know if the slab layer would * appear fragmented if we included free buffers from magazines that * have fallen out of the working set. */ if (!fragmented) { long reap; mutex_enter(&cp->cache_depot_lock); reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min); reap = MIN(reap, cp->cache_full.ml_total); mutex_exit(&cp->cache_depot_lock); nfree += ((uint64_t)reap * cp->cache_magtype->mt_magsize); if (kmem_cache_frag_threshold(cp, nfree)) { *doreap = B_TRUE; } } return (fragmented); } /* Called periodically from kmem_taskq */ static void kmem_cache_scan(kmem_cache_t *cp) { boolean_t reap = B_FALSE; kmem_defrag_t *kmd; ASSERT(taskq_member(kmem_taskq, curthread)); mutex_enter(&cp->cache_lock); kmd = cp->cache_defrag; if (kmd->kmd_consolidate > 0) { kmd->kmd_consolidate--; mutex_exit(&cp->cache_lock); kmem_cache_reap(cp); return; } if (kmem_cache_is_fragmented(cp, &reap)) { size_t slabs_found; /* * Consolidate reclaimable slabs from the end of the partial * slab list (scan at most kmem_reclaim_scan_range slabs to find * reclaimable slabs). Keep track of how many candidate slabs we * looked for and how many we actually found so we can adjust * the definition of a candidate slab if we're having trouble * finding them. * * kmem_move_buffers() drops and reacquires cache_lock. */ kmd->kmd_scans++; slabs_found = kmem_move_buffers(cp, kmem_reclaim_scan_range, kmem_reclaim_max_slabs, 0); if (slabs_found >= 0) { kmd->kmd_slabs_sought += kmem_reclaim_max_slabs; kmd->kmd_slabs_found += slabs_found; } if (++kmd->kmd_tries >= kmem_reclaim_scan_range) { kmd->kmd_tries = 0; /* * If we had difficulty finding candidate slabs in * previous scans, adjust the threshold so that * candidates are easier to find. */ if (kmd->kmd_slabs_found == kmd->kmd_slabs_sought) { kmem_adjust_reclaim_threshold(kmd, -1); } else if ((kmd->kmd_slabs_found * 2) < kmd->kmd_slabs_sought) { kmem_adjust_reclaim_threshold(kmd, 1); } kmd->kmd_slabs_sought = 0; kmd->kmd_slabs_found = 0; } } else { kmem_reset_reclaim_threshold(cp->cache_defrag); #ifdef DEBUG if (!avl_is_empty(&cp->cache_partial_slabs)) { /* * In a debug kernel we want the consolidator to * run occasionally even when there is plenty of * memory. */ uint16_t debug_rand; (void) random_get_bytes((uint8_t *)&debug_rand, 2); if (!kmem_move_noreap && ((debug_rand % kmem_mtb_reap) == 0)) { mutex_exit(&cp->cache_lock); kmem_cache_reap(cp); return; } else if ((debug_rand % kmem_mtb_move) == 0) { kmd->kmd_scans++; (void) kmem_move_buffers(cp, kmem_reclaim_scan_range, 1, KMM_DEBUG); } } #endif /* DEBUG */ } mutex_exit(&cp->cache_lock); if (reap) kmem_depot_ws_reap(cp); }