/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__x86) #include #endif kmutex_t kcpc_ctx_llock[CPC_HASH_BUCKETS]; /* protects ctx_list */ kcpc_ctx_t *kcpc_ctx_list[CPC_HASH_BUCKETS]; /* head of list */ krwlock_t kcpc_cpuctx_lock; /* lock for 'kcpc_cpuctx' below */ int kcpc_cpuctx; /* number of cpu-specific contexts */ int kcpc_counts_include_idle = 1; /* Project Private /etc/system variable */ /* * These are set when a PCBE module is loaded. */ uint_t cpc_ncounters = 0; pcbe_ops_t *pcbe_ops = NULL; /* * Statistics on (mis)behavior */ static uint32_t kcpc_intrctx_count; /* # overflows in an interrupt handler */ static uint32_t kcpc_nullctx_count; /* # overflows in a thread with no ctx */ /* * By setting 'kcpc_nullctx_panic' to 1, any overflow interrupts in a thread * with no valid context will result in a panic. */ static int kcpc_nullctx_panic = 0; static void kcpc_lwp_create(kthread_t *t, kthread_t *ct); static void kcpc_restore(kcpc_ctx_t *ctx); static void kcpc_save(kcpc_ctx_t *ctx); static void kcpc_free(kcpc_ctx_t *ctx, int isexec); static void kcpc_ctx_clone(kcpc_ctx_t *ctx, kcpc_ctx_t *cctx); static int kcpc_tryassign(kcpc_set_t *set, int starting_req, int *scratch); static kcpc_set_t *kcpc_dup_set(kcpc_set_t *set); void kcpc_register_pcbe(pcbe_ops_t *ops) { pcbe_ops = ops; cpc_ncounters = pcbe_ops->pcbe_ncounters(); } void kcpc_register_dcpc(void (*func)(uint64_t)) { dtrace_cpc_fire = func; } void kcpc_unregister_dcpc(void) { dtrace_cpc_fire = NULL; } int kcpc_bind_cpu(kcpc_set_t *set, processorid_t cpuid, int *subcode) { cpu_t *cp; kcpc_ctx_t *ctx; int error; ctx = kcpc_ctx_alloc(); if (kcpc_assign_reqs(set, ctx) != 0) { kcpc_ctx_free(ctx); *subcode = CPC_RESOURCE_UNAVAIL; return (EINVAL); } ctx->kc_cpuid = cpuid; ctx->kc_thread = curthread; set->ks_data = kmem_zalloc(set->ks_nreqs * sizeof (uint64_t), KM_SLEEP); if ((error = kcpc_configure_reqs(ctx, set, subcode)) != 0) { kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t)); kcpc_ctx_free(ctx); return (error); } set->ks_ctx = ctx; ctx->kc_set = set; /* * We must hold cpu_lock to prevent DR, offlining, or unbinding while * we are manipulating the cpu_t and programming the hardware, else the * the cpu_t could go away while we're looking at it. */ mutex_enter(&cpu_lock); cp = cpu_get(cpuid); if (cp == NULL) /* * The CPU could have been DRd out while we were getting set up. */ goto unbound; mutex_enter(&cp->cpu_cpc_ctxlock); if (cp->cpu_cpc_ctx != NULL) { /* * If this CPU already has a bound set, return an error. */ mutex_exit(&cp->cpu_cpc_ctxlock); goto unbound; } if (curthread->t_bind_cpu != cpuid) { mutex_exit(&cp->cpu_cpc_ctxlock); goto unbound; } cp->cpu_cpc_ctx = ctx; /* * Kernel preemption must be disabled while fiddling with the hardware * registers to prevent partial updates. */ kpreempt_disable(); ctx->kc_rawtick = KCPC_GET_TICK(); pcbe_ops->pcbe_program(ctx); kpreempt_enable(); mutex_exit(&cp->cpu_cpc_ctxlock); mutex_exit(&cpu_lock); mutex_enter(&set->ks_lock); set->ks_state |= KCPC_SET_BOUND; cv_signal(&set->ks_condv); mutex_exit(&set->ks_lock); return (0); unbound: mutex_exit(&cpu_lock); set->ks_ctx = NULL; kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t)); kcpc_ctx_free(ctx); return (EAGAIN); } int kcpc_bind_thread(kcpc_set_t *set, kthread_t *t, int *subcode) { kcpc_ctx_t *ctx; int error; /* * Only one set is allowed per context, so ensure there is no * existing context. */ if (t->t_cpc_ctx != NULL) return (EEXIST); ctx = kcpc_ctx_alloc(); /* * The context must begin life frozen until it has been properly * programmed onto the hardware. This prevents the context ops from * worrying about it until we're ready. */ ctx->kc_flags |= KCPC_CTX_FREEZE; ctx->kc_hrtime = gethrtime(); if (kcpc_assign_reqs(set, ctx) != 0) { kcpc_ctx_free(ctx); *subcode = CPC_RESOURCE_UNAVAIL; return (EINVAL); } ctx->kc_cpuid = -1; if (set->ks_flags & CPC_BIND_LWP_INHERIT) ctx->kc_flags |= KCPC_CTX_LWPINHERIT; ctx->kc_thread = t; t->t_cpc_ctx = ctx; /* * Permit threads to look at their own hardware counters from userland. */ ctx->kc_flags |= KCPC_CTX_NONPRIV; /* * Create the data store for this set. */ set->ks_data = kmem_alloc(set->ks_nreqs * sizeof (uint64_t), KM_SLEEP); if ((error = kcpc_configure_reqs(ctx, set, subcode)) != 0) { kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t)); kcpc_ctx_free(ctx); t->t_cpc_ctx = NULL; return (error); } set->ks_ctx = ctx; ctx->kc_set = set; /* * Add a device context to the subject thread. */ installctx(t, ctx, kcpc_save, kcpc_restore, NULL, kcpc_lwp_create, NULL, kcpc_free); /* * Ask the backend to program the hardware. */ if (t == curthread) { kpreempt_disable(); ctx->kc_rawtick = KCPC_GET_TICK(); atomic_and_uint(&ctx->kc_flags, ~KCPC_CTX_FREEZE); pcbe_ops->pcbe_program(ctx); kpreempt_enable(); } else /* * Since we are the agent LWP, we know the victim LWP is stopped * until we're done here; no need to worry about preemption or * migration here. We still use an atomic op to clear the flag * to ensure the flags are always self-consistent; they can * still be accessed from, for instance, another CPU doing a * kcpc_invalidate_all(). */ atomic_and_uint(&ctx->kc_flags, ~KCPC_CTX_FREEZE); mutex_enter(&set->ks_lock); set->ks_state |= KCPC_SET_BOUND; cv_signal(&set->ks_condv); mutex_exit(&set->ks_lock); return (0); } /* * Walk through each request in the set and ask the PCBE to configure a * corresponding counter. */ int kcpc_configure_reqs(kcpc_ctx_t *ctx, kcpc_set_t *set, int *subcode) { int i; int ret; kcpc_request_t *rp; for (i = 0; i < set->ks_nreqs; i++) { int n; rp = &set->ks_req[i]; n = rp->kr_picnum; ASSERT(n >= 0 && n < cpc_ncounters); ASSERT(ctx->kc_pics[n].kp_req == NULL); if (rp->kr_flags & CPC_OVF_NOTIFY_EMT) { if ((pcbe_ops->pcbe_caps & CPC_CAP_OVERFLOW_INTERRUPT) == 0) { *subcode = -1; return (ENOTSUP); } /* * If any of the counters have requested overflow * notification, we flag the context as being one that * cares about overflow. */ ctx->kc_flags |= KCPC_CTX_SIGOVF; } rp->kr_config = NULL; if ((ret = pcbe_ops->pcbe_configure(n, rp->kr_event, rp->kr_preset, rp->kr_flags, rp->kr_nattrs, rp->kr_attr, &(rp->kr_config), (void *)ctx)) != 0) { kcpc_free_configs(set); *subcode = ret; switch (ret) { case CPC_ATTR_REQUIRES_PRIVILEGE: case CPC_HV_NO_ACCESS: return (EACCES); default: return (EINVAL); } } ctx->kc_pics[n].kp_req = rp; rp->kr_picp = &ctx->kc_pics[n]; rp->kr_data = set->ks_data + rp->kr_index; *rp->kr_data = rp->kr_preset; } return (0); } void kcpc_free_configs(kcpc_set_t *set) { int i; for (i = 0; i < set->ks_nreqs; i++) if (set->ks_req[i].kr_config != NULL) pcbe_ops->pcbe_free(set->ks_req[i].kr_config); } /* * buf points to a user address and the data should be copied out to that * address in the current process. */ int kcpc_sample(kcpc_set_t *set, uint64_t *buf, hrtime_t *hrtime, uint64_t *tick) { kcpc_ctx_t *ctx = set->ks_ctx; uint64_t curtick = KCPC_GET_TICK(); mutex_enter(&set->ks_lock); if ((set->ks_state & KCPC_SET_BOUND) == 0) { mutex_exit(&set->ks_lock); return (EINVAL); } mutex_exit(&set->ks_lock); if (ctx->kc_flags & KCPC_CTX_INVALID) return (EAGAIN); if ((ctx->kc_flags & KCPC_CTX_FREEZE) == 0) { /* * Kernel preemption must be disabled while reading the * hardware regs, and if this is a CPU-bound context, while * checking the CPU binding of the current thread. */ kpreempt_disable(); if (ctx->kc_cpuid != -1) { if (curthread->t_bind_cpu != ctx->kc_cpuid) { kpreempt_enable(); return (EAGAIN); } } if (ctx->kc_thread == curthread) { ctx->kc_hrtime = gethrtime(); pcbe_ops->pcbe_sample(ctx); ctx->kc_vtick += curtick - ctx->kc_rawtick; ctx->kc_rawtick = curtick; } kpreempt_enable(); /* * The config may have been invalidated by * the pcbe_sample op. */ if (ctx->kc_flags & KCPC_CTX_INVALID) return (EAGAIN); } if (copyout(set->ks_data, buf, set->ks_nreqs * sizeof (uint64_t)) == -1) return (EFAULT); if (copyout(&ctx->kc_hrtime, hrtime, sizeof (uint64_t)) == -1) return (EFAULT); if (copyout(&ctx->kc_vtick, tick, sizeof (uint64_t)) == -1) return (EFAULT); return (0); } /* * Stop the counters on the CPU this context is bound to. */ static void kcpc_stop_hw(kcpc_ctx_t *ctx) { cpu_t *cp; ASSERT((ctx->kc_flags & (KCPC_CTX_INVALID | KCPC_CTX_INVALID_STOPPED)) == KCPC_CTX_INVALID); kpreempt_disable(); cp = cpu_get(ctx->kc_cpuid); ASSERT(cp != NULL); if (cp == CPU) { pcbe_ops->pcbe_allstop(); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID_STOPPED); } else kcpc_remote_stop(cp); kpreempt_enable(); } int kcpc_unbind(kcpc_set_t *set) { kcpc_ctx_t *ctx; kthread_t *t; /* * We could be racing with the process's agent thread as it * binds the set; we must wait for the set to finish binding * before attempting to tear it down. */ mutex_enter(&set->ks_lock); while ((set->ks_state & KCPC_SET_BOUND) == 0) cv_wait(&set->ks_condv, &set->ks_lock); mutex_exit(&set->ks_lock); ctx = set->ks_ctx; /* * Use kc_lock to synchronize with kcpc_restore(). */ mutex_enter(&ctx->kc_lock); ctx->kc_flags |= KCPC_CTX_INVALID; mutex_exit(&ctx->kc_lock); if (ctx->kc_cpuid == -1) { t = ctx->kc_thread; /* * The context is thread-bound and therefore has a device * context. It will be freed via removectx() calling * freectx() calling kcpc_free(). */ if (t == curthread && (ctx->kc_flags & KCPC_CTX_INVALID_STOPPED) == 0) { kpreempt_disable(); pcbe_ops->pcbe_allstop(); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID_STOPPED); kpreempt_enable(); } #ifdef DEBUG if (removectx(t, ctx, kcpc_save, kcpc_restore, NULL, kcpc_lwp_create, NULL, kcpc_free) == 0) panic("kcpc_unbind: context %p not preset on thread %p", (void *)ctx, (void *)t); #else (void) removectx(t, ctx, kcpc_save, kcpc_restore, NULL, kcpc_lwp_create, NULL, kcpc_free); #endif /* DEBUG */ t->t_cpc_set = NULL; t->t_cpc_ctx = NULL; } else { /* * If we are unbinding a CPU-bound set from a remote CPU, the * native CPU's idle thread could be in the midst of programming * this context onto the CPU. We grab the context's lock here to * ensure that the idle thread is done with it. When we release * the lock, the CPU no longer has a context and the idle thread * will move on. * * cpu_lock must be held to prevent the CPU from being DR'd out * while we disassociate the context from the cpu_t. */ cpu_t *cp; mutex_enter(&cpu_lock); cp = cpu_get(ctx->kc_cpuid); if (cp != NULL) { /* * The CPU may have been DR'd out of the system. */ mutex_enter(&cp->cpu_cpc_ctxlock); if ((ctx->kc_flags & KCPC_CTX_INVALID_STOPPED) == 0) kcpc_stop_hw(ctx); ASSERT(ctx->kc_flags & KCPC_CTX_INVALID_STOPPED); cp->cpu_cpc_ctx = NULL; mutex_exit(&cp->cpu_cpc_ctxlock); } mutex_exit(&cpu_lock); if (ctx->kc_thread == curthread) { kcpc_free(ctx, 0); curthread->t_cpc_set = NULL; } } return (0); } int kcpc_preset(kcpc_set_t *set, int index, uint64_t preset) { int i; ASSERT(set != NULL); ASSERT(set->ks_state & KCPC_SET_BOUND); ASSERT(set->ks_ctx->kc_thread == curthread); ASSERT(set->ks_ctx->kc_cpuid == -1); if (index < 0 || index >= set->ks_nreqs) return (EINVAL); for (i = 0; i < set->ks_nreqs; i++) if (set->ks_req[i].kr_index == index) break; ASSERT(i != set->ks_nreqs); set->ks_req[i].kr_preset = preset; return (0); } int kcpc_restart(kcpc_set_t *set) { kcpc_ctx_t *ctx = set->ks_ctx; int i; ASSERT(set->ks_state & KCPC_SET_BOUND); ASSERT(ctx->kc_thread == curthread); ASSERT(ctx->kc_cpuid == -1); kpreempt_disable(); /* * If the user is doing this on a running set, make sure the counters * are stopped first. */ if ((ctx->kc_flags & KCPC_CTX_FREEZE) == 0) pcbe_ops->pcbe_allstop(); for (i = 0; i < set->ks_nreqs; i++) { *(set->ks_req[i].kr_data) = set->ks_req[i].kr_preset; pcbe_ops->pcbe_configure(0, NULL, set->ks_req[i].kr_preset, 0, 0, NULL, &set->ks_req[i].kr_config, NULL); } /* * Ask the backend to program the hardware. */ ctx->kc_rawtick = KCPC_GET_TICK(); atomic_and_uint(&ctx->kc_flags, ~KCPC_CTX_FREEZE); pcbe_ops->pcbe_program(ctx); kpreempt_enable(); return (0); } /* * Caller must hold kcpc_cpuctx_lock. */ int kcpc_enable(kthread_t *t, int cmd, int enable) { kcpc_ctx_t *ctx = t->t_cpc_ctx; kcpc_set_t *set = t->t_cpc_set; kcpc_set_t *newset; int i; int flag; int err; ASSERT(RW_READ_HELD(&kcpc_cpuctx_lock)); if (ctx == NULL) { /* * This thread has a set but no context; it must be a * CPU-bound set. */ ASSERT(t->t_cpc_set != NULL); ASSERT(t->t_cpc_set->ks_ctx->kc_cpuid != -1); return (EINVAL); } else if (ctx->kc_flags & KCPC_CTX_INVALID) return (EAGAIN); if (cmd == CPC_ENABLE) { if ((ctx->kc_flags & KCPC_CTX_FREEZE) == 0) return (EINVAL); kpreempt_disable(); atomic_and_uint(&ctx->kc_flags, ~KCPC_CTX_FREEZE); kcpc_restore(ctx); kpreempt_enable(); } else if (cmd == CPC_DISABLE) { if (ctx->kc_flags & KCPC_CTX_FREEZE) return (EINVAL); kpreempt_disable(); kcpc_save(ctx); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_FREEZE); kpreempt_enable(); } else if (cmd == CPC_USR_EVENTS || cmd == CPC_SYS_EVENTS) { /* * Strategy for usr/sys: stop counters and update set's presets * with current counter values, unbind, update requests with * new config, then re-bind. */ flag = (cmd == CPC_USR_EVENTS) ? CPC_COUNT_USER: CPC_COUNT_SYSTEM; kpreempt_disable(); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID | KCPC_CTX_INVALID_STOPPED); pcbe_ops->pcbe_allstop(); kpreempt_enable(); for (i = 0; i < set->ks_nreqs; i++) { set->ks_req[i].kr_preset = *(set->ks_req[i].kr_data); if (enable) set->ks_req[i].kr_flags |= flag; else set->ks_req[i].kr_flags &= ~flag; } newset = kcpc_dup_set(set); if (kcpc_unbind(set) != 0) return (EINVAL); t->t_cpc_set = newset; if (kcpc_bind_thread(newset, t, &err) != 0) { t->t_cpc_set = NULL; kcpc_free_set(newset); return (EINVAL); } } else return (EINVAL); return (0); } /* * Provide PCBEs with a way of obtaining the configs of every counter which will * be programmed together. * * If current is NULL, provide the first config. * * If data != NULL, caller wants to know where the data store associated with * the config we return is located. */ void * kcpc_next_config(void *token, void *current, uint64_t **data) { int i; kcpc_pic_t *pic; kcpc_ctx_t *ctx = (kcpc_ctx_t *)token; if (current == NULL) { /* * Client would like the first config, which may not be in * counter 0; we need to search through the counters for the * first config. */ for (i = 0; i < cpc_ncounters; i++) if (ctx->kc_pics[i].kp_req != NULL) break; /* * There are no counters configured for the given context. */ if (i == cpc_ncounters) return (NULL); } else { /* * There surely is a faster way to do this. */ for (i = 0; i < cpc_ncounters; i++) { pic = &ctx->kc_pics[i]; if (pic->kp_req != NULL && current == pic->kp_req->kr_config) break; } /* * We found the current config at picnum i. Now search for the * next configured PIC. */ for (i++; i < cpc_ncounters; i++) { pic = &ctx->kc_pics[i]; if (pic->kp_req != NULL) break; } if (i == cpc_ncounters) return (NULL); } if (data != NULL) { *data = ctx->kc_pics[i].kp_req->kr_data; } return (ctx->kc_pics[i].kp_req->kr_config); } kcpc_ctx_t * kcpc_ctx_alloc(void) { kcpc_ctx_t *ctx; long hash; ctx = (kcpc_ctx_t *)kmem_zalloc(sizeof (kcpc_ctx_t), KM_SLEEP); hash = CPC_HASH_CTX(ctx); mutex_enter(&kcpc_ctx_llock[hash]); ctx->kc_next = kcpc_ctx_list[hash]; kcpc_ctx_list[hash] = ctx; mutex_exit(&kcpc_ctx_llock[hash]); ctx->kc_pics = (kcpc_pic_t *)kmem_zalloc(sizeof (kcpc_pic_t) * cpc_ncounters, KM_SLEEP); ctx->kc_cpuid = -1; return (ctx); } /* * Copy set from ctx to the child context, cctx, if it has CPC_BIND_LWP_INHERIT * in the flags. */ static void kcpc_ctx_clone(kcpc_ctx_t *ctx, kcpc_ctx_t *cctx) { kcpc_set_t *ks = ctx->kc_set, *cks; int i, j; int code; ASSERT(ks != NULL); if ((ks->ks_flags & CPC_BIND_LWP_INHERIT) == 0) return; cks = kmem_zalloc(sizeof (*cks), KM_SLEEP); cks->ks_state &= ~KCPC_SET_BOUND; cctx->kc_set = cks; cks->ks_flags = ks->ks_flags; cks->ks_nreqs = ks->ks_nreqs; cks->ks_req = kmem_alloc(cks->ks_nreqs * sizeof (kcpc_request_t), KM_SLEEP); cks->ks_data = kmem_alloc(cks->ks_nreqs * sizeof (uint64_t), KM_SLEEP); cks->ks_ctx = cctx; for (i = 0; i < cks->ks_nreqs; i++) { cks->ks_req[i].kr_index = ks->ks_req[i].kr_index; cks->ks_req[i].kr_picnum = ks->ks_req[i].kr_picnum; (void) strncpy(cks->ks_req[i].kr_event, ks->ks_req[i].kr_event, CPC_MAX_EVENT_LEN); cks->ks_req[i].kr_preset = ks->ks_req[i].kr_preset; cks->ks_req[i].kr_flags = ks->ks_req[i].kr_flags; cks->ks_req[i].kr_nattrs = ks->ks_req[i].kr_nattrs; if (ks->ks_req[i].kr_nattrs > 0) { cks->ks_req[i].kr_attr = kmem_alloc(ks->ks_req[i].kr_nattrs * sizeof (kcpc_attr_t), KM_SLEEP); } for (j = 0; j < ks->ks_req[i].kr_nattrs; j++) { (void) strncpy(cks->ks_req[i].kr_attr[j].ka_name, ks->ks_req[i].kr_attr[j].ka_name, CPC_MAX_ATTR_LEN); cks->ks_req[i].kr_attr[j].ka_val = ks->ks_req[i].kr_attr[j].ka_val; } } if (kcpc_configure_reqs(cctx, cks, &code) != 0) kcpc_invalidate_config(cctx); mutex_enter(&cks->ks_lock); cks->ks_state |= KCPC_SET_BOUND; cv_signal(&cks->ks_condv); mutex_exit(&cks->ks_lock); } void kcpc_ctx_free(kcpc_ctx_t *ctx) { kcpc_ctx_t **loc; long hash = CPC_HASH_CTX(ctx); mutex_enter(&kcpc_ctx_llock[hash]); loc = &kcpc_ctx_list[hash]; ASSERT(*loc != NULL); while (*loc != ctx) loc = &(*loc)->kc_next; *loc = ctx->kc_next; mutex_exit(&kcpc_ctx_llock[hash]); kmem_free(ctx->kc_pics, cpc_ncounters * sizeof (kcpc_pic_t)); cv_destroy(&ctx->kc_condv); mutex_destroy(&ctx->kc_lock); kmem_free(ctx, sizeof (*ctx)); } /* * Generic interrupt handler used on hardware that generates * overflow interrupts. * * Note: executed at high-level interrupt context! */ /*ARGSUSED*/ kcpc_ctx_t * kcpc_overflow_intr(caddr_t arg, uint64_t bitmap) { kcpc_ctx_t *ctx; kthread_t *t = curthread; int i; /* * On both x86 and UltraSPARC, we may deliver the high-level * interrupt in kernel mode, just after we've started to run an * interrupt thread. (That's because the hardware helpfully * delivers the overflow interrupt some random number of cycles * after the instruction that caused the overflow by which time * we're in some part of the kernel, not necessarily running on * the right thread). * * Check for this case here -- find the pinned thread * that was running when the interrupt went off. */ if (t->t_flag & T_INTR_THREAD) { klwp_t *lwp; atomic_add_32(&kcpc_intrctx_count, 1); /* * Note that t_lwp is always set to point at the underlying * thread, thus this will work in the presence of nested * interrupts. */ ctx = NULL; if ((lwp = t->t_lwp) != NULL) { t = lwptot(lwp); ctx = t->t_cpc_ctx; } } else ctx = t->t_cpc_ctx; if (ctx == NULL) { /* * This can easily happen if we're using the counters in * "shared" mode, for example, and an overflow interrupt * occurs while we are running cpustat. In that case, the * bound thread that has the context that belongs to this * CPU is almost certainly sleeping (if it was running on * the CPU we'd have found it above), and the actual * interrupted thread has no knowledge of performance counters! */ ctx = curthread->t_cpu->cpu_cpc_ctx; if (ctx != NULL) { /* * Return the bound context for this CPU to * the interrupt handler so that it can synchronously * sample the hardware counters and restart them. */ return (ctx); } /* * As long as the overflow interrupt really is delivered early * enough after trapping into the kernel to avoid switching * threads, we must always be able to find the cpc context, * or something went terribly wrong i.e. we ended up * running a passivated interrupt thread, a kernel * thread or we interrupted idle, all of which are Very Bad. * * We also could end up here owing to an incredibly unlikely * race condition that exists on x86 based architectures when * the cpc provider is in use; overflow interrupts are directed * to the cpc provider if the 'dtrace_cpc_in_use' variable is * set when we enter the handler. This variable is unset after * overflow interrupts have been disabled on all CPUs and all * contexts have been torn down. To stop interrupts, the cpc * provider issues a xcall to the remote CPU before it tears * down that CPUs context. As high priority xcalls, on an x86 * architecture, execute at a higher PIL than this handler, it * is possible (though extremely unlikely) that the xcall could * interrupt the overflow handler before the handler has * checked the 'dtrace_cpc_in_use' variable, stop the counters, * return to the cpc provider which could then rip down * contexts and unset 'dtrace_cpc_in_use' *before* the CPUs * overflow handler has had a chance to check the variable. In * that case, the handler would direct the overflow into this * code and no valid context will be found. The default behavior * when no valid context is found is now to shout a warning to * the console and bump the 'kcpc_nullctx_count' variable. */ if (kcpc_nullctx_panic) panic("null cpc context, thread %p", (void *)t); cmn_err(CE_WARN, "null cpc context found in overflow handler!\n"); atomic_add_32(&kcpc_nullctx_count, 1); } else if ((ctx->kc_flags & KCPC_CTX_INVALID) == 0) { /* * Schedule an ast to sample the counters, which will * propagate any overflow into the virtualized performance * counter(s), and may deliver a signal. */ ttolwp(t)->lwp_pcb.pcb_flags |= CPC_OVERFLOW; /* * If a counter has overflowed which was counting on behalf of * a request which specified CPC_OVF_NOTIFY_EMT, send the * process a signal. */ for (i = 0; i < cpc_ncounters; i++) { if (ctx->kc_pics[i].kp_req != NULL && bitmap & (1 << i) && ctx->kc_pics[i].kp_req->kr_flags & CPC_OVF_NOTIFY_EMT) { /* * A signal has been requested for this PIC, so * so freeze the context. The interrupt handler * has already stopped the counter hardware. */ atomic_or_uint(&ctx->kc_flags, KCPC_CTX_FREEZE); atomic_or_uint(&ctx->kc_pics[i].kp_flags, KCPC_PIC_OVERFLOWED); } } aston(t); } return (NULL); } /* * The current thread context had an overflow interrupt; we're * executing here in high-level interrupt context. */ /*ARGSUSED*/ uint_t kcpc_hw_overflow_intr(caddr_t arg1, caddr_t arg2) { kcpc_ctx_t *ctx; uint64_t bitmap; uint8_t *state; if (pcbe_ops == NULL || (bitmap = pcbe_ops->pcbe_overflow_bitmap()) == 0) return (DDI_INTR_UNCLAIMED); /* * Prevent any further interrupts. */ pcbe_ops->pcbe_allstop(); if (dtrace_cpc_in_use) { state = &cpu_core[CPU->cpu_id].cpuc_dcpc_intr_state; /* * Set the per-CPU state bit to indicate that we are currently * processing an interrupt if it is currently free. Drop the * interrupt if the state isn't free (i.e. a configuration * event is taking place). */ if (atomic_cas_8(state, DCPC_INTR_FREE, DCPC_INTR_PROCESSING) == DCPC_INTR_FREE) { int i; kcpc_request_t req; ASSERT(dtrace_cpc_fire != NULL); (*dtrace_cpc_fire)(bitmap); ctx = curthread->t_cpu->cpu_cpc_ctx; /* Reset any counters that have overflowed */ for (i = 0; i < ctx->kc_set->ks_nreqs; i++) { req = ctx->kc_set->ks_req[i]; if (bitmap & (1 << req.kr_picnum)) { pcbe_ops->pcbe_configure(req.kr_picnum, req.kr_event, req.kr_preset, req.kr_flags, req.kr_nattrs, req.kr_attr, &(req.kr_config), (void *)ctx); } } pcbe_ops->pcbe_program(ctx); /* * We've finished processing the interrupt so set * the state back to free. */ cpu_core[CPU->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE; membar_producer(); } return (DDI_INTR_CLAIMED); } /* * DTrace isn't involved so pass on accordingly. * * If the interrupt has occurred in the context of an lwp owning * the counters, then the handler posts an AST to the lwp to * trigger the actual sampling, and optionally deliver a signal or * restart the counters, on the way out of the kernel using * kcpc_hw_overflow_ast() (see below). * * On the other hand, if the handler returns the context to us * directly, then it means that there are no other threads in * the middle of updating it, no AST has been posted, and so we * should sample the counters here, and restart them with no * further fuss. */ if ((ctx = kcpc_overflow_intr(arg1, bitmap)) != NULL) { uint64_t curtick = KCPC_GET_TICK(); ctx->kc_hrtime = gethrtime_waitfree(); ctx->kc_vtick += curtick - ctx->kc_rawtick; ctx->kc_rawtick = curtick; pcbe_ops->pcbe_sample(ctx); pcbe_ops->pcbe_program(ctx); } return (DDI_INTR_CLAIMED); } /* * Called from trap() when processing the ast posted by the high-level * interrupt handler. */ int kcpc_overflow_ast() { kcpc_ctx_t *ctx = curthread->t_cpc_ctx; int i; int found = 0; uint64_t curtick = KCPC_GET_TICK(); ASSERT(ctx != NULL); /* Beware of interrupt skid. */ /* * An overflow happened: sample the context to ensure that * the overflow is propagated into the upper bits of the * virtualized 64-bit counter(s). */ kpreempt_disable(); ctx->kc_hrtime = gethrtime_waitfree(); pcbe_ops->pcbe_sample(ctx); kpreempt_enable(); ctx->kc_vtick += curtick - ctx->kc_rawtick; /* * The interrupt handler has marked any pics with KCPC_PIC_OVERFLOWED * if that pic generated an overflow and if the request it was counting * on behalf of had CPC_OVERFLOW_REQUEST specified. We go through all * pics in the context and clear the KCPC_PIC_OVERFLOWED flags. If we * found any overflowed pics, keep the context frozen and return true * (thus causing a signal to be sent). */ for (i = 0; i < cpc_ncounters; i++) { if (ctx->kc_pics[i].kp_flags & KCPC_PIC_OVERFLOWED) { atomic_and_uint(&ctx->kc_pics[i].kp_flags, ~KCPC_PIC_OVERFLOWED); found = 1; } } if (found) return (1); /* * Otherwise, re-enable the counters and continue life as before. */ kpreempt_disable(); atomic_and_uint(&ctx->kc_flags, ~KCPC_CTX_FREEZE); pcbe_ops->pcbe_program(ctx); kpreempt_enable(); return (0); } /* * Called when switching away from current thread. */ static void kcpc_save(kcpc_ctx_t *ctx) { if (ctx->kc_flags & KCPC_CTX_INVALID) { if (ctx->kc_flags & KCPC_CTX_INVALID_STOPPED) return; /* * This context has been invalidated but the counters have not * been stopped. Stop them here and mark the context stopped. */ pcbe_ops->pcbe_allstop(); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID_STOPPED); return; } pcbe_ops->pcbe_allstop(); if (ctx->kc_flags & KCPC_CTX_FREEZE) return; /* * Need to sample for all reqs into each req's current mpic. */ ctx->kc_hrtime = gethrtime(); ctx->kc_vtick += KCPC_GET_TICK() - ctx->kc_rawtick; pcbe_ops->pcbe_sample(ctx); } static void kcpc_restore(kcpc_ctx_t *ctx) { mutex_enter(&ctx->kc_lock); if ((ctx->kc_flags & (KCPC_CTX_INVALID | KCPC_CTX_INVALID_STOPPED)) == KCPC_CTX_INVALID) /* * The context is invalidated but has not been marked stopped. * We mark it as such here because we will not start the * counters during this context switch. */ ctx->kc_flags |= KCPC_CTX_INVALID_STOPPED; if (ctx->kc_flags & (KCPC_CTX_INVALID | KCPC_CTX_FREEZE)) { mutex_exit(&ctx->kc_lock); return; } /* * Set kc_flags to show that a kcpc_restore() is in progress to avoid * ctx & set related memory objects being freed without us knowing. * This can happen if an agent thread is executing a kcpc_unbind(), * with this thread as the target, whilst we're concurrently doing a * restorectx() during, for example, a proc_exit(). Effectively, by * doing this, we're asking kcpc_free() to cv_wait() until * kcpc_restore() has completed. */ ctx->kc_flags |= KCPC_CTX_RESTORE; mutex_exit(&ctx->kc_lock); /* * While programming the hardware, the counters should be stopped. We * don't do an explicit pcbe_allstop() here because they should have * been stopped already by the last consumer. */ ctx->kc_rawtick = KCPC_GET_TICK(); pcbe_ops->pcbe_program(ctx); /* * Wake the agent thread if it's waiting in kcpc_free(). */ mutex_enter(&ctx->kc_lock); ctx->kc_flags &= ~KCPC_CTX_RESTORE; cv_signal(&ctx->kc_condv); mutex_exit(&ctx->kc_lock); } /* * If kcpc_counts_include_idle is set to 0 by the sys admin, we add the the * following context operators to the idle thread on each CPU. They stop the * counters when the idle thread is switched on, and they start them again when * it is switched off. */ /*ARGSUSED*/ void kcpc_idle_save(struct cpu *cp) { /* * The idle thread shouldn't be run anywhere else. */ ASSERT(CPU == cp); /* * We must hold the CPU's context lock to ensure the context isn't freed * while we're looking at it. */ mutex_enter(&cp->cpu_cpc_ctxlock); if ((cp->cpu_cpc_ctx == NULL) || (cp->cpu_cpc_ctx->kc_flags & KCPC_CTX_INVALID)) { mutex_exit(&cp->cpu_cpc_ctxlock); return; } pcbe_ops->pcbe_program(cp->cpu_cpc_ctx); mutex_exit(&cp->cpu_cpc_ctxlock); } void kcpc_idle_restore(struct cpu *cp) { /* * The idle thread shouldn't be run anywhere else. */ ASSERT(CPU == cp); /* * We must hold the CPU's context lock to ensure the context isn't freed * while we're looking at it. */ mutex_enter(&cp->cpu_cpc_ctxlock); if ((cp->cpu_cpc_ctx == NULL) || (cp->cpu_cpc_ctx->kc_flags & KCPC_CTX_INVALID)) { mutex_exit(&cp->cpu_cpc_ctxlock); return; } pcbe_ops->pcbe_allstop(); mutex_exit(&cp->cpu_cpc_ctxlock); } /*ARGSUSED*/ static void kcpc_lwp_create(kthread_t *t, kthread_t *ct) { kcpc_ctx_t *ctx = t->t_cpc_ctx, *cctx; int i; if (ctx == NULL || (ctx->kc_flags & KCPC_CTX_LWPINHERIT) == 0) return; rw_enter(&kcpc_cpuctx_lock, RW_READER); if (ctx->kc_flags & KCPC_CTX_INVALID) { rw_exit(&kcpc_cpuctx_lock); return; } cctx = kcpc_ctx_alloc(); kcpc_ctx_clone(ctx, cctx); rw_exit(&kcpc_cpuctx_lock); /* * Copy the parent context's kc_flags field, but don't overwrite * the child's in case it was modified during kcpc_ctx_clone. */ cctx->kc_flags |= ctx->kc_flags; cctx->kc_thread = ct; cctx->kc_cpuid = -1; ct->t_cpc_set = cctx->kc_set; ct->t_cpc_ctx = cctx; if (cctx->kc_flags & KCPC_CTX_SIGOVF) { kcpc_set_t *ks = cctx->kc_set; /* * Our contract with the user requires us to immediately send an * overflow signal to all children if we have the LWPINHERIT * and SIGOVF flags set. In addition, all counters should be * set to UINT64_MAX, and their pic's overflow flag turned on * so that our trap() processing knows to send a signal. */ atomic_or_uint(&cctx->kc_flags, KCPC_CTX_FREEZE); for (i = 0; i < ks->ks_nreqs; i++) { kcpc_request_t *kr = &ks->ks_req[i]; if (kr->kr_flags & CPC_OVF_NOTIFY_EMT) { *(kr->kr_data) = UINT64_MAX; kr->kr_picp->kp_flags |= KCPC_PIC_OVERFLOWED; } } ttolwp(ct)->lwp_pcb.pcb_flags |= CPC_OVERFLOW; aston(ct); } installctx(ct, cctx, kcpc_save, kcpc_restore, NULL, kcpc_lwp_create, NULL, kcpc_free); } /* * Counter Stoppage Theory * * The counters may need to be stopped properly at the following occasions: * * 1) An LWP exits. * 2) A thread exits. * 3) An LWP performs an exec(). * 4) A bound set is unbound. * * In addition to stopping the counters, the CPC context (a kcpc_ctx_t) may need * to be freed as well. * * Case 1: kcpc_passivate(), called via lwp_exit(), stops the counters. Later on * when the thread is freed, kcpc_free(), called by freectx(), frees the * context. * * Case 2: same as case 1 except kcpc_passivate is called from thread_exit(). * * Case 3: kcpc_free(), called via freectx() via exec(), recognizes that it has * been called from exec. It stops the counters _and_ frees the context. * * Case 4: kcpc_unbind() stops the hardware _and_ frees the context. * * CPU-bound counters are always stopped via kcpc_unbind(). */ /* * We're being called to delete the context; we ensure that all associated data * structures are freed, and that the hardware is passivated if this is an exec. */ /*ARGSUSED*/ static void kcpc_free(kcpc_ctx_t *ctx, int isexec) { int i; kcpc_set_t *set = ctx->kc_set; ASSERT(set != NULL); /* * Wait for kcpc_restore() to finish before we tear things down. */ mutex_enter(&ctx->kc_lock); while (ctx->kc_flags & KCPC_CTX_RESTORE) cv_wait(&ctx->kc_condv, &ctx->kc_lock); ctx->kc_flags |= KCPC_CTX_INVALID; mutex_exit(&ctx->kc_lock); if (isexec) { /* * This thread is execing, and after the exec it should not have * any performance counter context. Stop the counters properly * here so the system isn't surprised by an overflow interrupt * later. */ if (ctx->kc_cpuid != -1) { cpu_t *cp; /* * CPU-bound context; stop the appropriate CPU's ctrs. * Hold cpu_lock while examining the CPU to ensure it * doesn't go away. */ mutex_enter(&cpu_lock); cp = cpu_get(ctx->kc_cpuid); /* * The CPU could have been DR'd out, so only stop the * CPU and clear its context pointer if the CPU still * exists. */ if (cp != NULL) { mutex_enter(&cp->cpu_cpc_ctxlock); kcpc_stop_hw(ctx); cp->cpu_cpc_ctx = NULL; mutex_exit(&cp->cpu_cpc_ctxlock); } mutex_exit(&cpu_lock); ASSERT(curthread->t_cpc_ctx == NULL); } else { /* * Thread-bound context; stop _this_ CPU's counters. */ kpreempt_disable(); pcbe_ops->pcbe_allstop(); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID_STOPPED); kpreempt_enable(); curthread->t_cpc_ctx = NULL; } /* * Since we are being called from an exec and we know that * exec is not permitted via the agent thread, we should clean * up this thread's CPC state completely, and not leave dangling * CPC pointers behind. */ ASSERT(ctx->kc_thread == curthread); curthread->t_cpc_set = NULL; } /* * Walk through each request in this context's set and free the PCBE's * configuration if it exists. */ for (i = 0; i < set->ks_nreqs; i++) { if (set->ks_req[i].kr_config != NULL) pcbe_ops->pcbe_free(set->ks_req[i].kr_config); } kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t)); kcpc_ctx_free(ctx); kcpc_free_set(set); } /* * Free the memory associated with a request set. */ void kcpc_free_set(kcpc_set_t *set) { int i; kcpc_request_t *req; ASSERT(set->ks_req != NULL); for (i = 0; i < set->ks_nreqs; i++) { req = &set->ks_req[i]; if (req->kr_nattrs != 0) { kmem_free(req->kr_attr, req->kr_nattrs * sizeof (kcpc_attr_t)); } } kmem_free(set->ks_req, sizeof (kcpc_request_t) * set->ks_nreqs); cv_destroy(&set->ks_condv); mutex_destroy(&set->ks_lock); kmem_free(set, sizeof (kcpc_set_t)); } /* * Grab every existing context and mark it as invalid. */ void kcpc_invalidate_all(void) { kcpc_ctx_t *ctx; long hash; for (hash = 0; hash < CPC_HASH_BUCKETS; hash++) { mutex_enter(&kcpc_ctx_llock[hash]); for (ctx = kcpc_ctx_list[hash]; ctx; ctx = ctx->kc_next) atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID); mutex_exit(&kcpc_ctx_llock[hash]); } } /* * Interface for PCBEs to signal that an existing configuration has suddenly * become invalid. */ void kcpc_invalidate_config(void *token) { kcpc_ctx_t *ctx = token; ASSERT(ctx != NULL); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID); } /* * Called from lwp_exit() and thread_exit() */ void kcpc_passivate(void) { kcpc_ctx_t *ctx = curthread->t_cpc_ctx; kcpc_set_t *set = curthread->t_cpc_set; if (set == NULL) return; /* * We're cleaning up after this thread; ensure there are no dangling * CPC pointers left behind. The context and set will be freed by * freectx() in the case of an LWP-bound set, and by kcpc_unbind() in * the case of a CPU-bound set. */ curthread->t_cpc_ctx = NULL; if (ctx == NULL) { /* * This thread has a set but no context; it must be a CPU-bound * set. The hardware will be stopped via kcpc_unbind() when the * process exits and closes its file descriptors with * kcpc_close(). Our only job here is to clean up this thread's * state; the set will be freed with the unbind(). */ (void) kcpc_unbind(set); /* * Unbinding a set belonging to the current thread should clear * its set pointer. */ ASSERT(curthread->t_cpc_set == NULL); return; } curthread->t_cpc_set = NULL; /* * This thread/LWP is exiting but context switches will continue to * happen for a bit as the exit proceeds. Kernel preemption must be * disabled here to prevent a race between checking or setting the * INVALID_STOPPED flag here and kcpc_restore() setting the flag during * a context switch. */ kpreempt_disable(); if ((ctx->kc_flags & KCPC_CTX_INVALID_STOPPED) == 0) { pcbe_ops->pcbe_allstop(); atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID | KCPC_CTX_INVALID_STOPPED); } kpreempt_enable(); } /* * Assign the requests in the given set to the PICs in the context. * Returns 0 if successful, -1 on failure. */ /*ARGSUSED*/ int kcpc_assign_reqs(kcpc_set_t *set, kcpc_ctx_t *ctx) { int i; int *picnum_save; ASSERT(set->ks_nreqs <= cpc_ncounters); /* * Provide kcpc_tryassign() with scratch space to avoid doing an * alloc/free with every invocation. */ picnum_save = kmem_alloc(set->ks_nreqs * sizeof (int), KM_SLEEP); /* * kcpc_tryassign() blindly walks through each request in the set, * seeing if a counter can count its event. If yes, it assigns that * counter. However, that counter may have been the only capable counter * for _another_ request's event. The solution is to try every possible * request first. Note that this does not cover all solutions, as * that would require all unique orderings of requests, an n^n operation * which would be unacceptable for architectures with many counters. */ for (i = 0; i < set->ks_nreqs; i++) if (kcpc_tryassign(set, i, picnum_save) == 0) break; kmem_free(picnum_save, set->ks_nreqs * sizeof (int)); if (i == set->ks_nreqs) return (-1); return (0); } static int kcpc_tryassign(kcpc_set_t *set, int starting_req, int *scratch) { int i; int j; uint64_t bitmap = 0, resmap = 0; uint64_t ctrmap; /* * We are attempting to assign the reqs to pics, but we may fail. If we * fail, we need to restore the state of the requests to what it was * when we found it, as some reqs may have been explicitly assigned to * a specific PIC beforehand. We do this by snapshotting the assignments * now and restoring from it later if we fail. * * Also we note here which counters have already been claimed by * requests with explicit counter assignments. */ for (i = 0; i < set->ks_nreqs; i++) { scratch[i] = set->ks_req[i].kr_picnum; if (set->ks_req[i].kr_picnum != -1) resmap |= (1 << set->ks_req[i].kr_picnum); } /* * Walk through requests assigning them to the first PIC that is * capable. */ i = starting_req; do { if (set->ks_req[i].kr_picnum != -1) { ASSERT((bitmap & (1 << set->ks_req[i].kr_picnum)) == 0); bitmap |= (1 << set->ks_req[i].kr_picnum); if (++i == set->ks_nreqs) i = 0; continue; } ctrmap = pcbe_ops->pcbe_event_coverage(set->ks_req[i].kr_event); for (j = 0; j < cpc_ncounters; j++) { if (ctrmap & (1 << j) && (bitmap & (1 << j)) == 0 && (resmap & (1 << j)) == 0) { /* * We can assign this counter because: * * 1. It can count the event (ctrmap) * 2. It hasn't been assigned yet (bitmap) * 3. It wasn't reserved by a request (resmap) */ bitmap |= (1 << j); break; } } if (j == cpc_ncounters) { for (i = 0; i < set->ks_nreqs; i++) set->ks_req[i].kr_picnum = scratch[i]; return (-1); } set->ks_req[i].kr_picnum = j; if (++i == set->ks_nreqs) i = 0; } while (i != starting_req); return (0); } kcpc_set_t * kcpc_dup_set(kcpc_set_t *set) { kcpc_set_t *new; int i; int j; new = kmem_zalloc(sizeof (*new), KM_SLEEP); new->ks_state &= ~KCPC_SET_BOUND; new->ks_flags = set->ks_flags; new->ks_nreqs = set->ks_nreqs; new->ks_req = kmem_alloc(set->ks_nreqs * sizeof (kcpc_request_t), KM_SLEEP); new->ks_data = NULL; new->ks_ctx = NULL; for (i = 0; i < new->ks_nreqs; i++) { new->ks_req[i].kr_config = NULL; new->ks_req[i].kr_index = set->ks_req[i].kr_index; new->ks_req[i].kr_picnum = set->ks_req[i].kr_picnum; new->ks_req[i].kr_picp = NULL; new->ks_req[i].kr_data = NULL; (void) strncpy(new->ks_req[i].kr_event, set->ks_req[i].kr_event, CPC_MAX_EVENT_LEN); new->ks_req[i].kr_preset = set->ks_req[i].kr_preset; new->ks_req[i].kr_flags = set->ks_req[i].kr_flags; new->ks_req[i].kr_nattrs = set->ks_req[i].kr_nattrs; new->ks_req[i].kr_attr = kmem_alloc(new->ks_req[i].kr_nattrs * sizeof (kcpc_attr_t), KM_SLEEP); for (j = 0; j < new->ks_req[i].kr_nattrs; j++) { new->ks_req[i].kr_attr[j].ka_val = set->ks_req[i].kr_attr[j].ka_val; (void) strncpy(new->ks_req[i].kr_attr[j].ka_name, set->ks_req[i].kr_attr[j].ka_name, CPC_MAX_ATTR_LEN); } } return (new); } int kcpc_allow_nonpriv(void *token) { return (((kcpc_ctx_t *)token)->kc_flags & KCPC_CTX_NONPRIV); } void kcpc_invalidate(kthread_t *t) { kcpc_ctx_t *ctx = t->t_cpc_ctx; if (ctx != NULL) atomic_or_uint(&ctx->kc_flags, KCPC_CTX_INVALID); } /* * Given a PCBE ID, attempt to load a matching PCBE module. The strings given * are used to construct PCBE names, starting with the most specific, * "pcbe.first.second.third.fourth" and ending with the least specific, * "pcbe.first". * * Returns 0 if a PCBE was successfully loaded and -1 upon error. */ int kcpc_pcbe_tryload(const char *prefix, uint_t first, uint_t second, uint_t third) { uint_t s[3]; s[0] = first; s[1] = second; s[2] = third; return (modload_qualified("pcbe", "pcbe", prefix, ".", s, 3, NULL) < 0 ? -1 : 0); } char * kcpc_list_attrs(void) { ASSERT(pcbe_ops != NULL); return (pcbe_ops->pcbe_list_attrs()); } char * kcpc_list_events(uint_t pic) { ASSERT(pcbe_ops != NULL); return (pcbe_ops->pcbe_list_events(pic)); } uint_t kcpc_pcbe_capabilities(void) { ASSERT(pcbe_ops != NULL); return (pcbe_ops->pcbe_caps); } int kcpc_pcbe_loaded(void) { return (pcbe_ops == NULL ? -1 : 0); }