/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * Copyright 2016 Joyent, Inc. */ #include #include #include #include #include #include #include #ifdef __sparc #include #endif void (*dtrace_cpu_init)(processorid_t); void (*dtrace_modload)(struct modctl *); void (*dtrace_modunload)(struct modctl *); void (*dtrace_helpers_cleanup)(proc_t *); void (*dtrace_helpers_fork)(proc_t *, proc_t *); void (*dtrace_cpustart_init)(void); void (*dtrace_cpustart_fini)(void); void (*dtrace_cpc_fire)(uint64_t); void (*dtrace_closef)(void); void (*dtrace_debugger_init)(void); void (*dtrace_debugger_fini)(void); dtrace_vtime_state_t dtrace_vtime_active = 0; dtrace_cacheid_t dtrace_predcache_id = DTRACE_CACHEIDNONE + 1; /* * dtrace_cpc_in_use usage statement: this global variable is used by the cpc * hardware overflow interrupt handler and the kernel cpc framework to check * whether or not the DTrace cpc provider is currently in use. The variable is * set before counters are enabled with the first enabling and cleared when * the last enabling is disabled. Its value at any given time indicates the * number of active dcpc based enablings. The global 'kcpc_cpuctx_lock' rwlock * is held during initial setting to protect races between kcpc_open() and the * first enabling. The locking provided by the DTrace subsystem, the kernel * cpc framework and the cpu management framework protect consumers from race * conditions on enabling and disabling probes. */ uint32_t dtrace_cpc_in_use = 0; typedef struct dtrace_hrestime { lock_t dthr_lock; /* lock for this element */ timestruc_t dthr_hrestime; /* hrestime value */ int64_t dthr_adj; /* hrestime_adj value */ hrtime_t dthr_hrtime; /* hrtime value */ } dtrace_hrestime_t; static dtrace_hrestime_t dtrace_hrestime[2]; /* * Making available adjustable high-resolution time in DTrace is regrettably * more complicated than one might think it should be. The problem is that * the variables related to adjusted high-resolution time (hrestime, * hrestime_adj and friends) are adjusted under hres_lock -- and this lock may * be held when we enter probe context. One might think that we could address * this by having a single snapshot copy that is stored under a different lock * from hres_tick(), using the snapshot iff hres_lock is locked in probe * context. Unfortunately, this too won't work: because hres_lock is grabbed * in more than just hres_tick() context, we could enter probe context * concurrently on two different CPUs with both locks (hres_lock and the * snapshot lock) held. As this implies, the fundamental problem is that we * need to have access to a snapshot of these variables that we _know_ will * not be locked in probe context. To effect this, we have two snapshots * protected by two different locks, and we mandate that these snapshots are * recorded in succession by a single thread calling dtrace_hres_tick(). (We * assure this by calling it out of the same CY_HIGH_LEVEL cyclic that calls * hres_tick().) A single thread can't be in two places at once: one of the * snapshot locks is guaranteed to be unheld at all times. The * dtrace_gethrestime() algorithm is thus to check first one snapshot and then * the other to find the unlocked snapshot. */ void dtrace_hres_tick(void) { int i; ushort_t spl; for (i = 0; i < 2; i++) { dtrace_hrestime_t tmp; spl = hr_clock_lock(); tmp.dthr_hrestime = hrestime; tmp.dthr_adj = hrestime_adj; tmp.dthr_hrtime = dtrace_gethrtime(); hr_clock_unlock(spl); lock_set(&dtrace_hrestime[i].dthr_lock); dtrace_hrestime[i].dthr_hrestime = tmp.dthr_hrestime; dtrace_hrestime[i].dthr_adj = tmp.dthr_adj; dtrace_hrestime[i].dthr_hrtime = tmp.dthr_hrtime; dtrace_membar_producer(); /* * To allow for lock-free examination of this lock, we use * the same trick that is used hres_lock; for more details, * see the description of this technique in sun4u/sys/clock.h. */ dtrace_hrestime[i].dthr_lock++; } } hrtime_t dtrace_gethrestime(void) { dtrace_hrestime_t snap; hrtime_t now; int i = 0, adj, nslt; for (;;) { snap.dthr_lock = dtrace_hrestime[i].dthr_lock; dtrace_membar_consumer(); snap.dthr_hrestime = dtrace_hrestime[i].dthr_hrestime; snap.dthr_hrtime = dtrace_hrestime[i].dthr_hrtime; snap.dthr_adj = dtrace_hrestime[i].dthr_adj; dtrace_membar_consumer(); if ((snap.dthr_lock & ~1) == dtrace_hrestime[i].dthr_lock) break; /* * If we're here, the lock was either locked, or it * transitioned while we were taking the snapshot. Either * way, we're going to try the other dtrace_hrestime element; * we know that it isn't possible for both to be locked * simultaneously, so we will ultimately get a good snapshot. */ i ^= 1; } /* * We have a good snapshot. Now perform any necessary adjustments. */ nslt = dtrace_gethrtime() - snap.dthr_hrtime; ASSERT(nslt >= 0); now = ((hrtime_t)snap.dthr_hrestime.tv_sec * (hrtime_t)NANOSEC) + snap.dthr_hrestime.tv_nsec; if (snap.dthr_adj != 0) { if (snap.dthr_adj > 0) { adj = (nslt >> adj_shift); if (adj > snap.dthr_adj) adj = (int)snap.dthr_adj; } else { adj = -(nslt >> adj_shift); if (adj < snap.dthr_adj) adj = (int)snap.dthr_adj; } now += adj; } return (now); } void dtrace_vtime_enable(void) { dtrace_vtime_state_t state, nstate; nstate = DTRACE_VTIME_INACTIVE; do { state = dtrace_vtime_active; switch (state) { case DTRACE_VTIME_INACTIVE: nstate = DTRACE_VTIME_ACTIVE; break; case DTRACE_VTIME_INACTIVE_TNF: nstate = DTRACE_VTIME_ACTIVE_TNF; break; case DTRACE_VTIME_ACTIVE: case DTRACE_VTIME_ACTIVE_TNF: panic("DTrace virtual time already enabled"); /*NOTREACHED*/ } } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active, state, nstate) != state); } void dtrace_vtime_disable(void) { dtrace_vtime_state_t state, nstate; nstate = DTRACE_VTIME_INACTIVE; do { state = dtrace_vtime_active; switch (state) { case DTRACE_VTIME_ACTIVE: nstate = DTRACE_VTIME_INACTIVE; break; case DTRACE_VTIME_ACTIVE_TNF: nstate = DTRACE_VTIME_INACTIVE_TNF; break; case DTRACE_VTIME_INACTIVE: case DTRACE_VTIME_INACTIVE_TNF: panic("DTrace virtual time already disabled"); /*NOTREACHED*/ } } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active, state, nstate) != state); } void dtrace_vtime_enable_tnf(void) { dtrace_vtime_state_t state, nstate; nstate = DTRACE_VTIME_INACTIVE; do { state = dtrace_vtime_active; switch (state) { case DTRACE_VTIME_ACTIVE: nstate = DTRACE_VTIME_ACTIVE_TNF; break; case DTRACE_VTIME_INACTIVE: nstate = DTRACE_VTIME_INACTIVE_TNF; break; case DTRACE_VTIME_ACTIVE_TNF: case DTRACE_VTIME_INACTIVE_TNF: panic("TNF already active"); /*NOTREACHED*/ } } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active, state, nstate) != state); } void dtrace_vtime_disable_tnf(void) { dtrace_vtime_state_t state, nstate; nstate = DTRACE_VTIME_INACTIVE; do { state = dtrace_vtime_active; switch (state) { case DTRACE_VTIME_ACTIVE_TNF: nstate = DTRACE_VTIME_ACTIVE; break; case DTRACE_VTIME_INACTIVE_TNF: nstate = DTRACE_VTIME_INACTIVE; break; case DTRACE_VTIME_ACTIVE: case DTRACE_VTIME_INACTIVE: panic("TNF already inactive"); /*NOTREACHED*/ } } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active, state, nstate) != state); } void dtrace_vtime_switch(kthread_t *next) { dtrace_icookie_t cookie; hrtime_t ts; if (tnf_tracing_active) { tnf_thread_switch(next); if (dtrace_vtime_active == DTRACE_VTIME_INACTIVE_TNF) return; } cookie = dtrace_interrupt_disable(); ts = dtrace_gethrtime(); if (curthread->t_dtrace_start != 0) { curthread->t_dtrace_vtime += ts - curthread->t_dtrace_start; curthread->t_dtrace_start = 0; } next->t_dtrace_start = ts; dtrace_interrupt_enable(cookie); } void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); void (*dtrace_fasttrap_exec_ptr)(proc_t *); void (*dtrace_fasttrap_exit_ptr)(proc_t *); /* * This function is called by cfork() in the event that it appears that * there may be dtrace tracepoints active in the parent process's address * space. This first confirms the existence of dtrace tracepoints in the * parent process and calls into the fasttrap module to remove the * corresponding tracepoints from the child. By knowing that there are * existing tracepoints, and ensuring they can't be removed, we can rely * on the fasttrap module remaining loaded. */ void dtrace_fasttrap_fork(proc_t *p, proc_t *cp) { ASSERT(p->p_proc_flag & P_PR_LOCK); ASSERT(p->p_dtrace_count > 0); ASSERT(dtrace_fasttrap_fork_ptr != NULL); dtrace_fasttrap_fork_ptr(p, cp); }