/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Kernel's linker/loader */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !defined(_OBP) #include #endif /* * do_symbols() error codes */ #define DOSYM_UNDEF -1 /* undefined symbol */ #define DOSYM_UNSAFE -2 /* MT-unsafe driver symbol */ #if !defined(_OBP) static void synthetic_bootaux(char *, val_t *); #endif static struct module *load_exec(val_t *, char *); static void load_linker(val_t *); static struct modctl *add_primary(const char *filename, int); static int bind_primary(val_t *, int); static int load_primary(struct module *, int); static int load_kmdb(val_t *); static int get_progbits(struct module *, struct _buf *); static int get_syms(struct module *, struct _buf *); static int get_ctf(struct module *, struct _buf *); static void get_signature(struct module *, struct _buf *); static int do_common(struct module *); static void add_dependent(struct module *, struct module *); static int do_dependents(struct modctl *, char *, size_t); static int do_symbols(struct module *, Elf64_Addr); static void module_assign(struct modctl *, struct module *); static void free_module_data(struct module *); static char *depends_on(struct module *); static char *getmodpath(const char *); static char *basename(char *); static void attr_val(val_t *); static char *find_libmacro(char *); static char *expand_libmacro(char *, char *, char *); static int read_bootflags(void); static int kobj_comp_setup(struct _buf *, struct compinfo *); static int kobj_uncomp_blk(struct _buf *, caddr_t, uint_t); static int kobj_read_blks(struct _buf *, caddr_t, uint_t, uint_t); static int kobj_boot_open(char *, int); static int kobj_boot_close(int); static int kobj_boot_seek(int, off_t, off_t); static int kobj_boot_read(int, caddr_t, size_t); static int kobj_boot_fstat(int, struct bootstat *); static int kobj_boot_compinfo(int, struct compinfo *); static Sym *lookup_one(struct module *, const char *); static void sym_insert(struct module *, char *, symid_t); static Sym *sym_lookup(struct module *, Sym *); static struct kobjopen_tctl *kobjopen_alloc(char *filename); static void kobjopen_free(struct kobjopen_tctl *ltp); static void kobjopen_thread(struct kobjopen_tctl *ltp); static int kobj_is_compressed(intptr_t); extern int kcopy(const void *, void *, size_t); extern int elf_mach_ok(Ehdr *); extern int alloc_gottable(struct module *, caddr_t *, caddr_t *); #if !defined(_OBP) extern int kobj_boot_mountroot(void); #endif static void tnf_unsplice_probes(uint_t, struct modctl *); extern tnf_probe_control_t *__tnf_probe_list_head; extern tnf_tag_data_t *__tnf_tag_list_head; extern int modrootloaded; extern int swaploaded; extern int bop_io_quiesced; extern int last_module_id; extern char stubs_base[]; extern char stubs_end[]; #ifdef KOBJ_DEBUG /* * Values that can be or'd in to kobj_debug and their effects: * * D_DEBUG - misc. debugging information. * D_SYMBOLS - list symbols and their values as they are entered * into the hash table * D_RELOCATIONS - display relocation processing information * D_LOADING - display information about each module as it * is loaded. */ int kobj_debug = 0; #define KOBJ_MARK(s) if (kobj_debug & D_DEBUG) \ (_kobj_printf(ops, "%d", __LINE__), _kobj_printf(ops, ": %s\n", s)) #else #define KOBJ_MARK(s) /* discard */ #endif #define MODPATH_PROPNAME "module-path" #ifdef MODDIR_SUFFIX static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/"; #else #define slash_moddir_suffix_slash "" #endif #define _moddebug get_weakish_int(&moddebug) #define _modrootloaded get_weakish_int(&modrootloaded) #define _swaploaded get_weakish_int(&swaploaded) #define _ioquiesced get_weakish_int(&bop_io_quiesced) #define mod(X) (struct module *)((X)->modl_modp->mod_mp) void *romp; /* rom vector (opaque to us) */ struct bootops *ops; /* bootops vector */ void *dbvec; /* debug vector */ /* * kobjopen thread control structure */ struct kobjopen_tctl { ksema_t sema; char *name; /* name of file */ struct vnode *vp; /* vnode return from vn_open() */ int Errno; /* error return from vnopen */ }; /* * Structure for defining dynamically expandable library macros */ struct lib_macro_info { char *lmi_list; /* ptr to list of possible choices */ char *lmi_macroname; /* pointer to macro name */ ushort_t lmi_ba_index; /* index into bootaux vector */ ushort_t lmi_macrolen; /* macro length */ } libmacros[] = { { NULL, "CPU", BA_CPU, 0 }, { NULL, "MMU", BA_MMU, 0 } }; #define NLIBMACROS sizeof (libmacros) / sizeof (struct lib_macro_info) char *boot_cpu_compatible_list; /* make $CPU available */ char *kobj_module_path; /* module search path */ vmem_t *text_arena; /* module text arena */ static vmem_t *data_arena; /* module data & bss arena */ static vmem_t *ctf_arena; /* CTF debug data arena */ static struct modctl *kobj_modules = NULL; /* modules loaded */ int kobj_mmu_pagesize; /* system pagesize */ static int lg_pagesize; /* "large" pagesize */ static int kobj_last_module_id = 0; /* id assignment */ static kmutex_t kobj_lock; /* protects mach memory list */ /* * The following functions have been implemented by the kernel. * However, many 3rd party drivers provide their own implementations * of these functions. When such drivers are loaded, messages * indicating that these symbols have been multiply defined will be * emitted to the console. To avoid alarming customers for no good * reason, we simply suppress such warnings for the following set of * functions. */ static char *suppress_sym_list[] = { "strstr", "strncat", "strlcat", "strlcpy", "strspn", "memcpy", "memset", "memmove", "memcmp", "memchr", "__udivdi3", "__divdi3", "__umoddi3", "__moddi3", NULL /* This entry must exist */ }; /* indexed by KOBJ_NOTIFY_* */ static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1]; /* * TNF probe management globals */ tnf_probe_control_t *__tnf_probe_list_head = NULL; tnf_tag_data_t *__tnf_tag_list_head = NULL; int tnf_changed_probe_list = 0; /* * Prefix for statically defined tracing (SDT) DTrace probes. */ const char *sdt_prefix = "__dtrace_probe_"; /* * Beginning and end of the kernel's dynamic text/data segments. */ static caddr_t _text; static caddr_t _etext; static caddr_t _data; /* * The sparc linker doesn't create a memory location * for a variable named _edata, so _edata can only be * referred to, not modified. krtld needs a static * variable to modify it - within krtld, of course - * outside of krtld, e_data is used in all kernels. */ #if defined(__sparc) static caddr_t _edata; #else extern caddr_t _edata; #endif Addr dynseg = 0; /* load address of "dynamic" segment */ size_t dynsize; /* "dynamic" segment size */ int standalone = 1; /* an unwholey kernel? */ int use_iflush; /* iflush after relocations */ /* * _kobj_printf() * * Common printf function pointer. Can handle only one conversion * specification in the format string. Some of the functions invoked * through this function pointer cannot handle more that one conversion * specification in the format string. */ void (*_kobj_printf)(void *, const char *, ...); /* printf routine */ /* * Standalone function pointers for use within krtld. * Many platforms implement optimized platmod versions of * utilities such as bcopy and any such are not yet available * until the kernel is more completely stitched together. * See kobj_impl.h */ void (*kobj_bcopy)(const void *, void *, size_t); void (*kobj_bzero)(void *, size_t); size_t (*kobj_strlcat)(char *, const char *, size_t); static kobj_stat_t kobj_stat; #define MINALIGN 8 /* at least a double-word */ int get_weakish_int(int *ip) { if (standalone) return (0); return (ip == NULL ? 0 : *ip); } static void * get_weakish_pointer(void **ptrp) { if (standalone) return (0); return (ptrp == NULL ? 0 : *ptrp); } /* * XXX fix dependencies on "kernel"; this should work * for other standalone binaries as well. * * XXX Fix hashing code to use one pointer to * hash entries. * |----------| * | nbuckets | * |----------| * | nchains | * |----------| * | bucket[] | * |----------| * | chain[] | * |----------| */ /* * Load, bind and relocate all modules that * form the primary kernel. At this point, our * externals have not been relocated. */ void kobj_init( void *romvec, void *dvec, struct bootops *bootvec, val_t *bootaux) { struct module *mp; struct modctl *modp; Addr entry; char filename[MAXPATHLEN]; /* * Save these to pass on to * the booted standalone. */ romp = romvec; dbvec = dvec; ops = bootvec; kobj_setup_standalone_vectors(); KOBJ_MARK("Entered kobj_init()"); (void) BOP_GETPROP(ops, "whoami", filename); /* * We don't support standalone debuggers anymore. The use of kadb * will interfere with the later use of kmdb. Let the user mend * their ways now. Users will reach this message if they still * have the kadb binary on their system (perhaps they used an old * bfu, or maybe they intentionally copied it there) and have * specified its use in a way that eluded our checking in the boot * program. */ if (dvec != NULL) { _kobj_printf(ops, "\nWARNING: Standalone debuggers such as " "kadb are no longer supported\n\n"); goto fail; } #if defined(_OBP) /* * OBP allows us to read both the ramdisk and * the underlying root fs when root is a disk. * This can lower incidences of unbootable systems * when the archive is out-of-date with the /etc * state files. */ if (BOP_MOUNTROOT() != BOOT_SVC_OK) { _kobj_printf(ops, "can't mount boot fs\n"); goto fail; } #else { /* on x86, we always boot with a ramdisk */ (void) kobj_boot_mountroot(); /* * Now that the ramdisk is mounted, finish boot property * initialization. */ boot_prop_finish(); } #if !defined(_UNIX_KRTLD) /* * 'unix' is linked together with 'krtld' into one executable and * the early boot code does -not- hand us any of the dynamic metadata * about the executable. In particular, it does not read in, map or * otherwise look at the program headers. We fake all that up now. * * We do this early as DTrace static probes and tnf probes both call * undefined references. We have to process those relocations before * calling any of them. * * OBP tells kobj_start() where the ELF image is in memory, so it * synthesized bootaux before kobj_init() was called */ if (bootaux[BA_PHDR].ba_ptr == NULL) synthetic_bootaux(filename, bootaux); #endif /* !_UNIX_KRTLD */ #endif /* _OBP */ /* * Save the interesting attribute-values * (scanned by kobj_boot). */ attr_val(bootaux); /* * Set the module search path. */ kobj_module_path = getmodpath(filename); boot_cpu_compatible_list = find_libmacro("CPU"); /* * These two modules have actually been * loaded by boot, but we finish the job * by introducing them into the world of * loadable modules. */ mp = load_exec(bootaux, filename); load_linker(bootaux); /* * Load all the primary dependent modules. */ if (load_primary(mp, KOBJ_LM_PRIMARY) == -1) goto fail; /* * Glue it together. */ if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1) goto fail; entry = bootaux[BA_ENTRY].ba_val; /* * Get the boot flags */ bootflags(ops); if (boothowto & RB_VERBOSE) kobj_lm_dump(KOBJ_LM_PRIMARY); kobj_kdi_init(); if (boothowto & RB_KMDB) { if (load_kmdb(bootaux) < 0) goto fail; } /* * Post setup. */ s_text = _text; e_text = _etext; s_data = _data; e_data = _edata; kobj_sync_instruction_memory(s_text, e_text - s_text); #ifdef KOBJ_DEBUG if (kobj_debug & D_DEBUG) _kobj_printf(ops, "krtld: transferring control to: 0x%p\n", entry); #endif /* * Make sure the mod system knows about the modules already loaded. */ last_module_id = kobj_last_module_id; bcopy(kobj_modules, &modules, sizeof (modules)); modp = &modules; do { if (modp->mod_next == kobj_modules) modp->mod_next = &modules; if (modp->mod_prev == kobj_modules) modp->mod_prev = &modules; } while ((modp = modp->mod_next) != &modules); standalone = 0; #ifdef KOBJ_DEBUG if (kobj_debug & D_DEBUG) _kobj_printf(ops, "krtld: really transferring control to: 0x%p\n", entry); #endif /* restore printf/bcopy/bzero vectors before returning */ kobj_restore_vectors(); #if defined(_DBOOT) /* * krtld was called from a dboot ELF section, the embedded * dboot code contains the real entry via bootaux */ exitto((caddr_t)entry); #else /* * krtld was directly called from startup */ return; #endif fail: _kobj_printf(ops, "krtld: error during initial load/link phase\n"); #if !defined(_UNIX_KRTLD) _kobj_printf(ops, "\n"); _kobj_printf(ops, "krtld could neither locate nor resolve symbols" " for:\n"); _kobj_printf(ops, " %s\n", filename); _kobj_printf(ops, "in the boot archive. Please verify that this" " file\n"); _kobj_printf(ops, "matches what is found in the boot archive.\n"); _kobj_printf(ops, "You may need to boot using the Solaris failsafe to" " fix this.\n"); bop_panic("Unable to boot"); #endif } #if !defined(_UNIX_KRTLD) && !defined(_OBP) /* * Synthesize additional metadata that describes the executable if * krtld's caller didn't do it. * * (When the dynamic executable has an interpreter, the boot program * does all this for us. Where we don't have an interpreter, (or a * even a boot program, perhaps) we have to do this for ourselves.) */ static void synthetic_bootaux(char *filename, val_t *bootaux) { Ehdr ehdr; caddr_t phdrbase; struct _buf *file; int i, n; /* * Elf header */ KOBJ_MARK("synthetic_bootaux()"); KOBJ_MARK(filename); file = kobj_open_file(filename); if (file == (struct _buf *)-1) { _kobj_printf(ops, "krtld: failed to open '%s'\n", filename); return; } KOBJ_MARK("reading program headers"); if (kobj_read_file(file, (char *)&ehdr, sizeof (ehdr), 0) < 0) { _kobj_printf(ops, "krtld: %s: failed to read ehder\n", filename); return; } /* * Program headers */ bootaux[BA_PHNUM].ba_val = ehdr.e_phnum; bootaux[BA_PHENT].ba_val = ehdr.e_phentsize; n = ehdr.e_phentsize * ehdr.e_phnum; phdrbase = kobj_alloc(n, KM_WAIT | KM_TMP); if (kobj_read_file(file, phdrbase, n, ehdr.e_phoff) < 0) { _kobj_printf(ops, "krtld: %s: failed to read phdrs\n", filename); return; } bootaux[BA_PHDR].ba_ptr = phdrbase; kobj_close_file(file); KOBJ_MARK("closed file"); /* * Find the dynamic section address */ for (i = 0; i < ehdr.e_phnum; i++) { Phdr *phdr = (Phdr *)(phdrbase + ehdr.e_phentsize * i); if (phdr->p_type == PT_DYNAMIC) { bootaux[BA_DYNAMIC].ba_ptr = (void *)phdr->p_vaddr; break; } } KOBJ_MARK("synthetic_bootaux() done"); } #endif /* !_UNIX_KRTLD && !_OBP */ /* * Set up any global information derived * from attribute/values in the boot or * aux vector. */ static void attr_val(val_t *bootaux) { Phdr *phdr; int phnum, phsize; int i; KOBJ_MARK("attr_val()"); kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val; lg_pagesize = bootaux[BA_LPAGESZ].ba_val; use_iflush = bootaux[BA_IFLUSH].ba_val; phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr; phnum = bootaux[BA_PHNUM].ba_val; phsize = bootaux[BA_PHENT].ba_val; for (i = 0; i < phnum; i++) { phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize); if (phdr->p_type != PT_LOAD) { continue; } /* * Bounds of the various segments. */ if (!(phdr->p_flags & PF_X)) { #if defined(_RELSEG) /* * sparc kernel puts the dynamic info * into a separate segment, which is * free'd in bop_fini() */ ASSERT(phdr->p_vaddr != 0); dynseg = phdr->p_vaddr; dynsize = phdr->p_memsz; #else ASSERT(phdr->p_vaddr == 0); #endif } else { if (phdr->p_flags & PF_W) { _data = (caddr_t)phdr->p_vaddr; _edata = _data + phdr->p_memsz; } else { _text = (caddr_t)phdr->p_vaddr; _etext = _text + phdr->p_memsz; } } } /* To do the kobj_alloc, _edata needs to be set. */ for (i = 0; i < NLIBMACROS; i++) { if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) { libmacros[i].lmi_list = kobj_alloc( strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) + 1, KM_WAIT); (void) strcpy(libmacros[i].lmi_list, bootaux[libmacros[i].lmi_ba_index].ba_ptr); } libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname); } } /* * Set up the booted executable. */ static struct module * load_exec(val_t *bootaux, char *filename) { struct modctl *cp; struct module *mp; Dyn *dyn; Sym *sp; int i, lsize, osize, nsize, allocsize; char *libname, *tmp; char path[MAXPATHLEN]; #ifdef KOBJ_DEBUG if (kobj_debug & D_DEBUG) _kobj_printf(ops, "module path '%s'\n", kobj_module_path); #endif KOBJ_MARK("add_primary"); cp = add_primary(filename, KOBJ_LM_PRIMARY); KOBJ_MARK("struct module"); mp = kobj_zalloc(sizeof (struct module), KM_WAIT); cp->mod_mp = mp; /* * We don't have the following information * since this module is an executable and not * a relocatable .o. */ mp->symtbl_section = 0; mp->shdrs = NULL; mp->strhdr = NULL; /* * Since this module is the only exception, * we cons up some section headers. */ KOBJ_MARK("symhdr"); mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); KOBJ_MARK("strhdr"); mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT); mp->symhdr->sh_type = SHT_SYMTAB; mp->strhdr->sh_type = SHT_STRTAB; /* * Scan the dynamic structure. */ for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; dyn->d_tag != DT_NULL; dyn++) { switch (dyn->d_tag) { case DT_SYMTAB: mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr; mp->symhdr->sh_addr = dyn->d_un.d_ptr; break; case DT_HASH: mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1); mp->hashsize = *(uint_t *)dyn->d_un.d_ptr; break; case DT_STRTAB: mp->strings = (char *)dyn->d_un.d_ptr; mp->strhdr->sh_addr = dyn->d_un.d_ptr; break; case DT_STRSZ: mp->strhdr->sh_size = dyn->d_un.d_val; break; case DT_SYMENT: mp->symhdr->sh_entsize = dyn->d_un.d_val; break; } } /* * Collapse any DT_NEEDED entries into one string. */ nsize = osize = 0; allocsize = MAXPATHLEN; KOBJ_MARK("depends_on"); mp->depends_on = kobj_alloc(allocsize, KM_WAIT); for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr; dyn->d_tag != DT_NULL; dyn++) if (dyn->d_tag == DT_NEEDED) { char *_lib; libname = mp->strings + dyn->d_un.d_val; if (strchr(libname, '$') != NULL) { if ((_lib = expand_libmacro(libname, path, path)) != NULL) libname = _lib; else _kobj_printf(ops, "krtld: " "load_exec: fail to " "expand %s\n", libname); } lsize = strlen(libname); nsize += lsize; if (nsize + 1 > allocsize) { KOBJ_MARK("grow depends_on"); tmp = kobj_alloc(allocsize + MAXPATHLEN, KM_WAIT); bcopy(mp->depends_on, tmp, osize); kobj_free(mp->depends_on, allocsize); mp->depends_on = tmp; allocsize += MAXPATHLEN; } bcopy(libname, mp->depends_on + osize, lsize); *(mp->depends_on + nsize) = ' '; /* separate */ nsize++; osize = nsize; } if (nsize) { mp->depends_on[nsize - 1] = '\0'; /* terminate the string */ /* * alloc with exact size and copy whatever it got over */ KOBJ_MARK("realloc depends_on"); tmp = kobj_alloc(nsize, KM_WAIT); bcopy(mp->depends_on, tmp, nsize); kobj_free(mp->depends_on, allocsize); mp->depends_on = tmp; } else { kobj_free(mp->depends_on, allocsize); mp->depends_on = NULL; } mp->flags = KOBJ_EXEC|KOBJ_PRIM; /* NOT a relocatable .o */ mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize; /* * We allocate our own table since we don't * hash undefined references. */ KOBJ_MARK("chains"); mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); KOBJ_MARK("buckets"); mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); mp->text = _text; mp->data = _data; mp->text_size = _etext - _text; mp->data_size = _edata - _data; cp->mod_text = mp->text; cp->mod_text_size = mp->text_size; mp->filename = cp->mod_filename; #ifdef KOBJ_DEBUG if (kobj_debug & D_LOADING) { _kobj_printf(ops, "krtld: file=%s\n", mp->filename); _kobj_printf(ops, "\ttext: 0x%p", mp->text); _kobj_printf(ops, " size: 0x%x\n", mp->text_size); _kobj_printf(ops, "\tdata: 0x%p", mp->data); _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); } #endif /* KOBJ_DEBUG */ /* * Insert symbols into the hash table. */ for (i = 0; i < mp->nsyms; i++) { sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) continue; #if defined(__sparc) /* * Register symbols are ignored in the kernel */ if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) continue; #endif /* __sparc */ sym_insert(mp, mp->strings + sp->st_name, i); } KOBJ_MARK("load_exec done"); return (mp); } /* * Set up the linker module (if it's compiled in, LDNAME is NULL) */ static void load_linker(val_t *bootaux) { struct module *kmp = (struct module *)kobj_modules->mod_mp; struct module *mp; struct modctl *cp; int i; Shdr *shp; Sym *sp; int shsize; char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr; /* * On some architectures, krtld is compiled into the kernel. */ if (dlname == NULL) return; cp = add_primary(dlname, KOBJ_LM_PRIMARY); mp = kobj_zalloc(sizeof (struct module), KM_WAIT); cp->mod_mp = mp; mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr; shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum; mp->shdrs = kobj_alloc(shsize, KM_WAIT); bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize); for (i = 1; i < (int)mp->hdr.e_shnum; i++) { shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize)); if (shp->sh_flags & SHF_ALLOC) { if (shp->sh_flags & SHF_WRITE) { if (mp->data == NULL) mp->data = (char *)shp->sh_addr; } else if (mp->text == NULL) { mp->text = (char *)shp->sh_addr; } } if (shp->sh_type == SHT_SYMTAB) { mp->symtbl_section = i; mp->symhdr = shp; mp->symspace = mp->symtbl = (char *)shp->sh_addr; } } mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; mp->flags = KOBJ_INTERP|KOBJ_PRIM; mp->strhdr = (Shdr *) (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); mp->strings = (char *)mp->strhdr->sh_addr; mp->hashsize = kobj_gethashsize(mp->nsyms); mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) + (mp->hashsize + mp->nsyms) * sizeof (symid_t); mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT); mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT); mp->bss = bootaux[BA_BSS].ba_val; mp->bss_align = 0; /* pre-aligned during allocation */ mp->bss_size = (uintptr_t)_edata - mp->bss; mp->text_size = _etext - mp->text; mp->data_size = _edata - mp->data; mp->filename = cp->mod_filename; cp->mod_text = mp->text; cp->mod_text_size = mp->text_size; /* * Now that we've figured out where the linker is, * set the limits for the booted object. */ kmp->text_size = (size_t)(mp->text - kmp->text); kmp->data_size = (size_t)(mp->data - kmp->data); kobj_modules->mod_text_size = kmp->text_size; #ifdef KOBJ_DEBUG if (kobj_debug & D_LOADING) { _kobj_printf(ops, "krtld: file=%s\n", mp->filename); _kobj_printf(ops, "\ttext:0x%p", mp->text); _kobj_printf(ops, " size: 0x%x\n", mp->text_size); _kobj_printf(ops, "\tdata:0x%p", mp->data); _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); } #endif /* KOBJ_DEBUG */ /* * Insert the symbols into the hash table. */ for (i = 0; i < mp->nsyms; i++) { sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) continue; if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { if (sp->st_shndx == SHN_COMMON) sp->st_shndx = SHN_ABS; } sym_insert(mp, mp->strings + sp->st_name, i); } } static kobj_notify_list_t ** kobj_notify_lookup(uint_t type) { ASSERT(type != 0 && type < sizeof (kobj_notifiers) / sizeof (kobj_notify_list_t *)); return (&kobj_notifiers[type]); } int kobj_notify_add(kobj_notify_list_t *knp) { kobj_notify_list_t **knl; knl = kobj_notify_lookup(knp->kn_type); knp->kn_next = NULL; knp->kn_prev = NULL; mutex_enter(&kobj_lock); if (*knl != NULL) { (*knl)->kn_prev = knp; knp->kn_next = *knl; } (*knl) = knp; mutex_exit(&kobj_lock); return (0); } int kobj_notify_remove(kobj_notify_list_t *knp) { kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type); kobj_notify_list_t *tknp; mutex_enter(&kobj_lock); /* LINTED */ if (tknp = knp->kn_next) tknp->kn_prev = knp->kn_prev; /* LINTED */ if (tknp = knp->kn_prev) tknp->kn_next = knp->kn_next; else *knl = knp->kn_next; mutex_exit(&kobj_lock); return (0); } /* * Notify all interested callbacks of a specified change in module state. */ static void kobj_notify(int type, struct modctl *modp) { kobj_notify_list_t *knp; if (modp->mod_loadflags & MOD_NONOTIFY || standalone) return; mutex_enter(&kobj_lock); for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next) knp->kn_func(type, modp); /* * KDI notification must be last (it has to allow for work done by the * other notification callbacks), so we call it manually. */ kobj_kdi_mod_notify(type, modp); mutex_exit(&kobj_lock); } /* * Create the module path. */ static char * getmodpath(const char *filename) { char *path = kobj_zalloc(MAXPATHLEN, KM_WAIT); /* * Platform code gets first crack, then add * the default components */ mach_modpath(path, filename); if (*path != '\0') (void) strcat(path, " "); return (strcat(path, MOD_DEFPATH)); } static struct modctl * add_primary(const char *filename, int lmid) { struct modctl *cp; cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT); cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT); /* * For symbol lookup, we assemble our own * modctl list of the primary modules. */ (void) strcpy(cp->mod_filename, filename); cp->mod_modname = basename(cp->mod_filename); /* set values for modinfo assuming that the load will work */ cp->mod_prim = 1; cp->mod_loaded = 1; cp->mod_installed = 1; cp->mod_loadcnt = 1; cp->mod_loadflags = MOD_NOAUTOUNLOAD; cp->mod_id = kobj_last_module_id++; /* * Link the module in. We'll pass this info on * to the mod squad later. */ if (kobj_modules == NULL) { kobj_modules = cp; cp->mod_prev = cp->mod_next = cp; } else { cp->mod_prev = kobj_modules->mod_prev; cp->mod_next = kobj_modules; kobj_modules->mod_prev->mod_next = cp; kobj_modules->mod_prev = cp; } kobj_lm_append(lmid, cp); return (cp); } static int bind_primary(val_t *bootaux, int lmid) { struct modctl_list *linkmap = kobj_lm_lookup(lmid); struct modctl_list *lp; struct module *mp; /* * Do common symbols. */ for (lp = linkmap; lp; lp = lp->modl_next) { mp = mod(lp); /* * Don't do common section relocations for modules that * don't need it. */ if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP)) continue; if (do_common(mp) < 0) return (-1); } /* * Resolve symbols. */ for (lp = linkmap; lp; lp = lp->modl_next) { mp = mod(lp); if (do_symbols(mp, 0) < 0) return (-1); } /* * Do relocations. */ for (lp = linkmap; lp; lp = lp->modl_next) { mp = mod(lp); if (mp->flags & KOBJ_EXEC) { Dyn *dyn; Word relasz = 0, relaent = 0; Word shtype; char *rela = NULL; for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr; dyn->d_tag != DT_NULL; dyn++) { switch (dyn->d_tag) { case DT_RELASZ: case DT_RELSZ: relasz = dyn->d_un.d_val; break; case DT_RELAENT: case DT_RELENT: relaent = dyn->d_un.d_val; break; case DT_RELA: shtype = SHT_RELA; rela = (char *)dyn->d_un.d_ptr; break; case DT_REL: shtype = SHT_REL; rela = (char *)dyn->d_un.d_ptr; break; } } if (relasz == 0 || relaent == 0 || rela == NULL) { _kobj_printf(ops, "krtld: bind_primary(): " "no relocation information found for " "module %s\n", mp->filename); return (-1); } #ifdef KOBJ_DEBUG if (kobj_debug & D_RELOCATIONS) _kobj_printf(ops, "krtld: relocating: file=%s " "KOBJ_EXEC\n", mp->filename); #endif if (do_relocate(mp, rela, shtype, relasz/relaent, relaent, (Addr)mp->text) < 0) return (-1); } else { if (do_relocations(mp) < 0) return (-1); } kobj_sync_instruction_memory(mp->text, mp->text_size); } for (lp = linkmap; lp; lp = lp->modl_next) { mp = mod(lp); /* * We need to re-read the full symbol table for the boot file, * since we couldn't use the full one before. We also need to * load the CTF sections of both the boot file and the * interpreter (us). */ if (mp->flags & KOBJ_EXEC) { struct _buf *file; int n; file = kobj_open_file(mp->filename); if (file == (struct _buf *)-1) return (-1); if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) return (-1); n = mp->hdr.e_shentsize * mp->hdr.e_shnum; mp->shdrs = kobj_alloc(n, KM_WAIT); if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) return (-1); if (get_syms(mp, file) < 0) return (-1); if (get_ctf(mp, file) < 0) return (-1); kobj_close_file(file); mp->flags |= KOBJ_RELOCATED; } else if (mp->flags & KOBJ_INTERP) { struct _buf *file; /* * The interpreter path fragment in mp->filename * will already have the module directory suffix * in it (if appropriate). */ file = kobj_open_path(mp->filename, 1, 0); if (file == (struct _buf *)-1) return (-1); if (get_ctf(mp, file) < 0) return (-1); kobj_close_file(file); mp->flags |= KOBJ_RELOCATED; } } return (0); } static struct modctl * mod_already_loaded(char *modname) { struct modctl *mctl = kobj_modules; do { if (strcmp(modname, mctl->mod_filename) == 0) return (mctl); mctl = mctl->mod_next; } while (mctl != kobj_modules); return (NULL); } /* * Load all the primary dependent modules. */ static int load_primary(struct module *mp, int lmid) { struct modctl *cp; struct module *dmp; char *p, *q; char modname[MODMAXNAMELEN]; if ((p = mp->depends_on) == NULL) return (0); /* CONSTANTCONDITION */ while (1) { /* * Skip space. */ while (*p && (*p == ' ' || *p == '\t')) p++; /* * Get module name. */ q = modname; while (*p && *p != ' ' && *p != '\t') *q++ = *p++; if (q == modname) break; *q = '\0'; /* * Check for dup dependencies. */ if (strcmp(modname, "dtracestubs") == 0 || mod_already_loaded(modname) != NULL) continue; cp = add_primary(modname, lmid); cp->mod_busy = 1; /* * Load it. */ (void) kobj_load_module(cp, 1); cp->mod_busy = 0; if ((dmp = cp->mod_mp) == NULL) { cp->mod_loaded = 0; cp->mod_installed = 0; cp->mod_loadcnt = 0; return (-1); } add_dependent(mp, dmp); dmp->flags |= KOBJ_PRIM; /* * Recurse. */ if (load_primary(dmp, lmid) == -1) { cp->mod_loaded = 0; cp->mod_installed = 0; cp->mod_loadcnt = 0; return (-1); } } return (0); } static int console_is_usb_serial(void) { char *console; int len, ret; if ((len = BOP_GETPROPLEN(ops, "console")) == -1) return (0); console = kobj_zalloc(len, KM_WAIT|KM_TMP); (void) BOP_GETPROP(ops, "console", console); ret = (strcmp(console, "usb-serial") == 0); kobj_free(console, len); return (ret); } static int load_kmdb(val_t *bootaux) { struct modctl *mctl; struct module *mp; Sym *sym; if (console_is_usb_serial()) { _kobj_printf(ops, "kmdb not loaded " "(unsupported on usb serial console)\n"); return (0); } _kobj_printf(ops, "Loading kmdb...\n"); if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL) return (-1); mctl->mod_busy = 1; (void) kobj_load_module(mctl, 1); mctl->mod_busy = 0; if ((mp = mctl->mod_mp) == NULL) return (-1); mp->flags |= KOBJ_PRIM; if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0) return (-1); if (boothowto & RB_VERBOSE) kobj_lm_dump(KOBJ_LM_DEBUGGER); if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0) return (-1); if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL) return (-1); #ifdef KOBJ_DEBUG if (kobj_debug & D_DEBUG) { _kobj_printf(ops, "calling kctl_boot_activate() @ 0x%lx\n", sym->st_value); _kobj_printf(ops, "\tops 0x%p\n", ops); _kobj_printf(ops, "\tromp 0x%p\n", romp); } #endif if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0, (const char **)kobj_kmdb_argv) < 0) return (-1); return (0); } /* * Return a string listing module dependencies. */ static char * depends_on(struct module *mp) { Sym *sp; char *depstr, *q; /* * The module doesn't have a depends_on value, so let's try it the * old-fashioned way - via "_depends_on" */ if ((sp = lookup_one(mp, "_depends_on")) == NULL) return (NULL); q = (char *)sp->st_value; /* * Idiot checks. Make sure it's * in-bounds and NULL terminated. */ if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') { _kobj_printf(ops, "Error processing dependency for %s\n", mp->filename); return (NULL); } depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT); (void) strcpy(depstr, q); return (depstr); } void kobj_getmodinfo(void *xmp, struct modinfo *modinfo) { struct module *mp; mp = (struct module *)xmp; modinfo->mi_base = mp->text; modinfo->mi_size = mp->text_size + mp->data_size; } /* * kobj_export_ksyms() performs the following services: * * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena. * (2) Removes unneeded symbols to save space. * (3) Reduces memory footprint by using VM_BESTFIT allocations. * (4) Makes the symbol table visible to /dev/ksyms. */ static void kobj_export_ksyms(struct module *mp) { Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size); Sym *sp, *osp; char *name; size_t namelen; struct module *omp; uint_t nsyms; size_t symsize = mp->symhdr->sh_entsize; size_t locals = 1; size_t strsize; /* * Make a copy of the original module structure. */ omp = kobj_alloc(sizeof (struct module), KM_WAIT); bcopy(mp, omp, sizeof (struct module)); /* * Compute the sizes of the new symbol table sections. */ for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { if (osp->st_value == 0) continue; if (sym_lookup(omp, osp) == NULL) continue; name = omp->strings + osp->st_name; namelen = strlen(name); if (ELF_ST_BIND(osp->st_info) == STB_LOCAL) locals++; nsyms++; strsize += namelen + 1; } mp->nsyms = nsyms; mp->hashsize = kobj_gethashsize(mp->nsyms); /* * ksyms_lock must be held as writer during any operation that * modifies ksyms_arena, including allocation from same, and * must not be dropped until the arena is vmem_walk()able. */ rw_enter(&ksyms_lock, RW_WRITER); /* * Allocate space for the new section headers (symtab and strtab), * symbol table, buckets, chains, and strings. */ mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) + (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize; if (mp->flags & KOBJ_NOKSYMS) { mp->symspace = kobj_alloc(mp->symsize, KM_WAIT); } else { mp->symspace = vmem_alloc(ksyms_arena, mp->symsize, VM_BESTFIT | VM_SLEEP); } bzero(mp->symspace, mp->symsize); /* * Divvy up symspace. */ mp->shdrs = mp->symspace; mp->symhdr = (Shdr *)mp->shdrs; mp->strhdr = (Shdr *)(mp->symhdr + 1); mp->symtbl = (char *)(mp->strhdr + 1); mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize)); mp->chains = (symid_t *)(mp->buckets + mp->hashsize); mp->strings = (char *)(mp->chains + nsyms); /* * Fill in the new section headers (symtab and strtab). */ mp->hdr.e_shnum = 2; mp->symtbl_section = 0; mp->symhdr->sh_type = SHT_SYMTAB; mp->symhdr->sh_addr = (Addr)mp->symtbl; mp->symhdr->sh_size = nsyms * symsize; mp->symhdr->sh_link = 1; mp->symhdr->sh_info = locals; mp->symhdr->sh_addralign = sizeof (Addr); mp->symhdr->sh_entsize = symsize; mp->strhdr->sh_type = SHT_STRTAB; mp->strhdr->sh_addr = (Addr)mp->strings; mp->strhdr->sh_size = strsize; mp->strhdr->sh_addralign = 1; /* * Construct the new symbol table. */ for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) { if (osp->st_value == 0) continue; if (sym_lookup(omp, osp) == NULL) continue; name = omp->strings + osp->st_name; namelen = strlen(name); sp = (Sym *)(mp->symtbl + symsize * nsyms); bcopy(osp, sp, symsize); bcopy(name, mp->strings + strsize, namelen); sp->st_name = strsize; sym_insert(mp, name, nsyms); nsyms++; strsize += namelen + 1; } rw_exit(&ksyms_lock); /* * Free the old section headers -- we'll never need them again. */ if (!(mp->flags & KOBJ_PRIM)) { uint_t shn; Shdr *shp; for (shn = 1; shn < omp->hdr.e_shnum; shn++) { shp = (Shdr *)(omp->shdrs + shn * omp->hdr.e_shentsize); switch (shp->sh_type) { case SHT_RELA: case SHT_REL: if (shp->sh_addr != 0) { kobj_free((void *)shp->sh_addr, shp->sh_size); } break; } } kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum); } /* * Discard the old symbol table and our copy of the module strucure. */ if (!(mp->flags & KOBJ_PRIM)) kobj_free(omp->symspace, omp->symsize); kobj_free(omp, sizeof (struct module)); } static void kobj_export_ctf(struct module *mp) { char *data = mp->ctfdata; size_t size = mp->ctfsize; if (data != NULL) { if (_moddebug & MODDEBUG_NOCTF) { mp->ctfdata = NULL; mp->ctfsize = 0; } else { mp->ctfdata = vmem_alloc(ctf_arena, size, VM_BESTFIT | VM_SLEEP); bcopy(data, mp->ctfdata, size); } if (!(mp->flags & KOBJ_PRIM)) kobj_free(data, size); } } void kobj_export_module(struct module *mp) { kobj_export_ksyms(mp); kobj_export_ctf(mp); mp->flags |= KOBJ_EXPORTED; } static int process_dynamic(struct module *mp, char *dyndata, char *strdata) { char *path = NULL, *depstr = NULL; int allocsize = 0, osize = 0, nsize = 0; char *libname, *tmp; int lsize; Dyn *dynp; for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) { switch (dynp->d_tag) { case DT_NEEDED: /* * Read the DT_NEEDED entries, expanding the macros they * contain (if any), and concatenating them into a * single space-separated dependency list. */ libname = (ulong_t)dynp->d_un.d_ptr + strdata; if (strchr(libname, '$') != NULL) { char *_lib; if (path == NULL) path = kobj_alloc(MAXPATHLEN, KM_WAIT); if ((_lib = expand_libmacro(libname, path, path)) != NULL) libname = _lib; else { _kobj_printf(ops, "krtld: " "process_dynamic: failed to expand " "%s\n", libname); } } lsize = strlen(libname); nsize += lsize; if (nsize + 1 > allocsize) { tmp = kobj_alloc(allocsize + MAXPATHLEN, KM_WAIT); if (depstr != NULL) { bcopy(depstr, tmp, osize); kobj_free(depstr, allocsize); } depstr = tmp; allocsize += MAXPATHLEN; } bcopy(libname, depstr + osize, lsize); *(depstr + nsize) = ' '; /* separator */ nsize++; osize = nsize; break; case DT_FLAGS_1: if (dynp->d_un.d_val & DF_1_IGNMULDEF) mp->flags |= KOBJ_IGNMULDEF; if (dynp->d_un.d_val & DF_1_NOKSYMS) mp->flags |= KOBJ_NOKSYMS; break; } } /* * finish up the depends string (if any) */ if (depstr != NULL) { *(depstr + nsize - 1) = '\0'; /* overwrite separator w/term */ if (path != NULL) kobj_free(path, MAXPATHLEN); tmp = kobj_alloc(nsize, KM_WAIT); bcopy(depstr, tmp, nsize); kobj_free(depstr, allocsize); depstr = tmp; mp->depends_on = depstr; } return (0); } static int do_dynamic(struct module *mp, struct _buf *file) { Shdr *dshp, *dstrp, *shp; char *dyndata, *dstrdata; int dshn, shn, rc; /* find and validate the dynamic section (if any) */ for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) { shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); switch (shp->sh_type) { case SHT_DYNAMIC: if (dshp != NULL) { _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); _kobj_printf(ops, "multiple dynamic sections\n"); return (-1); } else { dshp = shp; dshn = shn; } break; } } if (dshp == NULL) return (0); if (dshp->sh_link > mp->hdr.e_shnum) { _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); _kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link); return (-1); } dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize); if (dstrp->sh_type != SHT_STRTAB) { _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); _kobj_printf(ops, "sh_link not a string table for section %d\n", dshn); return (-1); } /* read it from disk */ dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP); if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) { _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); _kobj_printf(ops, "error reading section %d\n", dshn); kobj_free(dyndata, dshp->sh_size); return (-1); } dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP); if (kobj_read_file(file, dstrdata, dstrp->sh_size, dstrp->sh_offset) < 0) { _kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename); _kobj_printf(ops, "error reading section %d\n", dshp->sh_link); kobj_free(dyndata, dshp->sh_size); kobj_free(dstrdata, dstrp->sh_size); return (-1); } /* pull the interesting pieces out */ rc = process_dynamic(mp, dyndata, dstrdata); kobj_free(dyndata, dshp->sh_size); kobj_free(dstrdata, dstrp->sh_size); return (rc); } void kobj_set_ctf(struct module *mp, caddr_t data, size_t size) { if (!standalone) { if (mp->ctfdata != NULL) { if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) { vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); } else { kobj_free(mp->ctfdata, mp->ctfsize); } } } /* * The order is very important here. We need to make sure that * consumers, at any given instant, see a consistent state. We'd * rather they see no CTF data than the address of one buffer and the * size of another. */ mp->ctfdata = NULL; membar_producer(); mp->ctfsize = size; mp->ctfdata = data; membar_producer(); } int kobj_load_module(struct modctl *modp, int use_path) { char *filename = modp->mod_filename; char *modname = modp->mod_modname; int i; int n; struct _buf *file; struct module *mp = NULL; #ifdef MODDIR_SUFFIX int no_suffixdir_drv = 0; #endif mp = kobj_zalloc(sizeof (struct module), KM_WAIT); /* * We need to prevent kmdb's symbols from leaking into /dev/ksyms. * kmdb contains a bunch of symbols with well-known names, symbols * which will mask the real versions, thus causing no end of trouble * for mdb. */ if (strcmp(modp->mod_modname, "kmdbmod") == 0) mp->flags |= KOBJ_NOKSYMS; file = kobj_open_path(filename, use_path, 1); if (file == (struct _buf *)-1) { #ifdef MODDIR_SUFFIX file = kobj_open_path(filename, use_path, 0); #endif if (file == (struct _buf *)-1) { kobj_free(mp, sizeof (*mp)); goto bad; } #ifdef MODDIR_SUFFIX /* * There is no driver module in the ISA specific (suffix) * subdirectory but there is a module in the parent directory. */ if (strncmp(filename, "drv/", 4) == 0) { no_suffixdir_drv = 1; } #endif } mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT); (void) strcpy(mp->filename, file->_name); if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) { _kobj_printf(ops, "kobj_load_module: %s read header failed\n", modname); kobj_free(mp->filename, strlen(file->_name) + 1); kobj_free(mp, sizeof (*mp)); goto bad; } for (i = 0; i < SELFMAG; i++) { if (mp->hdr.e_ident[i] != ELFMAG[i]) { if (_moddebug & MODDEBUG_ERRMSG) _kobj_printf(ops, "%s not an elf module\n", modname); kobj_free(mp->filename, strlen(file->_name) + 1); kobj_free(mp, sizeof (*mp)); goto bad; } } /* * It's ELF, but is it our ISA? Interpreting the header * from a file for a byte-swapped ISA could cause a huge * and unsatisfiable value to be passed to kobj_alloc below * and therefore hang booting. */ if (!elf_mach_ok(&mp->hdr)) { if (_moddebug & MODDEBUG_ERRMSG) _kobj_printf(ops, "%s not an elf module for this ISA\n", modname); kobj_free(mp->filename, strlen(file->_name) + 1); kobj_free(mp, sizeof (*mp)); #ifdef MODDIR_SUFFIX /* * The driver mod is not in the ISA specific subdirectory * and the module in the parent directory is not our ISA. * If it is our ISA, for now we will silently succeed. */ if (no_suffixdir_drv == 1) { cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module" " not found\n", modname); } #endif goto bad; } /* * All modules, save for unix, should be relocatable (as opposed to * dynamic). Dynamic modules come with PLTs and GOTs, which can't * currently be processed by krtld. */ if (mp->hdr.e_type != ET_REL) { if (_moddebug & MODDEBUG_ERRMSG) _kobj_printf(ops, "%s isn't a relocatable (ET_REL) " "module\n", modname); kobj_free(mp->filename, strlen(file->_name) + 1); kobj_free(mp, sizeof (*mp)); goto bad; } n = mp->hdr.e_shentsize * mp->hdr.e_shnum; mp->shdrs = kobj_alloc(n, KM_WAIT); if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) { _kobj_printf(ops, "kobj_load_module: %s error reading " "section headers\n", modname); kobj_free(mp->shdrs, n); kobj_free(mp->filename, strlen(file->_name) + 1); kobj_free(mp, sizeof (*mp)); goto bad; } kobj_notify(KOBJ_NOTIFY_MODLOADING, modp); module_assign(modp, mp); /* read in sections */ if (get_progbits(mp, file) < 0) { _kobj_printf(ops, "%s error reading sections\n", modname); goto bad; } if (do_dynamic(mp, file) < 0) { _kobj_printf(ops, "%s error reading dynamic section\n", modname); goto bad; } modp->mod_text = mp->text; modp->mod_text_size = mp->text_size; /* read in symbols; adjust values for each section's real address */ if (get_syms(mp, file) < 0) { _kobj_printf(ops, "%s error reading symbols\n", modname); goto bad; } /* * If we didn't dependency information from the dynamic section, look * for it the old-fashioned way. */ if (mp->depends_on == NULL) mp->depends_on = depends_on(mp); if (get_ctf(mp, file) < 0) { _kobj_printf(ops, "%s debug information will not " "be available\n", modname); } /* primary kernel modules do not have a signature section */ if (!(mp->flags & KOBJ_PRIM)) get_signature(mp, file); #ifdef KOBJ_DEBUG if (kobj_debug & D_LOADING) { _kobj_printf(ops, "krtld: file=%s\n", mp->filename); _kobj_printf(ops, "\ttext:0x%p", mp->text); _kobj_printf(ops, " size: 0x%x\n", mp->text_size); _kobj_printf(ops, "\tdata:0x%p", mp->data); _kobj_printf(ops, " dsize: 0x%x\n", mp->data_size); } #endif /* KOBJ_DEBUG */ /* * For primary kernel modules, we defer * symbol resolution and relocation until * all primary objects have been loaded. */ if (!standalone) { int ddrval, dcrval; char *dependent_modname; /* load all dependents */ dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN); /* * resolve undefined and common symbols, * also allocates common space */ if ((dcrval = do_common(mp)) < 0) { switch (dcrval) { case DOSYM_UNSAFE: _kobj_printf(ops, "WARNING: mod_load: " "MT-unsafe module '%s' rejected\n", modname); break; case DOSYM_UNDEF: _kobj_printf(ops, "WARNING: mod_load: " "cannot load module '%s'\n", modname); if (ddrval == -1) { _kobj_printf(ops, "WARNING: %s: ", modname); _kobj_printf(ops, "unable to resolve dependency, " "module '%s' not found\n", dependent_modname); } break; } } kobj_free(dependent_modname, MODMAXNAMELEN); if (dcrval < 0) goto bad; /* process relocation tables */ if (do_relocations(mp) < 0) { _kobj_printf(ops, "%s error doing relocations\n", modname); goto bad; } if (mp->destination) { off_t off = (uintptr_t)mp->destination & PAGEOFFSET; caddr_t base = (caddr_t)mp->destination - off; size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK); vmem_free(heap_arena, base, size); } /* sync_instruction_memory */ kobj_sync_instruction_memory(mp->text, mp->text_size); kobj_export_module(mp); kobj_notify(KOBJ_NOTIFY_MODLOADED, modp); } kobj_close_file(file); return (0); bad: if (file != (struct _buf *)-1) kobj_close_file(file); if (modp->mod_mp != NULL) free_module_data(modp->mod_mp); module_assign(modp, NULL); return ((file == (struct _buf *)-1) ? ENOENT : EINVAL); } int kobj_load_primary_module(struct modctl *modp) { struct modctl *dep; struct module *mp; if (kobj_load_module(modp, 0) != 0) return (-1); mp = modp->mod_mp; mp->flags |= KOBJ_PRIM; /* Bind new module to its dependents */ if (mp->depends_on != NULL && (dep = mod_already_loaded(mp->depends_on)) == NULL) { #ifdef KOBJ_DEBUG if (kobj_debug & D_DEBUG) { _kobj_printf(ops, "krtld: failed to resolve deps " "for primary %s\n", modp->mod_modname); } #endif return (-1); } add_dependent(mp, dep->mod_mp); /* * Relocate it. This module may not be part of a link map, so we * can't use bind_primary. */ if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 || do_relocations(mp) < 0) { #ifdef KOBJ_DEBUG if (kobj_debug & D_DEBUG) { _kobj_printf(ops, "krtld: failed to relocate " "primary %s\n", modp->mod_modname); } #endif return (-1); } return (0); } static void module_assign(struct modctl *cp, struct module *mp) { if (standalone) { cp->mod_mp = mp; return; } mutex_enter(&mod_lock); cp->mod_mp = mp; cp->mod_gencount++; mutex_exit(&mod_lock); } void kobj_unload_module(struct modctl *modp) { struct module *mp = modp->mod_mp; if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) { _kobj_printf(ops, "text for %s ", mp->filename); _kobj_printf(ops, "was at %p\n", mp->text); mp->text = NULL; /* don't actually free it */ } kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp); /* * Null out mod_mp first, so consumers (debuggers) know not to look * at the module structure any more. */ mutex_enter(&mod_lock); modp->mod_mp = NULL; mutex_exit(&mod_lock); kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp); free_module_data(mp); } static void free_module_data(struct module *mp) { struct module_list *lp, *tmp; int ksyms_exported = 0; lp = mp->head; while (lp) { tmp = lp; lp = lp->next; kobj_free((char *)tmp, sizeof (*tmp)); } rw_enter(&ksyms_lock, RW_WRITER); if (mp->symspace) { if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) { vmem_free(ksyms_arena, mp->symspace, mp->symsize); ksyms_exported = 1; } else { if (mp->flags & KOBJ_NOKSYMS) ksyms_exported = 1; kobj_free(mp->symspace, mp->symsize); } } rw_exit(&ksyms_lock); if (mp->ctfdata) { if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize)) vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize); else kobj_free(mp->ctfdata, mp->ctfsize); } if (mp->sigdata) kobj_free(mp->sigdata, mp->sigsize); /* * We did not get far enough into kobj_export_ksyms() to free allocated * buffers because we encounted error conditions. Free the buffers. */ if ((ksyms_exported == 0) && (mp->shdrs != NULL)) { uint_t shn; Shdr *shp; for (shn = 1; shn < mp->hdr.e_shnum; shn++) { shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); switch (shp->sh_type) { case SHT_RELA: case SHT_REL: if (shp->sh_addr != 0) kobj_free((void *)shp->sh_addr, shp->sh_size); break; } } err_free_done: if (!(mp->flags & KOBJ_PRIM)) { kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); } } if (mp->bss) vmem_free(data_arena, (void *)mp->bss, mp->bss_size); if (mp->fbt_tab) kobj_texthole_free(mp->fbt_tab, mp->fbt_size); if (mp->textwin_base) kobj_textwin_free(mp); if (mp->sdt_probes != NULL) { sdt_probedesc_t *sdp = mp->sdt_probes, *next; while (sdp != NULL) { next = sdp->sdpd_next; kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1); kobj_free(sdp, sizeof (sdt_probedesc_t)); sdp = next; } } if (mp->sdt_tab) kobj_texthole_free(mp->sdt_tab, mp->sdt_size); if (mp->text) vmem_free(text_arena, mp->text, mp->text_size); if (mp->data) vmem_free(data_arena, mp->data, mp->data_size); if (mp->depends_on) kobj_free(mp->depends_on, strlen(mp->depends_on)+1); if (mp->filename) kobj_free(mp->filename, strlen(mp->filename)+1); kobj_free((char *)mp, sizeof (*mp)); } static int get_progbits(struct module *mp, struct _buf *file) { struct proginfo *tp, *dp, *sdp; Shdr *shp; reloc_dest_t dest = NULL; uintptr_t bits_ptr; uintptr_t text = 0, data, textptr; uint_t shn; int err = -1; tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT|KM_TMP); /* * loop through sections to find out how much space we need * for text, data, (also bss that is already assigned) */ if (get_progbits_size(mp, tp, dp, sdp) < 0) goto done; mp->text_size = tp->size; mp->data_size = dp->size; if (standalone) { caddr_t limit = _data; if (lg_pagesize && _text + lg_pagesize < limit) limit = _text + lg_pagesize; mp->text = kobj_segbrk(&_etext, mp->text_size, tp->align, limit); /* * If we can't grow the text segment, try the * data segment before failing. */ if (mp->text == NULL) { mp->text = kobj_segbrk(&_edata, mp->text_size, tp->align, 0); } mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0); if (mp->text == NULL || mp->data == NULL) goto done; } else { if (text_arena == NULL) kobj_vmem_init(&text_arena, &data_arena); /* * some architectures may want to load the module on a * page that is currently read only. It may not be * possible for those architectures to remap their page * on the fly. So we provide a facility for them to hang * a private hook where the memory they assign the module * is not the actual place where the module loads. * * In this case there are two addresses that deal with the * modload. * 1) the final destination of the module * 2) the address that is used to view the newly * loaded module until all the relocations relative to 1 * above are completed. * * That is what dest is used for below. */ mp->text_size += tp->align; mp->data_size += dp->align; mp->text = kobj_text_alloc(text_arena, mp->text_size); /* * a remap is taking place. Align the text ptr relative * to the secondary mapping. That is where the bits will * be read in. */ if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena, mp->text, mp->text_size)) { off_t off = (uintptr_t)mp->text & PAGEOFFSET; size_t size = P2ROUNDUP(mp->text_size + off, PAGESIZE); caddr_t map = vmem_alloc(heap_arena, size, VM_SLEEP); caddr_t orig = mp->text - off; pgcnt_t pages = size / PAGESIZE; dest = (reloc_dest_t)(map + off); text = ALIGN((uintptr_t)dest, tp->align); while (pages--) { hat_devload(kas.a_hat, map, PAGESIZE, hat_getpfnum(kas.a_hat, orig), PROT_READ | PROT_WRITE | PROT_EXEC, HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); map += PAGESIZE; orig += PAGESIZE; } /* * Since we set up a non-cacheable mapping, we need * to flush any old entries in the cache that might * be left around from the read-only mapping. */ dcache_flushall(); } if (mp->data_size) mp->data = vmem_alloc(data_arena, mp->data_size, VM_SLEEP | VM_BESTFIT); } textptr = (uintptr_t)mp->text; textptr = ALIGN(textptr, tp->align); mp->destination = dest; /* * This is the case where a remap is not being done. */ if (text == 0) text = ALIGN((uintptr_t)mp->text, tp->align); data = ALIGN((uintptr_t)mp->data, dp->align); /* now loop though sections assigning addresses and loading the data */ for (shn = 1; shn < mp->hdr.e_shnum; shn++) { shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); if (!(shp->sh_flags & SHF_ALLOC)) continue; if ((shp->sh_flags & SHF_WRITE) == 0) bits_ptr = text; else bits_ptr = data; bits_ptr = ALIGN(bits_ptr, shp->sh_addralign); if (shp->sh_type == SHT_NOBITS) { /* * Zero bss. */ bzero((caddr_t)bits_ptr, shp->sh_size); shp->sh_type = SHT_PROGBITS; } else { if (kobj_read_file(file, (char *)bits_ptr, shp->sh_size, shp->sh_offset) < 0) goto done; } if (shp->sh_flags & SHF_WRITE) { shp->sh_addr = bits_ptr; } else { textptr = ALIGN(textptr, shp->sh_addralign); shp->sh_addr = textptr; textptr += shp->sh_size; } bits_ptr += shp->sh_size; if ((shp->sh_flags & SHF_WRITE) == 0) text = bits_ptr; else data = bits_ptr; } err = 0; done: /* * Free and mark as freed the section headers here so that * free_module_data() does not have to worry about this buffer. * * This buffer is freed here because one of the possible reasons * for error is a section with non-zero sh_addr and in that case * free_module_data() would have no way of recognizing that this * buffer was unallocated. */ if (err != 0) { kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); mp->shdrs = NULL; } (void) kobj_free(tp, sizeof (struct proginfo)); (void) kobj_free(dp, sizeof (struct proginfo)); (void) kobj_free(sdp, sizeof (struct proginfo)); return (err); } /* * Go through suppress_sym_list to see if "multiply defined" * warning of this symbol should be suppressed. Return 1 if * warning should be suppressed, 0 otherwise. */ static int kobj_suppress_warning(char *symname) { int i; for (i = 0; suppress_sym_list[i] != NULL; i++) { if (strcmp(suppress_sym_list[i], symname) == 0) return (1); } return (0); } static int get_syms(struct module *mp, struct _buf *file) { uint_t shn; Shdr *shp; uint_t i; Sym *sp, *ksp; char *symname; int dosymtab = 0; /* * Find the interesting sections. */ for (shn = 1; shn < mp->hdr.e_shnum; shn++) { shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); switch (shp->sh_type) { case SHT_SYMTAB: mp->symtbl_section = shn; mp->symhdr = shp; dosymtab++; break; case SHT_RELA: case SHT_REL: /* * Already loaded. */ if (shp->sh_addr) continue; /* KM_TMP since kobj_free'd in do_relocations */ shp->sh_addr = (Addr) kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP); if (kobj_read_file(file, (char *)shp->sh_addr, shp->sh_size, shp->sh_offset) < 0) { _kobj_printf(ops, "krtld: get_syms: %s, ", mp->filename); _kobj_printf(ops, "error reading section %d\n", shn); return (-1); } break; } } /* * This is true for a stripped executable. In the case of * 'unix' it can be stripped but it still contains the SHT_DYNSYM, * and since that symbol information is still present everything * is just fine. */ if (!dosymtab) { if (mp->flags & KOBJ_EXEC) return (0); _kobj_printf(ops, "krtld: get_syms: %s ", mp->filename); _kobj_printf(ops, "no SHT_SYMTAB symbol table found\n"); return (-1); } /* * get the associated string table header */ if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum)) return (-1); mp->strhdr = (Shdr *) (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; mp->hashsize = kobj_gethashsize(mp->nsyms); /* * Allocate space for the symbol table, buckets, chains, and strings. */ mp->symsize = mp->symhdr->sh_size + (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size; mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH); mp->symtbl = mp->symspace; mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size); mp->chains = mp->buckets + mp->hashsize; mp->strings = (char *)(mp->chains + mp->nsyms); if (kobj_read_file(file, mp->symtbl, mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 || kobj_read_file(file, mp->strings, mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0) return (-1); /* * loop through the symbol table adjusting values to account * for where each section got loaded into memory. Also * fill in the hash table. */ for (i = 1; i < mp->nsyms; i++) { sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize); if (sp->st_shndx < SHN_LORESERVE) { if (sp->st_shndx >= mp->hdr.e_shnum) { _kobj_printf(ops, "%s bad shndx ", file->_name); _kobj_printf(ops, "in symbol %d\n", i); return (-1); } shp = (Shdr *) (mp->shdrs + sp->st_shndx * mp->hdr.e_shentsize); if (!(mp->flags & KOBJ_EXEC)) sp->st_value += shp->sh_addr; } if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF) continue; if (sp->st_name >= mp->strhdr->sh_size) return (-1); symname = mp->strings + sp->st_name; if (!(mp->flags & KOBJ_EXEC) && ELF_ST_BIND(sp->st_info) == STB_GLOBAL) { ksp = kobj_lookup_all(mp, symname, 0); if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL && !kobj_suppress_warning(symname) && sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON && ksp->st_shndx != SHN_UNDEF && ksp->st_shndx != SHN_COMMON) { /* * Unless this symbol is a stub, it's multiply * defined. Multiply-defined symbols are * usually bad, but some objects (kmdb) have * a legitimate need to have their own * copies of common functions. */ if ((standalone || ksp->st_value < (uintptr_t)stubs_base || ksp->st_value >= (uintptr_t)stubs_end) && !(mp->flags & KOBJ_IGNMULDEF)) { _kobj_printf(ops, "%s symbol ", file->_name); _kobj_printf(ops, "%s multiply defined\n", symname); } } } sym_insert(mp, symname, i); } return (0); } static int get_ctf(struct module *mp, struct _buf *file) { char *shstrtab, *ctfdata; size_t shstrlen; Shdr *shp; uint_t i; if (_moddebug & MODDEBUG_NOCTF) return (0); /* do not attempt to even load CTF data */ if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { _kobj_printf(ops, "krtld: get_ctf: %s, ", mp->filename); _kobj_printf(ops, "corrupt e_shstrndx %u\n", mp->hdr.e_shstrndx); return (-1); } shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); shstrlen = shp->sh_size; shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { _kobj_printf(ops, "krtld: get_ctf: %s, ", mp->filename); _kobj_printf(ops, "error reading section %u\n", mp->hdr.e_shstrndx); kobj_free(shstrtab, shstrlen); return (-1); } for (i = 0; i < mp->hdr.e_shnum; i++) { shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); if (shp->sh_size != 0 && shp->sh_name < shstrlen && strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) { ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH); if (kobj_read_file(file, ctfdata, shp->sh_size, shp->sh_offset) < 0) { _kobj_printf(ops, "krtld: get_ctf: %s, error " "reading .SUNW_ctf data\n", mp->filename); kobj_free(ctfdata, shp->sh_size); kobj_free(shstrtab, shstrlen); return (-1); } mp->ctfdata = ctfdata; mp->ctfsize = shp->sh_size; break; } } kobj_free(shstrtab, shstrlen); return (0); } #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ /* * Return the hash of the ELF sections that are memory resident. * i.e. text and data. We skip a SHT_NOBITS section since it occupies * no space in the file. We use SHA1 here since libelfsign uses * it and both places need to use the same algorithm. */ static void crypto_es_hash(struct module *mp, char *hash, char *shstrtab) { uint_t shn; Shdr *shp; SHA1_CTX ctx; SHA1Init(&ctx); for (shn = 1; shn < mp->hdr.e_shnum; shn++) { shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0) continue; /* * The check should ideally be shp->sh_type == SHT_NOBITS. * However, we can't do that check here as get_progbits() * resets the type. */ if (strcmp(shstrtab + shp->sh_name, ".bss") == 0) continue; #ifdef KOBJ_DEBUG if (kobj_debug & D_DEBUG) _kobj_printf(ops, "krtld: crypto_es_hash: updating hash with" " %s data size=%d\n", shstrtab + shp->sh_name, shp->sh_size); #endif ASSERT(shp->sh_addr != NULL); SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size); } SHA1Final((uchar_t *)hash, &ctx); } /* * Get the .SUNW_signature section for the module, it it exists. * * This section exists only for crypto modules. None of the * primary modules have this section currently. */ static void get_signature(struct module *mp, struct _buf *file) { char *shstrtab, *sigdata = NULL; size_t shstrlen; Shdr *shp; uint_t i; if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) { _kobj_printf(ops, "krtld: get_signature: %s, ", mp->filename); _kobj_printf(ops, "corrupt e_shstrndx %u\n", mp->hdr.e_shstrndx); return; } shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); shstrlen = shp->sh_size; shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP); if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) { _kobj_printf(ops, "krtld: get_signature: %s, ", mp->filename); _kobj_printf(ops, "error reading section %u\n", mp->hdr.e_shstrndx); kobj_free(shstrtab, shstrlen); return; } for (i = 0; i < mp->hdr.e_shnum; i++) { shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize); if (shp->sh_size != 0 && shp->sh_name < shstrlen && strcmp(shstrtab + shp->sh_name, ELF_SIGNATURE_SECTION) == 0) { filesig_vers_t filesig_version; size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH; sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH); if (kobj_read_file(file, sigdata, shp->sh_size, shp->sh_offset) < 0) { _kobj_printf(ops, "krtld: get_signature: %s," " error reading .SUNW_signature data\n", mp->filename); kobj_free(sigdata, sigsize); kobj_free(shstrtab, shstrlen); return; } filesig_version = ((struct filesignatures *)sigdata)-> filesig_sig.filesig_version; if (!(filesig_version == FILESIG_VERSION1 || filesig_version == FILESIG_VERSION3)) { /* skip versions we don't understand */ kobj_free(sigdata, sigsize); kobj_free(shstrtab, shstrlen); return; } mp->sigdata = sigdata; mp->sigsize = sigsize; break; } } if (sigdata != NULL) { crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab); } kobj_free(shstrtab, shstrlen); } static void add_dependent(struct module *mp, struct module *dep) { struct module_list *lp; for (lp = mp->head; lp; lp = lp->next) { if (lp->mp == dep) return; /* already on the list */ } if (lp == NULL) { lp = kobj_zalloc(sizeof (*lp), KM_WAIT); lp->mp = dep; lp->next = NULL; if (mp->tail) mp->tail->next = lp; else mp->head = lp; mp->tail = lp; } } static int do_dependents(struct modctl *modp, char *modname, size_t modnamelen) { struct module *mp; struct modctl *req; char *d, *p, *q; int c; char *err_modname = NULL; mp = modp->mod_mp; if ((p = mp->depends_on) == NULL) return (0); for (;;) { /* * Skip space. */ while (*p && (*p == ' ' || *p == '\t')) p++; /* * Get module name. */ d = p; q = modname; c = 0; while (*p && *p != ' ' && *p != '\t') { if (c < modnamelen - 1) { *q++ = *p; c++; } p++; } if (q == modname) break; if (c == modnamelen - 1) { char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP); (void) strncpy(dep, d, p - d + 1); dep[p - d] = '\0'; _kobj_printf(ops, "%s: dependency ", modp->mod_modname); _kobj_printf(ops, "'%s' too long ", dep); _kobj_printf(ops, "(max %d chars)\n", modnamelen); kobj_free(dep, p - d + 1); return (-1); } *q = '\0'; if ((req = mod_load_requisite(modp, modname)) == NULL) { #ifndef KOBJ_DEBUG if (_moddebug & MODDEBUG_LOADMSG) { #endif /* KOBJ_DEBUG */ _kobj_printf(ops, "%s: unable to resolve dependency, ", modp->mod_modname); _kobj_printf(ops, "cannot load module '%s'\n", modname); #ifndef KOBJ_DEBUG } #endif /* KOBJ_DEBUG */ if (err_modname == NULL) { /* * This must be the same size as the modname * one. */ err_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT); /* * We can use strcpy() here without fearing * the NULL terminator because the size of * err_modname is the same as one of modname, * and it's filled with zeros. */ (void) strcpy(err_modname, modname); } continue; } add_dependent(mp, req->mod_mp); mod_release_mod(req); } if (err_modname != NULL) { /* * Copy the first module name where you detect an error to keep * its behavior the same as before. * This way keeps minimizing the memory use for error * modules, and this might be important at boot time because * the memory usage is a crucial factor for booting in most * cases. You can expect more verbose messages when using * a debug kernel or setting a bit in moddebug. */ bzero(modname, MODMAXNAMELEN); (void) strcpy(modname, err_modname); kobj_free(err_modname, MODMAXNAMELEN); return (-1); } return (0); } static int do_common(struct module *mp) { int err; /* * first time through, assign all symbols defined in other * modules, and count up how much common space will be needed * (bss_size and bss_align) */ if ((err = do_symbols(mp, 0)) < 0) return (err); /* * increase bss_size by the maximum delta that could be * computed by the ALIGN below */ mp->bss_size += mp->bss_align; if (mp->bss_size) { if (standalone) mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size, MINALIGN, 0); else mp->bss = (uintptr_t)vmem_alloc(data_arena, mp->bss_size, VM_SLEEP | VM_BESTFIT); bzero((void *)mp->bss, mp->bss_size); /* now assign addresses to all common symbols */ if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0) return (err); } return (0); } static int do_symbols(struct module *mp, Elf64_Addr bss_base) { int bss_align; uintptr_t bss_ptr; int err; int i; Sym *sp, *sp1; char *name; int assign; int resolved = 1; /* * Nothing left to do (optimization). */ if (mp->flags & KOBJ_RESOLVED) return (0); assign = (bss_base) ? 1 : 0; bss_ptr = bss_base; bss_align = 0; err = 0; for (i = 1; i < mp->nsyms; i++) { sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i); /* * we know that st_name is in bounds, since get_sections * has already checked all of the symbols */ name = mp->strings + sp->st_name; if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) continue; #if defined(__sparc) /* * Register symbols are ignored in the kernel */ if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) { if (*name != '\0') { _kobj_printf(ops, "%s: named REGISTER symbol ", mp->filename); _kobj_printf(ops, "not supported '%s'\n", name); err = DOSYM_UNDEF; } continue; } #endif /* __sparc */ /* * TLS symbols are ignored in the kernel */ if (ELF_ST_TYPE(sp->st_info) == STT_TLS) { _kobj_printf(ops, "%s: TLS symbol ", mp->filename); _kobj_printf(ops, "not supported '%s'\n", name); err = DOSYM_UNDEF; continue; } if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) { if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) { sp->st_shndx = SHN_ABS; sp->st_value = sp1->st_value; continue; } } if (sp->st_shndx == SHN_UNDEF) { resolved = 0; if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0) continue; /* * If it's not a weak reference and it's * not a primary object, it's an error. * (Primary objects may take more than * one pass to resolve) */ if (!(mp->flags & KOBJ_PRIM) && ELF_ST_BIND(sp->st_info) != STB_WEAK) { _kobj_printf(ops, "%s: undefined symbol", mp->filename); _kobj_printf(ops, " '%s'\n", name); /* * Try to determine whether this symbol * represents a dependency on obsolete * unsafe driver support. This is just * to make the warning more informative. */ if (strcmp(name, "sleep") == 0 || strcmp(name, "unsleep") == 0 || strcmp(name, "wakeup") == 0 || strcmp(name, "bsd_compat_ioctl") == 0 || strcmp(name, "unsafe_driver") == 0 || strncmp(name, "spl", 3) == 0 || strncmp(name, "i_ddi_spl", 9) == 0) err = DOSYM_UNSAFE; if (err == 0) err = DOSYM_UNDEF; } continue; } /* * It's a common symbol - st_value is the * required alignment. */ if (sp->st_value > bss_align) bss_align = sp->st_value; bss_ptr = ALIGN(bss_ptr, sp->st_value); if (assign) { sp->st_shndx = SHN_ABS; sp->st_value = bss_ptr; } bss_ptr += sp->st_size; } if (err) return (err); if (assign == 0 && mp->bss == NULL) { mp->bss_align = bss_align; mp->bss_size = bss_ptr; } else if (resolved) { mp->flags |= KOBJ_RESOLVED; } return (0); } uint_t kobj_hash_name(const char *p) { uint_t g; uint_t hval; hval = 0; while (*p) { hval = (hval << 4) + *p++; if ((g = (hval & 0xf0000000)) != 0) hval ^= g >> 24; hval &= ~g; } return (hval); } /* look for name in all modules */ uintptr_t kobj_getsymvalue(char *name, int kernelonly) { Sym *sp; struct modctl *modp; struct module *mp; uintptr_t value = 0; if ((sp = kobj_lookup_kernel(name)) != NULL) return ((uintptr_t)sp->st_value); if (kernelonly) return (0); /* didn't find it in the kernel so give up */ mutex_enter(&mod_lock); modp = &modules; do { mp = (struct module *)modp->mod_mp; if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && (sp = lookup_one(mp, name))) { value = (uintptr_t)sp->st_value; break; } } while ((modp = modp->mod_next) != &modules); mutex_exit(&mod_lock); return (value); } /* look for a symbol near value. */ char * kobj_getsymname(uintptr_t value, ulong_t *offset) { char *name = NULL; struct modctl *modp; struct modctl_list *lp; struct module *mp; /* * Loop through the primary kernel modules. */ for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { mp = mod(lp); if ((name = kobj_searchsym(mp, value, offset)) != NULL) return (name); } mutex_enter(&mod_lock); modp = &modules; do { mp = (struct module *)modp->mod_mp; if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded && (name = kobj_searchsym(mp, value, offset))) break; } while ((modp = modp->mod_next) != &modules); mutex_exit(&mod_lock); return (name); } /* return address of symbol and size */ uintptr_t kobj_getelfsym(char *name, void *mp, int *size) { Sym *sp; if (mp == NULL) sp = kobj_lookup_kernel(name); else sp = lookup_one(mp, name); if (sp == NULL) return (0); *size = (int)sp->st_size; return ((uintptr_t)sp->st_value); } uintptr_t kobj_lookup(struct module *mod, const char *name) { Sym *sp; sp = lookup_one(mod, name); if (sp == NULL) return (0); return ((uintptr_t)sp->st_value); } char * kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset) { Sym *symtabptr; char *strtabptr; int symnum; Sym *sym; Sym *cursym; uintptr_t curval; *offset = (ulong_t)-1l; /* assume not found */ cursym = NULL; if (kobj_addrcheck(mp, (void *)value) != 0) return (NULL); /* not in this module */ strtabptr = mp->strings; symtabptr = (Sym *)mp->symtbl; /* * Scan the module's symbol table for a symbol <= value */ for (symnum = 1, sym = symtabptr + 1; symnum < mp->nsyms; symnum++, sym = (Sym *) ((uintptr_t)sym + mp->symhdr->sh_entsize)) { if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { if (ELF_ST_BIND(sym->st_info) != STB_LOCAL) continue; if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT && ELF_ST_TYPE(sym->st_info) != STT_FUNC) continue; } curval = (uintptr_t)sym->st_value; if (curval > value) continue; /* * If one or both are functions... */ if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL && ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) { /* Ignore if the address is out of the bounds */ if (value - sym->st_value >= sym->st_size) continue; if (cursym != NULL && ELF_ST_TYPE(cursym->st_info) == STT_FUNC) { /* Prefer the function to the non-function */ if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) continue; /* Prefer the larger of the two functions */ if (sym->st_size <= cursym->st_size) continue; } } else if (value - curval >= *offset) { continue; } *offset = (ulong_t)(value - curval); cursym = sym; } if (cursym == NULL) return (NULL); return (strtabptr + cursym->st_name); } Sym * kobj_lookup_all(struct module *mp, char *name, int include_self) { Sym *sp; struct module_list *mlp; struct modctl_list *clp; struct module *mmp; if (include_self && (sp = lookup_one(mp, name)) != NULL) return (sp); for (mlp = mp->head; mlp; mlp = mlp->next) { if ((sp = lookup_one(mlp->mp, name)) != NULL && ELF_ST_BIND(sp->st_info) != STB_LOCAL) return (sp); } /* * Loop through the primary kernel modules. */ for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) { mmp = mod(clp); if (mmp == NULL || mp == mmp) continue; if ((sp = lookup_one(mmp, name)) != NULL && ELF_ST_BIND(sp->st_info) != STB_LOCAL) return (sp); } return (NULL); } Sym * kobj_lookup_kernel(const char *name) { struct modctl_list *lp; struct module *mp; Sym *sp; /* * Loop through the primary kernel modules. */ for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) { mp = mod(lp); if (mp == NULL) continue; if ((sp = lookup_one(mp, name)) != NULL) return (sp); } return (NULL); } static Sym * lookup_one(struct module *mp, const char *name) { symid_t *ip; char *name1; Sym *sp; for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; ip = &mp->chains[*ip]) { sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); name1 = mp->strings + sp->st_name; if (strcmp(name, name1) == 0 && ELF_ST_TYPE(sp->st_info) != STT_FILE && sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON) return (sp); } return (NULL); } /* * Lookup a given symbol pointer in the module's symbol hash. If the symbol * is hashed, return the symbol pointer; otherwise return NULL. */ static Sym * sym_lookup(struct module *mp, Sym *ksp) { char *name = mp->strings + ksp->st_name; symid_t *ip; Sym *sp; for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; ip = &mp->chains[*ip]) { sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip); if (sp == ksp) return (ksp); } return (NULL); } static void sym_insert(struct module *mp, char *name, symid_t index) { symid_t *ip; #ifdef KOBJ_DEBUG if (kobj_debug & D_SYMBOLS) { static struct module *lastmp = NULL; Sym *sp; if (lastmp != mp) { _kobj_printf(ops, "krtld: symbol entry: file=%s\n", mp->filename); _kobj_printf(ops, "krtld:\tsymndx\tvalue\t\t" "symbol name\n"); lastmp = mp; } sp = (Sym *)(mp->symtbl + index * mp->symhdr->sh_entsize); _kobj_printf(ops, "krtld:\t[%3d]", index); _kobj_printf(ops, "\t0x%lx", sp->st_value); _kobj_printf(ops, "\t%s\n", name); } #endif for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip; ip = &mp->chains[*ip]) { ; } *ip = index; } struct modctl * kobj_boot_mod_lookup(const char *modname) { struct modctl *mctl = kobj_modules; do { if (strcmp(modname, mctl->mod_modname) == 0) return (mctl); } while ((mctl = mctl->mod_next) != kobj_modules); return (NULL); } /* * Determine if the module exists. */ int kobj_path_exists(char *name, int use_path) { struct _buf *file; file = kobj_open_path(name, use_path, 1); #ifdef MODDIR_SUFFIX if (file == (struct _buf *)-1) file = kobj_open_path(name, use_path, 0); #endif /* MODDIR_SUFFIX */ if (file == (struct _buf *)-1) return (0); kobj_close_file(file); return (1); } /* * fullname is dynamically allocated to be able to hold the * maximum size string that can be constructed from name. * path is exactly like the shell PATH variable. */ struct _buf * kobj_open_path(char *name, int use_path, int use_moddir_suffix) { char *p, *q; char *pathp; char *pathpsave; char *fullname; int maxpathlen; struct _buf *file; #if !defined(MODDIR_SUFFIX) use_moddir_suffix = B_FALSE; #endif if (!use_path) pathp = ""; /* use name as specified */ else pathp = kobj_module_path; /* use configured default path */ pathpsave = pathp; /* keep this for error reporting */ /* * Allocate enough space for the largest possible fullname. * since path is of the form : : ... * we're potentially allocating a little more than we need to * but we'll allocate the exact amount when we find the right directory. * (The + 3 below is one for NULL terminator and one for the '/' * we might have to add at the beginning of path and one for * the '/' between path and name.) */ maxpathlen = strlen(pathp) + strlen(name) + 3; /* sizeof includes null */ maxpathlen += sizeof (slash_moddir_suffix_slash) - 1; fullname = kobj_zalloc(maxpathlen, KM_WAIT); for (;;) { p = fullname; if (*pathp != '\0' && *pathp != '/') *p++ = '/'; /* path must start with '/' */ while (*pathp && *pathp != ':' && *pathp != ' ') *p++ = *pathp++; if (p != fullname && p[-1] != '/') *p++ = '/'; if (use_moddir_suffix) { char *b = basename(name); char *s; /* copy everything up to the base name */ q = name; while (q != b && *q) *p++ = *q++; s = slash_moddir_suffix_slash; while (*s) *p++ = *s++; /* copy the rest */ while (*b) *p++ = *b++; } else { q = name; while (*q) *p++ = *q++; } *p = 0; if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) { kobj_free(fullname, maxpathlen); return (file); } if (*pathp == 0) break; pathp++; } kobj_free(fullname, maxpathlen); if (_moddebug & MODDEBUG_ERRMSG) { _kobj_printf(ops, "can't open %s,", name); _kobj_printf(ops, " path is %s\n", pathpsave); } return ((struct _buf *)-1); } intptr_t kobj_open(char *filename) { struct vnode *vp; int fd; if (_modrootloaded) { struct kobjopen_tctl *ltp = kobjopen_alloc(filename); int Errno; /* * Hand off the open to a thread who has a * stack size capable handling the request. */ if (curthread != &t0) { (void) thread_create(NULL, DEFAULTSTKSZ * 2, kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri); sema_p(<p->sema); Errno = ltp->Errno; vp = ltp->vp; } else { /* * 1098067: module creds should not be those of the * caller */ cred_t *saved_cred = curthread->t_cred; curthread->t_cred = kcred; Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, -1); curthread->t_cred = saved_cred; } kobjopen_free(ltp); if (Errno) { if (_moddebug & MODDEBUG_ERRMSG) { _kobj_printf(ops, "kobj_open: vn_open of %s fails, ", filename); _kobj_printf(ops, "Errno = %d\n", Errno); } return (-1); } else { if (_moddebug & MODDEBUG_ERRMSG) { _kobj_printf(ops, "kobj_open: '%s'", filename); _kobj_printf(ops, " vp = %p\n", vp); } return ((intptr_t)vp); } } else { fd = kobj_boot_open(filename, 0); if (_moddebug & MODDEBUG_ERRMSG) { if (fd < 0) _kobj_printf(ops, "kobj_open: can't open %s\n", filename); else { _kobj_printf(ops, "kobj_open: '%s'", filename); _kobj_printf(ops, " descr = 0x%x\n", fd); } } return ((intptr_t)fd); } } /* * Calls to kobj_open() are handled off to this routine as a separate thread. */ static void kobjopen_thread(struct kobjopen_tctl *ltp) { kmutex_t cpr_lk; callb_cpr_t cpr_i; mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen"); ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp), 0, 0); sema_v(<p->sema); mutex_enter(&cpr_lk); CALLB_CPR_EXIT(&cpr_i); mutex_destroy(&cpr_lk); thread_exit(); } /* * allocate and initialize a kobjopen thread structure */ static struct kobjopen_tctl * kobjopen_alloc(char *filename) { struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP); ASSERT(filename != NULL); ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP); bcopy(filename, ltp->name, strlen(filename) + 1); sema_init(<p->sema, 0, NULL, SEMA_DEFAULT, NULL); return (ltp); } /* * free a kobjopen thread control structure */ static void kobjopen_free(struct kobjopen_tctl *ltp) { sema_destroy(<p->sema); kmem_free(ltp->name, strlen(ltp->name) + 1); kmem_free(ltp, sizeof (*ltp)); } int kobj_read(intptr_t descr, char *buf, uint_t size, uint_t offset) { int stat; ssize_t resid; if (_modrootloaded) { if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size, (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { _kobj_printf(ops, "vn_rdwr failed with error 0x%x\n", stat); return (-1); } return (size - resid); } else { int count = 0; if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) { _kobj_printf(ops, "kobj_read: seek 0x%x failed\n", offset); return (-1); } count = kobj_boot_read((int)descr, buf, size); if (count < size) { if (_moddebug & MODDEBUG_ERRMSG) { _kobj_printf(ops, "kobj_read: req %d bytes, ", size); _kobj_printf(ops, "got %d\n", count); } } return (count); } } void kobj_close(intptr_t descr) { if (_moddebug & MODDEBUG_ERRMSG) _kobj_printf(ops, "kobj_close: 0x%lx\n", descr); if (_modrootloaded) { struct vnode *vp = (struct vnode *)descr; (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); VN_RELE(vp); } else (void) kobj_boot_close((int)descr); } int kobj_fstat(intptr_t descr, struct bootstat *buf) { if (buf == NULL) return (-1); if (_modrootloaded) { vattr_t vattr; struct vnode *vp = (struct vnode *)descr; if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) return (-1); /* * The vattr and bootstat structures are similar, but not * identical. We do our best to fill in the bootstat structure * from the contents of vattr (transfering only the ones that * are obvious. */ buf->st_mode = (uint32_t)vattr.va_mode; buf->st_nlink = (uint32_t)vattr.va_nlink; buf->st_uid = (int32_t)vattr.va_uid; buf->st_gid = (int32_t)vattr.va_gid; buf->st_rdev = (uint64_t)vattr.va_rdev; buf->st_size = (uint64_t)vattr.va_size; buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec; buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec; buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec; buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec; buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec; buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec; buf->st_blksize = (int32_t)vattr.va_blksize; buf->st_blocks = (int64_t)vattr.va_nblocks; return (0); } return (kobj_boot_fstat((int)descr, buf)); } struct _buf * kobj_open_file(char *name) { struct _buf *file; struct compinfo cbuf; intptr_t fd; if ((fd = kobj_open(name)) == -1) { return ((struct _buf *)-1); } file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP); file->_fd = fd; file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP); file->_cnt = file->_size = file->_off = 0; file->_ln = 1; file->_ptr = file->_base; (void) strcpy(file->_name, name); /* * Before root is mounted, we must check * for a compressed file and do our own * buffering. */ if (_modrootloaded) { file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT); file->_bsize = MAXBSIZE; /* Check if the file is compressed */ if (kobj_is_compressed(fd)) { file->_iscmp = 1; } } else { if (kobj_boot_compinfo(fd, &cbuf) != 0) { kobj_close_file(file); return ((struct _buf *)-1); } file->_iscmp = cbuf.iscmp; if (file->_iscmp) { if (kobj_comp_setup(file, &cbuf) != 0) { kobj_close_file(file); return ((struct _buf *)-1); } } else { file->_base = kobj_zalloc(cbuf.blksize, KM_WAIT|KM_TMP); file->_bsize = cbuf.blksize; } } return (file); } static int kobj_comp_setup(struct _buf *file, struct compinfo *cip) { struct comphdr *hdr; /* * read the compressed image into memory, * so we can deompress from there */ file->_dsize = cip->fsize; file->_dbuf = kobj_alloc(cip->fsize, KM_WAIT|KM_TMP); if (kobj_read(file->_fd, file->_dbuf, cip->fsize, 0) != cip->fsize) { kobj_free(file->_dbuf, cip->fsize); return (-1); } hdr = kobj_comphdr(file); if (hdr->ch_magic != CH_MAGIC_ZLIB || hdr->ch_version != CH_VERSION || hdr->ch_algorithm != CH_ALG_ZLIB || hdr->ch_fsize == 0 || (hdr->ch_blksize & (hdr->ch_blksize - 1)) != 0) { kobj_free(file->_dbuf, cip->fsize); return (-1); } file->_base = kobj_alloc(hdr->ch_blksize, KM_WAIT|KM_TMP); file->_bsize = hdr->ch_blksize; return (0); } void kobj_close_file(struct _buf *file) { kobj_close(file->_fd); if (file->_base != NULL) kobj_free(file->_base, file->_bsize); if (file->_dbuf != NULL) kobj_free(file->_dbuf, file->_dsize); kobj_free(file->_name, strlen(file->_name)+1); kobj_free(file, sizeof (struct _buf)); } int kobj_read_file(struct _buf *file, char *buf, uint_t size, uint_t off) { int b_size, c_size; int b_off; /* Offset into buffer for start of bcopy */ int count = 0; int page_addr; if (_moddebug & MODDEBUG_ERRMSG) { _kobj_printf(ops, "kobj_read_file: size=%x,", size); _kobj_printf(ops, " offset=%x at", off); _kobj_printf(ops, " buf=%x\n", buf); } /* * Handle compressed (gzip for now) file here. First get the * compressed size, then read the image into memory and finally * call zlib to decompress the image at the supplied memory buffer. */ if (file->_iscmp) { ulong_t dlen; vattr_t vattr; struct vnode *vp = (struct vnode *)file->_fd; ssize_t resid; int err = 0; if (VOP_GETATTR(vp, &vattr, 0, kcred, NULL) != 0) return (-1); file->_dbuf = kobj_alloc(vattr.va_size, KM_WAIT|KM_TMP); file->_dsize = vattr.va_size; /* Read the compressed file into memory */ if ((err = vn_rdwr(UIO_READ, vp, file->_dbuf, vattr.va_size, (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { _kobj_printf(ops, "kobj_read_file :vn_rdwr() failed, " "error code 0x%x\n", err); return (-1); } dlen = size; /* Decompress the image at the supplied memory buffer */ if ((err = z_uncompress(buf, &dlen, file->_dbuf, vattr.va_size)) != Z_OK) { _kobj_printf(ops, "kobj_read_file: z_uncompress " "failed, error code : 0x%x\n", err); return (-1); } if (dlen != size) { _kobj_printf(ops, "kobj_read_file: z_uncompress " "failed to uncompress (size returned 0x%x , " "expected size: 0x%x)\n", dlen, size); return (-1); } return (0); } while (size) { page_addr = F_PAGE(file, off); b_size = file->_size; /* * If we have the filesystem page the caller's referring to * and we have something in the buffer, * satisfy as much of the request from the buffer as we can. */ if (page_addr == file->_off && b_size > 0) { b_off = B_OFFSET(file, off); c_size = b_size - b_off; /* * If there's nothing to copy, we're at EOF. */ if (c_size <= 0) break; if (c_size > size) c_size = size; if (buf) { if (_moddebug & MODDEBUG_ERRMSG) _kobj_printf(ops, "copying %x bytes\n", c_size); bcopy(file->_base+b_off, buf, c_size); size -= c_size; off += c_size; buf += c_size; count += c_size; } else { _kobj_printf(ops, "kobj_read: system error"); count = -1; break; } } else { /* * If the caller's offset is page aligned and * the caller want's at least a filesystem page and * the caller provided a buffer, * read directly into the caller's buffer. */ if (page_addr == off && (c_size = F_BLKS(file, size)) && buf) { c_size = kobj_read_blks(file, buf, c_size, page_addr); if (c_size < 0) { count = -1; break; } count += c_size; if (c_size != F_BLKS(file, size)) break; size -= c_size; off += c_size; buf += c_size; /* * Otherwise, read into our buffer and copy next time * around the loop. */ } else { file->_off = page_addr; c_size = kobj_read_blks(file, file->_base, file->_bsize, page_addr); file->_ptr = file->_base; file->_cnt = c_size; file->_size = c_size; /* * If a _filbuf call or nothing read, break. */ if (buf == NULL || c_size <= 0) { count = c_size; break; } } if (_moddebug & MODDEBUG_ERRMSG) _kobj_printf(ops, "read %x bytes\n", c_size); } } if (_moddebug & MODDEBUG_ERRMSG) _kobj_printf(ops, "count = %x\n", count); return (count); } static int kobj_read_blks(struct _buf *file, char *buf, uint_t size, uint_t off) { int ret; ASSERT(B_OFFSET(file, size) == 0 && B_OFFSET(file, off) == 0); if (file->_iscmp) { uint_t blks; int nret; ret = 0; for (blks = size / file->_bsize; blks != 0; blks--) { nret = kobj_uncomp_blk(file, buf, off); if (nret == -1) return (-1); buf += nret; off += nret; ret += nret; if (nret < file->_bsize) break; } } else ret = kobj_read(file->_fd, buf, size, off); return (ret); } static int kobj_uncomp_blk(struct _buf *file, char *buf, uint_t off) { struct comphdr *hdr = kobj_comphdr(file); ulong_t dlen, slen; caddr_t src; int i; dlen = file->_bsize; i = off / file->_bsize; src = file->_dbuf + hdr->ch_blkmap[i]; if (i == hdr->ch_fsize / file->_bsize) slen = file->_dsize - hdr->ch_blkmap[i]; else slen = hdr->ch_blkmap[i + 1] - hdr->ch_blkmap[i]; if (z_uncompress(buf, &dlen, src, slen) != Z_OK) return (-1); return (dlen); } int kobj_filbuf(struct _buf *f) { if (kobj_read_file(f, NULL, f->_bsize, f->_off + f->_size) > 0) return (kobj_getc(f)); return (-1); } void kobj_free(void *address, size_t size) { if (standalone) return; kmem_free(address, size); kobj_stat.nfree_calls++; kobj_stat.nfree += size; } void * kobj_zalloc(size_t size, int flag) { void *v; if ((v = kobj_alloc(size, flag)) != 0) { bzero(v, size); } return (v); } void * kobj_alloc(size_t size, int flag) { /* * If we are running standalone in the * linker, we ask boot for memory. * Either it's temporary memory that we lose * once boot is mapped out or we allocate it * permanently using the dynamic data segment. */ if (standalone) { #if defined(_OBP) if (flag & (KM_TMP | KM_SCRATCH)) return (bop_temp_alloc(size, MINALIGN)); #else if (flag & (KM_TMP | KM_SCRATCH)) return (BOP_ALLOC(ops, 0, size, MINALIGN)); #endif return (kobj_segbrk(&_edata, size, MINALIGN, 0)); } kobj_stat.nalloc_calls++; kobj_stat.nalloc += size; return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)); } /* * Allow the "mod" system to sync up with the work * already done by kobj during the initial loading * of the kernel. This also gives us a chance * to reallocate memory that belongs to boot. */ void kobj_sync(void) { struct modctl_list *lp, **lpp; /* * The module path can be set in /etc/system via 'moddir' commands */ if (default_path != NULL) kobj_module_path = default_path; else default_path = kobj_module_path; ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t), segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t), segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); /* * Move symbol tables from boot memory to ksyms_arena. */ for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) { for (lp = *lpp; lp != NULL; lp = lp->modl_next) kobj_export_module(mod(lp)); } } caddr_t kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit) { uintptr_t va, pva; size_t alloc_pgsz = kobj_mmu_pagesize; size_t alloc_align = BO_NO_ALIGN; size_t alloc_size; /* * If we are using "large" mappings for the kernel, * request aligned memory from boot using the * "large" pagesize. */ if (lg_pagesize) { alloc_align = lg_pagesize; alloc_pgsz = lg_pagesize; } #if defined(__sparc) /* account for redzone */ if (limit) limit -= alloc_pgsz; #endif /* __sparc */ va = ALIGN((uintptr_t)*spp, align); pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz); /* * Need more pages? */ if (va + size > pva) { uintptr_t npva; alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz); /* * Check for overlapping segments. */ if (limit && limit <= *spp + alloc_size) { return ((caddr_t)0); } npva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva, alloc_size, alloc_align); if (npva == NULL) { _kobj_printf(ops, "BOP_ALLOC failed, 0x%lx bytes", alloc_size); _kobj_printf(ops, " aligned %lx", alloc_align); _kobj_printf(ops, " at 0x%lx\n", pva); return (NULL); } } *spp = (caddr_t)(va + size); return ((caddr_t)va); } /* * Calculate the number of output hash buckets. * We use the next prime larger than n / 4, * so the average hash chain is about 4 entries. * More buckets would just be a waste of memory. */ uint_t kobj_gethashsize(uint_t n) { int f; int hsize = MAX(n / 4, 2); for (f = 2; f * f <= hsize; f++) if (hsize % f == 0) hsize += f = 1; return (hsize); } /* * Get the file size. * * Before root is mounted, files are compressed in the boot_archive ramdisk * (in the memory). kobj_fstat would return the compressed file size. * In order to get the uncompressed file size, read the file to the end and * count its size. */ int kobj_get_filesize(struct _buf *file, uint64_t *size) { int err = 0; ssize_t resid; uint32_t buf; if (_modrootloaded) { struct bootstat bst; if (kobj_fstat(file->_fd, &bst) != 0) return (EIO); *size = bst.st_size; if (file->_iscmp) { /* * Read the last 4 bytes of the compressed (gzip) * image to get the size of its uncompressed * version. */ if ((err = vn_rdwr(UIO_READ, (struct vnode *)file->_fd, (char *)(&buf), 4, (offset_t)(*size - 4), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { _kobj_printf(ops, "kobj_get_filesize: " "vn_rdwr() failed with error 0x%x\n", err); return (-1); } *size = (uint64_t)buf; } } else { #if defined(_OBP) struct bootstat bsb; if (file->_iscmp) { struct comphdr *hdr = kobj_comphdr(file); *size = hdr->ch_fsize; } else if (kobj_boot_fstat(file->_fd, &bsb) != 0) return (EIO); else *size = bsb.st_size; #else char *buf; int count; uint64_t offset = 0; buf = kmem_alloc(MAXBSIZE, KM_SLEEP); do { count = kobj_read_file(file, buf, MAXBSIZE, offset); if (count < 0) { kmem_free(buf, MAXBSIZE); return (EIO); } offset += count; } while (count == MAXBSIZE); kmem_free(buf, MAXBSIZE); *size = offset; #endif } return (0); } static char * basename(char *s) { char *p, *q; q = NULL; p = s; do { if (*p == '/') q = p; } while (*p++); return (q ? q + 1 : s); } void kobj_stat_get(kobj_stat_t *kp) { *kp = kobj_stat; } int kobj_getpagesize() { return (lg_pagesize); } void kobj_textwin_alloc(struct module *mp) { ASSERT(MUTEX_HELD(&mod_lock)); if (mp->textwin != NULL) return; /* * If the text is not contained in the heap, then it is not contained * by a writable mapping. (Specifically, it's on the nucleus page.) * We allocate a read/write mapping for this module's text to allow * the text to be patched without calling hot_patch_kernel_text() * (which is quite slow). */ if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) { uintptr_t text = (uintptr_t)mp->text; uintptr_t size = (uintptr_t)mp->text_size; uintptr_t i; caddr_t va; size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) - (text & PAGEMASK); va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP); for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) { hat_devload(kas.a_hat, va, PAGESIZE, hat_getpfnum(kas.a_hat, (caddr_t)i), PROT_READ | PROT_WRITE, HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); va += PAGESIZE; } mp->textwin = mp->textwin_base + (text & PAGEOFFSET); } else { mp->textwin = mp->text; } } void kobj_textwin_free(struct module *mp) { uintptr_t text = (uintptr_t)mp->text; uintptr_t tsize = (uintptr_t)mp->text_size; size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) - (text & PAGEMASK)); mp->textwin = NULL; if (mp->textwin_base == NULL) return; hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK); vmem_free(heap_arena, mp->textwin_base, size); mp->textwin_base = NULL; } static char * find_libmacro(char *name) { int lmi; for (lmi = 0; lmi < NLIBMACROS; lmi++) { if (strcmp(name, libmacros[lmi].lmi_macroname) == 0) return (libmacros[lmi].lmi_list); } return (NULL); } /* * Check for $MACRO in tail (string to expand) and expand it in path at pathend * returns path if successful, else NULL * Support multiple $MACROs expansion and the first valid path will be returned * Caller's responsibility to provide enough space in path to expand */ char * expand_libmacro(char *tail, char *path, char *pathend) { char c, *p, *p1, *p2, *path2, *endp; int diff, lmi, macrolen, valid_macro, more_macro; struct _buf *file; /* * check for $MACROS between nulls or slashes */ p = strchr(tail, '$'); if (p == NULL) return (NULL); for (lmi = 0; lmi < NLIBMACROS; lmi++) { macrolen = libmacros[lmi].lmi_macrolen; if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0) break; } valid_macro = 0; if (lmi < NLIBMACROS) { /* * The following checks are used to restrict expansion of * macros to those that form a full directory/file name * and to keep the behavior same as before. If this * restriction is removed or no longer valid in the future, * the checks below can be deleted. */ if ((p == tail) || (*(p - 1) == '/')) { c = *(p + macrolen + 1); if (c == '/' || c == '\0') valid_macro = 1; } } if (!valid_macro) { p2 = strchr(p, '/'); /* * if no more macro to expand, then just copy whatever left * and check whether it exists */ if (p2 == NULL || strchr(p2, '$') == NULL) { (void) strcpy(pathend, tail); if ((file = kobj_open_path(path, 1, 1)) != (struct _buf *)-1) { kobj_close_file(file); return (path); } else return (NULL); } else { /* * copy all chars before '/' and call expand_libmacro() * again */ diff = p2 - tail; bcopy(tail, pathend, diff); pathend += diff; *(pathend) = '\0'; return (expand_libmacro(p2, path, pathend)); } } more_macro = 0; if (c != '\0') { endp = p + macrolen + 1; if (strchr(endp, '$') != NULL) more_macro = 1; } else endp = NULL; /* * copy lmi_list and split it into components. * then put the part of tail before $MACRO into path * at pathend */ diff = p - tail; if (diff > 0) bcopy(tail, pathend, diff); path2 = pathend + diff; p1 = libmacros[lmi].lmi_list; while (p1 && (*p1 != '\0')) { p2 = strchr(p1, ':'); if (p2) { diff = p2 - p1; bcopy(p1, path2, diff); *(path2 + diff) = '\0'; } else { diff = strlen(p1); bcopy(p1, path2, diff + 1); } /* copy endp only if there isn't any more macro to expand */ if (!more_macro && (endp != NULL)) (void) strcat(path2, endp); file = kobj_open_path(path, 1, 1); if (file != (struct _buf *)-1) { kobj_close_file(file); /* * if more macros to expand then call expand_libmacro(), * else return path which has the whole path */ if (!more_macro || (expand_libmacro(endp, path, path2 + diff) != NULL)) { return (path); } } if (p2) p1 = ++p2; else return (NULL); } return (NULL); } static void tnf_add_notifyunload(kobj_notify_f *fp) { kobj_notify_list_t *entry; entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT); entry->kn_type = KOBJ_NOTIFY_MODUNLOADING; entry->kn_func = fp; (void) kobj_notify_add(entry); } /* ARGSUSED */ static void tnf_unsplice_probes(uint_t what, struct modctl *mod) { tnf_probe_control_t **p; tnf_tag_data_t **q; struct module *mp = mod->mod_mp; if (!(mp->flags & KOBJ_TNF_PROBE)) return; for (p = &__tnf_probe_list_head; *p; ) if (kobj_addrcheck(mp, (char *)*p) == 0) *p = (*p)->next; else p = &(*p)->next; for (q = &__tnf_tag_list_head; *q; ) if (kobj_addrcheck(mp, (char *)*q) == 0) *q = (tnf_tag_data_t *)(*q)->tag_version; else q = (tnf_tag_data_t **)&(*q)->tag_version; tnf_changed_probe_list = 1; } int tnf_splice_probes(int boot_load, tnf_probe_control_t *plist, tnf_tag_data_t *tlist) { int result = 0; static int add_notify = 1; if (plist) { tnf_probe_control_t *pl; for (pl = plist; pl->next; ) pl = pl->next; if (!boot_load) mutex_enter(&mod_lock); tnf_changed_probe_list = 1; pl->next = __tnf_probe_list_head; __tnf_probe_list_head = plist; if (!boot_load) mutex_exit(&mod_lock); result = 1; } if (tlist) { tnf_tag_data_t *tl; for (tl = tlist; tl->tag_version; ) tl = (tnf_tag_data_t *)tl->tag_version; if (!boot_load) mutex_enter(&mod_lock); tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head; __tnf_tag_list_head = tlist; if (!boot_load) mutex_exit(&mod_lock); result = 1; } if (!boot_load && result && add_notify) { tnf_add_notifyunload(tnf_unsplice_probes); add_notify = 0; } return (result); } char *kobj_file_buf; int kobj_file_bufsize; /* * This code is for the purpose of manually recording which files * needs to go into the boot archive on any given system. * * To enable the code, set kobj_file_bufsize in /etc/system * and reboot the system, then use mdb to look at kobj_file_buf. */ static void kobj_record_file(char *filename) { static char *buf; static int size = 0; int n; if (kobj_file_bufsize == 0) /* don't bother */ return; if (kobj_file_buf == NULL) { /* allocate buffer */ size = kobj_file_bufsize; buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP); } n = snprintf(buf, size, "%s\n", filename); if (n > size) n = size; size -= n; buf += n; } static int kobj_boot_fstat(int fd, struct bootstat *stp) { #if defined(_OBP) if (!standalone && _ioquiesced) return (-1); return (BOP_FSTAT(ops, fd, stp)); #else return (BRD_FSTAT(bfs_ops, fd, stp)); #endif } static int kobj_boot_open(char *filename, int flags) { #if defined(_OBP) /* * If io via bootops is quiesced, it means boot is no longer * available to us. We make it look as if we can't open the * named file - which is reasonably accurate. */ if (!standalone && _ioquiesced) return (-1); kobj_record_file(filename); return (BOP_OPEN(filename, flags)); #else /* x86 */ kobj_record_file(filename); return (BRD_OPEN(bfs_ops, filename, flags)); #endif } static int kobj_boot_close(int fd) { #if defined(_OBP) if (!standalone && _ioquiesced) return (-1); return (BOP_CLOSE(fd)); #else /* x86 */ return (BRD_CLOSE(bfs_ops, fd)); #endif } /*ARGSUSED*/ static int kobj_boot_seek(int fd, off_t hi, off_t lo) { #if defined(_OBP) return (BOP_SEEK(fd, lo) == -1 ? -1 : 0); #else return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET)); #endif } static int kobj_boot_read(int fd, caddr_t buf, size_t size) { #if defined(_OBP) return (BOP_READ(fd, buf, size)); #else return (BRD_READ(bfs_ops, fd, buf, size)); #endif } static int kobj_boot_compinfo(int fd, struct compinfo *cb) { return (boot_compinfo(fd, cb)); } /* * Check if the file is compressed (for now we handle only gzip). * It returns 1 if the file is compressed and 0 otherwise. */ static int kobj_is_compressed(intptr_t fd) { struct vnode *vp = (struct vnode *)fd; ssize_t resid; uint16_t magic_buf; int err = 0; if ((err = vn_rdwr(UIO_READ, vp, (caddr_t)((intptr_t)&magic_buf), sizeof (magic_buf), (offset_t)(0), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { _kobj_printf(ops, "kobj_is_compressed: vn_rdwr() failed, " "error code 0x%x\n", err); return (0); } if (magic_buf == CH_MAGIC_GZIP) return (1); return (0); }