/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Zone Console Driver. * * This driver, derived from the pts/ptm drivers, is the pseudo console driver * for system zones. Its implementation is straightforward. Each instance * of the driver represents a global-zone/local-zone pair (this maps in a * straightforward way to the commonly used terminal notion of "master side" * and "slave side", and we use that terminology throughout). * * Instances of zcons are onlined as children of /pseudo/zconsnex@1/ * by zoneadmd in userland, using the devctl framework; thus the driver * does not need to maintain any sort of "admin" node. * * The driver shuttles I/O from master side to slave side and back. In a break * from the pts/ptm semantics, if one side is not open, I/O directed towards * it will simply be discarded. This is so that if zoneadmd is not holding * the master side console open (i.e. it has died somehow), processes in * the zone do not experience any errors and I/O to the console does not * hang. * * TODO: we may want to revisit the other direction; i.e. we may want * zoneadmd to be able to detect whether no zone processes are holding the * console open, an unusual situation. * * * * MASTER SIDE IOCTLS * * The ZC_HOLDSLAVE and ZC_RELEASESLAVE ioctls instruct the master side of the * console to hold and release a reference to the slave side's vnode. They are * meant to be issued by zoneadmd after the console device node is created and * before it is destroyed so that the slave's STREAMS anchor, ptem, is * preserved when ttymon starts popping STREAMS modules from within the * associated zone. This guarantees that the zone console will always have * terminal semantics while the zone is running. * * Here is the issue: the ptem module is anchored in the zone console * (slave side) so that processes within the associated non-global zone will * fail to pop it off, thus ensuring that the slave will retain terminal * semantics. When a process attempts to pop the anchor off of a stream, the * STREAMS subsystem checks whether the calling process' zone is the same as * that of the process that pushed the anchor onto the stream and cancels the * pop if they differ. zoneadmd used to hold an open file descriptor for the * slave while the associated non-global zone ran, thus ensuring that the * slave's STREAMS anchor would never be popped from within the non-global zone * (because zoneadmd runs in the global zone). However, this file descriptor * was removed to make zone console management more robust. sad(7D) is now * used to automatically set up the slave's STREAMS modules when the zone * console is freshly opened within the associated non-global zone. However, * when a process within the non-global zone freshly opens the zone console, the * anchor is pushed from within the non-global zone, making it possible for * processes within the non-global zone (e.g., ttymon) to pop the anchor and * destroy the zone console's terminal semantics. * * One solution is to make the zcons device hold the slave open while the * associated non-global zone runs so that the STREAMS anchor will always be * associated with the global zone. Unfortunately, the slave cannot be opened * from within the zcons driver because the driver is not reentrant: it has * an outer STREAMS perimeter. Therefore, the next best option is for zcons to * provide an ioctl interface to zoneadmd to manage holding and releasing * the slave side of the console. It is sufficient to hold the slave side's * vnode and bump the associated snode's reference count to preserve the slave's * STREAMS configuration while the associated zone runs, so that's what the * ioctls do. * * * ZC_HOLDSLAVE * * This ioctl takes a file descriptor as an argument. It effectively gets a * reference to the slave side's minor node's vnode and bumps the associated * snode's reference count. The vnode reference is stored in the zcons device * node's soft state. This ioctl succeeds if the given file descriptor refers * to the slave side's minor node or if there is already a reference to the * slave side's minor node's vnode in the device's soft state. * * * ZC_RELEASESLAVE * * This ioctl takes a file descriptor as an argument. It effectively releases * the vnode reference stored in the zcons device node's soft state (which was * previously acquired via ZC_HOLDSLAVE) and decrements the reference count of * the snode associated with the vnode. This ioctl succeeds if the given file * descriptor refers to the slave side's minor node or if no reference to the * slave side's minor node's vnode is stored in the device's soft state. * * * Note that the file descriptor arguments for both ioctls must be cast to * integers of pointer width. * * Here's how the dance between zcons and zoneadmd works: * * Zone boot: * 1. While booting the zone, zoneadmd creates an instance of zcons. * 2. zoneadmd opens the master and slave sides of the new zone console * and issues the ZC_HOLDSLAVE ioctl on the master side, passing its * file descriptor for the slave side as the ioctl argument. * 3. zcons holds the slave side's vnode, bumps the snode's reference * count, and stores a pointer to the vnode in the device's soft * state. * 4. zoneadmd closes the master and slave sides and continues to boot * the zone. * * Zone halt: * 1. While halting the zone, zoneadmd opens the master and slave sides * of the zone's console and issues the ZC_RELEASESLAVE ioctl on the * master side, passing its file descriptor for the slave side as the * ioctl argument. * 2. zcons decrements the slave side's snode's reference count, releases * the slave's vnode, and eliminates its reference to the vnode in the * device's soft state. * 3. zoneadmd closes the master and slave sides. * 4. zoneadmd destroys the zcons device and continues to halt the zone. * * It is necessary for zoneadmd to hold the slave open while issuing * ZC_RELEASESLAVE because zcons might otherwise release the last reference to * the slave's vnode. If it does, then specfs will panic because it will expect * that the STREAMS configuration for the vnode was destroyed, which VN_RELE * doesn't do. Forcing zoneadmd to hold the slave open guarantees that zcons * won't release the vnode's last reference. zoneadmd will properly destroy the * vnode and the snode when it closes the file descriptor. * * Technically, any process that can access the master side can issue these * ioctls, but they should be treated as private interfaces for zoneadmd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int zc_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **); static int zc_attach(dev_info_t *, ddi_attach_cmd_t); static int zc_detach(dev_info_t *, ddi_detach_cmd_t); static int zc_open(queue_t *, dev_t *, int, int, cred_t *); static int zc_close(queue_t *, int, cred_t *); static void zc_wput(queue_t *, mblk_t *); static void zc_rsrv(queue_t *); static void zc_wsrv(queue_t *); /* * The instance number is encoded in the dev_t in the minor number; the lowest * bit of the minor number is used to track the master vs. slave side of the * virtual console. The rest of the bits in the minor number are the instance. */ #define ZC_MASTER_MINOR 0 #define ZC_SLAVE_MINOR 1 #define ZC_INSTANCE(x) (getminor((x)) >> 1) #define ZC_NODE(x) (getminor((x)) & 0x01) /* * This macro converts a zc_state_t pointer to the associated slave minor node's * dev_t. */ #define ZC_STATE_TO_SLAVEDEV(x) (makedevice(ddi_driver_major((x)->zc_devinfo), \ (minor_t)(ddi_get_instance((x)->zc_devinfo) << 1 | ZC_SLAVE_MINOR))) int zcons_debug = 0; #define DBG(a) if (zcons_debug) cmn_err(CE_NOTE, a) #define DBG1(a, b) if (zcons_debug) cmn_err(CE_NOTE, a, b) /* * Zone Console Pseudo Terminal Module: stream data structure definitions */ static struct module_info zc_info = { 31337, /* c0z we r hAx0rs */ "zcons", 0, INFPSZ, 2048, 128 }; static struct qinit zc_rinit = { NULL, (int (*)()) zc_rsrv, zc_open, zc_close, NULL, &zc_info, NULL }; static struct qinit zc_winit = { (int (*)()) zc_wput, (int (*)()) zc_wsrv, NULL, NULL, NULL, &zc_info, NULL }; static struct streamtab zc_tab_info = { &zc_rinit, &zc_winit, NULL, NULL }; #define ZC_CONF_FLAG (D_MP | D_MTQPAIR | D_MTOUTPERIM | D_MTOCEXCL) /* * this will define (struct cb_ops cb_zc_ops) and (struct dev_ops zc_ops) */ DDI_DEFINE_STREAM_OPS(zc_ops, nulldev, nulldev, zc_attach, zc_detach, nodev, \ zc_getinfo, ZC_CONF_FLAG, &zc_tab_info, ddi_quiesce_not_needed); /* * Module linkage information for the kernel. */ static struct modldrv modldrv = { &mod_driverops, /* Type of module (this is a pseudo driver) */ "Zone console driver", /* description of module */ &zc_ops /* driver ops */ }; static struct modlinkage modlinkage = { MODREV_1, &modldrv, NULL }; typedef struct zc_state { dev_info_t *zc_devinfo; queue_t *zc_master_rdq; queue_t *zc_slave_rdq; vnode_t *zc_slave_vnode; int zc_state; } zc_state_t; #define ZC_STATE_MOPEN 0x01 #define ZC_STATE_SOPEN 0x02 static void *zc_soft_state; /* * List of STREAMS modules that should be pushed onto every slave instance. */ static char *zcons_mods[] = { "ptem", "ldterm", "ttcompat", NULL }; int _init(void) { int err; if ((err = ddi_soft_state_init(&zc_soft_state, sizeof (zc_state_t), 0)) != 0) { return (err); } if ((err = mod_install(&modlinkage)) != 0) ddi_soft_state_fini(zc_soft_state); return (err); } int _fini(void) { int err; if ((err = mod_remove(&modlinkage)) != 0) { return (err); } ddi_soft_state_fini(&zc_soft_state); return (0); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* * This is a convenience function that clears a device's autopush configuration. * It is meant to be used on the slave side of the console. Unlike calling * kstr_autopush() directly, this function outputs a warning via cmn_err() if * kstr_autopush() fails. 'dip' must be non-NULL in debug builds. Both * 'major' and 'minor' must be valid. */ static void zc_clearautopush(dev_info_t *dip, major_t major, minor_t minor) { char *devicepathp; if (kstr_autopush(CLR_AUTOPUSH, &major, &minor, NULL, NULL, NULL) != 0 && zcons_debug != 0) { devicepathp = (char *)kmem_alloc(MAXPATHLEN * sizeof (char), KM_SLEEP); (void) ddi_pathname(dip, devicepathp); cmn_err(CE_NOTE, "zc_detach: could not clear sad configuration " "for device %s\n", devicepathp); kmem_free(devicepathp, MAXPATHLEN * sizeof (char)); } } static int zc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { zc_state_t *zcs; int instance; major_t major; minor_t minor; minor_t lastminor; uint_t anchorindex; if (cmd != DDI_ATTACH) return (DDI_FAILURE); instance = ddi_get_instance(dip); if (ddi_soft_state_zalloc(zc_soft_state, instance) != DDI_SUCCESS) return (DDI_FAILURE); /* * Set up sad(7D) so that the necessary STREAMS modules will be in place * when the slave is opened. A wrinkle is that 'ptem' must be anchored * in place (see streamio(7i)) because we always want the console to * have terminal semantics. */ minor = instance << 1 | ZC_SLAVE_MINOR; lastminor = 0; major = ddi_driver_major(dip); anchorindex = 1; if (kstr_autopush(SET_AUTOPUSH, &major, &minor, &lastminor, &anchorindex, zcons_mods) != 0) goto commonfail; /* * Create the master and slave minor nodes. */ if ((ddi_create_minor_node(dip, ZCONS_SLAVE_NAME, S_IFCHR, minor, DDI_PSEUDO, 0) == DDI_FAILURE) || (ddi_create_minor_node(dip, ZCONS_MASTER_NAME, S_IFCHR, instance << 1 | ZC_MASTER_MINOR, DDI_PSEUDO, 0) == DDI_FAILURE)) goto failwithautopush; VERIFY((zcs = ddi_get_soft_state(zc_soft_state, instance)) != NULL); zcs->zc_devinfo = dip; return (DDI_SUCCESS); failwithautopush: zc_clearautopush(dip, major, minor); ddi_remove_minor_node(dip, NULL); commonfail: ddi_soft_state_free(zc_soft_state, instance); return (DDI_FAILURE); } static int zc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { zc_state_t *zcs; int instance; if (cmd != DDI_DETACH) return (DDI_FAILURE); instance = ddi_get_instance(dip); if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL) return (DDI_FAILURE); if ((zcs->zc_state & ZC_STATE_MOPEN) || (zcs->zc_state & ZC_STATE_SOPEN)) { DBG1("zc_detach: device (dip=%p) still open\n", (void *)dip); return (DDI_FAILURE); } /* * Clear the sad configuration so that reattaching doesn't fail to * set up sad configuration. */ zc_clearautopush(dip, ddi_driver_major(dip), instance << 1 | ZC_SLAVE_MINOR); ddi_remove_minor_node(dip, NULL); ddi_soft_state_free(zc_soft_state, instance); return (DDI_SUCCESS); } /* * zc_getinfo() * getinfo(9e) entrypoint. */ /*ARGSUSED*/ static int zc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { zc_state_t *zcs; int instance = ZC_INSTANCE((dev_t)arg); switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL) return (DDI_FAILURE); *result = zcs->zc_devinfo; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = (void *)(uintptr_t)instance; return (DDI_SUCCESS); } return (DDI_FAILURE); } /* * Return the equivalent queue from the other side of the relationship. * e.g.: given the slave's write queue, return the master's write queue. */ static queue_t * zc_switch(queue_t *qp) { zc_state_t *zcs = qp->q_ptr; ASSERT(zcs != NULL); if (qp == zcs->zc_master_rdq) return (zcs->zc_slave_rdq); else if (OTHERQ(qp) == zcs->zc_master_rdq && zcs->zc_slave_rdq != NULL) return (OTHERQ(zcs->zc_slave_rdq)); else if (qp == zcs->zc_slave_rdq) return (zcs->zc_master_rdq); else if (OTHERQ(qp) == zcs->zc_slave_rdq && zcs->zc_master_rdq != NULL) return (OTHERQ(zcs->zc_master_rdq)); else return (NULL); } /* * For debugging and outputting messages. Returns the name of the side of * the relationship associated with this queue. */ static const char * zc_side(queue_t *qp) { zc_state_t *zcs = qp->q_ptr; ASSERT(zcs != NULL); if (qp == zcs->zc_master_rdq || OTHERQ(qp) == zcs->zc_master_rdq) { return ("master"); } ASSERT(qp == zcs->zc_slave_rdq || OTHERQ(qp) == zcs->zc_slave_rdq); return ("slave"); } /*ARGSUSED*/ static int zc_master_open(zc_state_t *zcs, queue_t *rqp, /* pointer to the read side queue */ dev_t *devp, /* pointer to stream tail's dev */ int oflag, /* the user open(2) supplied flags */ int sflag, /* open state flag */ cred_t *credp) /* credentials */ { mblk_t *mop; struct stroptions *sop; /* * Enforce exclusivity on the master side; the only consumer should * be the zoneadmd for the zone. */ if ((zcs->zc_state & ZC_STATE_MOPEN) != 0) return (EBUSY); if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) { DBG("zc_master_open(): mop allocation failed\n"); return (ENOMEM); } zcs->zc_state |= ZC_STATE_MOPEN; /* * q_ptr stores driver private data; stash the soft state data on both * read and write sides of the queue. */ WR(rqp)->q_ptr = rqp->q_ptr = zcs; qprocson(rqp); /* * Following qprocson(), the master side is fully plumbed into the * STREAM and may send/receive messages. Setting zcs->zc_master_rdq * will allow the slave to send messages to us (the master). * This cannot occur before qprocson() because the master is not * ready to process them until that point. */ zcs->zc_master_rdq = rqp; /* * set up hi/lo water marks on stream head read queue and add * controlling tty as needed. */ mop->b_datap->db_type = M_SETOPTS; mop->b_wptr += sizeof (struct stroptions); sop = (struct stroptions *)(void *)mop->b_rptr; if (oflag & FNOCTTY) sop->so_flags = SO_HIWAT | SO_LOWAT; else sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY; sop->so_hiwat = 512; sop->so_lowat = 256; putnext(rqp, mop); return (0); } /*ARGSUSED*/ static int zc_slave_open(zc_state_t *zcs, queue_t *rqp, /* pointer to the read side queue */ dev_t *devp, /* pointer to stream tail's dev */ int oflag, /* the user open(2) supplied flags */ int sflag, /* open state flag */ cred_t *credp) /* credentials */ { mblk_t *mop; struct stroptions *sop; /* * The slave side can be opened as many times as needed. */ if ((zcs->zc_state & ZC_STATE_SOPEN) != 0) { ASSERT((rqp != NULL) && (WR(rqp)->q_ptr == zcs)); return (0); } if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) { DBG("zc_slave_open(): mop allocation failed\n"); return (ENOMEM); } zcs->zc_state |= ZC_STATE_SOPEN; /* * q_ptr stores driver private data; stash the soft state data on both * read and write sides of the queue. */ WR(rqp)->q_ptr = rqp->q_ptr = zcs; qprocson(rqp); /* * Must follow qprocson(), since we aren't ready to process until then. */ zcs->zc_slave_rdq = rqp; /* * set up hi/lo water marks on stream head read queue and add * controlling tty as needed. */ mop->b_datap->db_type = M_SETOPTS; mop->b_wptr += sizeof (struct stroptions); sop = (struct stroptions *)(void *)mop->b_rptr; sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY; sop->so_hiwat = 512; sop->so_lowat = 256; putnext(rqp, mop); return (0); } /* * open(9e) entrypoint; checks sflag, and rejects anything unordinary. */ static int zc_open(queue_t *rqp, /* pointer to the read side queue */ dev_t *devp, /* pointer to stream tail's dev */ int oflag, /* the user open(2) supplied flags */ int sflag, /* open state flag */ cred_t *credp) /* credentials */ { int instance = ZC_INSTANCE(*devp); int ret; zc_state_t *zcs; if (sflag != 0) return (EINVAL); if ((zcs = ddi_get_soft_state(zc_soft_state, instance)) == NULL) return (ENXIO); switch (ZC_NODE(*devp)) { case ZC_MASTER_MINOR: ret = zc_master_open(zcs, rqp, devp, oflag, sflag, credp); break; case ZC_SLAVE_MINOR: ret = zc_slave_open(zcs, rqp, devp, oflag, sflag, credp); break; default: ret = ENXIO; break; } return (ret); } /* * close(9e) entrypoint. */ /*ARGSUSED1*/ static int zc_close(queue_t *rqp, int flag, cred_t *credp) { queue_t *wqp; mblk_t *bp; zc_state_t *zcs; zcs = (zc_state_t *)rqp->q_ptr; if (rqp == zcs->zc_master_rdq) { DBG("Closing master side"); zcs->zc_master_rdq = NULL; zcs->zc_state &= ~ZC_STATE_MOPEN; /* * qenable slave side write queue so that it can flush * its messages as master's read queue is going away */ if (zcs->zc_slave_rdq != NULL) { qenable(WR(zcs->zc_slave_rdq)); } qprocsoff(rqp); WR(rqp)->q_ptr = rqp->q_ptr = NULL; } else if (rqp == zcs->zc_slave_rdq) { DBG("Closing slave side"); zcs->zc_state &= ~ZC_STATE_SOPEN; zcs->zc_slave_rdq = NULL; wqp = WR(rqp); while ((bp = getq(wqp)) != NULL) { if (zcs->zc_master_rdq != NULL) putnext(zcs->zc_master_rdq, bp); else if (bp->b_datap->db_type == M_IOCTL) miocnak(wqp, bp, 0, 0); else freemsg(bp); } /* * Qenable master side write queue so that it can flush its * messages as slaves's read queue is going away. */ if (zcs->zc_master_rdq != NULL) qenable(WR(zcs->zc_master_rdq)); qprocsoff(rqp); WR(rqp)->q_ptr = rqp->q_ptr = NULL; } return (0); } static void handle_mflush(queue_t *qp, mblk_t *mp) { mblk_t *nmp; DBG1("M_FLUSH on %s side", zc_side(qp)); if (*mp->b_rptr & FLUSHW) { DBG1("M_FLUSH, FLUSHW, %s side", zc_side(qp)); flushq(qp, FLUSHDATA); *mp->b_rptr &= ~FLUSHW; if ((*mp->b_rptr & FLUSHR) == 0) { /* * FLUSHW only. Change to FLUSHR and putnext other side, * then we are done. */ *mp->b_rptr |= FLUSHR; if (zc_switch(RD(qp)) != NULL) { putnext(zc_switch(RD(qp)), mp); return; } } else if ((zc_switch(RD(qp)) != NULL) && (nmp = copyb(mp)) != NULL) { /* * It is a FLUSHRW; we copy the mblk and send * it to the other side, since we still need to use * the mblk in FLUSHR processing, below. */ putnext(zc_switch(RD(qp)), nmp); } } if (*mp->b_rptr & FLUSHR) { DBG("qreply(qp) turning FLUSHR around\n"); qreply(qp, mp); return; } freemsg(mp); } /* * wput(9E) is symmetric for master and slave sides, so this handles both * without splitting the codepath. (The only exception to this is the * processing of zcons ioctls, which is restricted to the master side.) * * zc_wput() looks at the other side; if there is no process holding that * side open, it frees the message. This prevents processes from hanging * if no one is holding open the console. Otherwise, it putnext's high * priority messages, putnext's normal messages if possible, and otherwise * enqueues the messages; in the case that something is enqueued, wsrv(9E) * will take care of eventually shuttling I/O to the other side. */ static void zc_wput(queue_t *qp, mblk_t *mp) { unsigned char type = mp->b_datap->db_type; zc_state_t *zcs; struct iocblk *iocbp; file_t *slave_filep; struct snode *slave_snodep; int slave_fd; ASSERT(qp->q_ptr); DBG1("entering zc_wput, %s side", zc_side(qp)); /* * Process zcons ioctl messages if qp is the master console's write * queue. */ zcs = (zc_state_t *)qp->q_ptr; if (zcs->zc_master_rdq != NULL && qp == WR(zcs->zc_master_rdq) && type == M_IOCTL) { iocbp = (struct iocblk *)(void *)mp->b_rptr; switch (iocbp->ioc_cmd) { case ZC_HOLDSLAVE: /* * Hold the slave's vnode and increment the refcount * of the snode. If the vnode is already held, then * indicate success. */ if (iocbp->ioc_count != TRANSPARENT) { miocack(qp, mp, 0, EINVAL); return; } if (zcs->zc_slave_vnode != NULL) { miocack(qp, mp, 0, 0); return; } /* * The calling process must pass a file descriptor for * the slave device. */ slave_fd = (int)(intptr_t)*(caddr_t *)(void *)mp->b_cont-> b_rptr; slave_filep = getf(slave_fd); if (slave_filep == NULL) { miocack(qp, mp, 0, EINVAL); return; } if (ZC_STATE_TO_SLAVEDEV(zcs) != slave_filep->f_vnode->v_rdev) { releasef(slave_fd); miocack(qp, mp, 0, EINVAL); return; } /* * Get a reference to the slave's vnode. Also bump the * reference count on the associated snode. */ ASSERT(vn_matchops(slave_filep->f_vnode, spec_getvnodeops())); zcs->zc_slave_vnode = slave_filep->f_vnode; VN_HOLD(zcs->zc_slave_vnode); slave_snodep = VTOCS(zcs->zc_slave_vnode); mutex_enter(&slave_snodep->s_lock); ++slave_snodep->s_count; mutex_exit(&slave_snodep->s_lock); releasef(slave_fd); miocack(qp, mp, 0, 0); return; case ZC_RELEASESLAVE: /* * Release the master's handle on the slave's vnode. * If there isn't a handle for the vnode, then indicate * success. */ if (iocbp->ioc_count != TRANSPARENT) { miocack(qp, mp, 0, EINVAL); return; } if (zcs->zc_slave_vnode == NULL) { miocack(qp, mp, 0, 0); return; } /* * The process that passed the ioctl must have provided * a file descriptor for the slave device. Make sure * this is correct. */ slave_fd = (int)(intptr_t)*(caddr_t *)(void *)mp->b_cont-> b_rptr; slave_filep = getf(slave_fd); if (slave_filep == NULL) { miocack(qp, mp, 0, EINVAL); return; } if (zcs->zc_slave_vnode->v_rdev != slave_filep->f_vnode->v_rdev) { releasef(slave_fd); miocack(qp, mp, 0, EINVAL); return; } /* * Decrement the snode's reference count and release the * vnode. */ ASSERT(vn_matchops(slave_filep->f_vnode, spec_getvnodeops())); slave_snodep = VTOCS(zcs->zc_slave_vnode); mutex_enter(&slave_snodep->s_lock); --slave_snodep->s_count; mutex_exit(&slave_snodep->s_lock); VN_RELE(zcs->zc_slave_vnode); zcs->zc_slave_vnode = NULL; releasef(slave_fd); miocack(qp, mp, 0, 0); return; default: break; } } if (zc_switch(RD(qp)) == NULL) { DBG1("wput to %s side (no one listening)", zc_side(qp)); switch (type) { case M_FLUSH: handle_mflush(qp, mp); break; case M_IOCTL: miocnak(qp, mp, 0, 0); break; default: freemsg(mp); break; } return; } if (type >= QPCTL) { DBG1("(hipri) wput, %s side", zc_side(qp)); switch (type) { case M_READ: /* supposedly from ldterm? */ DBG("zc_wput: tossing M_READ\n"); freemsg(mp); break; case M_FLUSH: handle_mflush(qp, mp); break; default: /* * Put this to the other side. */ ASSERT(zc_switch(RD(qp)) != NULL); putnext(zc_switch(RD(qp)), mp); break; } DBG1("done (hipri) wput, %s side", zc_side(qp)); return; } /* * Only putnext if there isn't already something in the queue. * otherwise things would wind up out of order. */ if (qp->q_first == NULL && bcanputnext(RD(zc_switch(qp)), mp->b_band)) { DBG("wput: putting message to other side\n"); putnext(RD(zc_switch(qp)), mp); } else { DBG("wput: putting msg onto queue\n"); (void) putq(qp, mp); } DBG1("done wput, %s side", zc_side(qp)); } /* * rsrv(9E) is symmetric for master and slave, so zc_rsrv() handles both * without splitting up the codepath. * * Enable the write side of the partner. This triggers the partner to send * messages queued on its write side to this queue's read side. */ static void zc_rsrv(queue_t *qp) { zc_state_t *zcs; zcs = (zc_state_t *)qp->q_ptr; /* * Care must be taken here, as either of the master or slave side * qptr could be NULL. */ ASSERT(qp == zcs->zc_master_rdq || qp == zcs->zc_slave_rdq); if (zc_switch(qp) == NULL) { DBG("zc_rsrv: other side isn't listening\n"); return; } qenable(WR(zc_switch(qp))); } /* * This routine is symmetric for master and slave, so it handles both without * splitting up the codepath. * * If there are messages on this queue that can be sent to the other, send * them via putnext(). Else, if queued messages cannot be sent, leave them * on this queue. */ static void zc_wsrv(queue_t *qp) { mblk_t *mp; DBG1("zc_wsrv master (%s) side", zc_side(qp)); /* * Partner has no read queue, so take the data, and throw it away. */ if (zc_switch(RD(qp)) == NULL) { DBG("zc_wsrv: other side isn't listening"); while ((mp = getq(qp)) != NULL) { if (mp->b_datap->db_type == M_IOCTL) miocnak(qp, mp, 0, 0); else freemsg(mp); } flushq(qp, FLUSHALL); return; } /* * while there are messages on this write queue... */ while ((mp = getq(qp)) != NULL) { /* * Due to the way zc_wput is implemented, we should never * see a control message here. */ ASSERT(mp->b_datap->db_type < QPCTL); if (bcanputnext(RD(zc_switch(qp)), mp->b_band)) { DBG("wsrv: send message to other side\n"); putnext(RD(zc_switch(qp)), mp); } else { DBG("wsrv: putting msg back on queue\n"); (void) putbq(qp, mp); break; } } }