/* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2005-2007 Damien Bergamini * Copyright (c) 2006 Niall O'Higgins * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Ralink Technology RT2501USB/RT2601USB chipset driver * http://www.ralinktech.com.tw/ */ #include #include #include #include #include #include #include #include #define USBDRV_MAJOR_VER 2 #define USBDRV_MINOR_VER 0 #include #include #include "rum_reg.h" #include "rum_var.h" #include "rt2573_ucode.h" static void *rum_soft_state_p = NULL; #define RAL_TXBUF_SIZE (IEEE80211_MAX_LEN) #define RAL_RXBUF_SIZE (IEEE80211_MAX_LEN) /* quickly determine if a given rate is CCK or OFDM */ #define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */ #define RUM_N(a) (sizeof (a) / sizeof ((a)[0])) /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset rum_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset rum_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset rum_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct { uint32_t reg; uint32_t val; } rum_def_mac[] = { { RT2573_TXRX_CSR0, 0x025fb032 }, { RT2573_TXRX_CSR1, 0x9eaa9eaf }, { RT2573_TXRX_CSR2, 0x8a8b8c8d }, { RT2573_TXRX_CSR3, 0x00858687 }, { RT2573_TXRX_CSR7, 0x2e31353b }, { RT2573_TXRX_CSR8, 0x2a2a2a2c }, { RT2573_TXRX_CSR15, 0x0000000f }, { RT2573_MAC_CSR6, 0x00000fff }, { RT2573_MAC_CSR8, 0x016c030a }, { RT2573_MAC_CSR10, 0x00000718 }, { RT2573_MAC_CSR12, 0x00000004 }, { RT2573_MAC_CSR13, 0x00007f00 }, { RT2573_SEC_CSR0, 0x00000000 }, { RT2573_SEC_CSR1, 0x00000000 }, { RT2573_SEC_CSR5, 0x00000000 }, { RT2573_PHY_CSR1, 0x000023b0 }, { RT2573_PHY_CSR5, 0x00040a06 }, { RT2573_PHY_CSR6, 0x00080606 }, { RT2573_PHY_CSR7, 0x00000408 }, { RT2573_AIFSN_CSR, 0x00002273 }, { RT2573_CWMIN_CSR, 0x00002344 }, { RT2573_CWMAX_CSR, 0x000034aa } }; static const struct { uint8_t reg; uint8_t val; } rum_def_bbp[] = { { 3, 0x80 }, { 15, 0x30 }, { 17, 0x20 }, { 21, 0xc8 }, { 22, 0x38 }, { 23, 0x06 }, { 24, 0xfe }, { 25, 0x0a }, { 26, 0x0d }, { 32, 0x0b }, { 34, 0x12 }, { 37, 0x07 }, { 39, 0xf8 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 60, 0x10 }, { 61, 0x04 }, { 62, 0x04 }, { 75, 0xfe }, { 86, 0xfe }, { 88, 0xfe }, { 90, 0x0f }, { 99, 0x00 }, { 102, 0x16 }, { 107, 0x04 } }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rum_rf5226[] = { { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } }, rum_rf5225[] = { { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } }; /* * device operations */ static int rum_attach(dev_info_t *, ddi_attach_cmd_t); static int rum_detach(dev_info_t *, ddi_detach_cmd_t); /* * Module Loading Data & Entry Points */ DDI_DEFINE_STREAM_OPS(rum_dev_ops, nulldev, nulldev, rum_attach, rum_detach, nodev, NULL, D_MP, NULL, ddi_quiesce_not_needed); static struct modldrv rum_modldrv = { &mod_driverops, /* Type of module. This one is a driver */ "rum driver v1.2", /* short description */ &rum_dev_ops /* driver specific ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&rum_modldrv, NULL }; static int rum_m_stat(void *, uint_t, uint64_t *); static int rum_m_start(void *); static void rum_m_stop(void *); static int rum_m_promisc(void *, boolean_t); static int rum_m_multicst(void *, boolean_t, const uint8_t *); static int rum_m_unicst(void *, const uint8_t *); static mblk_t *rum_m_tx(void *, mblk_t *); static void rum_m_ioctl(void *, queue_t *, mblk_t *); static int rum_m_setprop(void *, const char *, mac_prop_id_t, uint_t, const void *); static int rum_m_getprop(void *, const char *, mac_prop_id_t, uint_t, uint_t, void *, uint_t *); static mac_callbacks_t rum_m_callbacks = { MC_IOCTL | MC_SETPROP | MC_GETPROP, rum_m_stat, rum_m_start, rum_m_stop, rum_m_promisc, rum_m_multicst, rum_m_unicst, rum_m_tx, rum_m_ioctl, NULL, /* mc_getcapab */ NULL, NULL, rum_m_setprop, rum_m_getprop }; static void rum_amrr_start(struct rum_softc *, struct ieee80211_node *); static int rum_tx_trigger(struct rum_softc *, mblk_t *); static int rum_rx_trigger(struct rum_softc *); uint32_t rum_dbg_flags = 0; void ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...) { va_list args; if (dbg_flags & rum_dbg_flags) { va_start(args, fmt); vcmn_err(CE_CONT, fmt, args); va_end(args); } } static void rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) { usb_ctrl_setup_t req; usb_cr_t cr; usb_cb_flags_t cf; mblk_t *mp; int err; bzero(&req, sizeof (req)); req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST; req.bRequest = RT2573_READ_MULTI_MAC; req.wValue = 0; req.wIndex = reg; req.wLength = (uint16_t)len; req.attrs = USB_ATTRS_AUTOCLEARING; mp = NULL; err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp, &cr, &cf, 0); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_read_multi(): could not read MAC register:" "cr:%s(%d), cf:(%x)\n", usb_str_cr(cr), cr, cf); return; } bcopy(mp->b_rptr, buf, len); freemsg(mp); } static uint32_t rum_read(struct rum_softc *sc, uint16_t reg) { uint32_t val; rum_read_multi(sc, reg, &val, sizeof (val)); return (LE_32(val)); } static void rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) { usb_ctrl_setup_t req; usb_cr_t cr; usb_cb_flags_t cf; mblk_t *mp; int err; bzero(&req, sizeof (req)); req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV; req.bRequest = RT2573_WRITE_MULTI_MAC; req.wValue = 0; req.wIndex = reg; req.wLength = (uint16_t)len; req.attrs = USB_ATTRS_NONE; if ((mp = allocb(len, BPRI_HI)) == NULL) { ral_debug(RAL_DBG_ERR, "rum_write_multi(): failed alloc mblk."); return; } bcopy(buf, mp->b_wptr, len); mp->b_wptr += len; err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp, &cr, &cf, 0); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_USB, "rum_write_multi(): could not write MAC register:" "cr:%s(%d), cf:(%x)\n", usb_str_cr(cr), cr, cf); } freemsg(mp); } static void rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) { uint32_t tmp = LE_32(val); rum_write_multi(sc, reg, &tmp, sizeof (tmp)); } #define UGETDW(w) ((w)[0] | ((w)[1] << 8) | ((w)[2] << 16) | ((w)[3] << 24)) static int rum_load_microcode(struct rum_softc *sc) { usb_ctrl_setup_t req; usb_cr_t cr; usb_cb_flags_t cf; int err; const uint8_t *ucode; int size; uint16_t reg = RT2573_MCU_CODE_BASE; ucode = rt2573_ucode; size = sizeof (rt2573_ucode); /* copy firmware image into NIC */ for (; size >= 4; reg += 4, ucode += 4, size -= 4) { rum_write(sc, reg, UGETDW(ucode)); /* rum_write(sc, reg, *(uint32_t *)(ucode)); */ } bzero(&req, sizeof (req)); req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_HOST_TO_DEV; req.bRequest = RT2573_MCU_CNTL; req.wValue = RT2573_MCU_RUN; req.wIndex = 0; req.wLength = 0; req.attrs = USB_ATTRS_NONE; err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, NULL, &cr, &cf, 0); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_load_microcode(): could not run firmware: " "cr:%s(%d), cf:(%x)\n", usb_str_cr(cr), cr, cf); } ral_debug(RAL_DBG_MSG, "rum_load_microcode(%d): done\n", sizeof (rt2573_ucode)); return (err); } static void rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) { usb_ctrl_setup_t req; usb_cr_t cr; usb_cb_flags_t cf; mblk_t *mp; int err; bzero(&req, sizeof (req)); req.bmRequestType = USB_DEV_REQ_TYPE_VENDOR | USB_DEV_REQ_DEV_TO_HOST; req.bRequest = RT2573_READ_EEPROM; req.wValue = 0; req.wIndex = addr; req.wLength = (uint16_t)len; mp = NULL; err = usb_pipe_ctrl_xfer_wait(sc->sc_udev->dev_default_ph, &req, &mp, &cr, &cf, 0); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_USB, "rum_eeprom_read(): could not read EEPROM:" "cr:%s(%d), cf:(%x)\n", usb_str_cr(cr), cr, cf); return; } bcopy(mp->b_rptr, buf, len); freemsg(mp); } /* ARGSUSED */ static void rum_txeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req) { struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private; struct ieee80211com *ic = &sc->sc_ic; ral_debug(RAL_DBG_TX, "rum_txeof(): cr:%s(%d), flags:0x%x, tx_queued:%d", usb_str_cr(req->bulk_completion_reason), req->bulk_completion_reason, req->bulk_cb_flags, sc->tx_queued); if (req->bulk_completion_reason != USB_CR_OK) sc->sc_tx_err++; mutex_enter(&sc->tx_lock); sc->tx_queued--; sc->sc_tx_timer = 0; if (sc->sc_need_sched) { sc->sc_need_sched = 0; mac_tx_update(ic->ic_mach); } mutex_exit(&sc->tx_lock); usb_free_bulk_req(req); } /* ARGSUSED */ static void rum_rxeof(usb_pipe_handle_t pipe, usb_bulk_req_t *req) { struct rum_softc *sc = (struct rum_softc *)req->bulk_client_private; struct ieee80211com *ic = &sc->sc_ic; struct rum_rx_desc *desc; struct ieee80211_frame *wh; struct ieee80211_node *ni; mblk_t *m, *mp; int len, pktlen; char *rxbuf; mp = req->bulk_data; req->bulk_data = NULL; ral_debug(RAL_DBG_RX, "rum_rxeof(): cr:%s(%d), flags:0x%x, rx_queued:%d", usb_str_cr(req->bulk_completion_reason), req->bulk_completion_reason, req->bulk_cb_flags, sc->rx_queued); if (req->bulk_completion_reason != USB_CR_OK) { sc->sc_rx_err++; goto fail; } len = msgdsize(mp); rxbuf = (char *)mp->b_rptr; if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) { ral_debug(RAL_DBG_ERR, "rum_rxeof(): xfer too short %d\n", len); sc->sc_rx_err++; goto fail; } /* rx descriptor is located at the head, different from RT2500USB */ desc = (struct rum_rx_desc *)rxbuf; if (LE_32(desc->flags) & RT2573_RX_CRC_ERROR) { /* * This should not happen since we did not request to receive * those frames when we filled RT2573_TXRX_CSR0. */ ral_debug(RAL_DBG_ERR, "CRC error\n"); sc->sc_rx_err++; goto fail; } pktlen = (LE_32(desc->flags) >> 16) & 0xfff; if (pktlen > (len - RT2573_RX_DESC_SIZE)) { ral_debug(RAL_DBG_ERR, "rum_rxeof(): pktlen mismatch <%d, %d>.\n", pktlen, len); goto fail; } if ((m = allocb(pktlen, BPRI_MED)) == NULL) { ral_debug(RAL_DBG_ERR, "rum_rxeof(): allocate mblk failed.\n"); sc->sc_rx_nobuf++; goto fail; } bcopy(rxbuf + RT2573_RX_DESC_SIZE, m->b_rptr, pktlen); m->b_wptr += pktlen; wh = (struct ieee80211_frame *)m->b_rptr; ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ (void) ieee80211_input(ic, m, ni, desc->rssi, 0); /* node is no longer needed */ ieee80211_free_node(ni); fail: mutex_enter(&sc->rx_lock); sc->rx_queued--; mutex_exit(&sc->rx_lock); freemsg(mp); usb_free_bulk_req(req); if (RAL_IS_RUNNING(sc)) (void) rum_rx_trigger(sc); } /* * Return the expected ack rate for a frame transmitted at rate `rate'. */ static int rum_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return (2); case 4: case 11: case 22: return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate); /* OFDM rates */ case 12: case 18: return (12); case 24: case 36: return (24); case 48: case 72: case 96: case 108: return (48); } /* default to 1Mbps */ return (2); } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ static uint16_t rum_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RUM_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11a-1999, pp. 37 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return (txtime); } static uint8_t rum_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return (0x0); case 4: return (0x1); case 11: return (0x2); case 22: return (0x3); /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return (0xb); case 18: return (0xf); case 24: return (0xa); case 36: return (0xe); case 48: return (0x9); case 72: return (0xd); case 96: return (0x8); case 108: return (0xc); /* unsupported rates (should not get there) */ default: return (0xff); } } static void rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, uint32_t flags, uint16_t xflags, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = LE_32(flags); desc->flags |= LE_32(RT2573_TX_VALID); desc->flags |= LE_32(len << 16); desc->xflags = LE_16(xflags); desc->wme = LE_16(RT2573_QID(0) | RT2573_AIFSN(2) | RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10)); /* setup PLCP fields */ desc->plcp_signal = rum_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RUM_RATE_IS_OFDM(rate)) { desc->flags |= LE_32(RT2573_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2573_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } } #define RUM_TX_TIMEOUT 5 static int rum_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type) { struct rum_softc *sc = (struct rum_softc *)ic; struct rum_tx_desc *desc; struct ieee80211_frame *wh; struct ieee80211_key *k; uint16_t dur; uint32_t flags = 0; int rate, err = DDI_SUCCESS, rv; struct ieee80211_node *ni = NULL; mblk_t *m, *m0; int off, mblen, pktlen, xferlen; /* discard packets while suspending or not inited */ if (!RAL_IS_RUNNING(sc)) { freemsg(mp); return (ENXIO); } mutex_enter(&sc->tx_lock); if (sc->tx_queued > RAL_TX_LIST_COUNT) { ral_debug(RAL_DBG_TX, "rum_send(): " "no TX buffer available!\n"); if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { sc->sc_need_sched = 1; } sc->sc_tx_nobuf++; err = ENOMEM; goto fail; } m = allocb(RAL_TXBUF_SIZE + RT2573_TX_DESC_SIZE, BPRI_MED); if (m == NULL) { ral_debug(RAL_DBG_ERR, "rum_send(): can't alloc mblk.\n"); err = DDI_FAILURE; goto fail; } m->b_rptr += RT2573_TX_DESC_SIZE; /* skip TX descriptor */ m->b_wptr += RT2573_TX_DESC_SIZE; for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) { mblen = (uintptr_t)m0->b_wptr - (uintptr_t)m0->b_rptr; (void) memcpy(m->b_rptr + off, m0->b_rptr, mblen); off += mblen; } m->b_wptr += off; wh = (struct ieee80211_frame *)m->b_rptr; ni = ieee80211_find_txnode(ic, wh->i_addr1); if (ni == NULL) { err = DDI_FAILURE; sc->sc_tx_err++; freemsg(m); goto fail; } if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { (void) ieee80211_encap(ic, m, ni); } if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, m); if (k == NULL) { sc->sc_tx_err++; err = DDI_FAILURE; freemsg(m); goto fail; } /* packet header may have moved, reset our local pointer */ wh = (struct ieee80211_frame *)m->b_rptr; } m->b_rptr -= RT2573_TX_DESC_SIZE; /* restore */ desc = (struct rum_tx_desc *)m->b_rptr; if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { /* DATA */ if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) rate = ic->ic_bss->in_rates.ir_rates[ic->ic_fixed_rate]; else rate = ni->in_rates.ir_rates[ni->in_txrate]; rate &= IEEE80211_RATE_VAL; if (rate <= 0) { rate = 2; /* basic rate */ } if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_NEED_ACK; flags |= RT2573_TX_MORE_FRAG; dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), ic->ic_flags) + sc->sifs; *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur); } } else { /* MGMT */ rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_NEED_ACK; dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate), ic->ic_flags) + sc->sifs; *(uint16_t *)(uintptr_t)wh->i_dur = LE_16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2573_TX_TIMESTAMP; } } pktlen = msgdsize(m) - RT2573_TX_DESC_SIZE; rum_setup_tx_desc(sc, desc, flags, 0, pktlen, rate); /* align end on a 4-bytes boundary */ xferlen = (RT2573_TX_DESC_SIZE + pktlen + 3) & ~3; /* * No space left in the last URB to store the extra 4 bytes, force * sending of another URB. */ if ((xferlen % 64) == 0) xferlen += 4; m->b_wptr = m->b_rptr + xferlen; ral_debug(RAL_DBG_TX, "sending data frame len=%u rate=%u xfer len=%u\n", pktlen, rate, xferlen); rv = rum_tx_trigger(sc, m); if (rv == 0) { ic->ic_stats.is_tx_frags++; ic->ic_stats.is_tx_bytes += pktlen; } fail: if (ni != NULL) ieee80211_free_node(ni); if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA || err == 0) { freemsg(mp); } mutex_exit(&sc->tx_lock); return (err); } static mblk_t * rum_m_tx(void *arg, mblk_t *mp) { struct rum_softc *sc = (struct rum_softc *)arg; struct ieee80211com *ic = &sc->sc_ic; mblk_t *next; /* * No data frames go out unless we're associated; this * should not happen as the 802.11 layer does not enable * the xmit queue until we enter the RUN state. */ if (ic->ic_state != IEEE80211_S_RUN) { ral_debug(RAL_DBG_ERR, "rum_m_tx(): " "discard, state %u\n", ic->ic_state); freemsgchain(mp); return (NULL); } while (mp != NULL) { next = mp->b_next; mp->b_next = NULL; if (rum_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != DDI_SUCCESS) { mp->b_next = next; freemsgchain(mp); return (NULL); } mp = next; } return (mp); } static void rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { ral_debug(RAL_DBG_ERR, "rum_bbp_write(): could not write to BBP\n"); return; } tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; rum_write(sc, RT2573_PHY_CSR3, tmp); } static uint8_t rum_bbp_read(struct rum_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; } if (ntries == 5) { ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n"); return (0); } val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; rum_write(sc, RT2573_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = rum_read(sc, RT2573_PHY_CSR3); if (!(val & RT2573_BBP_BUSY)) return (val & 0xff); drv_usecwait(1); } ral_debug(RAL_DBG_ERR, "rum_bbp_read(): could not read BBP\n"); return (0); } static void rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 5; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) break; } if (ntries == 5) { ral_debug(RAL_DBG_ERR, "rum_rf_write(): could not write to RF\n"); return; } tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | (reg & 3); rum_write(sc, RT2573_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; ral_debug(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); } static void rum_select_antenna(struct rum_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rum_bbp_read(sc, 4); bbp77 = rum_bbp_read(sc, 77); /* make sure Rx is disabled before switching antenna */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); rum_bbp_write(sc, 4, bbp4); rum_bbp_write(sc, 77, bbp77); rum_write(sc, RT2573_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rum_enable_mrr(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_MRR_CCK_FALLBACK; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) tmp |= RT2573_MRR_CCK_FALLBACK; tmp |= RT2573_MRR_ENABLED; rum_write(sc, RT2573_TXRX_CSR4, tmp); } static void rum_set_txpreamble(struct rum_softc *sc) { uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR4); tmp &= ~RT2573_SHORT_PREAMBLE; if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2573_SHORT_PREAMBLE; rum_write(sc, RT2573_TXRX_CSR4, tmp); } static void rum_set_basicrates(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->in_chan)) { /* 11a basic rates: 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x150); } else { /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0xf); } } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; uint32_t tmp; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } sc->bbp17 = bbp17; rum_bbp_write(sc, 17, bbp17); rum_bbp_write(sc, 96, bbp96); rum_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rum_bbp_write(sc, 75, 0x80); rum_bbp_write(sc, 86, 0x80); rum_bbp_write(sc, 88, 0x80); } rum_bbp_write(sc, 35, bbp35); rum_bbp_write(sc, 97, bbp97); rum_bbp_write(sc, 98, bbp98); tmp = rum_read(sc, RT2573_PHY_CSR0); tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ); if (IEEE80211_IS_CHAN_2GHZ(c)) tmp |= RT2573_PA_PE_2GHZ; else tmp |= RT2573_PA_PE_5GHZ; rum_write(sc, RT2573_PHY_CSR0, tmp); /* 802.11a uses a 16 microseconds short interframe space */ sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10; } static void rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; int8_t power; uint_t i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++) { } power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ich_flags != ic->ic_curchan->ich_flags) { rum_select_band(sc, c); rum_select_antenna(sc); } ic->ic_curchan = c; rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); drv_usecwait(10); /* enable smart mode for MIMO-capable RFs */ bbp3 = rum_bbp_read(sc, 3); bbp3 &= ~RT2573_SMART_MODE; if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) bbp3 |= RT2573_SMART_MODE; rum_bbp_write(sc, 3, bbp3); if (bbp94 != RT2573_BBPR94_DEFAULT) rum_bbp_write(sc, 94, bbp94); } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static void rum_enable_tsf_sync(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; if (ic->ic_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8); } tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= ic->ic_bss->in_intval * 16; tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2573_TSF_MODE(1); else tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON; rum_write(sc, RT2573_TXRX_CSR9, tmp); } /* ARGSUSED */ static void rum_update_slot(struct ieee80211com *ic, int onoff) { struct rum_softc *sc = (struct rum_softc *)ic; uint8_t slottime; uint32_t tmp; slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; tmp = rum_read(sc, RT2573_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; rum_write(sc, RT2573_MAC_CSR9, tmp); ral_debug(RAL_DBG_HW, "setting slot time to %uus\n", slottime); } static void rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; rum_write(sc, RT2573_MAC_CSR4, tmp); tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16; rum_write(sc, RT2573_MAC_CSR5, tmp); } static void rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; rum_write(sc, RT2573_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8 | 0xff << 16; rum_write(sc, RT2573_MAC_CSR3, tmp); ral_debug(RAL_DBG_HW, "setting MAC address to " MACSTR "\n", MAC2STR(addr)); } static void rum_update_promisc(struct rum_softc *sc) { uint32_t tmp; tmp = rum_read(sc, RT2573_TXRX_CSR0); tmp &= ~RT2573_DROP_NOT_TO_ME; if (!(sc->sc_rcr & RAL_RCR_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; rum_write(sc, RT2573_TXRX_CSR0, tmp); ral_debug(RAL_DBG_HW, "%s promiscuous mode\n", (sc->sc_rcr & RAL_RCR_PROMISC) ? "entering" : "leaving"); } static const char * rum_get_rf(int rev) { switch (rev) { case RT2573_RF_2527: return ("RT2527 (MIMO XR)"); case RT2573_RF_2528: return ("RT2528"); case RT2573_RF_5225: return ("RT5225 (MIMO XR)"); case RT2573_RF_5226: return ("RT5226"); default: return ("unknown"); } } static void rum_read_eeprom(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; /* read MAC address */ rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_macaddr, 6); rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); val = LE_16(val); sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; ral_debug(RAL_DBG_HW, "RF revision=%d\n", sc->rf_rev); rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); val = LE_16(val); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; ral_debug(RAL_DBG_HW, "External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna); rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); val = LE_16(val); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); val = LE_16(val); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ ral_debug(RAL_DBG_HW, "RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); val = LE_16(val); if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; ral_debug(RAL_DBG_HW, "RF freq=%d\n", sc->rffreq); /* read Tx power for all a/b/g channels */ rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); /* default Tx power for 802.11a channels */ (void) memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); /* read default values for BBP registers */ rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); } static int rum_bbp_init(struct rum_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { const uint8_t val = rum_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; drv_usecwait(1000); } if (ntries == 100) { ral_debug(RAL_DBG_ERR, "timeout waiting for BBP\n"); return (EIO); } /* initialize BBP registers to default values */ for (i = 0; i < RUM_N(rum_def_bbp); i++) rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return (0); } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ static void rum_next_scan(void *arg) { struct rum_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ic); } static int rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rum_softc *sc = (struct rum_softc *)ic; enum ieee80211_state ostate; struct ieee80211_node *ni; int err; uint32_t tmp; RAL_LOCK(sc); ostate = ic->ic_state; if (sc->sc_scan_id != 0) { (void) untimeout(sc->sc_scan_id); sc->sc_scan_id = 0; } if (sc->sc_amrr_id != 0) { (void) untimeout(sc->sc_amrr_id); sc->sc_amrr_id = 0; } switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ tmp = rum_read(sc, RT2573_TXRX_CSR9); rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff); } break; case IEEE80211_S_SCAN: rum_set_chan(sc, ic->ic_curchan); sc->sc_scan_id = timeout(rum_next_scan, (void *)sc, drv_usectohz(sc->dwelltime * 1000)); break; case IEEE80211_S_AUTH: rum_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_ASSOC: rum_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_RUN: rum_set_chan(sc, ic->ic_curchan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rum_update_slot(ic, 1); rum_enable_mrr(sc); rum_set_txpreamble(sc); rum_set_basicrates(sc); rum_set_bssid(sc, ni->in_bssid); } if (ic->ic_opmode != IEEE80211_M_MONITOR) rum_enable_tsf_sync(sc); /* enable automatic rate adaptation in STA mode */ if (ic->ic_opmode == IEEE80211_M_STA && ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) rum_amrr_start(sc, ni); break; } RAL_UNLOCK(sc); err = sc->sc_newstate(ic, nstate, arg); /* * Finally, start any timers. */ if (nstate == IEEE80211_S_RUN) ieee80211_start_watchdog(ic, 1); return (err); } static void rum_close_pipes(struct rum_softc *sc) { usb_flags_t flags = USB_FLAGS_SLEEP; if (sc->sc_rx_pipeh != NULL) { usb_pipe_reset(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0); usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, flags, NULL, 0); sc->sc_rx_pipeh = NULL; } if (sc->sc_tx_pipeh != NULL) { usb_pipe_reset(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0); usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, flags, NULL, 0); sc->sc_tx_pipeh = NULL; } } static int rum_open_pipes(struct rum_softc *sc) { usb_ep_data_t *ep_node; usb_pipe_policy_t policy; int err; ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0, USB_EP_ATTR_BULK, USB_EP_DIR_OUT); bzero(&policy, sizeof (usb_pipe_policy_t)); policy.pp_max_async_reqs = RAL_TX_LIST_COUNT; if ((err = usb_pipe_open(sc->sc_dev, &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP, &sc->sc_tx_pipeh)) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_open_pipes(): %x failed to open tx pipe\n", err); goto fail; } ep_node = usb_lookup_ep_data(sc->sc_dev, sc->sc_udev, 0, 0, 0, USB_EP_ATTR_BULK, USB_EP_DIR_IN); bzero(&policy, sizeof (usb_pipe_policy_t)); policy.pp_max_async_reqs = RAL_RX_LIST_COUNT + 32; if ((err = usb_pipe_open(sc->sc_dev, &ep_node->ep_descr, &policy, USB_FLAGS_SLEEP, &sc->sc_rx_pipeh)) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_open_pipes(): %x failed to open rx pipe\n", err); goto fail; } return (USB_SUCCESS); fail: if (sc->sc_rx_pipeh != NULL) { usb_pipe_close(sc->sc_dev, sc->sc_rx_pipeh, USB_FLAGS_SLEEP, NULL, 0); sc->sc_rx_pipeh = NULL; } if (sc->sc_tx_pipeh != NULL) { usb_pipe_close(sc->sc_dev, sc->sc_tx_pipeh, USB_FLAGS_SLEEP, NULL, 0); sc->sc_tx_pipeh = NULL; } return (USB_FAILURE); } static int rum_tx_trigger(struct rum_softc *sc, mblk_t *mp) { usb_bulk_req_t *req; int err; sc->sc_tx_timer = RUM_TX_TIMEOUT; req = usb_alloc_bulk_req(sc->sc_dev, 0, USB_FLAGS_SLEEP); if (req == NULL) { ral_debug(RAL_DBG_ERR, "rum_tx_trigger(): failed to allocate req"); freemsg(mp); return (-1); } req->bulk_len = msgdsize(mp); req->bulk_data = mp; req->bulk_client_private = (usb_opaque_t)sc; req->bulk_timeout = RUM_TX_TIMEOUT; req->bulk_attributes = USB_ATTRS_AUTOCLEARING; req->bulk_cb = rum_txeof; req->bulk_exc_cb = rum_txeof; req->bulk_completion_reason = 0; req->bulk_cb_flags = 0; if ((err = usb_pipe_bulk_xfer(sc->sc_tx_pipeh, req, 0)) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_tx_trigger(): " "failed to do tx xfer, %d", err); usb_free_bulk_req(req); return (-1); } sc->tx_queued++; return (0); } static int rum_rx_trigger(struct rum_softc *sc) { usb_bulk_req_t *req; int err; req = usb_alloc_bulk_req(sc->sc_dev, RAL_RXBUF_SIZE, USB_FLAGS_SLEEP); if (req == NULL) { ral_debug(RAL_DBG_ERR, "rum_rx_trigger(): failed to allocate req"); return (-1); } req->bulk_len = RAL_RXBUF_SIZE; req->bulk_client_private = (usb_opaque_t)sc; req->bulk_timeout = 0; req->bulk_attributes = USB_ATTRS_SHORT_XFER_OK | USB_ATTRS_AUTOCLEARING; req->bulk_cb = rum_rxeof; req->bulk_exc_cb = rum_rxeof; req->bulk_completion_reason = 0; req->bulk_cb_flags = 0; err = usb_pipe_bulk_xfer(sc->sc_rx_pipeh, req, 0); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_rx_trigger(): " "failed to do rx xfer, %d", err); usb_free_bulk_req(req); return (-1); } mutex_enter(&sc->rx_lock); sc->rx_queued++; mutex_exit(&sc->rx_lock); return (0); } static void rum_init_tx_queue(struct rum_softc *sc) { sc->tx_queued = 0; } static int rum_init_rx_queue(struct rum_softc *sc) { int i; sc->rx_queued = 0; for (i = 0; i < RAL_RX_LIST_COUNT; i++) { if (rum_rx_trigger(sc) != 0) { return (USB_FAILURE); } } return (USB_SUCCESS); } static void rum_stop(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); ieee80211_stop_watchdog(ic); /* stop the watchdog */ RAL_LOCK(sc); sc->sc_tx_timer = 0; sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */ /* disable Rx */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); /* reset ASIC */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); rum_close_pipes(sc); RAL_UNLOCK(sc); } static int rum_init(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int i, ntries; rum_stop(sc); /* initialize MAC registers to default values */ for (i = 0; i < RUM_N(rum_def_mac); i++) rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, 3); rum_write(sc, RT2573_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ for (ntries = 0; ntries < 1000; ntries++) { if (rum_read(sc, RT2573_MAC_CSR12) & 8) break; rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ drv_usecwait(1000); } if (ntries == 1000) { ral_debug(RAL_DBG_ERR, "rum_init(): timeout waiting for BBP/RF to wakeup\n"); goto fail; } if (rum_bbp_init(sc) != 0) goto fail; /* select default channel */ rum_select_band(sc, ic->ic_curchan); rum_select_antenna(sc); rum_set_chan(sc, ic->ic_curchan); /* clear STA registers */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta)); rum_set_macaddr(sc, ic->ic_macaddr); /* initialize ASIC */ rum_write(sc, RT2573_MAC_CSR1, 4); if (rum_open_pipes(sc) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_init(): " "could not open pipes.\n"); goto fail; } rum_init_tx_queue(sc); if (rum_init_rx_queue(sc) != USB_SUCCESS) goto fail; /* update Rx filter */ tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | RT2573_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2573_DROP_TODS; if (!(sc->sc_rcr & RAL_RCR_PROMISC)) tmp |= RT2573_DROP_NOT_TO_ME; } rum_write(sc, RT2573_TXRX_CSR0, tmp); sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */ return (DDI_SUCCESS); fail: rum_stop(sc); return (DDI_FAILURE); } static int rum_disconnect(dev_info_t *devinfo) { struct rum_softc *sc; struct ieee80211com *ic; /* * We can't call rum_stop() here, since the hardware is removed, * we can't access the register anymore. */ sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo)); ASSERT(sc != NULL); if (!RAL_IS_RUNNING(sc)) /* different device or not inited */ return (DDI_SUCCESS); ic = &sc->sc_ic; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); ieee80211_stop_watchdog(ic); /* stop the watchdog */ RAL_LOCK(sc); sc->sc_tx_timer = 0; sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */ rum_close_pipes(sc); RAL_UNLOCK(sc); return (DDI_SUCCESS); } static int rum_reconnect(dev_info_t *devinfo) { struct rum_softc *sc; int err; sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo)); ASSERT(sc != NULL); /* check device changes after disconnect */ if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1, USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "different device connected\n"); return (DDI_FAILURE); } err = rum_load_microcode(sc); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n"); goto fail; } err = rum_init(sc); fail: return (err); } static void rum_resume(struct rum_softc *sc) { int err; /* check device changes after suspend */ if (usb_check_same_device(sc->sc_dev, NULL, USB_LOG_L2, -1, USB_CHK_BASIC | USB_CHK_CFG, NULL) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "no or different device connected\n"); return; } err = rum_load_microcode(sc); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n"); return; } (void) rum_init(sc); } #define RUM_AMRR_MIN_SUCCESS_THRESHOLD 1 #define RUM_AMRR_MAX_SUCCESS_THRESHOLD 10 /* * Naive implementation of the Adaptive Multi Rate Retry algorithm: * "IEEE 802.11 Rate Adaptation: A Practical Approach" * Mathieu Lacage, Hossein Manshaei, Thierry Turletti * INRIA Sophia - Projet Planete * http://www-sop.inria.fr/rapports/sophia/RR-5208.html * * This algorithm is particularly well suited for rum since it does not * require per-frame retry statistics. Note however that since h/w does * not provide per-frame stats, we can't do per-node rate adaptation and * thus automatic rate adaptation is only enabled in STA operating mode. */ #define is_success(amrr) \ ((amrr)->retrycnt < (amrr)->txcnt / 10) #define is_failure(amrr) \ ((amrr)->retrycnt > (amrr)->txcnt / 3) #define is_enough(amrr) \ ((amrr)->txcnt > 10) #define is_min_rate(ni) \ ((ni)->in_txrate == 0) #define is_max_rate(ni) \ ((ni)->in_txrate == (ni)->in_rates.ir_nrates - 1) #define increase_rate(ni) \ ((ni)->in_txrate++) #define decrease_rate(ni) \ ((ni)->in_txrate--) #define reset_cnt(amrr) do { \ (amrr)->txcnt = (amrr)->retrycnt = 0; \ _NOTE(CONSTCOND) \ } while (/* CONSTCOND */0) static void rum_ratectl(struct rum_amrr *amrr, struct ieee80211_node *ni) { int need_change = 0; if (is_success(amrr) && is_enough(amrr)) { amrr->success++; if (amrr->success >= amrr->success_threshold && !is_max_rate(ni)) { amrr->recovery = 1; amrr->success = 0; increase_rate(ni); need_change = 1; } else { amrr->recovery = 0; } } else if (is_failure(amrr)) { amrr->success = 0; if (!is_min_rate(ni)) { if (amrr->recovery) { amrr->success_threshold *= 2; if (amrr->success_threshold > RUM_AMRR_MAX_SUCCESS_THRESHOLD) amrr->success_threshold = RUM_AMRR_MAX_SUCCESS_THRESHOLD; } else { amrr->success_threshold = RUM_AMRR_MIN_SUCCESS_THRESHOLD; } decrease_rate(ni); need_change = 1; } amrr->recovery = 0; /* original paper was incorrect */ } if (is_enough(amrr) || need_change) reset_cnt(amrr); } static void rum_amrr_timeout(void *arg) { struct rum_softc *sc = (struct rum_softc *)arg; struct rum_amrr *amrr = &sc->amrr; rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta)); /* count TX retry-fail as Tx errors */ sc->sc_tx_err += LE_32(sc->sta[5]) >> 16; sc->sc_tx_retries += ((LE_32(sc->sta[4]) >> 16) + (LE_32(sc->sta[5]) & 0xffff)); amrr->retrycnt = (LE_32(sc->sta[4]) >> 16) + /* TX one-retry ok count */ (LE_32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */ (LE_32(sc->sta[5]) >> 16); /* TX retry-fail count */ amrr->txcnt = amrr->retrycnt + (LE_32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */ rum_ratectl(amrr, sc->sc_ic.ic_bss); sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc, drv_usectohz(1000 * 1000)); /* 1 second */ } static void rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni) { struct rum_amrr *amrr = &sc->amrr; int i; /* clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof (sc->sta)); amrr->success = 0; amrr->recovery = 0; amrr->txcnt = amrr->retrycnt = 0; amrr->success_threshold = RUM_AMRR_MIN_SUCCESS_THRESHOLD; /* set rate to some reasonable initial value */ for (i = ni->in_rates.ir_nrates - 1; i > 0 && (ni->in_rates.ir_rates[i] & IEEE80211_RATE_VAL) > 72; i--) { } ni->in_txrate = i; sc->sc_amrr_id = timeout(rum_amrr_timeout, (void *)sc, drv_usectohz(1000 * 1000)); /* 1 second */ } void rum_watchdog(void *arg) { struct rum_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int ntimer = 0; RAL_LOCK(sc); ic->ic_watchdog_timer = 0; if (!RAL_IS_RUNNING(sc)) { RAL_UNLOCK(sc); return; } if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { ral_debug(RAL_DBG_ERR, "tx timer timeout\n"); RAL_UNLOCK(sc); (void) rum_init(sc); (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return; } } if (ic->ic_state == IEEE80211_S_RUN) ntimer = 1; RAL_UNLOCK(sc); ieee80211_watchdog(ic); if (ntimer) ieee80211_start_watchdog(ic, ntimer); } static int rum_m_start(void *arg) { struct rum_softc *sc = (struct rum_softc *)arg; int err; /* * initialize RT2501USB hardware */ err = rum_init(sc); if (err != DDI_SUCCESS) { ral_debug(RAL_DBG_ERR, "device configuration failed\n"); goto fail; } sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */ return (err); fail: rum_stop(sc); return (err); } static void rum_m_stop(void *arg) { struct rum_softc *sc = (struct rum_softc *)arg; (void) rum_stop(sc); sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */ } static int rum_m_unicst(void *arg, const uint8_t *macaddr) { struct rum_softc *sc = (struct rum_softc *)arg; struct ieee80211com *ic = &sc->sc_ic; ral_debug(RAL_DBG_MSG, "rum_m_unicst(): " MACSTR "\n", MAC2STR(macaddr)); IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr); (void) rum_set_macaddr(sc, (uint8_t *)macaddr); (void) rum_init(sc); return (0); } /*ARGSUSED*/ static int rum_m_multicst(void *arg, boolean_t add, const uint8_t *mca) { return (0); } static int rum_m_promisc(void *arg, boolean_t on) { struct rum_softc *sc = (struct rum_softc *)arg; if (on) { sc->sc_rcr |= RAL_RCR_PROMISC; sc->sc_rcr |= RAL_RCR_MULTI; } else { sc->sc_rcr &= ~RAL_RCR_PROMISC; sc->sc_rcr &= ~RAL_RCR_MULTI; } rum_update_promisc(sc); return (0); } /* * callback functions for /get/set properties */ static int rum_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf) { struct rum_softc *sc = (struct rum_softc *)arg; struct ieee80211com *ic = &sc->sc_ic; int err; err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length, wldp_buf); RAL_LOCK(sc); if (err == ENETRESET) { if (RAL_IS_RUNNING(sc)) { RAL_UNLOCK(sc); (void) rum_init(sc); (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); RAL_LOCK(sc); } err = 0; } RAL_UNLOCK(sc); return (err); } static int rum_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm) { struct rum_softc *sc = (struct rum_softc *)arg; int err; err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num, pr_flags, wldp_length, wldp_buf, perm); return (err); } static void rum_m_ioctl(void* arg, queue_t *wq, mblk_t *mp) { struct rum_softc *sc = (struct rum_softc *)arg; struct ieee80211com *ic = &sc->sc_ic; int err; err = ieee80211_ioctl(ic, wq, mp); RAL_LOCK(sc); if (err == ENETRESET) { if (RAL_IS_RUNNING(sc)) { RAL_UNLOCK(sc); (void) rum_init(sc); (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); RAL_LOCK(sc); } } RAL_UNLOCK(sc); } static int rum_m_stat(void *arg, uint_t stat, uint64_t *val) { struct rum_softc *sc = (struct rum_softc *)arg; ieee80211com_t *ic = &sc->sc_ic; ieee80211_node_t *ni; struct ieee80211_rateset *rs; RAL_LOCK(sc); ni = ic->ic_bss; rs = &ni->in_rates; switch (stat) { case MAC_STAT_IFSPEED: *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ? (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL) : ic->ic_fixed_rate) * 500000ull; break; case MAC_STAT_NOXMTBUF: *val = sc->sc_tx_nobuf; break; case MAC_STAT_NORCVBUF: *val = sc->sc_rx_nobuf; break; case MAC_STAT_IERRORS: *val = sc->sc_rx_err; break; case MAC_STAT_RBYTES: *val = ic->ic_stats.is_rx_bytes; break; case MAC_STAT_IPACKETS: *val = ic->ic_stats.is_rx_frags; break; case MAC_STAT_OBYTES: *val = ic->ic_stats.is_tx_bytes; break; case MAC_STAT_OPACKETS: *val = ic->ic_stats.is_tx_frags; break; case MAC_STAT_OERRORS: case WIFI_STAT_TX_FAILED: *val = sc->sc_tx_err; break; case WIFI_STAT_TX_RETRANS: *val = sc->sc_tx_retries; break; case WIFI_STAT_FCS_ERRORS: case WIFI_STAT_WEP_ERRORS: case WIFI_STAT_TX_FRAGS: case WIFI_STAT_MCAST_TX: case WIFI_STAT_RTS_SUCCESS: case WIFI_STAT_RTS_FAILURE: case WIFI_STAT_ACK_FAILURE: case WIFI_STAT_RX_FRAGS: case WIFI_STAT_MCAST_RX: case WIFI_STAT_RX_DUPS: RAL_UNLOCK(sc); return (ieee80211_stat(ic, stat, val)); default: RAL_UNLOCK(sc); return (ENOTSUP); } RAL_UNLOCK(sc); return (0); } static int rum_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) { struct rum_softc *sc; struct ieee80211com *ic; int err, i, ntries; uint32_t tmp; int instance; char strbuf[32]; wifi_data_t wd = { 0 }; mac_register_t *macp; switch (cmd) { case DDI_ATTACH: break; case DDI_RESUME: sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo)); ASSERT(sc != NULL); rum_resume(sc); return (DDI_SUCCESS); default: return (DDI_FAILURE); } instance = ddi_get_instance(devinfo); if (ddi_soft_state_zalloc(rum_soft_state_p, instance) != DDI_SUCCESS) { ral_debug(RAL_DBG_MSG, "rum_attach(): " "unable to alloc soft_state_p\n"); return (DDI_FAILURE); } sc = ddi_get_soft_state(rum_soft_state_p, instance); ic = (ieee80211com_t *)&sc->sc_ic; sc->sc_dev = devinfo; if (usb_client_attach(devinfo, USBDRV_VERSION, 0) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_attach(): usb_client_attach failed\n"); goto fail1; } if (usb_get_dev_data(devinfo, &sc->sc_udev, USB_PARSE_LVL_ALL, 0) != USB_SUCCESS) { sc->sc_udev = NULL; goto fail2; } mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL); mutex_init(&sc->tx_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&sc->rx_lock, NULL, MUTEX_DRIVER, NULL); /* retrieve RT2573 rev. no */ for (ntries = 0; ntries < 1000; ntries++) { if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) break; drv_usecwait(1000); } if (ntries == 1000) { ral_debug(RAL_DBG_ERR, "rum_attach(): timeout waiting for chip to settle\n"); goto fail3; } /* retrieve MAC address and various other things from EEPROM */ rum_read_eeprom(sc); ral_debug(RAL_DBG_MSG, "rum: MAC/BBP RT2573 (rev 0x%05x), RF %s\n", tmp, rum_get_rf(sc->rf_rev)); err = rum_load_microcode(sc); if (err != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "could not load 8051 microcode\n"); goto fail3; } ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; ic->ic_maxrssi = 63; ic->ic_set_shortslot = rum_update_slot; ic->ic_xmit = rum_send; /* set device capabilities */ ic->ic_caps = IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT; /* short slot time supported */ ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */ #define IEEE80211_CHAN_A \ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM) if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a; /* set supported .11a channels */ for (i = 34; i <= 46; i += 4) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; } for (i = 36; i <= 64; i += 4) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; } for (i = 100; i <= 140; i += 4) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ieee80211_attach(ic); /* register WPA door */ ieee80211_register_door(ic, ddi_driver_name(devinfo), ddi_get_instance(devinfo)); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rum_newstate; ic->ic_watchdog = rum_watchdog; ieee80211_media_init(ic); ic->ic_def_txkey = 0; sc->sc_rcr = 0; sc->dwelltime = 300; sc->sc_flags = 0; /* * Provide initial settings for the WiFi plugin; whenever this * information changes, we need to call mac_plugindata_update() */ wd.wd_opmode = ic->ic_opmode; wd.wd_secalloc = WIFI_SEC_NONE; IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid); if ((macp = mac_alloc(MAC_VERSION)) == NULL) { ral_debug(RAL_DBG_ERR, "rum_attach(): " "MAC version mismatch\n"); goto fail3; } macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI; macp->m_driver = sc; macp->m_dip = devinfo; macp->m_src_addr = ic->ic_macaddr; macp->m_callbacks = &rum_m_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = IEEE80211_MTU; macp->m_pdata = &wd; macp->m_pdata_size = sizeof (wd); err = mac_register(macp, &ic->ic_mach); mac_free(macp); if (err != 0) { ral_debug(RAL_DBG_ERR, "rum_attach(): " "mac_register() err %x\n", err); goto fail3; } if (usb_register_hotplug_cbs(devinfo, rum_disconnect, rum_reconnect) != USB_SUCCESS) { ral_debug(RAL_DBG_ERR, "rum_attach() failed to register events"); goto fail4; } /* * Create minor node of type DDI_NT_NET_WIFI */ (void) snprintf(strbuf, sizeof (strbuf), "%s%d", "rum", instance); err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR, instance + 1, DDI_NT_NET_WIFI, 0); if (err != DDI_SUCCESS) ral_debug(RAL_DBG_ERR, "ddi_create_minor_node() failed\n"); /* * Notify link is down now */ mac_link_update(ic->ic_mach, LINK_STATE_DOWN); return (DDI_SUCCESS); fail4: (void) mac_unregister(ic->ic_mach); fail3: mutex_destroy(&sc->sc_genlock); mutex_destroy(&sc->tx_lock); mutex_destroy(&sc->rx_lock); fail2: usb_client_detach(sc->sc_dev, sc->sc_udev); fail1: ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo)); return (DDI_FAILURE); } static int rum_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) { struct rum_softc *sc; sc = ddi_get_soft_state(rum_soft_state_p, ddi_get_instance(devinfo)); ASSERT(sc != NULL); switch (cmd) { case DDI_DETACH: break; case DDI_SUSPEND: if (RAL_IS_RUNNING(sc)) (void) rum_stop(sc); return (DDI_SUCCESS); default: return (DDI_FAILURE); } rum_stop(sc); usb_unregister_hotplug_cbs(devinfo); /* * Unregister from the MAC layer subsystem */ if (mac_unregister(sc->sc_ic.ic_mach) != 0) return (DDI_FAILURE); /* * detach ieee80211 layer */ ieee80211_detach(&sc->sc_ic); mutex_destroy(&sc->sc_genlock); mutex_destroy(&sc->tx_lock); mutex_destroy(&sc->rx_lock); /* pipes will be closed in rum_stop() */ usb_client_detach(devinfo, sc->sc_udev); sc->sc_udev = NULL; ddi_remove_minor_node(devinfo, NULL); ddi_soft_state_free(rum_soft_state_p, ddi_get_instance(devinfo)); return (DDI_SUCCESS); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } int _init(void) { int status; status = ddi_soft_state_init(&rum_soft_state_p, sizeof (struct rum_softc), 1); if (status != 0) return (status); mac_init_ops(&rum_dev_ops, "rum"); status = mod_install(&modlinkage); if (status != 0) { mac_fini_ops(&rum_dev_ops); ddi_soft_state_fini(&rum_soft_state_p); } return (status); } int _fini(void) { int status; status = mod_remove(&modlinkage); if (status == 0) { mac_fini_ops(&rum_dev_ops); ddi_soft_state_fini(&rum_soft_state_p); } return (status); }