/* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2005, 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Ralink Technology RT2560 chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ral_rate.h" #include "rt2560_reg.h" #include "rt2560_var.h" static void *ral_soft_state_p = NULL; #define RAL_TXBUF_SIZE (IEEE80211_MAX_LEN) #define RAL_RXBUF_SIZE (IEEE80211_MAX_LEN) /* quickly determine if a given rate is CCK or OFDM */ #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ #define RAL_SIFS 10 /* us */ #define RT2560_TXRX_TURNAROUND 10 /* us */ /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset rt2560_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset rt2560_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset rt2560_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct { uint32_t reg; uint32_t val; } rt2560_def_mac[] = { RT2560_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2560_def_bbp[] = { RT2560_DEF_BBP }; static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; static const struct { uint8_t chan; uint32_t r1, r2, r4; } rt2560_rf5222[] = { RT2560_RF5222 }; /* * PIO access attributes for registers */ static ddi_device_acc_attr_t ral_csr_accattr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC }; /* * DMA access attributes for descriptors: NOT to be byte swapped. */ static ddi_device_acc_attr_t ral_desc_accattr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC }; /* * Describes the chip's DMA engine */ static ddi_dma_attr_t ral_dma_attr = { DMA_ATTR_V0, /* dma_attr version */ 0x0000000000000000ull, /* dma_attr_addr_lo */ 0xFFFFFFFF, /* dma_attr_addr_hi */ 0x00000000FFFFFFFFull, /* dma_attr_count_max */ 0x0000000000000001ull, /* dma_attr_align */ 0x00000FFF, /* dma_attr_burstsizes */ 0x00000001, /* dma_attr_minxfer */ 0x000000000000FFFFull, /* dma_attr_maxxfer */ 0xFFFFFFFFFFFFFFFFull, /* dma_attr_seg */ 1, /* dma_attr_sgllen */ 0x00000001, /* dma_attr_granular */ 0 /* dma_attr_flags */ }; /* * device operations */ static int rt2560_attach(dev_info_t *, ddi_attach_cmd_t); static int rt2560_detach(dev_info_t *, ddi_detach_cmd_t); static int32_t rt2560_quiesce(dev_info_t *); /* * Module Loading Data & Entry Points */ DDI_DEFINE_STREAM_OPS(ral_dev_ops, nulldev, nulldev, rt2560_attach, rt2560_detach, nodev, NULL, D_MP, NULL, rt2560_quiesce); static struct modldrv ral_modldrv = { &mod_driverops, /* Type of module. This one is a driver */ "Ralink RT2500 driver v1.6", /* short description */ &ral_dev_ops /* driver specific ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&ral_modldrv, NULL }; static int rt2560_m_stat(void *, uint_t, uint64_t *); static int rt2560_m_start(void *); static void rt2560_m_stop(void *); static int rt2560_m_promisc(void *, boolean_t); static int rt2560_m_multicst(void *, boolean_t, const uint8_t *); static int rt2560_m_unicst(void *, const uint8_t *); static mblk_t *rt2560_m_tx(void *, mblk_t *); static void rt2560_m_ioctl(void *, queue_t *, mblk_t *); static int rt2560_m_setprop(void *, const char *, mac_prop_id_t, uint_t, const void *); static int rt2560_m_getprop(void *, const char *, mac_prop_id_t, uint_t, uint_t, void *, uint_t *); static mac_callbacks_t rt2560_m_callbacks = { MC_IOCTL | MC_SETPROP | MC_GETPROP, rt2560_m_stat, rt2560_m_start, rt2560_m_stop, rt2560_m_promisc, rt2560_m_multicst, rt2560_m_unicst, rt2560_m_tx, rt2560_m_ioctl, NULL, /* mc_getcapab */ NULL, NULL, rt2560_m_setprop, rt2560_m_getprop }; uint32_t ral_dbg_flags = 0; void ral_debug(uint32_t dbg_flags, const int8_t *fmt, ...) { va_list args; if (dbg_flags & ral_dbg_flags) { va_start(args, fmt); vcmn_err(CE_CONT, fmt, args); va_end(args); } } static void rt2560_set_basicrates(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { /* 11a basic rates: 6, 12, 24Mbps */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150); } else { /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f); } } static void rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) { uint32_t tmp; /* set ON period to 70ms and OFF period to 30ms */ tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; RAL_WRITE(sc, RT2560_LEDCSR, tmp); } static void rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RT2560_CSR5, tmp); tmp = bssid[4] | bssid[5] << 8; RAL_WRITE(sc, RT2560_CSR6, tmp); RAL_DEBUG(RAL_DBG_HW, "setting BSSID to " MACSTR "\n", MAC2STR(bssid)); } static void rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) break; drv_usecwait(1); } if (ntries == 100) { RAL_DEBUG(RAL_DBG_HW, "could not write to BBP\n"); return; } tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; RAL_WRITE(sc, RT2560_BBPCSR, tmp); RAL_DEBUG(RAL_DBG_HW, "BBP R%u <- 0x%02x\n", reg, val); } static uint8_t rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) { uint32_t val; int ntries; val = RT2560_BBP_BUSY | reg << 8; RAL_WRITE(sc, RT2560_BBPCSR, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2560_BBPCSR); if (!(val & RT2560_BBP_BUSY)) return (val & 0xff); drv_usecwait(1); } RAL_DEBUG(RAL_DBG_HW, "could not read from BBP\n"); return (0); } static void rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) break; drv_usecwait(1); } if (ntries == 100) { RAL_DEBUG(RAL_DBG_HW, "could not write to RF\n"); return; } tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); RAL_WRITE(sc, RT2560_RFCSR, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; RAL_DEBUG(RAL_DBG_HW, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); } static void rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; uint_t i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; if (IEEE80211_IS_CHAN_2GHZ(c)) power = min(sc->txpow[chan - 1], 31); else power = 31; /* adjust txpower using ifconfig settings */ power -= (100 - ic->ic_txpowlimit) / 8; RAL_DEBUG(RAL_DBG_CHAN, "setting channel to %u, txpower to %u\n", chan, power); switch (sc->rf_rev) { case RT2560_RF_2522: rt2560_rf_write(sc, RAL_RF1, 0x00814); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RT2560_RF_2523: rt2560_rf_write(sc, RAL_RF1, 0x08804); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2524: rt2560_rf_write(sc, RAL_RF1, 0x0c808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525: rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525E: rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RT2560_RF_2526: rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); rt2560_rf_write(sc, RAL_RF1, 0x08804); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; /* dual-band RF */ case RT2560_RF_5222: for (i = 0; rt2560_rf5222[i].chan != chan; i++) { } rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); break; } if (ic->ic_state != IEEE80211_S_SCAN) { /* set Japan filter bit for channel 14 */ tmp = rt2560_bbp_read(sc, 70); tmp &= ~RT2560_JAPAN_FILTER; if (chan == 14) tmp |= RT2560_JAPAN_FILTER; rt2560_bbp_write(sc, 70, tmp); /* clear CRC errors */ (void) RAL_READ(sc, RT2560_CNT0); } } /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ static void rt2560_enable_tsf_sync(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t logcwmin, preload; uint32_t tmp; /* first, disable TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); tmp = 16 * ic->ic_bss->in_intval; RAL_WRITE(sc, RT2560_CSR12, tmp); RAL_WRITE(sc, RT2560_CSR13, 0); logcwmin = 5; preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; tmp = logcwmin << 16 | preload; RAL_WRITE(sc, RT2560_BCNOCSR, tmp); /* finally, enable TSF synchronization */ tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2560_ENABLE_TSF_SYNC(1); else tmp |= RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_BEACON_GENERATOR; RAL_WRITE(sc, RT2560_CSR14, tmp); RAL_DEBUG(RAL_DBG_HW, "enabling TSF synchronization\n"); } static void rt2560_update_plcp(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* no short preamble for 1Mbps */ RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { /* values taken from the reference driver */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); } else { /* same values as above or'ed 0x8 */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); } RAL_DEBUG(RAL_DBG_HW, "updating PLCP for %s preamble\n", (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"); } /* * This function can be called by ieee80211_set_shortslottime(). Refer to * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. */ void rt2560_update_slot(struct ieee80211com *ic, int onoff) { struct rt2560_softc *sc = (struct rt2560_softc *)ic; uint8_t slottime; uint16_t tx_sifs, tx_pifs, tx_difs, eifs; uint32_t tmp; /* slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; */ slottime = (onoff ? 9 : 20); /* update the MAC slot boundaries */ tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; tx_pifs = tx_sifs + slottime; tx_difs = tx_sifs + 2 * slottime; eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; tmp = RAL_READ(sc, RT2560_CSR11); tmp = (tmp & ~0x1f00) | slottime << 8; RAL_WRITE(sc, RT2560_CSR11, tmp); tmp = tx_pifs << 16 | tx_sifs; RAL_WRITE(sc, RT2560_CSR18, tmp); tmp = eifs << 16 | tx_difs; RAL_WRITE(sc, RT2560_CSR19, tmp); RAL_DEBUG(RAL_DBG_HW, "setting slottime to %uus\n", slottime); } int ral_dma_region_alloc(struct rt2560_softc *sc, struct dma_region *dr, size_t size, uint_t alloc_flags, uint_t bind_flags) { dev_info_t *dip = sc->sc_dev; int err; RAL_DEBUG(RAL_DBG_DMA, "ral_dma_region_alloc() size=%u\n", size); err = ddi_dma_alloc_handle(dip, &ral_dma_attr, DDI_DMA_SLEEP, NULL, &dr->dr_hnd); if (err != DDI_SUCCESS) goto fail1; err = ddi_dma_mem_alloc(dr->dr_hnd, size, &ral_desc_accattr, alloc_flags, DDI_DMA_SLEEP, NULL, &dr->dr_base, &dr->dr_size, &dr->dr_acc); if (err != DDI_SUCCESS) goto fail2; err = ddi_dma_addr_bind_handle(dr->dr_hnd, NULL, dr->dr_base, dr->dr_size, bind_flags, DDI_DMA_SLEEP, NULL, &dr->dr_cookie, &dr->dr_ccnt); if (err != DDI_SUCCESS) goto fail3; if (dr->dr_ccnt != 1) { err = DDI_FAILURE; goto fail4; } dr->dr_pbase = dr->dr_cookie.dmac_address; RAL_DEBUG(RAL_DBG_DMA, "get physical-base=0x%08x\n", dr->dr_pbase); return (DDI_SUCCESS); fail4: (void) ddi_dma_unbind_handle(dr->dr_hnd); fail3: ddi_dma_mem_free(&dr->dr_acc); fail2: ddi_dma_free_handle(&dr->dr_hnd); fail1: return (err); } /* ARGSUSED */ void ral_dma_region_free(struct rt2560_softc *sc, struct dma_region *dr) { (void) ddi_dma_unbind_handle(dr->dr_hnd); ddi_dma_mem_free(&dr->dr_acc); ddi_dma_free_handle(&dr->dr_hnd); } int rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, int count) { int i, err; int size; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; ring->data = kmem_zalloc(count * (sizeof (struct rt2560_tx_data)), KM_SLEEP); ring->dr_txbuf = kmem_zalloc(count * (sizeof (struct dma_region)), KM_SLEEP); err = ral_dma_region_alloc(sc, &ring->dr_desc, count * (sizeof (struct rt2560_tx_desc)), DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT); if (err != DDI_SUCCESS) goto fail1; size = roundup(RAL_TXBUF_SIZE, sc->sc_cachelsz); for (i = 0; i < count; i++) { err = ral_dma_region_alloc(sc, &ring->dr_txbuf[i], size, DDI_DMA_STREAMING, DDI_DMA_WRITE | DDI_DMA_STREAMING); if (err != DDI_SUCCESS) { while (i >= 0) { ral_dma_region_free(sc, &ring->dr_txbuf[i]); i--; } goto fail2; } } ring->physaddr = LE_32(ring->dr_desc.dr_pbase); ring->desc = (struct rt2560_tx_desc *)ring->dr_desc.dr_base; for (i = 0; i < count; i++) { ring->desc[i].physaddr = LE_32(ring->dr_txbuf[i].dr_pbase); ring->data[i].buf = ring->dr_txbuf[i].dr_base; } return (DDI_SUCCESS); fail2: ral_dma_region_free(sc, &ring->dr_desc); fail1: return (err); } /* ARGSUSED */ void rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; int i; for (i = 0; i < ring->count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } desc->flags = 0; } (void) ddi_dma_sync(ring->dr_desc.dr_hnd, 0, ring->count * sizeof (struct rt2560_tx_desc), DDI_DMA_SYNC_FORDEV); ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; } void rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { struct rt2560_tx_data *data; int i; ral_dma_region_free(sc, &ring->dr_desc); /* tx buf */ for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } ral_dma_region_free(sc, &ring->dr_txbuf[i]); } kmem_free(ring->data, ring->count * (sizeof (struct rt2560_tx_data))); kmem_free(ring->dr_txbuf, ring->count * (sizeof (struct dma_region))); } void rt2560_ring_hwsetup(struct rt2560_softc *sc) { uint32_t tmp; /* setup tx rings */ tmp = ((uint32_t)RT2560_PRIO_RING_COUNT << 24) | RT2560_ATIM_RING_COUNT << 16 | RT2560_TX_RING_COUNT << 8 | RT2560_TX_DESC_SIZE; /* rings must be initialized in this exact order */ RAL_WRITE(sc, RT2560_TXCSR2, tmp); RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); /* setup rx ring */ tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; RAL_WRITE(sc, RT2560_RXCSR1, tmp); RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); } int rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, int count) { struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; int i, err; int size; ring->count = count; ring->cur = ring->next = 0; ring->cur_decrypt = 0; ring->data = kmem_zalloc(count * (sizeof (struct rt2560_rx_data)), KM_SLEEP); ring->dr_rxbuf = kmem_zalloc(count * (sizeof (struct dma_region)), KM_SLEEP); err = ral_dma_region_alloc(sc, &ring->dr_desc, count * (sizeof (struct rt2560_rx_desc)), DDI_DMA_CONSISTENT, DDI_DMA_RDWR | DDI_DMA_CONSISTENT); if (err != DDI_SUCCESS) goto fail1; size = roundup(RAL_RXBUF_SIZE, sc->sc_cachelsz); for (i = 0; i < count; i++) { err = ral_dma_region_alloc(sc, &ring->dr_rxbuf[i], size, DDI_DMA_STREAMING, DDI_DMA_READ | DDI_DMA_STREAMING); if (err != DDI_SUCCESS) { while (i >= 0) { ral_dma_region_free(sc, &ring->dr_rxbuf[i]); i--; } goto fail2; } } ring->physaddr = ring->dr_desc.dr_pbase; ring->desc = (struct rt2560_rx_desc *)ring->dr_desc.dr_base; for (i = 0; i < count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; desc->physaddr = LE_32(ring->dr_rxbuf[i].dr_pbase); desc->flags = LE_32(RT2560_RX_BUSY); data->buf = ring->dr_rxbuf[i].dr_base; } return (DDI_SUCCESS); fail2: ral_dma_region_free(sc, &ring->dr_desc); fail1: return (err); } /* ARGSUSED */ static void rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) { ring->desc[i].flags = LE_32(RT2560_RX_BUSY); ring->data[i].drop = 0; } (void) ddi_dma_sync(ring->dr_desc.dr_hnd, 0, ring->count * sizeof (struct rt2560_rx_desc), DDI_DMA_SYNC_FORKERNEL); ring->cur = ring->next = 0; ring->cur_decrypt = 0; } static void rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { int i; ral_dma_region_free(sc, &ring->dr_desc); /* rx buf */ for (i = 0; i < ring->count; i++) ral_dma_region_free(sc, &ring->dr_rxbuf[i]); kmem_free(ring->data, ring->count * (sizeof (struct rt2560_rx_data))); kmem_free(ring->dr_rxbuf, ring->count * (sizeof (struct dma_region))); } /* ARGSUSED */ static struct ieee80211_node * rt2560_node_alloc(ieee80211com_t *ic) { struct rt2560_node *rn; rn = kmem_zalloc(sizeof (struct rt2560_node), KM_SLEEP); return ((rn != NULL) ? &rn->ni : NULL); } static void rt2560_node_free(struct ieee80211_node *in) { ieee80211com_t *ic = in->in_ic; ic->ic_node_cleanup(in); if (in->in_wpa_ie != NULL) ieee80211_free(in->in_wpa_ie); kmem_free(in, sizeof (struct rt2560_node)); } /* * This function is called periodically (every 200ms) during scanning to * switch from one channel to another. */ static void rt2560_next_scan(void *arg) { struct rt2560_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_state == IEEE80211_S_SCAN) (void) ieee80211_next_scan(ic); } /* * This function is called for each node present in the node station table. */ /* ARGSUSED */ static void rt2560_iter_func(void *arg, struct ieee80211_node *ni) { struct rt2560_node *rn = (struct rt2560_node *)ni; ral_rssadapt_updatestats(&rn->rssadapt); } /* * This function is called periodically (every 100ms) in RUN state to update * the rate adaptation statistics. */ static void rt2560_update_rssadapt(void *arg) { struct rt2560_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg); sc->sc_rssadapt_id = timeout(rt2560_update_rssadapt, (void *)sc, drv_usectohz(100 * 1000)); } static void rt2560_statedog(void *arg) { struct rt2560_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state state; RAL_LOCK(sc); RAL_DEBUG(RAL_DBG_MSG, "rt2560_statedog(...)\n"); sc->sc_state_id = 0; state = ic->ic_state; ic->ic_state = sc->sc_ostate; RAL_UNLOCK(sc); ieee80211_new_state(ic, state, -1); } static int rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct rt2560_softc *sc = (struct rt2560_softc *)ic; enum ieee80211_state ostate; struct ieee80211_node *ni; int err; RAL_LOCK(sc); ostate = ic->ic_state; sc->sc_ostate = ostate; if (sc->sc_scan_id != 0) { (void) untimeout(sc->sc_scan_id); sc->sc_scan_id = 0; } if (sc->sc_rssadapt_id != 0) { (void) untimeout(sc->sc_rssadapt_id); sc->sc_rssadapt_id = 0; } if (sc->sc_state_id != 0) { (void) untimeout(sc->sc_state_id); sc->sc_state_id = 0; } switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* abort TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); /* turn association led off */ rt2560_update_led(sc, 0, 0); } break; case IEEE80211_S_SCAN: rt2560_set_chan(sc, ic->ic_curchan); sc->sc_scan_id = timeout(rt2560_next_scan, (void *)sc, drv_usectohz(sc->dwelltime * 1000)); break; case IEEE80211_S_AUTH: RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_AUTH ...\n"); rt2560_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_ASSOC: RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_ASSOC ...\n"); rt2560_set_chan(sc, ic->ic_curchan); drv_usecwait(10 * 1000); /* dlink */ sc->sc_state_id = timeout(rt2560_statedog, (void *)sc, drv_usectohz(300 * 1000)); /* ap7-3 */ break; case IEEE80211_S_RUN: RAL_DEBUG(RAL_DBG_STATE, "-> IEEE80211_S_RUN ...\n"); rt2560_set_chan(sc, ic->ic_curchan); ni = ic->ic_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rt2560_update_plcp(sc); rt2560_set_basicrates(sc); rt2560_set_bssid(sc, ni->in_bssid); } /* turn assocation led on */ rt2560_update_led(sc, 1, 0); if (ic->ic_opmode != IEEE80211_M_MONITOR) { sc->sc_rssadapt_id = timeout(rt2560_update_rssadapt, (void *)sc, drv_usectohz(100 * 1000)); rt2560_enable_tsf_sync(sc); } break; } RAL_UNLOCK(sc); err = sc->sc_newstate(ic, nstate, arg); /* * Finally, start any timers. */ if (nstate == IEEE80211_S_RUN) ieee80211_start_watchdog(ic, 1); return (err); } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ static uint16_t rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); /* write start bit (1) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); /* write READ opcode (10) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; for (; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D)); RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); } RT2560_EEPROM_CTL(sc, RT2560_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); tmp = RAL_READ(sc, RT2560_CSR21); val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; RT2560_EEPROM_CTL(sc, RT2560_S); } RT2560_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_C); return (val); } static void rt2560_tx_intr(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct rt2560_node *rn; struct dma_region *dr; int count; dr = &sc->txq.dr_desc; count = sc->txq.count; (void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORKERNEL); mutex_enter(&sc->txq.tx_lock); for (;;) { desc = &sc->txq.desc[sc->txq.next]; data = &sc->txq.data[sc->txq.next]; if ((LE_32(desc->flags) & RT2560_TX_BUSY) || (LE_32(desc->flags) & RT2560_TX_CIPHER_BUSY) || !(LE_32(desc->flags) & RT2560_TX_VALID)) break; rn = (struct rt2560_node *)data->ni; switch (LE_32(desc->flags) & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: RAL_DEBUG(RAL_DBG_INTR, "data frame sent success\n"); if (data->id.id_node != NULL) { ral_rssadapt_raise_rate(ic, &rn->rssadapt, &data->id); } break; case RT2560_TX_SUCCESS_RETRY: RAL_DEBUG(RAL_DBG_INTR, "data frame sent after %u retries\n", (LE_32(desc->flags) >> 5) & 0x7); sc->sc_tx_retries++; break; case RT2560_TX_FAIL_RETRY: RAL_DEBUG(RAL_DBG_INTR, "sending data frame failed (too much retries)\n"); if (data->id.id_node != NULL) { ral_rssadapt_lower_rate(ic, data->ni, &rn->rssadapt, &data->id); } break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: RAL_DEBUG(RAL_DBG_INTR, "sending data frame failed " "0x%08x\n", LE_32(desc->flags)); break; } ieee80211_free_node(data->ni); data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~LE_32(RT2560_TX_VALID); RAL_DEBUG(RAL_DBG_INTR, "tx done idx=%u\n", sc->txq.next); sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; if (sc->sc_need_sched && sc->txq.queued < (RT2560_TX_RING_COUNT - 32)) { sc->sc_need_sched = 0; mac_tx_update(ic->ic_mach); } } (void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV); sc->sc_tx_timer = 0; mutex_exit(&sc->txq.tx_lock); } static void rt2560_prio_intr(struct rt2560_softc *sc) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct dma_region *dr; int count; dr = &sc->prioq.dr_desc; count = sc->prioq.count; (void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORKERNEL); mutex_enter(&sc->prioq.tx_lock); for (;;) { desc = &sc->prioq.desc[sc->prioq.next]; data = &sc->prioq.data[sc->prioq.next]; if ((LE_32(desc->flags) & RT2560_TX_BUSY) || !(LE_32(desc->flags) & RT2560_TX_VALID)) break; switch (LE_32(desc->flags) & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: RAL_DEBUG(RAL_DBG_INTR, "mgt frame sent success\n"); break; case RT2560_TX_SUCCESS_RETRY: RAL_DEBUG(RAL_DBG_INTR, "mgt frame sent after %u retries\n", (LE_32(desc->flags) >> 5) & 0x7); break; case RT2560_TX_FAIL_RETRY: RAL_DEBUG(RAL_DBG_INTR, "sending mgt frame failed (too much " "retries)\n"); break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: RAL_DEBUG(RAL_DBG_INTR, "sending mgt frame failed " "0x%08x\n", LE_32(desc->flags)); } ieee80211_free_node(data->ni); data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~LE_32(RT2560_TX_VALID); RAL_DEBUG(RAL_DBG_INTR, "prio done idx=%u\n", sc->prioq.next); sc->prioq.queued--; sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; } (void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV); sc->sc_tx_timer = 0; mutex_exit(&sc->prioq.tx_lock); } /* * Some frames were received. Pass them to the hardware cipher engine before * sending them to the 802.11 layer. */ void rt2560_rx_intr(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct rt2560_node *rn; mblk_t *m; uint32_t len; char *rxbuf; struct dma_region *dr, *dr_bf; int count; dr = &sc->rxq.dr_desc; count = sc->rxq.count; mutex_enter(&sc->rxq.rx_lock); (void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_RX_DESC_SIZE, DDI_DMA_SYNC_FORKERNEL); for (;;) { desc = &sc->rxq.desc[sc->rxq.cur]; data = &sc->rxq.data[sc->rxq.cur]; if ((LE_32(desc->flags) & RT2560_RX_BUSY) || (LE_32(desc->flags) & RT2560_RX_CIPHER_BUSY)) break; data->drop = 0; if ((LE_32(desc->flags) & RT2560_RX_PHY_ERROR) || (LE_32(desc->flags) & RT2560_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled RXCSR0. */ RAL_DEBUG(RAL_DBG_RX, "PHY or CRC error flags 0x%08x\n", LE_32(desc->flags)); data->drop = 1; } if (((LE_32(desc->flags) >> 16) & 0xfff) > RAL_RXBUF_SIZE) { RAL_DEBUG(RAL_DBG_RX, "bad length\n"); data->drop = 1; } if (data->drop) { sc->sc_rx_err++; goto skip; } rxbuf = data->buf; len = (LE_32(desc->flags) >> 16) & 0xfff; if ((len < sizeof (struct ieee80211_frame_min)) || (len > RAL_RXBUF_SIZE)) { RAL_DEBUG(RAL_DBG_RX, "bad frame length=%u\n", len); sc->sc_rx_err++; goto skip; } if ((m = allocb(len, BPRI_MED)) == NULL) { RAL_DEBUG(RAL_DBG_RX, "rt2560_rx_intr():" " allocate mblk failed.\n"); sc->sc_rx_nobuf++; goto skip; } dr_bf = &sc->rxq.dr_rxbuf[sc->rxq.cur]; (void) ddi_dma_sync(dr_bf->dr_hnd, 0, dr_bf->dr_size, DDI_DMA_SYNC_FORCPU); bcopy(rxbuf, m->b_rptr, len); m->b_wptr += len; wh = (struct ieee80211_frame *)m->b_rptr; ni = ieee80211_find_rxnode(ic, wh); /* give rssi to the rate adatation algorithm */ rn = (struct rt2560_node *)ni; ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi); /* send the frame to the 802.11 layer */ (void) ieee80211_input(ic, m, ni, desc->rssi, 0); /* node is no longer needed */ ieee80211_free_node(ni); skip: desc->flags = LE_32(RT2560_RX_BUSY); RAL_DEBUG(RAL_DBG_RX, "rx done idx=%u\n", sc->rxq.cur); sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; } mutex_exit(&sc->rxq.rx_lock); (void) ddi_dma_sync(dr->dr_hnd, 0, count * RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV); } uint_t ral_softint_handler(caddr_t data) { /* LINTED E_BAD_PTR_CAST_ALIGN */ struct rt2560_softc *sc = (struct rt2560_softc *)data; /* * Check if the soft interrupt is triggered by another * driver at the same level. */ RAL_LOCK(sc); if (sc->sc_rx_pend) { sc->sc_rx_pend = 0; RAL_UNLOCK(sc); rt2560_rx_intr(sc); return (DDI_INTR_CLAIMED); } RAL_UNLOCK(sc); return (DDI_INTR_UNCLAIMED); } /* * Return the expected ack rate for a frame transmitted at rate `rate'. * XXX: this should depend on the destination node basic rate set. */ static int rt2560_ack_rate(struct ieee80211com *ic, int rate) { switch (rate) { /* CCK rates */ case 2: return (2); case 4: case 11: case 22: return ((ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate); /* OFDM rates */ case 12: case 18: return (12); case 24: case 36: return (24); case 48: case 72: case 96: case 108: return (48); } /* default to 1Mbps */ return (2); } /* * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. * The function automatically determines the operating mode depending on the * given rate. `flags' indicates whether short preamble is in use or not. */ static uint16_t rt2560_txtime(int len, int rate, uint32_t flags) { uint16_t txtime; if (RAL_RATE_IS_OFDM(rate)) { /* IEEE Std 802.11a-1999, pp. 37 */ txtime = (8 + 4 * len + 3 + rate - 1) / rate; txtime = 16 + 4 + 4 * txtime + 6; } else { /* IEEE Std 802.11b-1999, pp. 28 */ txtime = (16 * len + rate - 1) / rate; if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) txtime += 72 + 24; else txtime += 144 + 48; } return (txtime); } static uint8_t rt2560_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return (0x0); case 4: return (0x1); case 11: return (0x2); case 22: return (0x3); /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return (0xb); case 18: return (0xf); case 24: return (0xa); case 36: return (0xe); case 48: return (0x9); case 72: return (0xd); case 96: return (0x8); case 108: return (0xc); /* unsupported rates (should not get there) */ default: return (0xff); } } void rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, uint32_t flags, int len, int rate, int encrypt) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = LE_32(flags); desc->flags |= LE_32(len << 16); desc->flags |= encrypt ? LE_32(RT2560_TX_CIPHER_BUSY) : LE_32(RT2560_TX_BUSY | RT2560_TX_VALID); desc->wme = LE_16( RT2560_AIFSN(2) | RT2560_LOGCWMIN(3) | RT2560_LOGCWMAX(8)); /* setup PLCP fields */ desc->plcp_signal = rt2560_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (RAL_RATE_IS_OFDM(rate)) { desc->flags |= LE_32(RT2560_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = (16 * len + rate - 1) / rate; if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2560_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } } /* ARGSUSED */ int rt2560_mgmt_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type) { struct rt2560_softc *sc = (struct rt2560_softc *)ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_frame *wh; uint16_t dur; uint32_t flags = 0; int rate, err = DDI_SUCCESS; int off, pktlen, mblen; caddr_t dest; mblk_t *m, *m0; struct dma_region *dr; uint32_t idx; struct ieee80211_node *ni; struct ieee80211_key *k; mutex_enter(&sc->prioq.tx_lock); if (!RAL_IS_RUNNING(sc)) { err = ENXIO; goto fail1; } if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { err = ENOMEM; sc->sc_tx_nobuf++; goto fail1; } m = allocb(msgdsize(mp) + 32, BPRI_MED); if (m == NULL) { RAL_DEBUG(RAL_DBG_TX, "rt2560_mgmt_send: can't alloc mblk.\n"); err = DDI_FAILURE; goto fail1; } for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) { mblen = MBLKL(m0); (void) memcpy(m->b_rptr + off, m0->b_rptr, mblen); off += mblen; } m->b_wptr += off; wh = (struct ieee80211_frame *)m->b_rptr; ni = ieee80211_find_txnode(ic, wh->i_addr1); if (ni == NULL) { err = DDI_FAILURE; sc->sc_tx_err++; goto fail2; } /* to support shared_key auth mode */ if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, m); if (k == NULL) { err = DDI_FAILURE; sc->sc_tx_err++; goto fail3; } /* packet header may have moved, reset our local pointer */ wh = (struct ieee80211_frame *)m->b_rptr; } desc = &sc->prioq.desc[sc->prioq.cur]; data = &sc->prioq.data[sc->prioq.cur]; rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; data->ni = ieee80211_ref_node(ni); pktlen = msgdsize(m); dest = data->buf; bcopy(m->b_rptr, dest, pktlen); wh = (struct ieee80211_frame *)m->b_rptr; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_ACK; dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS; /* LINTED E_BAD_PTR_CAST_ALIGN */ *(uint16_t *)wh->i_dur = LE_16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RT2560_TX_TIMESTAMP; } rt2560_setup_tx_desc(sc, desc, flags, pktlen, rate, 0); idx = sc->prioq.cur; dr = &sc->prioq.dr_txbuf[idx]; (void) ddi_dma_sync(dr->dr_hnd, 0, RAL_TXBUF_SIZE, DDI_DMA_SYNC_FORDEV); dr = &sc->prioq.dr_desc; (void) ddi_dma_sync(dr->dr_hnd, idx * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV); RAL_DEBUG(RAL_DBG_MGMT, "sending mgt frame len=%u idx=%u rate=%u\n", pktlen, sc->prioq.cur, rate); /* kick prio */ sc->prioq.queued++; /* IF > RT2560_PRIO_RING_COUNT? FULL */ sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); sc->sc_tx_timer = 5; ic->ic_stats.is_tx_frags++; ic->ic_stats.is_tx_bytes += pktlen; fail3: ieee80211_free_node(ni); fail2: freemsg(m); fail1: freemsg(mp); mutex_exit(&sc->prioq.tx_lock); return (err); } static int rt2560_send(ieee80211com_t *ic, mblk_t *mp) { struct rt2560_softc *sc = (struct rt2560_softc *)ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct rt2560_node *rn; struct ieee80211_rateset *rs; struct ieee80211_frame *wh; struct ieee80211_key *k; uint16_t dur; uint32_t flags = 0; int rate, err = DDI_SUCCESS; struct ieee80211_node *ni; mblk_t *m, *m0; int off, mblen, pktlen; caddr_t dest; struct dma_region *dr; uint32_t idx; mutex_enter(&sc->txq.tx_lock); if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { RAL_DEBUG(RAL_DBG_TX, "ral: rt2560_tx_data(): " "no TX DMA buffer available!\n"); sc->sc_need_sched = 1; sc->sc_tx_nobuf++; err = ENOMEM; goto fail1; } m = allocb(msgdsize(mp) + 32, BPRI_MED); if (m == NULL) { RAL_DEBUG(RAL_DBG_TX, "rt2560_xmit(): can't alloc mblk.\n"); err = DDI_FAILURE; goto fail1; } for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) { mblen = MBLKL(m0); (void) memcpy(m->b_rptr + off, m0->b_rptr, mblen); off += mblen; } m->b_wptr += off; wh = (struct ieee80211_frame *)m->b_rptr; ni = ieee80211_find_txnode(ic, wh->i_addr1); if (ni == NULL) { err = DDI_FAILURE; sc->sc_tx_err++; goto fail2; } (void) ieee80211_encap(ic, m, ni); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, m); if (k == NULL) { sc->sc_tx_err++; err = DDI_FAILURE; goto fail3; } /* packet header may have moved, reset our local pointer */ wh = (struct ieee80211_frame *)m->b_rptr; } /* * RTS/CTS exchange ignore, since the max packet will less than * the rtsthreshold (2346) * Unnecessary codes deleted. */ data = &sc->txq.data[sc->txq.cur]; desc = &sc->txq.desc[sc->txq.cur]; data->ni = ieee80211_ref_node(ni); pktlen = msgdsize(m); dest = data->buf; bcopy(m->b_rptr, dest, pktlen); if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { rs = &ic->ic_sup_rates[ic->ic_curmode]; rate = rs->ir_rates[ic->ic_fixed_rate]; } else { rs = &ni->in_rates; rn = (struct rt2560_node *)ni; ni->in_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh, pktlen, NULL, 0); rate = rs->ir_rates[ni->in_txrate]; } rate &= IEEE80211_RATE_VAL; if (rate <= 0) { rate = 2; /* basic rate */ } /* remember link conditions for rate adaptation algorithm */ if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { data->id.id_len = pktlen; data->id.id_rateidx = ni->in_txrate; data->id.id_node = ni; data->id.id_rssi = ni->in_rssi; } else data->id.id_node = NULL; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_ACK; dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), ic->ic_flags) + RAL_SIFS; /* LINTED E_BAD_PTR_CAST_ALIGN */ *(uint16_t *)wh->i_dur = LE_16(dur); } /* flags |= RT2560_TX_CIPHER_NONE; */ rt2560_setup_tx_desc(sc, desc, flags, pktlen, rate, 0); idx = sc->txq.cur; dr = &sc->txq.dr_txbuf[idx]; (void) ddi_dma_sync(dr->dr_hnd, 0, RAL_TXBUF_SIZE, DDI_DMA_SYNC_FORDEV); dr = &sc->txq.dr_desc; (void) ddi_dma_sync(dr->dr_hnd, idx * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE, DDI_DMA_SYNC_FORDEV); RAL_DEBUG(RAL_DBG_TX, "sending data frame len=%u idx=%u rate=%u\n", pktlen, sc->txq.cur, rate); /* kick tx */ sc->txq.queued++; sc->txq.cur = (sc->txq.cur + 1) % RT2560_TX_RING_COUNT; RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); sc->sc_tx_timer = 5; ic->ic_stats.is_tx_frags++; ic->ic_stats.is_tx_bytes += pktlen; freemsg(mp); fail3: ieee80211_free_node(ni); fail2: freemsg(m); fail1: mutex_exit(&sc->txq.tx_lock); return (err); } static mblk_t * rt2560_m_tx(void *arg, mblk_t *mp) { struct rt2560_softc *sc = (struct rt2560_softc *)arg; struct ieee80211com *ic = &sc->sc_ic; mblk_t *next; if (!RAL_IS_RUNNING(sc)) { freemsgchain(mp); return (NULL); } /* * No data frames go out unless we're associated; this * should not happen as the 802.11 layer does not enable * the xmit queue until we enter the RUN state. */ if (ic->ic_state != IEEE80211_S_RUN) { RAL_DEBUG(RAL_DBG_TX, "ral: rt2560_m_tx(): " "discard, state %u\n", ic->ic_state); freemsgchain(mp); return (NULL); } while (mp != NULL) { next = mp->b_next; mp->b_next = NULL; if (rt2560_send(ic, mp) != DDI_SUCCESS) { mp->b_next = next; freemsgchain(mp); return (NULL); } mp = next; } return (mp); } static void rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RT2560_CSR3, tmp); tmp = addr[4] | addr[5] << 8; RAL_WRITE(sc, RT2560_CSR4, tmp); RAL_DEBUG(RAL_DBG_HW, "setting MAC address to " MACSTR "\n", MAC2STR(addr)); } static void rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = RAL_READ(sc, RT2560_CSR3); addr[0] = tmp & 0xff; addr[1] = (tmp >> 8) & 0xff; addr[2] = (tmp >> 16) & 0xff; addr[3] = (tmp >> 24); tmp = RAL_READ(sc, RT2560_CSR4); addr[4] = tmp & 0xff; addr[5] = (tmp >> 8) & 0xff; } static void rt2560_update_promisc(struct rt2560_softc *sc) { uint32_t tmp; tmp = RAL_READ(sc, RT2560_RXCSR0); tmp &= ~RT2560_DROP_NOT_TO_ME; if (!(sc->sc_rcr & RAL_RCR_PROMISC)) tmp |= RT2560_DROP_NOT_TO_ME; RAL_WRITE(sc, RT2560_RXCSR0, tmp); RAL_DEBUG(RAL_DBG_HW, "%s promiscuous mode\n", (sc->sc_rcr & RAL_RCR_PROMISC) ? "entering" : "leaving"); } static const char * rt2560_get_rf(int rev) { switch (rev) { case RT2560_RF_2522: return ("RT2522"); case RT2560_RF_2523: return ("RT2523"); case RT2560_RF_2524: return ("RT2524"); case RT2560_RF_2525: return ("RT2525"); case RT2560_RF_2525E: return ("RT2525e"); case RT2560_RF_2526: return ("RT2526"); case RT2560_RF_5222: return ("RT5222"); default: return ("unknown"); } } static void rt2560_read_eeprom(struct rt2560_softc *sc) { uint16_t val; int i; val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read default values for BBP registers */ for (i = 0; i < 16; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; } /* read Tx power for all b/g channels */ for (i = 0; i < 14 / 2; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); sc->txpow[i * 2] = val >> 8; sc->txpow[i * 2 + 1] = val & 0xff; } } static int rt2560_bbp_init(struct rt2560_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) break; drv_usecwait(1); } if (ntries == 100) { RAL_DEBUG(RAL_DBG_HW, "timeout waiting for BBP\n"); return (EIO); } /* initialize BBP registers to default values */ for (i = 0; i < N(rt2560_def_bbp); i++) { rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, rt2560_def_bbp[i].val); } return (0); #undef N } static void rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) { uint32_t tmp; uint8_t tx; tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) tx |= RT2560_BBP_ANTA; else if (antenna == 2) tx |= RT2560_BBP_ANTB; else tx |= RT2560_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || sc->rf_rev == RT2560_RF_5222) tx |= RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_TX, tx); /* update values for CCK and OFDM in BBPCSR1 */ tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; tmp |= (tx & 0x7) << 16 | (tx & 0x7); RAL_WRITE(sc, RT2560_BBPCSR1, tmp); } static void rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) { uint8_t rx; rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) rx |= RT2560_BBP_ANTA; else if (antenna == 2) rx |= RT2560_BBP_ANTB; else rx |= RT2560_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) rx &= ~RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_RX, rx); } static void rt2560_stop(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); ieee80211_stop_watchdog(ic); /* stop the watchdog */ RAL_LOCK(sc); sc->sc_tx_timer = 0; /* abort Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); /* disable Rx */ RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); /* reset ASIC (imply reset BBP) */ RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); /* reset Tx and Rx rings */ rt2560_reset_tx_ring(sc, &sc->txq); rt2560_reset_tx_ring(sc, &sc->prioq); rt2560_reset_rx_ring(sc, &sc->rxq); RAL_UNLOCK(sc); } static int rt2560_init(struct rt2560_softc *sc) { #define N(a) (sizeof (a) / sizeof ((a)[0])) /* struct rt2560_softc *sc = priv; */ struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int i; rt2560_stop(sc); RAL_LOCK(sc); /* setup tx/rx ring */ rt2560_ring_hwsetup(sc); /* initialize MAC registers to default values */ for (i = 0; i < N(rt2560_def_mac); i++) RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); rt2560_set_macaddr(sc, ic->ic_macaddr); /* set basic rate set (will be updated later) */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); rt2560_set_txantenna(sc, sc->tx_ant); rt2560_set_rxantenna(sc, sc->rx_ant); rt2560_update_slot(ic, 1); rt2560_update_plcp(sc); rt2560_update_led(sc, 0, 0); RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); if (rt2560_bbp_init(sc) != 0) { RAL_UNLOCK(sc); rt2560_stop(sc); return (DDI_FAILURE); } /* set default BSS channel */ rt2560_set_chan(sc, ic->ic_curchan); /* kick Rx */ tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2560_DROP_TODS; if (!(sc->sc_rcr & RAL_RCR_PROMISC)) tmp |= RT2560_DROP_NOT_TO_ME; } RAL_WRITE(sc, RT2560_RXCSR0, tmp); /* clear old FCS and Rx FIFO errors */ (void) RAL_READ(sc, RT2560_CNT0); (void) RAL_READ(sc, RT2560_CNT4); /* clear any pending interrupts */ RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); RAL_UNLOCK(sc); #undef N return (DDI_SUCCESS); } void rt2560_watchdog(void *arg) { struct rt2560_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int ntimer = 0; RAL_LOCK(sc); ic->ic_watchdog_timer = 0; if (!RAL_IS_RUNNING(sc)) { RAL_UNLOCK(sc); return; } if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { RAL_DEBUG(RAL_DBG_MSG, "tx timer timeout\n"); RAL_UNLOCK(sc); (void) rt2560_init(sc); (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); return; } } if (ic->ic_state == IEEE80211_S_RUN) ntimer = 1; RAL_UNLOCK(sc); ieee80211_watchdog(ic); if (ntimer) ieee80211_start_watchdog(ic, ntimer); } static int rt2560_m_start(void *arg) { struct rt2560_softc *sc = (struct rt2560_softc *)arg; crypto_mech_type_t type; int err; type = crypto_mech2id(SUN_CKM_RC4); /* load rc4 module into kernel */ RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_m_start(%d)\n", type); /* * initialize rt2560 hardware */ err = rt2560_init(sc); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "device configuration failed\n"); goto fail; } sc->sc_flags |= RAL_FLAG_RUNNING; /* RUNNING */ return (err); fail: rt2560_stop(sc); return (err); } static void rt2560_m_stop(void *arg) { struct rt2560_softc *sc = (struct rt2560_softc *)arg; RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_m_stop()\n"); (void) rt2560_stop(sc); sc->sc_flags &= ~RAL_FLAG_RUNNING; /* STOP */ } static int rt2560_m_unicst(void *arg, const uint8_t *macaddr) { struct rt2560_softc *sc = (struct rt2560_softc *)arg; struct ieee80211com *ic = &sc->sc_ic; RAL_DEBUG(RAL_DBG_GLD, "rt2560_m_unicst(): " MACSTR "\n", MAC2STR(macaddr)); IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr); (void) rt2560_set_macaddr(sc, (uint8_t *)macaddr); (void) rt2560_init(sc); return (0); } /*ARGSUSED*/ static int rt2560_m_multicst(void *arg, boolean_t add, const uint8_t *mca) { return (0); } static int rt2560_m_promisc(void *arg, boolean_t on) { struct rt2560_softc *sc = (struct rt2560_softc *)arg; RAL_DEBUG(RAL_DBG_GLD, "rt2560_m_promisc()\n"); if (on) { sc->sc_rcr |= RAL_RCR_PROMISC; sc->sc_rcr |= RAL_RCR_MULTI; } else { sc->sc_rcr &= ~RAL_RCR_PROMISC; sc->sc_rcr &= ~RAL_RCR_PROMISC; } rt2560_update_promisc(sc); return (0); } /* * callback functions for /get/set properties */ static int rt2560_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf) { struct rt2560_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int err; err = ieee80211_setprop(ic, pr_name, wldp_pr_num, wldp_length, wldp_buf); RAL_LOCK(sc); if (err == ENETRESET) { if (RAL_IS_RUNNING(sc)) { RAL_UNLOCK(sc); (void) rt2560_init(sc); (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); RAL_LOCK(sc); } err = 0; } RAL_UNLOCK(sc); return (err); } static int rt2560_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm) { struct rt2560_softc *sc = arg; int err; err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_num, pr_flags, wldp_length, wldp_buf, perm); return (err); } static void rt2560_m_ioctl(void* arg, queue_t *wq, mblk_t *mp) { struct rt2560_softc *sc = (struct rt2560_softc *)arg; struct ieee80211com *ic = &sc->sc_ic; int err; err = ieee80211_ioctl(ic, wq, mp); RAL_LOCK(sc); if (err == ENETRESET) { if (RAL_IS_RUNNING(sc)) { RAL_UNLOCK(sc); (void) rt2560_init(sc); (void) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); RAL_LOCK(sc); } } RAL_UNLOCK(sc); } static int rt2560_m_stat(void *arg, uint_t stat, uint64_t *val) { struct rt2560_softc *sc = (struct rt2560_softc *)arg; ieee80211com_t *ic = &sc->sc_ic; ieee80211_node_t *ni = ic->ic_bss; struct ieee80211_rateset *rs = &ni->in_rates; RAL_LOCK(sc); switch (stat) { case MAC_STAT_IFSPEED: *val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ? (rs->ir_rates[ni->in_txrate] & IEEE80211_RATE_VAL) : ic->ic_fixed_rate) / 2 * 1000000; break; case MAC_STAT_NOXMTBUF: *val = sc->sc_tx_nobuf; break; case MAC_STAT_NORCVBUF: *val = sc->sc_rx_nobuf; break; case MAC_STAT_IERRORS: *val = sc->sc_rx_err; break; case MAC_STAT_RBYTES: *val = ic->ic_stats.is_rx_bytes; break; case MAC_STAT_IPACKETS: *val = ic->ic_stats.is_rx_frags; break; case MAC_STAT_OBYTES: *val = ic->ic_stats.is_tx_bytes; break; case MAC_STAT_OPACKETS: *val = ic->ic_stats.is_tx_frags; break; case MAC_STAT_OERRORS: case WIFI_STAT_TX_FAILED: *val = sc->sc_tx_err; break; case WIFI_STAT_TX_RETRANS: *val = sc->sc_tx_retries; break; case WIFI_STAT_FCS_ERRORS: case WIFI_STAT_WEP_ERRORS: case WIFI_STAT_TX_FRAGS: case WIFI_STAT_MCAST_TX: case WIFI_STAT_RTS_SUCCESS: case WIFI_STAT_RTS_FAILURE: case WIFI_STAT_ACK_FAILURE: case WIFI_STAT_RX_FRAGS: case WIFI_STAT_MCAST_RX: case WIFI_STAT_RX_DUPS: RAL_UNLOCK(sc); return (ieee80211_stat(ic, stat, val)); default: RAL_UNLOCK(sc); return (ENOTSUP); } RAL_UNLOCK(sc); return (0); } static uint_t rt2560_intr(caddr_t arg) { /* LINTED E_BAD_PTR_CAST_ALIGN */ struct rt2560_softc *sc = (struct rt2560_softc *)arg; uint32_t r; RAL_LOCK(sc); if (!RAL_IS_RUNNING(sc)) { /* * The hardware is not ready/present, don't touch anything. * Note this can happen early on if the IRQ is shared. */ RAL_UNLOCK(sc); return (DDI_INTR_UNCLAIMED); } r = RAL_READ(sc, RT2560_CSR7); RAL_WRITE(sc, RT2560_CSR7, r); if (r == 0xffffffff) { RAL_UNLOCK(sc); return (DDI_INTR_UNCLAIMED); } if (!(r & RT2560_INTR_ALL)) { RAL_UNLOCK(sc); return (DDI_INTR_UNCLAIMED); } /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); if (r & RT2560_TX_DONE) { RAL_UNLOCK(sc); rt2560_tx_intr(sc); RAL_LOCK(sc); } if (r & RT2560_PRIO_DONE) { RAL_UNLOCK(sc); rt2560_prio_intr(sc); RAL_LOCK(sc); } if (r & RT2560_RX_DONE) { sc->sc_rx_pend = 1; ddi_trigger_softintr(sc->sc_softint_id); } /* re-enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); RAL_UNLOCK(sc); return (DDI_INTR_CLAIMED); } /* * quiesce(9E) entry point. * * This function is called when the system is single-threaded at high * PIL with preemption disabled. Therefore, this function must not be * blocked. * * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. * DDI_FAILURE indicates an error condition and should almost never happen. */ static int32_t rt2560_quiesce(dev_info_t *devinfo) { struct rt2560_softc *sc; sc = ddi_get_soft_state(ral_soft_state_p, ddi_get_instance(devinfo)); if (sc == NULL) return (DDI_FAILURE); /* abort Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); /* disable Rx */ RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); /* reset ASIC (imply reset BBP) */ RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); return (DDI_SUCCESS); } static int rt2560_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) { struct rt2560_softc *sc; struct ieee80211com *ic; int err, i; int instance; ddi_acc_handle_t ioh; caddr_t regs; uint16_t vendor_id, device_id, command; uint8_t cachelsz; char strbuf[32]; wifi_data_t wd = { 0 }; mac_register_t *macp; RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_attach()\n"); switch (cmd) { case DDI_ATTACH: break; case DDI_RESUME: sc = ddi_get_soft_state(ral_soft_state_p, ddi_get_instance(devinfo)); sc->sc_flags &= ~RAL_FLAG_SUSPENDING; if (RAL_IS_INITED(sc)) (void) rt2560_init(sc); RAL_DEBUG(RAL_DBG_SUSPEND, "ral resume ...\n"); return (DDI_SUCCESS); default: return (DDI_FAILURE); } instance = ddi_get_instance(devinfo); if (ddi_soft_state_zalloc(ral_soft_state_p, instance) != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "unable to alloc soft_state_p\n"); return (DDI_FAILURE); } sc = ddi_get_soft_state(ral_soft_state_p, instance); ic = (ieee80211com_t *)&sc->sc_ic; sc->sc_dev = devinfo; /* pci configuration */ err = ddi_regs_map_setup(devinfo, 0, ®s, 0, 0, &ral_csr_accattr, &ioh); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "ddi_regs_map_setup() failed"); goto fail1; } cachelsz = ddi_get8(ioh, (uint8_t *)(regs + PCI_CONF_CACHE_LINESZ)); if (cachelsz == 0) cachelsz = 0x10; sc->sc_cachelsz = cachelsz << 2; vendor_id = ddi_get16(ioh, (uint16_t *)((uintptr_t)regs + PCI_CONF_VENID)); device_id = ddi_get16(ioh, (uint16_t *)((uintptr_t)regs + PCI_CONF_DEVID)); RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): vendor 0x%x, " "device id 0x%x, cache size %d\n", vendor_id, device_id, cachelsz); /* * Enable response to memory space accesses, * and enabe bus master. */ command = PCI_COMM_MAE | PCI_COMM_ME; ddi_put16(ioh, (uint16_t *)((uintptr_t)regs + PCI_CONF_COMM), command); RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "set command reg to 0x%x \n", command); ddi_put8(ioh, (uint8_t *)(regs + PCI_CONF_LATENCY_TIMER), 0xa8); ddi_put8(ioh, (uint8_t *)(regs + PCI_CONF_ILINE), 0x10); ddi_regs_map_free(&ioh); /* pci i/o space */ err = ddi_regs_map_setup(devinfo, 1, &sc->sc_rbase, 0, 0, &ral_csr_accattr, &sc->sc_ioh); RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "regs map1 = %x err=%d\n", regs, err); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "ddi_regs_map_setup() failed"); goto fail1; } /* initialize the ral rate */ ral_rate_init(); /* retrieve RT2560 rev. no */ sc->asic_rev = RAL_READ(sc, RT2560_CSR0); /* retrieve MAC address */ rt2560_get_macaddr(sc, ic->ic_macaddr); /* retrieve RF rev. no and various other things from EEPROM */ rt2560_read_eeprom(sc); RAL_DEBUG(RAL_DBG_GLD, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->asic_rev, rt2560_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ err = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "could not allocate Tx ring\n"); goto fail2; } err = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "could not allocate Prio ring\n"); goto fail3; } err = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "could not allocate Rx ring\n"); goto fail4; } mutex_init(&sc->sc_genlock, NULL, MUTEX_DRIVER, NULL); mutex_init(&sc->txq.tx_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&sc->prioq.tx_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&sc->rxq.rx_lock, NULL, MUTEX_DRIVER, NULL); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; ic->ic_maxrssi = 63; ic->ic_set_shortslot = rt2560_update_slot; ic->ic_xmit = rt2560_mgmt_send; /* set device capabilities */ ic->ic_caps = IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT; /* short slot time supported */ ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */ #define IEEE80211_CHAN_A \ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM) if (sc->rf_rev == RT2560_RF_5222) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; } for (i = 100; i <= 140; i += 4) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 161; i += 4) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_sup_channels[i].ich_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_sup_channels[i].ich_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ieee80211_attach(ic); /* register WPA door */ ieee80211_register_door(ic, ddi_driver_name(devinfo), ddi_get_instance(devinfo)); ic->ic_node_alloc = rt2560_node_alloc; ic->ic_node_free = rt2560_node_free; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = rt2560_newstate; ic->ic_watchdog = rt2560_watchdog; ieee80211_media_init(ic); ic->ic_def_txkey = 0; sc->sc_rcr = 0; sc->sc_rx_pend = 0; sc->dwelltime = 300; sc->sc_flags &= ~RAL_FLAG_RUNNING; err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &sc->sc_softint_id, NULL, 0, ral_softint_handler, (caddr_t)sc); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "ddi_add_softintr() failed"); goto fail5; } err = ddi_get_iblock_cookie(devinfo, 0, &sc->sc_iblock); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "Can not get iblock cookie for INT\n"); goto fail6; } err = ddi_add_intr(devinfo, 0, NULL, NULL, rt2560_intr, (caddr_t)sc); if (err != DDI_SUCCESS) { RAL_DEBUG(RAL_DBG_GLD, "unable to add device interrupt handler\n"); goto fail6; } /* * Provide initial settings for the WiFi plugin; whenever this * information changes, we need to call mac_plugindata_update() */ wd.wd_opmode = ic->ic_opmode; wd.wd_secalloc = WIFI_SEC_NONE; IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid); if ((macp = mac_alloc(MAC_VERSION)) == NULL) { RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "MAC version mismatch\n"); goto fail7; } macp->m_type_ident = MAC_PLUGIN_IDENT_WIFI; macp->m_driver = sc; macp->m_dip = devinfo; macp->m_src_addr = ic->ic_macaddr; macp->m_callbacks = &rt2560_m_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = IEEE80211_MTU; macp->m_pdata = &wd; macp->m_pdata_size = sizeof (wd); err = mac_register(macp, &ic->ic_mach); mac_free(macp); if (err != 0) { RAL_DEBUG(RAL_DBG_GLD, "ral: rt2560_attach(): " "mac_register err %x\n", err); goto fail7; } /* * Create minor node of type DDI_NT_NET_WIFI */ (void) snprintf(strbuf, sizeof (strbuf), "%s%d", "ral", instance); err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR, instance + 1, DDI_NT_NET_WIFI, 0); if (err != DDI_SUCCESS) RAL_DEBUG(RAL_DBG_GLD, "ddi_create_minor_node() failed\n"); /* * Notify link is down now */ mac_link_update(ic->ic_mach, LINK_STATE_DOWN); RAL_DEBUG(RAL_DBG_GLD, "rt2560_attach() exit successfully.\n"); return (DDI_SUCCESS); fail7: ddi_remove_intr(devinfo, 0, sc->sc_iblock); fail6: ddi_remove_softintr(sc->sc_softint_id); fail5: mutex_destroy(&sc->sc_genlock); mutex_destroy(&sc->txq.tx_lock); mutex_destroy(&sc->prioq.tx_lock); mutex_destroy(&sc->rxq.rx_lock); rt2560_free_rx_ring(sc, &sc->rxq); fail4: rt2560_free_tx_ring(sc, &sc->prioq); fail3: rt2560_free_tx_ring(sc, &sc->txq); fail2: ddi_regs_map_free(&sc->sc_ioh); fail1: ddi_soft_state_free(ral_soft_state_p, ddi_get_instance(devinfo)); return (DDI_FAILURE); } static int rt2560_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) { struct rt2560_softc *sc; RAL_DEBUG(RAL_DBG_GLD, "enter rt2560_detach()\n"); sc = ddi_get_soft_state(ral_soft_state_p, ddi_get_instance(devinfo)); switch (cmd) { case DDI_DETACH: break; case DDI_SUSPEND: if (RAL_IS_INITED(sc)) (void) rt2560_stop(sc); sc->sc_flags |= RAL_FLAG_SUSPENDING; RAL_DEBUG(RAL_DBG_SUSPEND, "ral suspend ...\n"); return (DDI_SUCCESS); default: return (DDI_FAILURE); } if (mac_disable(sc->sc_ic.ic_mach) != 0) return (DDI_FAILURE); rt2560_stop(sc); /* * Unregister from the MAC layer subsystem */ (void) mac_unregister(sc->sc_ic.ic_mach); ddi_remove_intr(devinfo, 0, sc->sc_iblock); ddi_remove_softintr(sc->sc_softint_id); /* * detach ieee80211 layer */ ieee80211_detach(&sc->sc_ic); rt2560_free_tx_ring(sc, &sc->txq); rt2560_free_tx_ring(sc, &sc->prioq); rt2560_free_rx_ring(sc, &sc->rxq); ddi_regs_map_free(&sc->sc_ioh); mutex_destroy(&sc->sc_genlock); mutex_destroy(&sc->txq.tx_lock); mutex_destroy(&sc->prioq.tx_lock); mutex_destroy(&sc->rxq.rx_lock); ddi_remove_minor_node(devinfo, NULL); ddi_soft_state_free(ral_soft_state_p, ddi_get_instance(devinfo)); return (DDI_SUCCESS); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } int _init(void) { int status; status = ddi_soft_state_init(&ral_soft_state_p, sizeof (struct rt2560_softc), 1); if (status != 0) return (status); mac_init_ops(&ral_dev_ops, "ral"); status = mod_install(&modlinkage); if (status != 0) { mac_fini_ops(&ral_dev_ops); ddi_soft_state_fini(&ral_soft_state_p); } return (status); } int _fini(void) { int status; status = mod_remove(&modlinkage); if (status == 0) { mac_fini_ops(&ral_dev_ops); ddi_soft_state_fini(&ral_soft_state_p); } return (status); }