/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include static void nxge_crc32c_word(uint32_t *crcptr, const uint32_t *buf, int len); /* * The crc32c algorithms are taken from sctp_crc32 implementation * common/inet/sctp_crc32.{c,h} * */ /* * Fast CRC32C calculation algorithm. The basic idea is to look at it * four bytes (one word) at a time, using four tables. The * standard algorithm in RFC 3309 uses one table. */ /* * SCTP uses reflected/reverse polynomial CRC32 with generating * polynomial 0x1EDC6F41L */ #define SCTP_POLY 0x1EDC6F41L /* CRC-CCITT Polynomial */ #define CRC_CCITT_POLY 0x1021 /* The four CRC32c tables. */ static uint32_t crc32c_tab[4][256]; /* The four CRC-CCITT tables. */ static uint16_t crc_ccitt_tab[4][256]; /* the four tables for H1 Computation */ static uint32_t h1table[4][256]; #define CRC_32C_POLY 0x1EDC6F41L #define COMPUTE_H1_BYTE(crc, data) \ (crc = (crc<<8)^h1table[0][((crc >> 24) ^data) & 0xff]) static uint32_t reflect_32(uint32_t b) { int i; uint32_t rw = 0; for (i = 0; i < 32; i++) { if (b & 1) { rw |= 1 << (31 - i); } b >>= 1; } return (rw); } static uint32_t flip32(uint32_t w) { return (((w >> 24) | ((w >> 8) & 0xff00) | ((w << 8) & 0xff0000) | (w << 24))); } /* * reference crc-ccitt implementation */ uint16_t crc_ccitt(uint16_t crcin, uint8_t data) { uint16_t mcrc, crc = 0, bits = 0; mcrc = (((crcin >> 8) ^ data) & 0xff) << 8; for (bits = 0; bits < 8; bits++) { crc = ((crc ^ mcrc) & 0x8000) ? (crc << 1) ^ CRC_CCITT_POLY : crc << 1; mcrc <<= 1; } return ((crcin << 8) ^ crc); } /* * Initialize the crc32c tables. */ void nxge_crc32c_init(void) { uint32_t index, bit, byte, crc; for (index = 0; index < 256; index++) { crc = reflect_32(index); for (byte = 0; byte < 4; byte++) { for (bit = 0; bit < 8; bit++) { crc = (crc & 0x80000000) ? (crc << 1) ^ SCTP_POLY : crc << 1; } #ifdef _BIG_ENDIAN crc32c_tab[3 - byte][index] = flip32(reflect_32(crc)); #else crc32c_tab[byte][index] = reflect_32(crc); #endif } } } /* * Initialize the crc-ccitt tables. */ void nxge_crc_ccitt_init(void) { uint16_t crc; uint16_t index, bit, byte; for (index = 0; index < 256; index++) { crc = index << 8; for (byte = 0; byte < 4; byte++) { for (bit = 0; bit < 8; bit++) { crc = (crc & 0x8000) ? (crc << 1) ^ CRC_CCITT_POLY : crc << 1; } #ifdef _BIG_ENDIAN crc_ccitt_tab[3 - byte][index] = crc; #else crc_ccitt_tab[byte][index] = crc; #endif } } } /* * Lookup the crc32c for a byte stream */ static void nxge_crc32c_byte(uint32_t *crcptr, const uint8_t *buf, int len) { uint32_t crc; int i; crc = *crcptr; for (i = 0; i < len; i++) { #ifdef _BIG_ENDIAN crc = (crc << 8) ^ crc32c_tab[3][buf[i] ^ (crc >> 24)]; #else crc = (crc >> 8) ^ crc32c_tab[0][buf[i] ^ (crc & 0xff)]; #endif } *crcptr = crc; } /* * Lookup the crc-ccitt for a byte stream */ static void nxge_crc_ccitt_byte(uint16_t *crcptr, const uint8_t *buf, int len) { uint16_t crc; int i; crc = *crcptr; for (i = 0; i < len; i++) { #ifdef _BIG_ENDIAN crc = (crc << 8) ^ crc_ccitt_tab[3][buf[i] ^ (crc >> 8)]; #else crc = (crc << 8) ^ crc_ccitt_tab[0][buf[i] ^ (crc >> 8)]; #endif } *crcptr = crc; } /* * Lookup the crc32c for a 32 bit word stream * Lookup is done fro the 4 bytes in parallel * from the tables computed earlier * */ static void nxge_crc32c_word(uint32_t *crcptr, const uint32_t *buf, int len) { uint32_t w, crc; int i; crc = *crcptr; for (i = 0; i < len; i++) { w = crc ^ buf[i]; crc = crc32c_tab[0][w >> 24] ^ crc32c_tab[1][(w >> 16) & 0xff] ^ crc32c_tab[2][(w >> 8) & 0xff] ^ crc32c_tab[3][w & 0xff]; } *crcptr = crc; } /* * Lookup the crc-ccitt for a stream of bytes * * Since the parallel lookup version doesn't work yet, * use the byte stream version (lookup crc for a byte * at a time * */ uint16_t nxge_crc_ccitt(uint16_t crc16, const uint8_t *buf, int len) { nxge_crc_ccitt_byte(&crc16, buf, len); return (crc16); } /* * Lookup the crc32c for a stream of bytes * * Tries to lookup the CRC on 4 byte words * If the buffer is not 4 byte aligned, first compute * with byte lookup until aligned. Then compute crc * for each 4 bytes. If there are bytes left at the end of * the buffer, then perform a byte lookup for the remaining bytes * * */ uint32_t nxge_crc32c(uint32_t crc32, const uint8_t *buf, int len) { int rem; rem = 4 - ((uintptr_t)buf) & 3; if (rem != 0) { if (len < rem) { rem = len; } nxge_crc32c_byte(&crc32, buf, rem); buf = buf + rem; len = len - rem; } if (len > 3) { nxge_crc32c_word(&crc32, (const uint32_t *) buf, len / 4); } rem = len & 3; if (rem != 0) { nxge_crc32c_byte(&crc32, buf + len - rem, rem); } return (crc32); } void nxge_init_h1_table() { uint32_t crc, bit, byte, index; for (index = 0; index < 256; index++) { crc = index << 24; for (byte = 0; byte < 4; byte++) { for (bit = 0; bit < 8; bit++) { crc = ((crc & 0x80000000)) ? (crc << 1) ^ CRC_32C_POLY : crc << 1; } h1table[byte][index] = crc; } } } /* * Reference Neptune H1 computation function * * It is a slightly modified implementation of * CRC-32C implementation */ uint32_t nxge_compute_h1_serial(uint32_t init_value, uint32_t *flow, uint32_t len) { int bit, byte; uint32_t crc_h1 = init_value; uint8_t *buf; buf = (uint8_t *)flow; for (byte = 0; byte < len; byte++) { for (bit = 0; bit < 8; bit++) { crc_h1 = (((crc_h1 >> 24) & 0x80) ^ ((buf[byte] << bit) & 0x80)) ? (crc_h1 << 1) ^ CRC_32C_POLY : crc_h1 << 1; } } return (crc_h1); } /* * table based implementation * uses 4 four tables in parallel * 1 for each byte of a 32 bit word * * This is the default h1 computing function * */ uint32_t nxge_compute_h1_table4(uint32_t crcin, uint32_t *flow, uint32_t length) { uint32_t w, fw, i, crch1 = crcin; uint32_t *buf; buf = (uint32_t *)flow; for (i = 0; i < length / 4; i++) { #ifdef _BIG_ENDIAN fw = buf[i]; #else fw = flip32(buf[i]); fw = buf[i]; #endif w = crch1 ^ fw; crch1 = h1table[3][w >> 24] ^ h1table[2][(w >> 16) & 0xff] ^ h1table[1][(w >> 8) & 0xff] ^ h1table[0][w & 0xff]; } return (crch1); } /* * table based implementation * uses a single table and computes h1 for a byte * at a time. * */ uint32_t nxge_compute_h1_table1(uint32_t crcin, uint32_t *flow, uint32_t length) { uint32_t i, crch1, tmp = crcin; uint8_t *buf; buf = (uint8_t *)flow; tmp = crcin; crch1 = 0; for (i = 0; i < length; i++) { crch1 = COMPUTE_H1_BYTE(tmp, buf[i]); tmp = crch1; } return (crch1); }