/* * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. */ /* * Copyright 2016 Nexenta Systems, Inc. All rights reserved. * Copyright 2016 Tegile Systems, Inc. All rights reserved. * Copyright (c) 2016 The MathWorks, Inc. All rights reserved. */ /* * blkdev driver for NVMe compliant storage devices * * This driver was written to conform to version 1.1b of the NVMe specification. * It may work with newer versions, but that is completely untested and disabled * by default. * * The driver has only been tested on x86 systems and will not work on big- * endian systems without changes to the code accessing registers and data * structures used by the hardware. * * * Interrupt Usage: * * The driver will use a FIXED interrupt while configuring the device as the * specification requires. Later in the attach process it will switch to MSI-X * or MSI if supported. The driver wants to have one interrupt vector per CPU, * but it will work correctly if less are available. Interrupts can be shared * by queues, the interrupt handler will iterate through the I/O queue array by * steps of n_intr_cnt. Usually only the admin queue will share an interrupt * with one I/O queue. The interrupt handler will retrieve completed commands * from all queues sharing an interrupt vector and will post them to a taskq * for completion processing. * * * Command Processing: * * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up * to 65536 I/O commands. The driver will configure one I/O queue pair per * available interrupt vector, with the queue length usually much smaller than * the maximum of 65536. If the hardware doesn't provide enough queues, fewer * interrupt vectors will be used. * * Additionally the hardware provides a single special admin queue pair that can * hold up to 4096 admin commands. * * From the hardware perspective both queues of a queue pair are independent, * but they share some driver state: the command array (holding pointers to * commands currently being processed by the hardware) and the active command * counter. Access to the submission side of a queue pair and the shared state * is protected by nq_mutex. The completion side of a queue pair does not need * that protection apart from its access to the shared state; it is called only * in the interrupt handler which does not run concurrently for the same * interrupt vector. * * When a command is submitted to a queue pair the active command counter is * incremented and a pointer to the command is stored in the command array. The * array index is used as command identifier (CID) in the submission queue * entry. Some commands may take a very long time to complete, and if the queue * wraps around in that time a submission may find the next array slot to still * be used by a long-running command. In this case the array is sequentially * searched for the next free slot. The length of the command array is the same * as the configured queue length. * * * Namespace Support: * * NVMe devices can have multiple namespaces, each being a independent data * store. The driver supports multiple namespaces and creates a blkdev interface * for each namespace found. Namespaces can have various attributes to support * thin provisioning and protection information. This driver does not support * any of this and ignores namespaces that have these attributes. * * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier * (EUI64). This driver uses the EUI64 if present to generate the devid and * passes it to blkdev to use it in the device node names. As this is currently * untested namespaces with EUI64 are ignored by default. * * * Blkdev Interface: * * This driver uses blkdev to do all the heavy lifting involved with presenting * a disk device to the system. As a result, the processing of I/O requests is * relatively simple as blkdev takes care of partitioning, boundary checks, DMA * setup, and splitting of transfers into manageable chunks. * * I/O requests coming in from blkdev are turned into NVM commands and posted to * an I/O queue. The queue is selected by taking the CPU id modulo the number of * queues. There is currently no timeout handling of I/O commands. * * Blkdev also supports querying device/media information and generating a * devid. The driver reports the best block size as determined by the namespace * format back to blkdev as physical block size to support partition and block * alignment. The devid is either based on the namespace EUI64, if present, or * composed using the device vendor ID, model number, serial number, and the * namespace ID. * * * Error Handling: * * Error handling is currently limited to detecting fatal hardware errors, * either by asynchronous events, or synchronously through command status or * admin command timeouts. In case of severe errors the device is fenced off, * all further requests will return EIO. FMA is then called to fault the device. * * The hardware has a limit for outstanding asynchronous event requests. Before * this limit is known the driver assumes it is at least 1 and posts a single * asynchronous request. Later when the limit is known more asynchronous event * requests are posted to allow quicker reception of error information. When an * asynchronous event is posted by the hardware the driver will parse the error * status fields and log information or fault the device, depending on the * severity of the asynchronous event. The asynchronous event request is then * reused and posted to the admin queue again. * * On command completion the command status is checked for errors. In case of * errors indicating a driver bug the driver panics. Almost all other error * status values just cause EIO to be returned. * * Command timeouts are currently detected for all admin commands except * asynchronous event requests. If a command times out and the hardware appears * to be healthy the driver attempts to abort the command. If this fails the * driver assumes the device to be dead, fences it off, and calls FMA to retire * it. In general admin commands are issued at attach time only. No timeout * handling of normal I/O commands is presently done. * * In some cases it may be possible that the ABORT command times out, too. In * that case the device is also declared dead and fenced off. * * * Quiesce / Fast Reboot: * * The driver currently does not support fast reboot. A quiesce(9E) entry point * is still provided which is used to send a shutdown notification to the * device. * * * Driver Configuration: * * The following driver properties can be changed to control some aspects of the * drivers operation: * - strict-version: can be set to 0 to allow devices conforming to newer * versions or namespaces with EUI64 to be used * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor * specific command status as a fatal error leading device faulting * - admin-queue-len: the maximum length of the admin queue (16-4096) * - io-queue-len: the maximum length of the I/O queues (16-65536) * - async-event-limit: the maximum number of asynchronous event requests to be * posted by the driver * - volatile-write-cache-enable: can be set to 0 to disable the volatile write * cache * - min-phys-block-size: the minimum physical block size to report to blkdev, * which is among other things the basis for ZFS vdev ashift * * * TODO: * - figure out sane default for I/O queue depth reported to blkdev * - polled I/O support to support kernel core dumping * - FMA handling of media errors * - support for devices supporting very large I/O requests using chained PRPs * - support for querying log pages from user space * - support for configuring hardware parameters like interrupt coalescing * - support for media formatting and hard partitioning into namespaces * - support for big-endian systems * - support for fast reboot * - support for firmware updates * - support for NVMe Subsystem Reset (1.1) * - support for Scatter/Gather lists (1.1) * - support for Reservations (1.1) * - support for power management */ #include #ifdef _BIG_ENDIAN #error nvme driver needs porting for big-endian platforms #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __x86 #include #endif #include "nvme_reg.h" #include "nvme_var.h" /* NVMe spec version supported */ static const int nvme_version_major = 1; static const int nvme_version_minor = 1; /* tunable for admin command timeout in seconds, default is 1s */ static volatile int nvme_admin_cmd_timeout = 1; static int nvme_attach(dev_info_t *, ddi_attach_cmd_t); static int nvme_detach(dev_info_t *, ddi_detach_cmd_t); static int nvme_quiesce(dev_info_t *); static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *); static int nvme_setup_interrupts(nvme_t *, int, int); static void nvme_release_interrupts(nvme_t *); static uint_t nvme_intr(caddr_t, caddr_t); static void nvme_shutdown(nvme_t *, int, boolean_t); static boolean_t nvme_reset(nvme_t *, boolean_t); static int nvme_init(nvme_t *); static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int); static void nvme_free_cmd(nvme_cmd_t *); static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t, bd_xfer_t *); static int nvme_admin_cmd(nvme_cmd_t *, int); static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *); static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *); static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t); static void nvme_wakeup_cmd(void *); static void nvme_async_event_task(void *); static int nvme_check_unknown_cmd_status(nvme_cmd_t *); static int nvme_check_vendor_cmd_status(nvme_cmd_t *); static int nvme_check_integrity_cmd_status(nvme_cmd_t *); static int nvme_check_specific_cmd_status(nvme_cmd_t *); static int nvme_check_generic_cmd_status(nvme_cmd_t *); static inline int nvme_check_cmd_status(nvme_cmd_t *); static void nvme_abort_cmd(nvme_cmd_t *); static int nvme_async_event(nvme_t *); static void *nvme_get_logpage(nvme_t *, uint8_t, ...); static void *nvme_identify(nvme_t *, uint32_t); static boolean_t nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t, uint32_t *); static boolean_t nvme_write_cache_set(nvme_t *, boolean_t); static int nvme_set_nqueues(nvme_t *, uint16_t); static void nvme_free_dma(nvme_dma_t *); static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *, nvme_dma_t **); static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t, nvme_dma_t **); static void nvme_free_qpair(nvme_qpair_t *); static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int); static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t); static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t); static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t); static inline uint64_t nvme_get64(nvme_t *, uintptr_t); static inline uint32_t nvme_get32(nvme_t *, uintptr_t); static boolean_t nvme_check_regs_hdl(nvme_t *); static boolean_t nvme_check_dma_hdl(nvme_dma_t *); static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *); static void nvme_bd_xfer_done(void *); static void nvme_bd_driveinfo(void *, bd_drive_t *); static int nvme_bd_mediainfo(void *, bd_media_t *); static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t); static int nvme_bd_read(void *, bd_xfer_t *); static int nvme_bd_write(void *, bd_xfer_t *); static int nvme_bd_sync(void *, bd_xfer_t *); static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *); static int nvme_prp_dma_constructor(void *, void *, int); static void nvme_prp_dma_destructor(void *, void *); static void nvme_prepare_devid(nvme_t *, uint32_t); static void *nvme_state; static kmem_cache_t *nvme_cmd_cache; /* * DMA attributes for queue DMA memory * * Queue DMA memory must be page aligned. The maximum length of a queue is * 65536 entries, and an entry can be 64 bytes long. */ static ddi_dma_attr_t nvme_queue_dma_attr = { .dma_attr_version = DMA_ATTR_V0, .dma_attr_addr_lo = 0, .dma_attr_addr_hi = 0xffffffffffffffffULL, .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1, .dma_attr_align = 0x1000, .dma_attr_burstsizes = 0x7ff, .dma_attr_minxfer = 0x1000, .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t), .dma_attr_seg = 0xffffffffffffffffULL, .dma_attr_sgllen = 1, .dma_attr_granular = 1, .dma_attr_flags = 0, }; /* * DMA attributes for transfers using Physical Region Page (PRP) entries * * A PRP entry describes one page of DMA memory using the page size specified * in the controller configuration's memory page size register (CC.MPS). It uses * a 64bit base address aligned to this page size. There is no limitation on * chaining PRPs together for arbitrarily large DMA transfers. */ static ddi_dma_attr_t nvme_prp_dma_attr = { .dma_attr_version = DMA_ATTR_V0, .dma_attr_addr_lo = 0, .dma_attr_addr_hi = 0xffffffffffffffffULL, .dma_attr_count_max = 0xfff, .dma_attr_align = 0x1000, .dma_attr_burstsizes = 0x7ff, .dma_attr_minxfer = 0x1000, .dma_attr_maxxfer = 0x1000, .dma_attr_seg = 0xfff, .dma_attr_sgllen = -1, .dma_attr_granular = 1, .dma_attr_flags = 0, }; /* * DMA attributes for transfers using scatter/gather lists * * A SGL entry describes a chunk of DMA memory using a 64bit base address and a * 32bit length field. SGL Segment and SGL Last Segment entries require the * length to be a multiple of 16 bytes. */ static ddi_dma_attr_t nvme_sgl_dma_attr = { .dma_attr_version = DMA_ATTR_V0, .dma_attr_addr_lo = 0, .dma_attr_addr_hi = 0xffffffffffffffffULL, .dma_attr_count_max = 0xffffffffUL, .dma_attr_align = 1, .dma_attr_burstsizes = 0x7ff, .dma_attr_minxfer = 0x10, .dma_attr_maxxfer = 0xfffffffffULL, .dma_attr_seg = 0xffffffffffffffffULL, .dma_attr_sgllen = -1, .dma_attr_granular = 0x10, .dma_attr_flags = 0 }; static ddi_device_acc_attr_t nvme_reg_acc_attr = { .devacc_attr_version = DDI_DEVICE_ATTR_V0, .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC, .devacc_attr_dataorder = DDI_STRICTORDER_ACC }; static struct dev_ops nvme_dev_ops = { .devo_rev = DEVO_REV, .devo_refcnt = 0, .devo_getinfo = ddi_no_info, .devo_identify = nulldev, .devo_probe = nulldev, .devo_attach = nvme_attach, .devo_detach = nvme_detach, .devo_reset = nodev, .devo_cb_ops = NULL, .devo_bus_ops = NULL, .devo_power = NULL, .devo_quiesce = nvme_quiesce, }; static struct modldrv nvme_modldrv = { .drv_modops = &mod_driverops, .drv_linkinfo = "NVMe v1.1b", .drv_dev_ops = &nvme_dev_ops }; static struct modlinkage nvme_modlinkage = { .ml_rev = MODREV_1, .ml_linkage = { &nvme_modldrv, NULL } }; static bd_ops_t nvme_bd_ops = { .o_version = BD_OPS_VERSION_0, .o_drive_info = nvme_bd_driveinfo, .o_media_info = nvme_bd_mediainfo, .o_devid_init = nvme_bd_devid, .o_sync_cache = nvme_bd_sync, .o_read = nvme_bd_read, .o_write = nvme_bd_write, }; int _init(void) { int error; error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1); if (error != DDI_SUCCESS) return (error); nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache", sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0); bd_mod_init(&nvme_dev_ops); error = mod_install(&nvme_modlinkage); if (error != DDI_SUCCESS) { ddi_soft_state_fini(&nvme_state); bd_mod_fini(&nvme_dev_ops); } return (error); } int _fini(void) { int error; error = mod_remove(&nvme_modlinkage); if (error == DDI_SUCCESS) { ddi_soft_state_fini(&nvme_state); kmem_cache_destroy(nvme_cmd_cache); bd_mod_fini(&nvme_dev_ops); } return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&nvme_modlinkage, modinfop)); } static inline void nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val) { ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); /*LINTED: E_BAD_PTR_CAST_ALIGN*/ ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val); } static inline void nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val) { ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); /*LINTED: E_BAD_PTR_CAST_ALIGN*/ ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val); } static inline uint64_t nvme_get64(nvme_t *nvme, uintptr_t reg) { uint64_t val; ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0); /*LINTED: E_BAD_PTR_CAST_ALIGN*/ val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg)); return (val); } static inline uint32_t nvme_get32(nvme_t *nvme, uintptr_t reg) { uint32_t val; ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0); /*LINTED: E_BAD_PTR_CAST_ALIGN*/ val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg)); return (val); } static boolean_t nvme_check_regs_hdl(nvme_t *nvme) { ddi_fm_error_t error; ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION); if (error.fme_status != DDI_FM_OK) return (B_TRUE); return (B_FALSE); } static boolean_t nvme_check_dma_hdl(nvme_dma_t *dma) { ddi_fm_error_t error; if (dma == NULL) return (B_FALSE); ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION); if (error.fme_status != DDI_FM_OK) return (B_TRUE); return (B_FALSE); } static void nvme_free_dma_common(nvme_dma_t *dma) { if (dma->nd_dmah != NULL) (void) ddi_dma_unbind_handle(dma->nd_dmah); if (dma->nd_acch != NULL) ddi_dma_mem_free(&dma->nd_acch); if (dma->nd_dmah != NULL) ddi_dma_free_handle(&dma->nd_dmah); } static void nvme_free_dma(nvme_dma_t *dma) { nvme_free_dma_common(dma); kmem_free(dma, sizeof (*dma)); } /* ARGSUSED */ static void nvme_prp_dma_destructor(void *buf, void *private) { nvme_dma_t *dma = (nvme_dma_t *)buf; nvme_free_dma_common(dma); } static int nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma, size_t len, uint_t flags, ddi_dma_attr_t *dma_attr) { if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL, &dma->nd_dmah) != DDI_SUCCESS) { /* * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and * the only other possible error is DDI_DMA_BADATTR which * indicates a driver bug which should cause a panic. */ dev_err(nvme->n_dip, CE_PANIC, "!failed to get DMA handle, check DMA attributes"); return (DDI_FAILURE); } /* * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified * or the flags are conflicting, which isn't the case here. */ (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp, &dma->nd_len, &dma->nd_acch); if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp, dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) { dev_err(nvme->n_dip, CE_WARN, "!failed to bind DMA memory"); atomic_inc_32(&nvme->n_dma_bind_err); nvme_free_dma_common(dma); return (DDI_FAILURE); } return (DDI_SUCCESS); } static int nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags, ddi_dma_attr_t *dma_attr, nvme_dma_t **ret) { nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP); if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) != DDI_SUCCESS) { *ret = NULL; kmem_free(dma, sizeof (nvme_dma_t)); return (DDI_FAILURE); } bzero(dma->nd_memp, dma->nd_len); *ret = dma; return (DDI_SUCCESS); } /* ARGSUSED */ static int nvme_prp_dma_constructor(void *buf, void *private, int flags) { nvme_dma_t *dma = (nvme_dma_t *)buf; nvme_t *nvme = (nvme_t *)private; dma->nd_dmah = NULL; dma->nd_acch = NULL; if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize, DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) { return (-1); } ASSERT(dma->nd_ncookie == 1); dma->nd_cached = B_TRUE; return (0); } static int nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len, uint_t flags, nvme_dma_t **dma) { uint32_t len = nentry * qe_len; ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr; len = roundup(len, nvme->n_pagesize); q_dma_attr.dma_attr_minxfer = len; if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!failed to get DMA memory for queue"); goto fail; } if ((*dma)->nd_ncookie != 1) { dev_err(nvme->n_dip, CE_WARN, "!got too many cookies for queue DMA"); goto fail; } return (DDI_SUCCESS); fail: if (*dma) { nvme_free_dma(*dma); *dma = NULL; } return (DDI_FAILURE); } static void nvme_free_qpair(nvme_qpair_t *qp) { int i; mutex_destroy(&qp->nq_mutex); if (qp->nq_sqdma != NULL) nvme_free_dma(qp->nq_sqdma); if (qp->nq_cqdma != NULL) nvme_free_dma(qp->nq_cqdma); if (qp->nq_active_cmds > 0) for (i = 0; i != qp->nq_nentry; i++) if (qp->nq_cmd[i] != NULL) nvme_free_cmd(qp->nq_cmd[i]); if (qp->nq_cmd != NULL) kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry); kmem_free(qp, sizeof (nvme_qpair_t)); } static int nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp, int idx) { nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP); mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER, DDI_INTR_PRI(nvme->n_intr_pri)); if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t), DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS) goto fail; if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t), DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS) goto fail; qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp; qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp; qp->nq_nentry = nentry; qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx); qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx); qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP); qp->nq_next_cmd = 0; *nqp = qp; return (DDI_SUCCESS); fail: nvme_free_qpair(qp); *nqp = NULL; return (DDI_FAILURE); } static nvme_cmd_t * nvme_alloc_cmd(nvme_t *nvme, int kmflag) { nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag); if (cmd == NULL) return (cmd); bzero(cmd, sizeof (nvme_cmd_t)); cmd->nc_nvme = nvme; mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER, DDI_INTR_PRI(nvme->n_intr_pri)); cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL); return (cmd); } static void nvme_free_cmd(nvme_cmd_t *cmd) { if (cmd->nc_dma) { if (cmd->nc_dma->nd_cached) kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_dma); else nvme_free_dma(cmd->nc_dma); cmd->nc_dma = NULL; } cv_destroy(&cmd->nc_cv); mutex_destroy(&cmd->nc_mutex); kmem_cache_free(nvme_cmd_cache, cmd); } static int nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd) { nvme_reg_sqtdbl_t tail = { 0 }; mutex_enter(&qp->nq_mutex); if (qp->nq_active_cmds == qp->nq_nentry) { mutex_exit(&qp->nq_mutex); return (DDI_FAILURE); } cmd->nc_completed = B_FALSE; /* * Try to insert the cmd into the active cmd array at the nq_next_cmd * slot. If the slot is already occupied advance to the next slot and * try again. This can happen for long running commands like async event * requests. */ while (qp->nq_cmd[qp->nq_next_cmd] != NULL) qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; qp->nq_cmd[qp->nq_next_cmd] = cmd; qp->nq_active_cmds++; cmd->nc_sqe.sqe_cid = qp->nq_next_cmd; bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t)); (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah, sizeof (nvme_sqe_t) * qp->nq_sqtail, sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV); qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry; tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry; nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r); mutex_exit(&qp->nq_mutex); return (DDI_SUCCESS); } static nvme_cmd_t * nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp) { nvme_reg_cqhdbl_t head = { 0 }; nvme_cqe_t *cqe; nvme_cmd_t *cmd; (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0, sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL); cqe = &qp->nq_cq[qp->nq_cqhead]; /* Check phase tag of CQE. Hardware inverts it for new entries. */ if (cqe->cqe_sf.sf_p == qp->nq_phase) return (NULL); ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp); ASSERT(cqe->cqe_cid < qp->nq_nentry); mutex_enter(&qp->nq_mutex); cmd = qp->nq_cmd[cqe->cqe_cid]; qp->nq_cmd[cqe->cqe_cid] = NULL; qp->nq_active_cmds--; mutex_exit(&qp->nq_mutex); ASSERT(cmd != NULL); ASSERT(cmd->nc_nvme == nvme); ASSERT(cmd->nc_sqid == cqe->cqe_sqid); ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid); bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t)); qp->nq_sqhead = cqe->cqe_sqhd; head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry; /* Toggle phase on wrap-around. */ if (qp->nq_cqhead == 0) qp->nq_phase = qp->nq_phase ? 0 : 1; nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r); return (cmd); } static int nvme_check_unknown_cmd_status(nvme_cmd_t *cmd) { nvme_cqe_t *cqe = &cmd->nc_cqe; dev_err(cmd->nc_nvme->n_dip, CE_WARN, "!unknown command status received: opc = %x, sqid = %d, cid = %d, " "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); if (cmd->nc_nvme->n_strict_version) { cmd->nc_nvme->n_dead = B_TRUE; ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); } return (EIO); } static int nvme_check_vendor_cmd_status(nvme_cmd_t *cmd) { nvme_cqe_t *cqe = &cmd->nc_cqe; dev_err(cmd->nc_nvme->n_dip, CE_WARN, "!unknown command status received: opc = %x, sqid = %d, cid = %d, " "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc, cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct, cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m); if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) { cmd->nc_nvme->n_dead = B_TRUE; ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); } return (EIO); } static int nvme_check_integrity_cmd_status(nvme_cmd_t *cmd) { nvme_cqe_t *cqe = &cmd->nc_cqe; switch (cqe->cqe_sf.sf_sc) { case NVME_CQE_SC_INT_NVM_WRITE: /* write fail */ /* TODO: post ereport */ bd_error(cmd->nc_xfer, BD_ERR_MEDIA); return (EIO); case NVME_CQE_SC_INT_NVM_READ: /* read fail */ /* TODO: post ereport */ bd_error(cmd->nc_xfer, BD_ERR_MEDIA); return (EIO); default: return (nvme_check_unknown_cmd_status(cmd)); } } static int nvme_check_generic_cmd_status(nvme_cmd_t *cmd) { nvme_cqe_t *cqe = &cmd->nc_cqe; switch (cqe->cqe_sf.sf_sc) { case NVME_CQE_SC_GEN_SUCCESS: return (0); /* * Errors indicating a bug in the driver should cause a panic. */ case NVME_CQE_SC_GEN_INV_OPC: /* Invalid Command Opcode */ dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " "invalid opcode in cmd %p", (void *)cmd); return (0); case NVME_CQE_SC_GEN_INV_FLD: /* Invalid Field in Command */ dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " "invalid field in cmd %p", (void *)cmd); return (0); case NVME_CQE_SC_GEN_ID_CNFL: /* Command ID Conflict */ dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " "cmd ID conflict in cmd %p", (void *)cmd); return (0); case NVME_CQE_SC_GEN_INV_NS: /* Invalid Namespace or Format */ dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " "invalid NS/format in cmd %p", (void *)cmd); return (0); case NVME_CQE_SC_GEN_NVM_LBA_RANGE: /* LBA Out Of Range */ dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " "LBA out of range in cmd %p", (void *)cmd); return (0); /* * Non-fatal errors, handle gracefully. */ case NVME_CQE_SC_GEN_DATA_XFR_ERR: /* Data Transfer Error (DMA) */ /* TODO: post ereport */ atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err); bd_error(cmd->nc_xfer, BD_ERR_NTRDY); return (EIO); case NVME_CQE_SC_GEN_INTERNAL_ERR: /* * Internal Error. The spec (v1.0, section 4.5.1.2) says * detailed error information is returned as async event, * so we pretty much ignore the error here and handle it * in the async event handler. */ atomic_inc_32(&cmd->nc_nvme->n_internal_err); bd_error(cmd->nc_xfer, BD_ERR_NTRDY); return (EIO); case NVME_CQE_SC_GEN_ABORT_REQUEST: /* * Command Abort Requested. This normally happens only when a * command times out. */ /* TODO: post ereport or change blkdev to handle this? */ atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err); return (ECANCELED); case NVME_CQE_SC_GEN_ABORT_PWRLOSS: /* Command Aborted due to Power Loss Notification */ ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); cmd->nc_nvme->n_dead = B_TRUE; return (EIO); case NVME_CQE_SC_GEN_ABORT_SQ_DEL: /* Command Aborted due to SQ Deletion */ atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del); return (EIO); case NVME_CQE_SC_GEN_NVM_CAP_EXC: /* Capacity Exceeded */ atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc); bd_error(cmd->nc_xfer, BD_ERR_MEDIA); return (EIO); case NVME_CQE_SC_GEN_NVM_NS_NOTRDY: /* Namespace Not Ready */ atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy); bd_error(cmd->nc_xfer, BD_ERR_NTRDY); return (EIO); default: return (nvme_check_unknown_cmd_status(cmd)); } } static int nvme_check_specific_cmd_status(nvme_cmd_t *cmd) { nvme_cqe_t *cqe = &cmd->nc_cqe; switch (cqe->cqe_sf.sf_sc) { case NVME_CQE_SC_SPC_INV_CQ: /* Completion Queue Invalid */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE); atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err); return (EINVAL); case NVME_CQE_SC_SPC_INV_QID: /* Invalid Queue Identifier */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE || cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE || cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err); return (EINVAL); case NVME_CQE_SC_SPC_MAX_QSZ_EXC: /* Max Queue Size Exceeded */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE || cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc); return (EINVAL); case NVME_CQE_SC_SPC_ABRT_CMD_EXC: /* Abort Command Limit Exceeded */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT); dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " "abort command limit exceeded in cmd %p", (void *)cmd); return (0); case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC: /* Async Event Request Limit Exceeded */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT); dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: " "async event request limit exceeded in cmd %p", (void *)cmd); return (0); case NVME_CQE_SC_SPC_INV_INT_VECT: /* Invalid Interrupt Vector */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE); atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect); return (EINVAL); case NVME_CQE_SC_SPC_INV_LOG_PAGE: /* Invalid Log Page */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE); atomic_inc_32(&cmd->nc_nvme->n_inv_log_page); bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); return (EINVAL); case NVME_CQE_SC_SPC_INV_FORMAT: /* Invalid Format */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT); atomic_inc_32(&cmd->nc_nvme->n_inv_format); bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); return (EINVAL); case NVME_CQE_SC_SPC_INV_Q_DEL: /* Invalid Queue Deletion */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE); atomic_inc_32(&cmd->nc_nvme->n_inv_q_del); return (EINVAL); case NVME_CQE_SC_SPC_NVM_CNFL_ATTR: /* Conflicting Attributes */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT || cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr); bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); return (EINVAL); case NVME_CQE_SC_SPC_NVM_INV_PROT: /* Invalid Protection Information */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE || cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ || cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); atomic_inc_32(&cmd->nc_nvme->n_inv_prot); bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); return (EINVAL); case NVME_CQE_SC_SPC_NVM_READONLY: /* Write to Read Only Range */ ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE); atomic_inc_32(&cmd->nc_nvme->n_readonly); bd_error(cmd->nc_xfer, BD_ERR_ILLRQ); return (EROFS); default: return (nvme_check_unknown_cmd_status(cmd)); } } static inline int nvme_check_cmd_status(nvme_cmd_t *cmd) { nvme_cqe_t *cqe = &cmd->nc_cqe; /* take a shortcut if everything is alright */ if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS) return (0); if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC) return (nvme_check_generic_cmd_status(cmd)); else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC) return (nvme_check_specific_cmd_status(cmd)); else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY) return (nvme_check_integrity_cmd_status(cmd)); else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR) return (nvme_check_vendor_cmd_status(cmd)); return (nvme_check_unknown_cmd_status(cmd)); } /* * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands * * This functions takes care of cleaning up aborted commands. The command * status is checked to catch any fatal errors. */ static void nvme_abort_cmd_cb(void *arg) { nvme_cmd_t *cmd = arg; /* * Grab the command mutex. Once we have it we hold the last reference * to the command and can safely free it. */ mutex_enter(&cmd->nc_mutex); (void) nvme_check_cmd_status(cmd); mutex_exit(&cmd->nc_mutex); nvme_free_cmd(cmd); } static void nvme_abort_cmd(nvme_cmd_t *abort_cmd) { nvme_t *nvme = abort_cmd->nc_nvme; nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); nvme_abort_cmd_t ac = { 0 }; sema_p(&nvme->n_abort_sema); ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid; ac.b.ac_sqid = abort_cmd->nc_sqid; /* * Drop the mutex of the aborted command. From this point on * we must assume that the abort callback has freed the command. */ mutex_exit(&abort_cmd->nc_mutex); cmd->nc_sqid = 0; cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT; cmd->nc_callback = nvme_wakeup_cmd; cmd->nc_sqe.sqe_cdw10 = ac.r; /* * Send the ABORT to the hardware. The ABORT command will return _after_ * the aborted command has completed (aborted or otherwise). */ if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { sema_v(&nvme->n_abort_sema); dev_err(nvme->n_dip, CE_WARN, "!nvme_admin_cmd failed for ABORT"); atomic_inc_32(&nvme->n_abort_failed); return; } sema_v(&nvme->n_abort_sema); if (nvme_check_cmd_status(cmd)) { dev_err(nvme->n_dip, CE_WARN, "!ABORT failed with sct = %x, sc = %x", cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); atomic_inc_32(&nvme->n_abort_failed); } else { atomic_inc_32(&nvme->n_cmd_aborted); } nvme_free_cmd(cmd); } /* * nvme_wait_cmd -- wait for command completion or timeout * * Returns B_TRUE if the command completed normally. * * Returns B_FALSE if the command timed out and an abort was attempted. The * command mutex will be dropped and the command must be considered freed. The * freeing of the command is normally done by the abort command callback. * * In case of a serious error or a timeout of the abort command the hardware * will be declared dead and FMA will be notified. */ static boolean_t nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec) { clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC); nvme_t *nvme = cmd->nc_nvme; nvme_reg_csts_t csts; ASSERT(mutex_owned(&cmd->nc_mutex)); while (!cmd->nc_completed) { if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1) break; } if (cmd->nc_completed) return (B_TRUE); /* * The command timed out. Change the callback to the cleanup function. */ cmd->nc_callback = nvme_abort_cmd_cb; /* * Check controller for fatal status, any errors associated with the * register or DMA handle, or for a double timeout (abort command timed * out). If necessary log a warning and call FMA. */ csts.r = nvme_get32(nvme, NVME_REG_CSTS); dev_err(nvme->n_dip, CE_WARN, "!command timeout, " "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs); atomic_inc_32(&nvme->n_cmd_timeout); if (csts.b.csts_cfs || nvme_check_regs_hdl(nvme) || nvme_check_dma_hdl(cmd->nc_dma) || cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) { ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); nvme->n_dead = B_TRUE; mutex_exit(&cmd->nc_mutex); } else { /* * Try to abort the command. The command mutex is released by * nvme_abort_cmd(). * If the abort succeeds it will have freed the aborted command. * If the abort fails for other reasons we must assume that the * command may complete at any time, and the callback will free * it for us. */ nvme_abort_cmd(cmd); } return (B_FALSE); } static void nvme_wakeup_cmd(void *arg) { nvme_cmd_t *cmd = arg; mutex_enter(&cmd->nc_mutex); /* * There is a slight chance that this command completed shortly after * the timeout was hit in nvme_wait_cmd() but before the callback was * changed. Catch that case here and clean up accordingly. */ if (cmd->nc_callback == nvme_abort_cmd_cb) { mutex_exit(&cmd->nc_mutex); nvme_abort_cmd_cb(cmd); return; } cmd->nc_completed = B_TRUE; cv_signal(&cmd->nc_cv); mutex_exit(&cmd->nc_mutex); } static void nvme_async_event_task(void *arg) { nvme_cmd_t *cmd = arg; nvme_t *nvme = cmd->nc_nvme; nvme_error_log_entry_t *error_log = NULL; nvme_health_log_t *health_log = NULL; nvme_async_event_t event; int ret; /* * Check for errors associated with the async request itself. The only * command-specific error is "async event limit exceeded", which * indicates a programming error in the driver and causes a panic in * nvme_check_cmd_status(). * * Other possible errors are various scenarios where the async request * was aborted, or internal errors in the device. Internal errors are * reported to FMA, the command aborts need no special handling here. */ if (nvme_check_cmd_status(cmd)) { dev_err(cmd->nc_nvme->n_dip, CE_WARN, "!async event request returned failure, sct = %x, " "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr, cmd->nc_cqe.cqe_sf.sf_m); if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC && cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) { cmd->nc_nvme->n_dead = B_TRUE; ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST); } nvme_free_cmd(cmd); return; } event.r = cmd->nc_cqe.cqe_dw0; /* Clear CQE and re-submit the async request. */ bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t)); ret = nvme_submit_cmd(nvme->n_adminq, cmd); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!failed to resubmit async event request"); atomic_inc_32(&nvme->n_async_resubmit_failed); nvme_free_cmd(cmd); } switch (event.b.ae_type) { case NVME_ASYNC_TYPE_ERROR: if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) { error_log = (nvme_error_log_entry_t *) nvme_get_logpage(nvme, event.b.ae_logpage); } else { dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " "async event reply: %d", event.b.ae_logpage); atomic_inc_32(&nvme->n_wrong_logpage); } switch (event.b.ae_info) { case NVME_ASYNC_ERROR_INV_SQ: dev_err(nvme->n_dip, CE_PANIC, "programming error: " "invalid submission queue"); return; case NVME_ASYNC_ERROR_INV_DBL: dev_err(nvme->n_dip, CE_PANIC, "programming error: " "invalid doorbell write value"); return; case NVME_ASYNC_ERROR_DIAGFAIL: dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure"); ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); nvme->n_dead = B_TRUE; atomic_inc_32(&nvme->n_diagfail_event); break; case NVME_ASYNC_ERROR_PERSISTENT: dev_err(nvme->n_dip, CE_WARN, "!persistent internal " "device error"); ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); nvme->n_dead = B_TRUE; atomic_inc_32(&nvme->n_persistent_event); break; case NVME_ASYNC_ERROR_TRANSIENT: dev_err(nvme->n_dip, CE_WARN, "!transient internal " "device error"); /* TODO: send ereport */ atomic_inc_32(&nvme->n_transient_event); break; case NVME_ASYNC_ERROR_FW_LOAD: dev_err(nvme->n_dip, CE_WARN, "!firmware image load error"); atomic_inc_32(&nvme->n_fw_load_event); break; } break; case NVME_ASYNC_TYPE_HEALTH: if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) { health_log = (nvme_health_log_t *) nvme_get_logpage(nvme, event.b.ae_logpage, -1); } else { dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in " "async event reply: %d", event.b.ae_logpage); atomic_inc_32(&nvme->n_wrong_logpage); } switch (event.b.ae_info) { case NVME_ASYNC_HEALTH_RELIABILITY: dev_err(nvme->n_dip, CE_WARN, "!device reliability compromised"); /* TODO: send ereport */ atomic_inc_32(&nvme->n_reliability_event); break; case NVME_ASYNC_HEALTH_TEMPERATURE: dev_err(nvme->n_dip, CE_WARN, "!temperature above threshold"); /* TODO: send ereport */ atomic_inc_32(&nvme->n_temperature_event); break; case NVME_ASYNC_HEALTH_SPARE: dev_err(nvme->n_dip, CE_WARN, "!spare space below threshold"); /* TODO: send ereport */ atomic_inc_32(&nvme->n_spare_event); break; } break; case NVME_ASYNC_TYPE_VENDOR: dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event " "received, info = %x, logpage = %x", event.b.ae_info, event.b.ae_logpage); atomic_inc_32(&nvme->n_vendor_event); break; default: dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, " "type = %x, info = %x, logpage = %x", event.b.ae_type, event.b.ae_info, event.b.ae_logpage); atomic_inc_32(&nvme->n_unknown_event); break; } if (error_log) kmem_free(error_log, sizeof (nvme_error_log_entry_t) * nvme->n_error_log_len); if (health_log) kmem_free(health_log, sizeof (nvme_health_log_t)); } static int nvme_admin_cmd(nvme_cmd_t *cmd, int sec) { int ret; mutex_enter(&cmd->nc_mutex); ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd); if (ret != DDI_SUCCESS) { mutex_exit(&cmd->nc_mutex); dev_err(cmd->nc_nvme->n_dip, CE_WARN, "!nvme_submit_cmd failed"); atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full); nvme_free_cmd(cmd); return (DDI_FAILURE); } if (nvme_wait_cmd(cmd, sec) == B_FALSE) { /* * The command timed out. An abort command was posted that * will take care of the cleanup. */ return (DDI_FAILURE); } mutex_exit(&cmd->nc_mutex); return (DDI_SUCCESS); } static int nvme_async_event(nvme_t *nvme) { nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); int ret; cmd->nc_sqid = 0; cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT; cmd->nc_callback = nvme_async_event_task; ret = nvme_submit_cmd(nvme->n_adminq, cmd); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT"); nvme_free_cmd(cmd); return (DDI_FAILURE); } return (DDI_SUCCESS); } static void * nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...) { nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); void *buf = NULL; nvme_getlogpage_t getlogpage = { 0 }; size_t bufsize; va_list ap; va_start(ap, logpage); cmd->nc_sqid = 0; cmd->nc_callback = nvme_wakeup_cmd; cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE; getlogpage.b.lp_lid = logpage; switch (logpage) { case NVME_LOGPAGE_ERROR: cmd->nc_sqe.sqe_nsid = (uint32_t)-1; bufsize = nvme->n_error_log_len * sizeof (nvme_error_log_entry_t); break; case NVME_LOGPAGE_HEALTH: cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t); bufsize = sizeof (nvme_health_log_t); break; case NVME_LOGPAGE_FWSLOT: cmd->nc_sqe.sqe_nsid = (uint32_t)-1; bufsize = sizeof (nvme_fwslot_log_t); break; default: dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d", logpage); atomic_inc_32(&nvme->n_unknown_logpage); goto fail; } va_end(ap); getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1; cmd->nc_sqe.sqe_cdw10 = getlogpage.r; if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t), DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_zalloc_dma failed for GET LOG PAGE"); goto fail; } if (cmd->nc_dma->nd_ncookie > 2) { dev_err(nvme->n_dip, CE_WARN, "!too many DMA cookies for GET LOG PAGE"); atomic_inc_32(&nvme->n_too_many_cookies); goto fail; } cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; if (cmd->nc_dma->nd_ncookie > 1) { ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie); cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress; } if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_admin_cmd failed for GET LOG PAGE"); return (NULL); } if (nvme_check_cmd_status(cmd)) { dev_err(nvme->n_dip, CE_WARN, "!GET LOG PAGE failed with sct = %x, sc = %x", cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); goto fail; } buf = kmem_alloc(bufsize, KM_SLEEP); bcopy(cmd->nc_dma->nd_memp, buf, bufsize); fail: nvme_free_cmd(cmd); return (buf); } static void * nvme_identify(nvme_t *nvme, uint32_t nsid) { nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); void *buf = NULL; cmd->nc_sqid = 0; cmd->nc_callback = nvme_wakeup_cmd; cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY; cmd->nc_sqe.sqe_nsid = nsid; cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL; if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_zalloc_dma failed for IDENTIFY"); goto fail; } if (cmd->nc_dma->nd_ncookie > 2) { dev_err(nvme->n_dip, CE_WARN, "!too many DMA cookies for IDENTIFY"); atomic_inc_32(&nvme->n_too_many_cookies); goto fail; } cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress; if (cmd->nc_dma->nd_ncookie > 1) { ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie); cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress; } if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_admin_cmd failed for IDENTIFY"); return (NULL); } if (nvme_check_cmd_status(cmd)) { dev_err(nvme->n_dip, CE_WARN, "!IDENTIFY failed with sct = %x, sc = %x", cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); goto fail; } buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP); bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE); fail: nvme_free_cmd(cmd); return (buf); } static boolean_t nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val, uint32_t *res) { _NOTE(ARGUNUSED(nsid)); nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); boolean_t ret = B_FALSE; ASSERT(res != NULL); cmd->nc_sqid = 0; cmd->nc_callback = nvme_wakeup_cmd; cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES; cmd->nc_sqe.sqe_cdw10 = feature; cmd->nc_sqe.sqe_cdw11 = val; switch (feature) { case NVME_FEAT_WRITE_CACHE: if (!nvme->n_write_cache_present) goto fail; break; case NVME_FEAT_NQUEUES: break; default: goto fail; } if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_admin_cmd failed for SET FEATURES"); return (ret); } if (nvme_check_cmd_status(cmd)) { dev_err(nvme->n_dip, CE_WARN, "!SET FEATURES %d failed with sct = %x, sc = %x", feature, cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); goto fail; } *res = cmd->nc_cqe.cqe_dw0; ret = B_TRUE; fail: nvme_free_cmd(cmd); return (ret); } static boolean_t nvme_write_cache_set(nvme_t *nvme, boolean_t enable) { nvme_write_cache_t nwc = { 0 }; if (enable) nwc.b.wc_wce = 1; if (!nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r, &nwc.r)) return (B_FALSE); return (B_TRUE); } static int nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues) { nvme_nqueue_t nq = { 0 }; nq.b.nq_nsq = nq.b.nq_ncq = nqueues - 1; if (!nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r)) { return (0); } /* * Always use the same number of submission and completion queues, and * never use more than the requested number of queues. */ return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1)); } static int nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx) { nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP); nvme_create_queue_dw10_t dw10 = { 0 }; nvme_create_cq_dw11_t c_dw11 = { 0 }; nvme_create_sq_dw11_t s_dw11 = { 0 }; dw10.b.q_qid = idx; dw10.b.q_qsize = qp->nq_nentry - 1; c_dw11.b.cq_pc = 1; c_dw11.b.cq_ien = 1; c_dw11.b.cq_iv = idx % nvme->n_intr_cnt; cmd->nc_sqid = 0; cmd->nc_callback = nvme_wakeup_cmd; cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE; cmd->nc_sqe.sqe_cdw10 = dw10.r; cmd->nc_sqe.sqe_cdw11 = c_dw11.r; cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress; if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_admin_cmd failed for CREATE CQUEUE"); return (DDI_FAILURE); } if (nvme_check_cmd_status(cmd)) { dev_err(nvme->n_dip, CE_WARN, "!CREATE CQUEUE failed with sct = %x, sc = %x", cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); nvme_free_cmd(cmd); return (DDI_FAILURE); } nvme_free_cmd(cmd); s_dw11.b.sq_pc = 1; s_dw11.b.sq_cqid = idx; cmd = nvme_alloc_cmd(nvme, KM_SLEEP); cmd->nc_sqid = 0; cmd->nc_callback = nvme_wakeup_cmd; cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE; cmd->nc_sqe.sqe_cdw10 = dw10.r; cmd->nc_sqe.sqe_cdw11 = s_dw11.r; cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress; if (nvme_admin_cmd(cmd, nvme_admin_cmd_timeout) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!nvme_admin_cmd failed for CREATE SQUEUE"); return (DDI_FAILURE); } if (nvme_check_cmd_status(cmd)) { dev_err(nvme->n_dip, CE_WARN, "!CREATE SQUEUE failed with sct = %x, sc = %x", cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc); nvme_free_cmd(cmd); return (DDI_FAILURE); } nvme_free_cmd(cmd); return (DDI_SUCCESS); } static boolean_t nvme_reset(nvme_t *nvme, boolean_t quiesce) { nvme_reg_csts_t csts; int i; nvme_put32(nvme, NVME_REG_CC, 0); csts.r = nvme_get32(nvme, NVME_REG_CSTS); if (csts.b.csts_rdy == 1) { nvme_put32(nvme, NVME_REG_CC, 0); for (i = 0; i != nvme->n_timeout * 10; i++) { csts.r = nvme_get32(nvme, NVME_REG_CSTS); if (csts.b.csts_rdy == 0) break; if (quiesce) drv_usecwait(50000); else delay(drv_usectohz(50000)); } } nvme_put32(nvme, NVME_REG_AQA, 0); nvme_put32(nvme, NVME_REG_ASQ, 0); nvme_put32(nvme, NVME_REG_ACQ, 0); csts.r = nvme_get32(nvme, NVME_REG_CSTS); return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE); } static void nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce) { nvme_reg_cc_t cc; nvme_reg_csts_t csts; int i; ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT); cc.r = nvme_get32(nvme, NVME_REG_CC); cc.b.cc_shn = mode & 0x3; nvme_put32(nvme, NVME_REG_CC, cc.r); for (i = 0; i != 10; i++) { csts.r = nvme_get32(nvme, NVME_REG_CSTS); if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE) break; if (quiesce) drv_usecwait(100000); else delay(drv_usectohz(100000)); } } static void nvme_prepare_devid(nvme_t *nvme, uint32_t nsid) { /* * Section 7.7 of the spec describes how to get a unique ID for * the controller: the vendor ID, the model name and the serial * number shall be unique when combined. * * If a namespace has no EUI64 we use the above and add the hex * namespace ID to get a unique ID for the namespace. */ char model[sizeof (nvme->n_idctl->id_model) + 1]; char serial[sizeof (nvme->n_idctl->id_serial) + 1]; bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); bcopy(nvme->n_idctl->id_serial, serial, sizeof (nvme->n_idctl->id_serial)); model[sizeof (nvme->n_idctl->id_model)] = '\0'; serial[sizeof (nvme->n_idctl->id_serial)] = '\0'; nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X", nvme->n_idctl->id_vid, model, serial, nsid); } static int nvme_init(nvme_t *nvme) { nvme_reg_cc_t cc = { 0 }; nvme_reg_aqa_t aqa = { 0 }; nvme_reg_asq_t asq = { 0 }; nvme_reg_acq_t acq = { 0 }; nvme_reg_cap_t cap; nvme_reg_vs_t vs; nvme_reg_csts_t csts; int i = 0; int nqueues; char model[sizeof (nvme->n_idctl->id_model) + 1]; char *vendor, *product; /* Check controller version */ vs.r = nvme_get32(nvme, NVME_REG_VS); nvme->n_version.v_major = vs.b.vs_mjr; nvme->n_version.v_minor = vs.b.vs_mnr; dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d", nvme->n_version.v_major, nvme->n_version.v_minor); if (NVME_VERSION_HIGHER(&nvme->n_version, nvme_version_major, nvme_version_minor)) { dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d", nvme_version_major, nvme_version_minor); if (nvme->n_strict_version) goto fail; } /* retrieve controller configuration */ cap.r = nvme_get64(nvme, NVME_REG_CAP); if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) { dev_err(nvme->n_dip, CE_WARN, "!NVM command set not supported by hardware"); goto fail; } nvme->n_nssr_supported = cap.b.cap_nssrs; nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd; nvme->n_timeout = cap.b.cap_to; nvme->n_arbitration_mechanisms = cap.b.cap_ams; nvme->n_cont_queues_reqd = cap.b.cap_cqr; nvme->n_max_queue_entries = cap.b.cap_mqes + 1; /* * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify * the base page size of 4k (1<<12), so add 12 here to get the real * page size value. */ nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT), cap.b.cap_mpsmax + 12); nvme->n_pagesize = 1UL << (nvme->n_pageshift); /* * Set up Queue DMA to transfer at least 1 page-aligned page at a time. */ nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize; nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize; /* * Set up PRP DMA to transfer 1 page-aligned page at a time. * Maxxfer may be increased after we identified the controller limits. */ nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize; nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize; nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize; nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1; /* * Reset controller if it's still in ready state. */ if (nvme_reset(nvme, B_FALSE) == B_FALSE) { dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller"); ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); nvme->n_dead = B_TRUE; goto fail; } /* * Create the admin queue pair. */ if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!unable to allocate admin qpair"); goto fail; } nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP); nvme->n_ioq[0] = nvme->n_adminq; nvme->n_progress |= NVME_ADMIN_QUEUE; (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "admin-queue-len", nvme->n_admin_queue_len); aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1; asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress; acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress; ASSERT((asq & (nvme->n_pagesize - 1)) == 0); ASSERT((acq & (nvme->n_pagesize - 1)) == 0); nvme_put32(nvme, NVME_REG_AQA, aqa.r); nvme_put64(nvme, NVME_REG_ASQ, asq); nvme_put64(nvme, NVME_REG_ACQ, acq); cc.b.cc_ams = 0; /* use Round-Robin arbitration */ cc.b.cc_css = 0; /* use NVM command set */ cc.b.cc_mps = nvme->n_pageshift - 12; cc.b.cc_shn = 0; /* no shutdown in progress */ cc.b.cc_en = 1; /* enable controller */ cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */ cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */ nvme_put32(nvme, NVME_REG_CC, cc.r); /* * Wait for the controller to become ready. */ csts.r = nvme_get32(nvme, NVME_REG_CSTS); if (csts.b.csts_rdy == 0) { for (i = 0; i != nvme->n_timeout * 10; i++) { delay(drv_usectohz(50000)); csts.r = nvme_get32(nvme, NVME_REG_CSTS); if (csts.b.csts_cfs == 1) { dev_err(nvme->n_dip, CE_WARN, "!controller fatal status at init"); ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); nvme->n_dead = B_TRUE; goto fail; } if (csts.b.csts_rdy == 1) break; } } if (csts.b.csts_rdy == 0) { dev_err(nvme->n_dip, CE_WARN, "!controller not ready"); ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST); nvme->n_dead = B_TRUE; goto fail; } /* * Assume an abort command limit of 1. We'll destroy and re-init * that later when we know the true abort command limit. */ sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL); /* * Setup initial interrupt for admin queue. */ if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1) != DDI_SUCCESS) && (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1) != DDI_SUCCESS) && (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1) != DDI_SUCCESS)) { dev_err(nvme->n_dip, CE_WARN, "!failed to setup initial interrupt"); goto fail; } /* * Post an asynchronous event command to catch errors. */ if (nvme_async_event(nvme) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!failed to post async event"); goto fail; } /* * Identify Controller */ nvme->n_idctl = nvme_identify(nvme, 0); if (nvme->n_idctl == NULL) { dev_err(nvme->n_dip, CE_WARN, "!failed to identify controller"); goto fail; } /* * Get Vendor & Product ID */ bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model)); model[sizeof (nvme->n_idctl->id_model)] = '\0'; sata_split_model(model, &vendor, &product); if (vendor == NULL) nvme->n_vendor = strdup("NVMe"); else nvme->n_vendor = strdup(vendor); nvme->n_product = strdup(product); /* * Get controller limits. */ nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT, MIN(nvme->n_admin_queue_len / 10, MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit))); (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "async-event-limit", nvme->n_async_event_limit); nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1; /* * Reinitialize the semaphore with the true abort command limit * supported by the hardware. It's not necessary to disable interrupts * as only command aborts use the semaphore, and no commands are * executed or aborted while we're here. */ sema_destroy(&nvme->n_abort_sema); sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL, SEMA_DRIVER, NULL); nvme->n_progress |= NVME_CTRL_LIMITS; if (nvme->n_idctl->id_mdts == 0) nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536; else nvme->n_max_data_transfer_size = 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts); nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1; /* * Limit n_max_data_transfer_size to what we can handle in one PRP. * Chained PRPs are currently unsupported. * * This is a no-op on hardware which doesn't support a transfer size * big enough to require chained PRPs. */ nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size, (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize)); nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size; /* * Make sure the minimum/maximum queue entry sizes are not * larger/smaller than the default. */ if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) || ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) || ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) || ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t))) goto fail; /* * Check for the presence of a Volatile Write Cache. If present, * enable or disable based on the value of the property * volatile-write-cache-enable (default is enabled). */ nvme->n_write_cache_present = nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE; (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "volatile-write-cache-present", nvme->n_write_cache_present ? 1 : 0); if (!nvme->n_write_cache_present) { nvme->n_write_cache_enabled = B_FALSE; } else if (!nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)) { dev_err(nvme->n_dip, CE_WARN, "!failed to %sable volatile write cache", nvme->n_write_cache_enabled ? "en" : "dis"); /* * Assume the cache is (still) enabled. */ nvme->n_write_cache_enabled = B_TRUE; } (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "volatile-write-cache-enable", nvme->n_write_cache_enabled ? 1 : 0); /* * Grab a copy of all mandatory log pages. * * TODO: should go away once user space tool exists to print logs */ nvme->n_error_log = (nvme_error_log_entry_t *) nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR); nvme->n_health_log = (nvme_health_log_t *) nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1); nvme->n_fwslot_log = (nvme_fwslot_log_t *) nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT); /* * Identify Namespaces */ nvme->n_namespace_count = nvme->n_idctl->id_nn; nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) * nvme->n_namespace_count, KM_SLEEP); for (i = 0; i != nvme->n_namespace_count; i++) { nvme_identify_nsid_t *idns; int last_rp; nvme->n_ns[i].ns_nvme = nvme; nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1); if (idns == NULL) { dev_err(nvme->n_dip, CE_WARN, "!failed to identify namespace %d", i + 1); goto fail; } nvme->n_ns[i].ns_id = i + 1; nvme->n_ns[i].ns_block_count = idns->id_nsize; nvme->n_ns[i].ns_block_size = 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads; nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size; /* * Get the EUI64 if present. If not present prepare the devid * from other device data. */ if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1)) bcopy(idns->id_eui64, nvme->n_ns[i].ns_eui64, sizeof (nvme->n_ns[i].ns_eui64)); /*LINTED: E_BAD_PTR_CAST_ALIGN*/ if (*(uint64_t *)nvme->n_ns[i].ns_eui64 == 0) { nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id); } else { /* * Until EUI64 support is tested on real hardware we * will ignore namespaces with an EUI64. This can * be overriden by setting strict-version=0 in nvme.conf */ if (nvme->n_strict_version) nvme->n_ns[i].ns_ignore = B_TRUE; } /* * Find the LBA format with no metadata and the best relative * performance. A value of 3 means "degraded", 0 is best. */ last_rp = 3; for (int j = 0; j <= idns->id_nlbaf; j++) { if (idns->id_lbaf[j].lbaf_lbads == 0) break; if (idns->id_lbaf[j].lbaf_ms != 0) continue; if (idns->id_lbaf[j].lbaf_rp >= last_rp) continue; last_rp = idns->id_lbaf[j].lbaf_rp; nvme->n_ns[i].ns_best_block_size = 1 << idns->id_lbaf[j].lbaf_lbads; } if (nvme->n_ns[i].ns_best_block_size < nvme->n_min_block_size) nvme->n_ns[i].ns_best_block_size = nvme->n_min_block_size; /* * We currently don't support namespaces that use either: * - thin provisioning * - protection information */ if (idns->id_nsfeat.f_thin || idns->id_dps.dp_pinfo) { dev_err(nvme->n_dip, CE_WARN, "!ignoring namespace %d, unsupported features: " "thin = %d, pinfo = %d", i + 1, idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo); nvme->n_ns[i].ns_ignore = B_TRUE; } } /* * Try to set up MSI/MSI-X interrupts. */ if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX)) != 0) { nvme_release_interrupts(nvme); nqueues = MIN(UINT16_MAX, ncpus); if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, nqueues) != DDI_SUCCESS) && (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, nqueues) != DDI_SUCCESS)) { dev_err(nvme->n_dip, CE_WARN, "!failed to setup MSI/MSI-X interrupts"); goto fail; } } nqueues = nvme->n_intr_cnt; /* * Create I/O queue pairs. */ nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues); if (nvme->n_ioq_count == 0) { dev_err(nvme->n_dip, CE_WARN, "!failed to set number of I/O queues to %d", nqueues); goto fail; } /* * Reallocate I/O queue array */ kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *)); nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) * (nvme->n_ioq_count + 1), KM_SLEEP); nvme->n_ioq[0] = nvme->n_adminq; /* * If we got less queues than we asked for we might as well give * some of the interrupt vectors back to the system. */ if (nvme->n_ioq_count < nqueues) { nvme_release_interrupts(nvme); if (nvme_setup_interrupts(nvme, nvme->n_intr_type, nvme->n_ioq_count) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!failed to reduce number of interrupts"); goto fail; } } /* * Alloc & register I/O queue pairs */ nvme->n_io_queue_len = MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries); (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len", nvme->n_io_queue_len); for (i = 1; i != nvme->n_ioq_count + 1; i++) { if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len, &nvme->n_ioq[i], i) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!unable to allocate I/O qpair %d", i); goto fail; } if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!unable to create I/O qpair %d", i); goto fail; } } /* * Post more asynchronous events commands to reduce event reporting * latency as suggested by the spec. */ for (i = 1; i != nvme->n_async_event_limit; i++) { if (nvme_async_event(nvme) != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!failed to post async event %d", i); goto fail; } } return (DDI_SUCCESS); fail: (void) nvme_reset(nvme, B_FALSE); return (DDI_FAILURE); } static uint_t nvme_intr(caddr_t arg1, caddr_t arg2) { /*LINTED: E_PTR_BAD_CAST_ALIGN*/ nvme_t *nvme = (nvme_t *)arg1; int inum = (int)(uintptr_t)arg2; int ccnt = 0; int qnum; nvme_cmd_t *cmd; if (inum >= nvme->n_intr_cnt) return (DDI_INTR_UNCLAIMED); /* * The interrupt vector a queue uses is calculated as queue_idx % * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array * in steps of n_intr_cnt to process all queues using this vector. */ for (qnum = inum; qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL; qnum += nvme->n_intr_cnt) { while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) { taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq, cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent); ccnt++; } } return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); } static void nvme_release_interrupts(nvme_t *nvme) { int i; for (i = 0; i < nvme->n_intr_cnt; i++) { if (nvme->n_inth[i] == NULL) break; if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) (void) ddi_intr_block_disable(&nvme->n_inth[i], 1); else (void) ddi_intr_disable(nvme->n_inth[i]); (void) ddi_intr_remove_handler(nvme->n_inth[i]); (void) ddi_intr_free(nvme->n_inth[i]); } kmem_free(nvme->n_inth, nvme->n_inth_sz); nvme->n_inth = NULL; nvme->n_inth_sz = 0; nvme->n_progress &= ~NVME_INTERRUPTS; } static int nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs) { int nintrs, navail, count; int ret; int i; if (nvme->n_intr_types == 0) { ret = ddi_intr_get_supported_types(nvme->n_dip, &nvme->n_intr_types); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_supported types failed", __func__); return (ret); } #ifdef __x86 if (get_hwenv() == HW_VMWARE) nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX; #endif } if ((nvme->n_intr_types & intr_type) == 0) return (DDI_FAILURE); ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed", __func__); return (ret); } ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed", __func__); return (ret); } /* We want at most one interrupt per queue pair. */ if (navail > nqpairs) navail = nqpairs; nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail; nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP); ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail, &count, 0); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed", __func__); goto fail; } nvme->n_intr_cnt = count; ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed", __func__); goto fail; } for (i = 0; i < count; i++) { ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr, (void *)nvme, (void *)(uintptr_t)i); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_add_handler failed", __func__); goto fail; } } (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap); for (i = 0; i < count; i++) { if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) ret = ddi_intr_block_enable(&nvme->n_inth[i], 1); else ret = ddi_intr_enable(nvme->n_inth[i]); if (ret != DDI_SUCCESS) { dev_err(nvme->n_dip, CE_WARN, "!%s: enabling interrupt %d failed", __func__, i); goto fail; } } nvme->n_intr_type = intr_type; nvme->n_progress |= NVME_INTERRUPTS; return (DDI_SUCCESS); fail: nvme_release_interrupts(nvme); return (ret); } static int nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg) { _NOTE(ARGUNUSED(arg)); pci_ereport_post(dip, fm_error, NULL); return (fm_error->fme_status); } static int nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { nvme_t *nvme; int instance; int nregs; off_t regsize; int i; char name[32]; if (cmd != DDI_ATTACH) return (DDI_FAILURE); instance = ddi_get_instance(dip); if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS) return (DDI_FAILURE); nvme = ddi_get_soft_state(nvme_state, instance); ddi_set_driver_private(dip, nvme); nvme->n_dip = dip; nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE; nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ? B_TRUE : B_FALSE; nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN); nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN); nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "async-event-limit", NVME_DEFAULT_ASYNC_EVENT_LIMIT); nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ? B_TRUE : B_FALSE; nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "min-phys-block-size", NVME_DEFAULT_MIN_BLOCK_SIZE); if (!ISP2(nvme->n_min_block_size) || (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) { dev_err(dip, CE_WARN, "!min-phys-block-size %s, " "using default %d", ISP2(nvme->n_min_block_size) ? "too low" : "not a power of 2", NVME_DEFAULT_MIN_BLOCK_SIZE); nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE; } if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN) nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN; else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN) nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN; if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN) nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN; if (nvme->n_async_event_limit < 1) nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT; nvme->n_reg_acc_attr = nvme_reg_acc_attr; nvme->n_queue_dma_attr = nvme_queue_dma_attr; nvme->n_prp_dma_attr = nvme_prp_dma_attr; nvme->n_sgl_dma_attr = nvme_sgl_dma_attr; /* * Setup FMA support. */ nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip, DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc); if (nvme->n_fm_cap) { if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE) nvme->n_reg_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC; if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) { nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; } if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) pci_ereport_setup(dip); if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) ddi_fm_handler_register(dip, nvme_fm_errcb, (void *)nvme); } nvme->n_progress |= NVME_FMA_INIT; /* * The spec defines several register sets. Only the controller * registers (set 1) are currently used. */ if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE || nregs < 2 || ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE) goto fail; if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize, &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) { dev_err(dip, CE_WARN, "!failed to map regset 1"); goto fail; } nvme->n_progress |= NVME_REGS_MAPPED; /* * Create taskq for command completion. */ (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq", ddi_driver_name(dip), ddi_get_instance(dip)); nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus), TASKQ_DEFAULTPRI, 0); if (nvme->n_cmd_taskq == NULL) { dev_err(dip, CE_WARN, "!failed to create cmd taskq"); goto fail; } /* * Create PRP DMA cache */ (void) snprintf(name, sizeof (name), "%s%d_prp_cache", ddi_driver_name(dip), ddi_get_instance(dip)); nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t), 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor, NULL, (void *)nvme, NULL, 0); if (nvme_init(nvme) != DDI_SUCCESS) goto fail; /* * Attach the blkdev driver for each namespace. */ for (i = 0; i != nvme->n_namespace_count; i++) { if (nvme->n_ns[i].ns_ignore) continue; nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i], &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP); if (nvme->n_ns[i].ns_bd_hdl == NULL) { dev_err(dip, CE_WARN, "!failed to get blkdev handle for namespace %d", i); goto fail; } if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl) != DDI_SUCCESS) { dev_err(dip, CE_WARN, "!failed to attach blkdev handle for namespace %d", i); goto fail; } } return (DDI_SUCCESS); fail: /* attach successful anyway so that FMA can retire the device */ if (nvme->n_dead) return (DDI_SUCCESS); (void) nvme_detach(dip, DDI_DETACH); return (DDI_FAILURE); } static int nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { int instance, i; nvme_t *nvme; if (cmd != DDI_DETACH) return (DDI_FAILURE); instance = ddi_get_instance(dip); nvme = ddi_get_soft_state(nvme_state, instance); if (nvme == NULL) return (DDI_FAILURE); if (nvme->n_ns) { for (i = 0; i != nvme->n_namespace_count; i++) { if (nvme->n_ns[i].ns_bd_hdl) { (void) bd_detach_handle( nvme->n_ns[i].ns_bd_hdl); bd_free_handle(nvme->n_ns[i].ns_bd_hdl); } if (nvme->n_ns[i].ns_idns) kmem_free(nvme->n_ns[i].ns_idns, sizeof (nvme_identify_nsid_t)); if (nvme->n_ns[i].ns_devid) strfree(nvme->n_ns[i].ns_devid); } kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) * nvme->n_namespace_count); } if (nvme->n_progress & NVME_INTERRUPTS) nvme_release_interrupts(nvme); if (nvme->n_cmd_taskq) ddi_taskq_wait(nvme->n_cmd_taskq); if (nvme->n_ioq_count > 0) { for (i = 1; i != nvme->n_ioq_count + 1; i++) { if (nvme->n_ioq[i] != NULL) { /* TODO: send destroy queue commands */ nvme_free_qpair(nvme->n_ioq[i]); } } kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) * (nvme->n_ioq_count + 1)); } if (nvme->n_prp_cache != NULL) { kmem_cache_destroy(nvme->n_prp_cache); } if (nvme->n_progress & NVME_REGS_MAPPED) { nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE); (void) nvme_reset(nvme, B_FALSE); } if (nvme->n_cmd_taskq) ddi_taskq_destroy(nvme->n_cmd_taskq); if (nvme->n_progress & NVME_CTRL_LIMITS) sema_destroy(&nvme->n_abort_sema); if (nvme->n_progress & NVME_ADMIN_QUEUE) nvme_free_qpair(nvme->n_adminq); if (nvme->n_idctl) kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t)); if (nvme->n_progress & NVME_REGS_MAPPED) ddi_regs_map_free(&nvme->n_regh); if (nvme->n_progress & NVME_FMA_INIT) { if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) ddi_fm_handler_unregister(nvme->n_dip); if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) || DDI_FM_ERRCB_CAP(nvme->n_fm_cap)) pci_ereport_teardown(nvme->n_dip); ddi_fm_fini(nvme->n_dip); } if (nvme->n_vendor != NULL) strfree(nvme->n_vendor); if (nvme->n_product != NULL) strfree(nvme->n_product); ddi_soft_state_free(nvme_state, instance); return (DDI_SUCCESS); } static int nvme_quiesce(dev_info_t *dip) { int instance; nvme_t *nvme; instance = ddi_get_instance(dip); nvme = ddi_get_soft_state(nvme_state, instance); if (nvme == NULL) return (DDI_FAILURE); nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE); (void) nvme_reset(nvme, B_TRUE); return (DDI_FAILURE); } static int nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer) { nvme_t *nvme = cmd->nc_nvme; int nprp_page, nprp; uint64_t *prp; if (xfer->x_ndmac == 0) return (DDI_FAILURE); cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress; ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); if (xfer->x_ndmac == 1) { cmd->nc_sqe.sqe_dptr.d_prp[1] = 0; return (DDI_SUCCESS); } else if (xfer->x_ndmac == 2) { cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress; return (DDI_SUCCESS); } xfer->x_ndmac--; nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1; ASSERT(nprp_page > 0); nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page; /* * We currently don't support chained PRPs and set up our DMA * attributes to reflect that. If we still get an I/O request * that needs a chained PRP something is very wrong. */ VERIFY(nprp == 1); cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP); bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len); cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress; /*LINTED: E_PTR_BAD_CAST_ALIGN*/ for (prp = (uint64_t *)cmd->nc_dma->nd_memp; xfer->x_ndmac > 0; prp++, xfer->x_ndmac--) { *prp = xfer->x_dmac.dmac_laddress; ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac); } (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len, DDI_DMA_SYNC_FORDEV); return (DDI_SUCCESS); } static nvme_cmd_t * nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer) { nvme_t *nvme = ns->ns_nvme; nvme_cmd_t *cmd; /* * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep. */ cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP); if (cmd == NULL) return (NULL); cmd->nc_sqe.sqe_opc = opc; cmd->nc_callback = nvme_bd_xfer_done; cmd->nc_xfer = xfer; switch (opc) { case NVME_OPC_NVM_WRITE: case NVME_OPC_NVM_READ: VERIFY(xfer->x_nblks <= 0x10000); cmd->nc_sqe.sqe_nsid = ns->ns_id; cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu; cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32); cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1); if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS) goto fail; break; case NVME_OPC_NVM_FLUSH: cmd->nc_sqe.sqe_nsid = ns->ns_id; break; default: goto fail; } return (cmd); fail: nvme_free_cmd(cmd); return (NULL); } static void nvme_bd_xfer_done(void *arg) { nvme_cmd_t *cmd = arg; bd_xfer_t *xfer = cmd->nc_xfer; int error = 0; error = nvme_check_cmd_status(cmd); nvme_free_cmd(cmd); bd_xfer_done(xfer, error); } static void nvme_bd_driveinfo(void *arg, bd_drive_t *drive) { nvme_namespace_t *ns = arg; nvme_t *nvme = ns->ns_nvme; /* * blkdev maintains one queue size per instance (namespace), * but all namespace share the I/O queues. * TODO: need to figure out a sane default, or use per-NS I/O queues, * or change blkdev to handle EAGAIN */ drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len / nvme->n_namespace_count; /* * d_maxxfer is not set, which means the value is taken from the DMA * attributes specified to bd_alloc_handle. */ drive->d_removable = B_FALSE; drive->d_hotpluggable = B_FALSE; bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64)); drive->d_target = ns->ns_id; drive->d_lun = 0; drive->d_model = nvme->n_idctl->id_model; drive->d_model_len = sizeof (nvme->n_idctl->id_model); drive->d_vendor = nvme->n_vendor; drive->d_vendor_len = strlen(nvme->n_vendor); drive->d_product = nvme->n_product; drive->d_product_len = strlen(nvme->n_product); drive->d_serial = nvme->n_idctl->id_serial; drive->d_serial_len = sizeof (nvme->n_idctl->id_serial); drive->d_revision = nvme->n_idctl->id_fwrev; drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev); } static int nvme_bd_mediainfo(void *arg, bd_media_t *media) { nvme_namespace_t *ns = arg; media->m_nblks = ns->ns_block_count; media->m_blksize = ns->ns_block_size; media->m_readonly = B_FALSE; media->m_solidstate = B_TRUE; media->m_pblksize = ns->ns_best_block_size; return (0); } static int nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc) { nvme_t *nvme = ns->ns_nvme; nvme_cmd_t *cmd; if (nvme->n_dead) return (EIO); /* No polling for now */ if (xfer->x_flags & BD_XFER_POLL) return (EIO); cmd = nvme_create_nvm_cmd(ns, opc, xfer); if (cmd == NULL) return (ENOMEM); cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1; ASSERT(cmd->nc_sqid <= nvme->n_ioq_count); if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd) != DDI_SUCCESS) return (EAGAIN); return (0); } static int nvme_bd_read(void *arg, bd_xfer_t *xfer) { nvme_namespace_t *ns = arg; return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ)); } static int nvme_bd_write(void *arg, bd_xfer_t *xfer) { nvme_namespace_t *ns = arg; return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE)); } static int nvme_bd_sync(void *arg, bd_xfer_t *xfer) { nvme_namespace_t *ns = arg; if (ns->ns_nvme->n_dead) return (EIO); /* * If the volatile write cache is not present or not enabled the FLUSH * command is a no-op, so we can take a shortcut here. */ if (!ns->ns_nvme->n_write_cache_present) { bd_xfer_done(xfer, ENOTSUP); return (0); } if (!ns->ns_nvme->n_write_cache_enabled) { bd_xfer_done(xfer, 0); return (0); } return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH)); } static int nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid) { nvme_namespace_t *ns = arg; /*LINTED: E_BAD_PTR_CAST_ALIGN*/ if (*(uint64_t *)ns->ns_eui64 != 0) { return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN, sizeof (ns->ns_eui64), ns->ns_eui64, devid)); } else { return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid), ns->ns_devid, devid)); } }