/* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * IEEE 802.11i TKIP crypto support. * * Part of this module is derived from similar code in the Host * AP driver. The code is used with the consent of the author and * it's license is included below. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include "net80211_impl.h" static void *tkip_attach(struct ieee80211com *, struct ieee80211_key *); static void tkip_detach(struct ieee80211_key *); static int tkip_setkey(struct ieee80211_key *); static int tkip_encap(struct ieee80211_key *, mblk_t *, uint8_t); static int tkip_decap(struct ieee80211_key *, mblk_t *, int); static int tkip_enmic(struct ieee80211_key *, mblk_t *, int); static int tkip_demic(struct ieee80211_key *, mblk_t *, int); const struct ieee80211_cipher tkip = { "TKIP", IEEE80211_CIPHER_TKIP, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN, IEEE80211_WEP_CRCLEN, IEEE80211_WEP_MICLEN, tkip_attach, tkip_detach, tkip_setkey, tkip_encap, tkip_decap, tkip_enmic, tkip_demic, }; struct tkip_ctx { struct ieee80211com *tc_ic; /* for diagnostics */ uint16_t tx_ttak[5]; int tx_phase1_done; uint8_t tx_rc4key[16]; uint16_t rx_ttak[5]; int rx_phase1_done; uint8_t rx_rc4key[16]; uint64_t rx_rsc; /* held until MIC verified */ }; static void michael_mic(struct tkip_ctx *, const uint8_t *, mblk_t *, uint_t, size_t, uint8_t[]); static int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *, mblk_t *, int); static int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *, mblk_t *, int); extern int rc4_init(crypto_context_t *, const uint8_t *, int); extern int rc4_crypt(crypto_context_t, const uint8_t *, uint8_t *, int); extern int rc4_final(crypto_context_t, uint8_t *, int); /* ARGSUSED */ static void * tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k) { struct tkip_ctx *ctx; ctx = kmem_zalloc(sizeof (struct tkip_ctx), KM_SLEEP); if (ctx == NULL) return (NULL); ctx->tc_ic = ic; return (ctx); } static void tkip_detach(struct ieee80211_key *k) { struct tkip_ctx *ctx = k->wk_private; if (ctx != NULL) kmem_free(ctx, sizeof (struct tkip_ctx)); } static int tkip_setkey(struct ieee80211_key *k) { if (k->wk_keylen != (128/NBBY)) return (0); k->wk_keytsc = 1; /* TSC starts at 1 */ return (1); } /* * Add privacy headers appropriate for the specified key. */ static int tkip_encap(struct ieee80211_key *k, mblk_t *mp, uint8_t keyid) { struct tkip_ctx *ctx = k->wk_private; struct ieee80211com *ic = ctx->tc_ic; uint8_t *ivp; int hdrlen; /* * Handle TKIP counter measures requirement. */ if (ic->ic_flags & IEEE80211_F_COUNTERM) return (0); hdrlen = ieee80211_hdrspace(mp->b_rptr); /* * Copy down 802.11 header and add the IV, KeyID, and ExtIV. */ ivp = mp->b_rptr; ivp += hdrlen; ivp[0] = k->wk_keytsc >> 8; /* TSC1 */ ivp[1] = (ivp[0] | 0x20) & 0x7f; /* WEP seed */ ivp[2] = k->wk_keytsc >> 0; /* TSC0 */ ivp[3] = keyid | IEEE80211_WEP_EXTIV; /* KeyID | ExtID */ ivp[4] = k->wk_keytsc >> 16; /* TSC2 */ ivp[5] = k->wk_keytsc >> 24; /* TSC3 */ ivp[6] = k->wk_keytsc >> 32; /* TSC4 */ ivp[7] = k->wk_keytsc >> 40; /* TSC5 */ /* * Finally, do software encrypt if neeed. */ if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { if (!tkip_encrypt(ctx, k, mp, hdrlen)) return (0); } else k->wk_keytsc++; /* wrap at 48 bits */ return (1); } uint64_t ieee80211_read_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) { uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24); uint16_t iv16 = (b4 << 0) | (b5 << 8); return ((((uint64_t)iv16) << 32) | iv32); } /* * Validate and strip privacy headers (and trailer) for a * received frame. If necessary, decrypt the frame using * the specified key. */ static int tkip_decap(struct ieee80211_key *k, mblk_t *mp, int hdrlen) { struct tkip_ctx *ctx = k->wk_private; struct ieee80211com *ic = ctx->tc_ic; struct ieee80211_frame tmp; uint8_t *ivp; uint64_t pn; /* * Header should have extended IV and sequence number; * verify the former and validate the latter. */ ivp = mp->b_rptr + hdrlen; if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) { /* * No extended IV; discard frame. */ return (0); } /* * Handle TKIP counter measures requirement. */ if (ic->ic_flags & IEEE80211_F_COUNTERM) return (0); /* NB: assume IEEEE80211_WEP_MINLEN covers the extended IV */ pn = ieee80211_read_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]); ctx->rx_rsc = pn; if (ctx->rx_rsc <= k->wk_keyrsc) return (0); /* * NB: We can't update the rsc in the key until MIC is verified. * * We assume we are not preempted between doing the check above * and updating wk_keyrsc when stripping the MIC in tkip_demic. * Otherwise we might process another packet and discard it as * a replay. */ /* * Check if the device handled the decrypt in hardware. * If so we just strip the header; otherwise we need to * handle the decrypt in software. */ if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { if (!tkip_decrypt(ctx, k, mp, hdrlen)) return (0); } /* * Copy up 802.11 header and strip crypto bits. */ bcopy(mp->b_rptr, &tmp, hdrlen); bcopy(&tmp, mp->b_rptr + tkip.ic_header, hdrlen); mp->b_rptr += tkip.ic_header; mp->b_wptr -= tkip.ic_trailer; return (1); } /* * Add MIC to the frame as needed. */ static int tkip_enmic(struct ieee80211_key *k, mblk_t *mp, int force) { struct tkip_ctx *ctx = k->wk_private; if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) { int hdrlen; uint8_t *mic; hdrlen = ieee80211_hdrspace(mp->b_rptr); mic = mp->b_wptr; mp->b_wptr += tkip.ic_miclen; if ((int)(MBLKL(mp) - (hdrlen + tkip.ic_header + tkip.ic_miclen)) < 0) return (0); /* dead packet */ michael_mic(ctx, k->wk_txmic, mp, (hdrlen + tkip.ic_header), MBLKL(mp) - (hdrlen + tkip.ic_header + tkip.ic_miclen), mic); } return (1); } /* * Verify and strip MIC from the frame. */ /* ARGSUSED */ static int tkip_demic(struct ieee80211_key *k, mblk_t *mp, int force) { struct tkip_ctx *ctx = k->wk_private; if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) { int hdrlen = ieee80211_hdrspace(mp->b_rptr); uint8_t mic[IEEE80211_WEP_MICLEN]; uint8_t mic0[IEEE80211_WEP_MICLEN]; michael_mic(ctx, k->wk_rxmic, mp, hdrlen, MBLKL(mp) - (hdrlen + tkip.ic_miclen), mic); bcopy(mp->b_wptr - tkip.ic_miclen, mic0, tkip.ic_miclen); if (bcmp(mic, mic0, tkip.ic_miclen)) { ieee80211_dbg(IEEE80211_MSG_CRYPTO, "tkip_demic() mic mismatch\n"); return (0); } } /* * Strip MIC from the tail. */ mp->b_wptr -= tkip.ic_miclen; /* * Ok to update rsc now that MIC has been verified. */ k->wk_keyrsc = ctx->rx_rsc; return (1); } /* * For the avoidance of doubt, except that if any license choice other * than GPL or LGPL is available it will apply instead, Sun elects to * use only the General Public License version 2 (GPLv2) at this time * for any software where a choice of GPL license versions is made * available with the language indicating that GPLv2 or any later * version may be used, or where a choice of which version of the GPL * is applied is otherwise unspecified. */ /* * Host AP crypt: host-based TKIP encryption implementation for Host AP driver * * Copyright (c) 2003-2004, Jouni Malinen * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. See README and COPYING for * more details. * * Alternatively, this software may be distributed under the terms of BSD * license. */ /* Table of CRCs of all 8-bit messages */ static uint32_t crc_table[] = { CRC32_TABLE }; static uint16_t RotR1(uint16_t val) { return ((val >> 1) | (val << 15)); } static uint8_t Lo8(uint16_t val) { return (val & 0xff); } static uint8_t Hi8(uint16_t val) { return (val >> 8); } static uint16_t Lo16(uint32_t val) { return (val & 0xffff); } static uint16_t Hi16(uint32_t val) { return (val >> 16); } static uint16_t Mk16(uint8_t hi, uint8_t lo) { return (lo | (((uint16_t)hi) << 8)); } static uint16_t Mk16_le(const uint16_t *v) { return (LE_16(*v)); } static const uint16_t Sbox[256] = { 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, }; static uint16_t _S_(uint16_t v) { uint16_t t = Sbox[Hi8(v)]; return (Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8))); } #define PHASE1_LOOP_COUNT 8 static void tkip_mixing_phase1(uint16_t *TTAK, const uint8_t *TK, const uint8_t *TA, uint32_t IV32) { int i, j; /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */ TTAK[0] = Lo16(IV32); TTAK[1] = Hi16(IV32); TTAK[2] = Mk16(TA[1], TA[0]); TTAK[3] = Mk16(TA[3], TA[2]); TTAK[4] = Mk16(TA[5], TA[4]); for (i = 0; i < PHASE1_LOOP_COUNT; i++) { j = 2 * (i & 1); TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j])); TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j])); TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j])); TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j])); TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i; } } static void tkip_mixing_phase2(uint8_t *WEPSeed, const uint8_t *TK, const uint16_t *TTAK, uint16_t IV16) { /* * Make temporary area overlap WEP seed so that the final copy can be * avoided on little endian hosts. */ uint16_t *PPK = (uint16_t *)&WEPSeed[4]; /* Step 1 - make copy of TTAK and bring in TSC */ PPK[0] = TTAK[0]; PPK[1] = TTAK[1]; PPK[2] = TTAK[2]; PPK[3] = TTAK[3]; PPK[4] = TTAK[4]; PPK[5] = TTAK[4] + IV16; /* Step 2 - 96-bit bijective mixing using S-box */ PPK[0] += _S_(PPK[5] ^ Mk16_le((const uint16_t *) &TK[0])); PPK[1] += _S_(PPK[0] ^ Mk16_le((const uint16_t *) &TK[2])); PPK[2] += _S_(PPK[1] ^ Mk16_le((const uint16_t *) &TK[4])); PPK[3] += _S_(PPK[2] ^ Mk16_le((const uint16_t *) &TK[6])); PPK[4] += _S_(PPK[3] ^ Mk16_le((const uint16_t *) &TK[8])); PPK[5] += _S_(PPK[4] ^ Mk16_le((const uint16_t *) &TK[10])); PPK[0] += RotR1(PPK[5] ^ Mk16_le((const uint16_t *) &TK[12])); PPK[1] += RotR1(PPK[0] ^ Mk16_le((const uint16_t *) &TK[14])); PPK[2] += RotR1(PPK[1]); PPK[3] += RotR1(PPK[2]); PPK[4] += RotR1(PPK[3]); PPK[5] += RotR1(PPK[4]); /* * Step 3 - bring in last of TK bits, assign 24-bit WEP IV value * WEPSeed[0..2] is transmitted as WEP IV */ WEPSeed[0] = Hi8(IV16); WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F; WEPSeed[2] = Lo8(IV16); WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const uint16_t *) &TK[0])) >> 1); } static int wep_encrypt(uint8_t *key, mblk_t *mp, uint_t off, size_t data_len, uint8_t icv[IEEE80211_WEP_CRCLEN]) { uint8_t crcbuf[IEEE80211_WEP_CRCLEN]; uint32_t crc; crypto_context_t ctx; int rv; ctx = NULL; rv = rc4_init(&ctx, (const uint8_t *)key, 16); if (rv != CRYPTO_SUCCESS) return (0); /* calculate CRC over unencrypted data */ CRC32(crc, mp->b_rptr + off, data_len, -1U, crc_table); /* encrypt data */ (void) rc4_crypt(ctx, mp->b_rptr + off, mp->b_rptr + off, data_len); /* tack on ICV */ *(uint32_t *)crcbuf = LE_32(~crc); (void) rc4_crypt(ctx, crcbuf, icv, IEEE80211_WEP_CRCLEN); (void) rc4_final(ctx, icv, IEEE80211_WEP_CRCLEN); return (1); } static int wep_decrypt(uint8_t *key, mblk_t *mp, uint_t off, size_t data_len) { uint8_t crcbuf[IEEE80211_WEP_CRCLEN]; uint8_t *icv; uint32_t crc; crypto_context_t ctx; int rv; ctx = NULL; rv = rc4_init(&ctx, (const uint8_t *)key, 16); if (rv != CRYPTO_SUCCESS) return (0); /* decrypt data */ (void) rc4_crypt(ctx, mp->b_rptr + off, mp->b_rptr + off, data_len); /* calculate CRC over unencrypted data */ CRC32(crc, mp->b_rptr + off, data_len, -1U, crc_table); /* decrypt ICV and compare to CRC */ icv = mp->b_wptr - IEEE80211_WEP_CRCLEN; (void) rc4_crypt(ctx, icv, crcbuf, IEEE80211_WEP_CRCLEN); (void) rc4_final(ctx, crcbuf, IEEE80211_WEP_CRCLEN); return (crc == ~LE_32(*(uint32_t *)crcbuf)); } static uint32_t rotl(uint32_t val, int bits) { return ((val << bits) | (val >> (32 - bits))); } static uint32_t rotr(uint32_t val, int bits) { return ((val >> bits) | (val << (32 - bits))); } static uint32_t xswap(uint32_t val) { return (((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8)); } #define michael_block(l, r) \ do { \ r ^= rotl(l, 17); \ l += r; \ r ^= xswap(l); \ l += r; \ r ^= rotl(l, 3); \ l += r; \ r ^= rotr(l, 2); \ l += r; \ _NOTE(CONSTANTCONDITION)\ } while (0) static uint32_t get_le32_split(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) { return (b0 | (b1 << 8) | (b2 << 16) | (b3 << 24)); } static uint32_t get_le32(const uint8_t *p) { return (get_le32_split(p[0], p[1], p[2], p[3])); } static void put_le32(uint8_t *p, uint32_t v) { p[0] = (uint8_t)v; p[1] = v >> 8; p[2] = v >> 16; p[3] = v >> 24; } /* * Craft pseudo header used to calculate the MIC. */ static void michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16]) { const struct ieee80211_frame_addr4 *wh = (const struct ieee80211_frame_addr4 *)wh0; switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */ IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2); break; case IEEE80211_FC1_DIR_TODS: IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */ IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2); break; case IEEE80211_FC1_DIR_FROMDS: IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */ IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3); break; case IEEE80211_FC1_DIR_DSTODS: IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */ IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4); break; } hdr[12] = 0; /* QoS not supported */ hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */ } /* ARGSUSED */ static void michael_mic(struct tkip_ctx *ctx, const uint8_t *key, mblk_t *mp, uint_t off, size_t data_len, uint8_t mic[IEEE80211_WEP_MICLEN]) { uint8_t hdr[16]; uint32_t l, r; const uint8_t *data; int i, blocks, last; michael_mic_hdr((struct ieee80211_frame *)mp->b_rptr, hdr); l = get_le32(key); r = get_le32(key + 4); /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */ l ^= get_le32(hdr); michael_block(l, r); l ^= get_le32(&hdr[4]); michael_block(l, r); l ^= get_le32(&hdr[8]); michael_block(l, r); l ^= get_le32(&hdr[12]); michael_block(l, r); /* first buffer has special handling */ data = mp->b_rptr + off; blocks = data_len / 4; last = data_len % 4; for (i = 0; i < blocks; i++) { l ^= get_le32(&data[4 * i]); michael_block(l, r); } /* Last block and padding (0x5a, 4..7 x 0) */ switch (last) { case 0: l ^= 0x5a; break; case 1: l ^= data[4 * i] | 0x5a00; break; case 2: l ^= data[4 * i] | (data[4 * i + 1] << 8) | 0x5a0000; break; case 3: l ^= data[4 * i] | (data[4 * i + 1] << 8) | (data[4 * i + 2] << 16) | 0x5a000000; break; } michael_block(l, r); /* l ^= 0; */ michael_block(l, r); put_le32(mic, l); put_le32(mic + 4, r); } static int tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key, mblk_t *mp, int hdrlen) { struct ieee80211_frame *wh; uint8_t *icv; wh = (struct ieee80211_frame *)mp->b_rptr; if (!ctx->tx_phase1_done) { tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2, (uint32_t)(key->wk_keytsc >> 16)); ctx->tx_phase1_done = 1; } tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak, (uint16_t)key->wk_keytsc); icv = mp->b_wptr; mp->b_wptr += tkip.ic_trailer; (void) wep_encrypt(ctx->tx_rc4key, mp, hdrlen + tkip.ic_header, MBLKL(mp) - (hdrlen + tkip.ic_header + tkip.ic_trailer), icv); key->wk_keytsc++; if ((uint16_t)(key->wk_keytsc) == 0) ctx->tx_phase1_done = 0; return (1); } static int tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key, mblk_t *mp, int hdrlen) { struct ieee80211_frame *wh; uint32_t iv32; uint16_t iv16; wh = (struct ieee80211_frame *)mp->b_rptr; /* tkip_decap already verified header and left seq in rx_rsc */ iv16 = (uint16_t)ctx->rx_rsc; iv32 = (uint32_t)(ctx->rx_rsc >> 16); if (iv32 != (uint32_t)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) { tkip_mixing_phase1(ctx->rx_ttak, key->wk_key, wh->i_addr2, iv32); ctx->rx_phase1_done = 0; /* DHCP */ } tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16); /* m is unstripped; deduct headers + ICV to get payload */ if (!wep_decrypt(ctx->rx_rc4key, mp, hdrlen + tkip.ic_header, MBLKL(mp) - (hdrlen + tkip.ic_header + tkip.ic_trailer))) { if (iv32 != (uint32_t)(key->wk_keyrsc >> 16)) { /* * Previously cached Phase1 result was already lost, so * it needs to be recalculated for the next packet. */ ctx->rx_phase1_done = 0; } ieee80211_dbg(IEEE80211_MSG_CRYPTO, "tkip_decrypt() error\n"); return (0); } return (1); }