/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *, mblk_t *, uintptr_t, uint16_t, mblk_t **); static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *, mblk_t *, uintptr_t, uint16_t, mblk_t **); static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *, mblk_t *, uintptr_t, uint16_t, mblk_t **); static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *, mblk_t *, uintptr_t, uint16_t, mblk_t **); typedef struct mac_tx_mode_s { mac_tx_srs_mode_t mac_tx_mode; mac_tx_func_t mac_tx_func; } mac_tx_mode_t; /* * There are five modes of operation on the Tx side. These modes get set * in mac_tx_srs_setup(). Except for the experimental TX_SERIALIZE mode, * none of the other modes are user configurable. They get selected by * the system depending upon whether the link (or flow) has multiple Tx * rings or a bandwidth configured, etc. */ mac_tx_mode_t mac_tx_mode_list[] = { {SRS_TX_DEFAULT, mac_tx_single_ring_mode}, {SRS_TX_SERIALIZE, mac_tx_serializer_mode}, {SRS_TX_FANOUT, mac_tx_fanout_mode}, {SRS_TX_BW, mac_tx_bw_mode}, {SRS_TX_BW_FANOUT, mac_tx_bw_mode} }; /* * Soft Ring Set (SRS) - The Run time code that deals with * dynamic polling from the hardware, bandwidth enforcement, * fanout etc. * * We try to use H/W classification on NIC and assign traffic for * a MAC address to a particular Rx ring or ring group. There is a * 1-1 mapping between a SRS and a Rx ring. The SRS dynamically * switches the underlying Rx ring between interrupt and * polling mode and enforces any specified B/W control. * * There is always a SRS created and tied to each H/W and S/W rule. * Whenever we create a H/W rule, we always add the the same rule to * S/W classifier and tie a SRS to it. * * In case a B/W control is specified, it is broken into bytes * per ticks and as soon as the quota for a tick is exhausted, * the underlying Rx ring is forced into poll mode for remainder of * the tick. The SRS poll thread only polls for bytes that are * allowed to come in the SRS. We typically let 4x the configured * B/W worth of packets to come in the SRS (to prevent unnecessary * drops due to bursts) but only process the specified amount. * * A MAC client (e.g. a VNIC or aggr) can have 1 or more * Rx rings (and corresponding SRSs) assigned to it. The SRS * in turn can have softrings to do protocol level fanout or * softrings to do S/W based fanout or both. In case the NIC * has no Rx rings, we do S/W classification to respective SRS. * The S/W classification rule is always setup and ready. This * allows the MAC layer to reassign Rx rings whenever needed * but packets still continue to flow via the default path and * getting S/W classified to correct SRS. * * The SRS's are used on both Tx and Rx side. They use the same * data structure but the processing routines have slightly different * semantics due to the fact that Rx side needs to do dynamic * polling etc. * * Dynamic Polling Notes * ===================== * * Each Soft ring set is capable of switching its Rx ring between * interrupt and poll mode and actively 'polls' for packets in * poll mode. If the SRS is implementing a B/W limit, it makes * sure that only Max allowed packets are pulled in poll mode * and goes to poll mode as soon as B/W limit is exceeded. As * such, there are no overheads to implement B/W limits. * * In poll mode, its better to keep the pipeline going where the * SRS worker thread keeps processing packets and poll thread * keeps bringing more packets (specially if they get to run * on different CPUs). This also prevents the overheads associated * by excessive signalling (on NUMA machines, this can be * pretty devastating). The exception is latency optimized case * where worker thread does no work and interrupt and poll thread * are allowed to do their own drain. * * We use the following policy to control Dynamic Polling: * 1) We switch to poll mode anytime the processing * thread causes a backlog to build up in SRS and * its associated Soft Rings (sr_poll_pkt_cnt > 0). * 2) As long as the backlog stays under the low water * mark (sr_lowat), we poll the H/W for more packets. * 3) If the backlog (sr_poll_pkt_cnt) exceeds low * water mark, we stay in poll mode but don't poll * the H/W for more packets. * 4) Anytime in polling mode, if we poll the H/W for * packets and find nothing plus we have an existing * backlog (sr_poll_pkt_cnt > 0), we stay in polling * mode but don't poll the H/W for packets anymore * (let the polling thread go to sleep). * 5) Once the backlog is relived (packets are processed) * we reenable polling (by signalling the poll thread) * only when the backlog dips below sr_poll_thres. * 6) sr_hiwat is used exclusively when we are not * polling capable and is used to decide when to * drop packets so the SRS queue length doesn't grow * infinitely. * * NOTE: Also see the block level comment on top of mac_soft_ring.c */ /* * mac_latency_optimize * * Controls whether the poll thread can process the packets inline * or let the SRS worker thread do the processing. This applies if * the SRS was not being processed. For latency sensitive traffic, * this needs to be true to allow inline processing. For throughput * under load, this should be false. * * This (and other similar) tunable should be rolled into a link * or flow specific workload hint that can be set using dladm * linkprop (instead of multiple such tunables). */ boolean_t mac_latency_optimize = B_TRUE; /* * MAC_RX_SRS_ENQUEUE_CHAIN and MAC_TX_SRS_ENQUEUE_CHAIN * * queue a mp or chain in soft ring set and increment the * local count (srs_count) for the SRS and the shared counter * (srs_poll_pkt_cnt - shared between SRS and its soft rings * to track the total unprocessed packets for polling to work * correctly). * * The size (total bytes queued) counters are incremented only * if we are doing B/W control. */ #define MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ if ((mac_srs)->srs_last != NULL) \ (mac_srs)->srs_last->b_next = (head); \ else \ (mac_srs)->srs_first = (head); \ (mac_srs)->srs_last = (tail); \ (mac_srs)->srs_count += count; \ } #define MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ \ MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ srs_rx->sr_poll_pkt_cnt += count; \ ASSERT(srs_rx->sr_poll_pkt_cnt > 0); \ if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ (mac_srs)->srs_size += (sz); \ mutex_enter(&(mac_srs)->srs_bw->mac_bw_lock); \ (mac_srs)->srs_bw->mac_bw_sz += (sz); \ mutex_exit(&(mac_srs)->srs_bw->mac_bw_lock); \ } \ } #define MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz) { \ mac_srs->srs_state |= SRS_ENQUEUED; \ MAC_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); \ if ((mac_srs)->srs_type & SRST_BW_CONTROL) { \ (mac_srs)->srs_size += (sz); \ (mac_srs)->srs_bw->mac_bw_sz += (sz); \ } \ } /* * Turn polling on routines */ #define MAC_SRS_POLLING_ON(mac_srs) { \ ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ if (((mac_srs)->srs_state & \ (SRS_POLLING_CAPAB|SRS_POLLING)) == SRS_POLLING_CAPAB) { \ (mac_srs)->srs_state |= SRS_POLLING; \ (void) mac_hwring_disable_intr((mac_ring_handle_t) \ (mac_srs)->srs_ring); \ (mac_srs)->srs_rx.sr_poll_on++; \ } \ } #define MAC_SRS_WORKER_POLLING_ON(mac_srs) { \ ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ if (((mac_srs)->srs_state & \ (SRS_POLLING_CAPAB|SRS_WORKER|SRS_POLLING)) == \ (SRS_POLLING_CAPAB|SRS_WORKER)) { \ (mac_srs)->srs_state |= SRS_POLLING; \ (void) mac_hwring_disable_intr((mac_ring_handle_t) \ (mac_srs)->srs_ring); \ (mac_srs)->srs_rx.sr_worker_poll_on++; \ } \ } /* * MAC_SRS_POLL_RING * * Signal the SRS poll thread to poll the underlying H/W ring * provided it wasn't already polling (SRS_GET_PKTS was set). * * Poll thread gets to run only from mac_rx_srs_drain() and only * if the drain was being done by the worker thread. */ #define MAC_SRS_POLL_RING(mac_srs) { \ mac_srs_rx_t *srs_rx = &(mac_srs)->srs_rx; \ \ ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ srs_rx->sr_poll_thr_sig++; \ if (((mac_srs)->srs_state & \ (SRS_POLLING_CAPAB|SRS_WORKER|SRS_GET_PKTS)) == \ (SRS_WORKER|SRS_POLLING_CAPAB)) { \ (mac_srs)->srs_state |= SRS_GET_PKTS; \ cv_signal(&(mac_srs)->srs_cv); \ } else { \ srs_rx->sr_poll_thr_busy++; \ } \ } /* * MAC_SRS_CHECK_BW_CONTROL * * Check to see if next tick has started so we can reset the * SRS_BW_ENFORCED flag and allow more packets to come in the * system. */ #define MAC_SRS_CHECK_BW_CONTROL(mac_srs) { \ ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ ASSERT(((mac_srs)->srs_type & SRST_TX) || \ MUTEX_HELD(&(mac_srs)->srs_bw->mac_bw_lock)); \ clock_t now = ddi_get_lbolt(); \ if ((mac_srs)->srs_bw->mac_bw_curr_time != now) { \ (mac_srs)->srs_bw->mac_bw_curr_time = now; \ (mac_srs)->srs_bw->mac_bw_used = 0; \ if ((mac_srs)->srs_bw->mac_bw_state & SRS_BW_ENFORCED) \ (mac_srs)->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; \ } \ } /* * MAC_SRS_WORKER_WAKEUP * * Wake up the SRS worker thread to process the queue as long as * no one else is processing the queue. If we are optimizing for * latency, we wake up the worker thread immediately or else we * wait mac_srs_worker_wakeup_ticks before worker thread gets * woken up. */ int mac_srs_worker_wakeup_ticks = 0; #define MAC_SRS_WORKER_WAKEUP(mac_srs) { \ ASSERT(MUTEX_HELD(&(mac_srs)->srs_lock)); \ if (!((mac_srs)->srs_state & SRS_PROC) && \ (mac_srs)->srs_tid == NULL) { \ if (((mac_srs)->srs_state & SRS_LATENCY_OPT) || \ (mac_srs_worker_wakeup_ticks == 0)) \ cv_signal(&(mac_srs)->srs_async); \ else \ (mac_srs)->srs_tid = \ timeout(mac_srs_fire, (mac_srs), \ mac_srs_worker_wakeup_ticks); \ } \ } #define TX_SINGLE_RING_MODE(mac_srs) \ ((mac_srs)->srs_tx.st_mode == SRS_TX_DEFAULT || \ (mac_srs)->srs_tx.st_mode == SRS_TX_SERIALIZE || \ (mac_srs)->srs_tx.st_mode == SRS_TX_BW) #define TX_BANDWIDTH_MODE(mac_srs) \ ((mac_srs)->srs_tx.st_mode == SRS_TX_BW || \ (mac_srs)->srs_tx.st_mode == SRS_TX_BW_FANOUT) #define TX_SRS_TO_SOFT_RING(mac_srs, head, hint) { \ uint_t hash, indx; \ hash = HASH_HINT(hint); \ indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count); \ softring = mac_srs->srs_oth_soft_rings[indx]; \ (void) (mac_tx_soft_ring_process(softring, head, 0, NULL)); \ } /* * MAC_TX_SRS_BLOCK * * Always called from mac_tx_srs_drain() function. SRS_TX_BLOCKED * will be set only if srs_tx_woken_up is FALSE. If * srs_tx_woken_up is TRUE, it indicates that the wakeup arrived * before we grabbed srs_lock to set SRS_TX_BLOCKED. We need to * attempt to transmit again and not setting SRS_TX_BLOCKED does * that. */ #define MAC_TX_SRS_BLOCK(srs, mp) { \ ASSERT(MUTEX_HELD(&(srs)->srs_lock)); \ if ((srs)->srs_tx.st_woken_up) { \ (srs)->srs_tx.st_woken_up = B_FALSE; \ } else { \ ASSERT(!((srs)->srs_state & SRS_TX_BLOCKED)); \ (srs)->srs_state |= SRS_TX_BLOCKED; \ (srs)->srs_tx.st_blocked_cnt++; \ } \ } /* * MAC_TX_SRS_TEST_HIWAT * * Called before queueing a packet onto Tx SRS to test and set * SRS_TX_HIWAT if srs_count exceeds srs_tx_hiwat. */ #define MAC_TX_SRS_TEST_HIWAT(srs, mp, tail, cnt, sz, cookie) { \ boolean_t enqueue = 1; \ \ if ((srs)->srs_count > (srs)->srs_tx.st_hiwat) { \ /* \ * flow-controlled. Store srs in cookie so that it \ * can be returned as mac_tx_cookie_t to client \ */ \ (srs)->srs_state |= SRS_TX_HIWAT; \ cookie = (mac_tx_cookie_t)srs; \ (srs)->srs_tx.st_hiwat_cnt++; \ if ((srs)->srs_count > (srs)->srs_tx.st_max_q_cnt) { \ /* increment freed stats */ \ (srs)->srs_tx.st_drop_count += cnt; \ /* \ * b_prev may be set to the fanout hint \ * hence can't use freemsg directly \ */ \ mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); \ DTRACE_PROBE1(tx_queued_hiwat, \ mac_soft_ring_set_t *, srs); \ enqueue = 0; \ } \ } \ if (enqueue) \ MAC_TX_SRS_ENQUEUE_CHAIN(srs, mp, tail, cnt, sz); \ } /* Some utility macros */ #define MAC_SRS_BW_LOCK(srs) \ if (!(srs->srs_type & SRST_TX)) \ mutex_enter(&srs->srs_bw->mac_bw_lock); #define MAC_SRS_BW_UNLOCK(srs) \ if (!(srs->srs_type & SRST_TX)) \ mutex_exit(&srs->srs_bw->mac_bw_lock); #define MAC_TX_SRS_DROP_MESSAGE(srs, mp, cookie) { \ mac_pkt_drop(NULL, NULL, mp, B_FALSE); \ /* increment freed stats */ \ mac_srs->srs_tx.st_drop_count++; \ cookie = (mac_tx_cookie_t)srs; \ } #define MAC_TX_SET_NO_ENQUEUE(srs, mp_chain, ret_mp, cookie) { \ mac_srs->srs_state |= SRS_TX_WAKEUP_CLIENT; \ cookie = (mac_tx_cookie_t)srs; \ *ret_mp = mp_chain; \ } /* * Drop the rx packet and advance to the next one in the chain. */ static void mac_rx_drop_pkt(mac_soft_ring_set_t *srs, mblk_t *mp) { mac_srs_rx_t *srs_rx = &srs->srs_rx; ASSERT(mp->b_next == NULL); mutex_enter(&srs->srs_lock); MAC_UPDATE_SRS_COUNT_LOCKED(srs, 1); MAC_UPDATE_SRS_SIZE_LOCKED(srs, msgdsize(mp)); mutex_exit(&srs->srs_lock); srs_rx->sr_drop_count++; freemsg(mp); } /* DATAPATH RUNTIME ROUTINES */ /* * mac_srs_fire * * Timer callback routine for waking up the SRS worker thread. */ static void mac_srs_fire(void *arg) { mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)arg; mutex_enter(&mac_srs->srs_lock); if (mac_srs->srs_tid == 0) { mutex_exit(&mac_srs->srs_lock); return; } mac_srs->srs_tid = 0; if (!(mac_srs->srs_state & SRS_PROC)) cv_signal(&mac_srs->srs_async); mutex_exit(&mac_srs->srs_lock); } /* * 'hint' is fanout_hint (type of uint64_t) which is given by the TCP/IP stack, * and it is used on the TX path. */ #define HASH_HINT(hint) \ ((hint) ^ ((hint) >> 24) ^ ((hint) >> 16) ^ ((hint) >> 8)) /* * hash based on the src address and the port information. */ #define HASH_ADDR(src, ports) \ (ntohl((src)) ^ ((ports) >> 24) ^ ((ports) >> 16) ^ \ ((ports) >> 8) ^ (ports)) #define COMPUTE_INDEX(key, sz) (key % sz) #define FANOUT_ENQUEUE_MP(head, tail, cnt, bw_ctl, sz, sz0, mp) { \ if ((tail) != NULL) { \ ASSERT((tail)->b_next == NULL); \ (tail)->b_next = (mp); \ } else { \ ASSERT((head) == NULL); \ (head) = (mp); \ } \ (tail) = (mp); \ (cnt)++; \ if ((bw_ctl)) \ (sz) += (sz0); \ } #define MAC_FANOUT_DEFAULT 0 #define MAC_FANOUT_RND_ROBIN 1 int mac_fanout_type = MAC_FANOUT_DEFAULT; #define MAX_SR_TYPES 3 /* fanout types for port based hashing */ enum pkt_type { V4_TCP = 0, V4_UDP, OTH, UNDEF }; /* * In general we do port based hashing to spread traffic over different * softrings. The below tunable allows to override that behavior. Setting it * to B_TRUE allows to do a fanout based on src ipv6 address. This behavior * is also the applicable to ipv6 packets carrying multiple optional headers * and other uncommon packet types. */ boolean_t mac_src_ipv6_fanout = B_FALSE; /* * Pair of local and remote ports in the transport header */ #define PORTS_SIZE 4 /* * mac_rx_srs_proto_fanout * * This routine delivers packets destined to an SRS into one of the * protocol soft rings. * * Given a chain of packets we need to split it up into multiple sub chains * destined into TCP, UDP or OTH soft ring. Instead of entering * the soft ring one packet at a time, we want to enter it in the form of a * chain otherwise we get this start/stop behaviour where the worker thread * goes to sleep and then next packets comes in forcing it to wake up etc. */ static void mac_rx_srs_proto_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) { struct ether_header *ehp; struct ether_vlan_header *evhp; uint32_t sap; ipha_t *ipha; uint8_t *dstaddr; size_t hdrsize; mblk_t *mp; mblk_t *headmp[MAX_SR_TYPES]; mblk_t *tailmp[MAX_SR_TYPES]; int cnt[MAX_SR_TYPES]; size_t sz[MAX_SR_TYPES]; size_t sz1; boolean_t bw_ctl; boolean_t hw_classified; boolean_t dls_bypass; boolean_t is_ether; boolean_t is_unicast; enum pkt_type type; mac_client_impl_t *mcip = mac_srs->srs_mcip; is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); /* * If we don't have a Rx ring, S/W classification would have done * its job and its a packet meant for us. If we were polling on * the default ring (i.e. there was a ring assigned to this SRS), * then we need to make sure that the mac address really belongs * to us. */ hw_classified = mac_srs->srs_ring != NULL && mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; /* * Special clients (eg. VLAN, non ether, etc) need DLS * processing in the Rx path. SRST_DLS_BYPASS will be clear for * such SRSs. Another way of disabling bypass is to set the * MCIS_RX_BYPASS_DISABLE flag. */ dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) && ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0); bzero(headmp, MAX_SR_TYPES * sizeof (mblk_t *)); bzero(tailmp, MAX_SR_TYPES * sizeof (mblk_t *)); bzero(cnt, MAX_SR_TYPES * sizeof (int)); bzero(sz, MAX_SR_TYPES * sizeof (size_t)); /* * We got a chain from SRS that we need to send to the soft rings. * Since squeues for TCP & IPv4 sap poll their soft rings (for * performance reasons), we need to separate out v4_tcp, v4_udp * and the rest goes in other. */ while (head != NULL) { mp = head; head = head->b_next; mp->b_next = NULL; type = OTH; sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); if (is_ether) { /* * At this point we can be sure the packet at least * has an ether header. */ if (sz1 < sizeof (struct ether_header)) { mac_rx_drop_pkt(mac_srs, mp); continue; } ehp = (struct ether_header *)mp->b_rptr; /* * Determine if this is a VLAN or non-VLAN packet. */ if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { evhp = (struct ether_vlan_header *)mp->b_rptr; sap = ntohs(evhp->ether_type); hdrsize = sizeof (struct ether_vlan_header); /* * Check if the VID of the packet, if any, * belongs to this client. */ if (!mac_client_check_flow_vid(mcip, VLAN_ID(ntohs(evhp->ether_tci)))) { mac_rx_drop_pkt(mac_srs, mp); continue; } } else { hdrsize = sizeof (struct ether_header); } is_unicast = ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); dstaddr = (uint8_t *)&ehp->ether_dhost; } else { mac_header_info_t mhi; if (mac_header_info((mac_handle_t)mcip->mci_mip, mp, &mhi) != 0) { mac_rx_drop_pkt(mac_srs, mp); continue; } hdrsize = mhi.mhi_hdrsize; sap = mhi.mhi_bindsap; is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); dstaddr = (uint8_t *)mhi.mhi_daddr; } if (!dls_bypass) { FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type], bw_ctl, sz[type], sz1, mp); continue; } if (sap == ETHERTYPE_IP) { /* * If we are H/W classified, but we have promisc * on, then we need to check for the unicast address. */ if (hw_classified && mcip->mci_promisc_list != NULL) { mac_address_t *map; rw_enter(&mcip->mci_rw_lock, RW_READER); map = mcip->mci_unicast; if (bcmp(dstaddr, map->ma_addr, map->ma_len) == 0) type = UNDEF; rw_exit(&mcip->mci_rw_lock); } else if (is_unicast) { type = UNDEF; } } /* * This needs to become a contract with the driver for * the fast path. * * In the normal case the packet will have at least the L2 * header and the IP + Transport header in the same mblk. * This is usually the case when the NIC driver sends up * the packet. This is also true when the stack generates * a packet that is looped back and when the stack uses the * fastpath mechanism. The normal case is optimized for * performance and may bypass DLS. All other cases go through * the 'OTH' type path without DLS bypass. */ ipha = (ipha_t *)(mp->b_rptr + hdrsize); if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) type = OTH; if (type == OTH) { FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type], bw_ctl, sz[type], sz1, mp); continue; } ASSERT(type == UNDEF); /* * We look for at least 4 bytes past the IP header to get * the port information. If we get an IP fragment, we don't * have the port information, and we use just the protocol * information. */ switch (ipha->ipha_protocol) { case IPPROTO_TCP: type = V4_TCP; mp->b_rptr += hdrsize; break; case IPPROTO_UDP: type = V4_UDP; mp->b_rptr += hdrsize; break; default: type = OTH; break; } FANOUT_ENQUEUE_MP(headmp[type], tailmp[type], cnt[type], bw_ctl, sz[type], sz1, mp); } for (type = V4_TCP; type < UNDEF; type++) { if (headmp[type] != NULL) { mac_soft_ring_t *softring; ASSERT(tailmp[type]->b_next == NULL); switch (type) { case V4_TCP: softring = mac_srs->srs_tcp_soft_rings[0]; break; case V4_UDP: softring = mac_srs->srs_udp_soft_rings[0]; break; case OTH: softring = mac_srs->srs_oth_soft_rings[0]; } mac_rx_soft_ring_process(mcip, softring, headmp[type], tailmp[type], cnt[type], sz[type]); } } } int fanout_unalligned = 0; /* * mac_rx_srs_long_fanout * * The fanout routine for IPv6 */ static int mac_rx_srs_long_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *mp, uint32_t sap, size_t hdrsize, enum pkt_type *type, uint_t *indx) { ip6_t *ip6h; uint8_t *whereptr; uint_t hash; uint16_t remlen; uint8_t nexthdr; uint16_t hdr_len; if (sap == ETHERTYPE_IPV6) { boolean_t modifiable = B_TRUE; ASSERT(MBLKL(mp) >= hdrsize); ip6h = (ip6_t *)(mp->b_rptr + hdrsize); if ((unsigned char *)ip6h == mp->b_wptr) { /* * The first mblk_t only includes the mac header. * Note that it is safe to change the mp pointer here, * as the subsequent operation does not assume mp * points to the start of the mac header. */ mp = mp->b_cont; /* * Make sure ip6h holds the full ip6_t structure. */ if (mp == NULL) return (-1); if (MBLKL(mp) < IPV6_HDR_LEN) { modifiable = (DB_REF(mp) == 1); if (modifiable && !pullupmsg(mp, IPV6_HDR_LEN)) { return (-1); } } ip6h = (ip6_t *)mp->b_rptr; } if (!modifiable || !(OK_32PTR((char *)ip6h)) || ((unsigned char *)ip6h + IPV6_HDR_LEN > mp->b_wptr)) { /* * If either ip6h is not alligned, or ip6h does not * hold the complete ip6_t structure (a pullupmsg() * is not an option since it would result in an * unalligned ip6h), fanout to the default ring. Note * that this may cause packets reordering. */ *indx = 0; *type = OTH; fanout_unalligned++; return (0); } remlen = ntohs(ip6h->ip6_plen); nexthdr = ip6h->ip6_nxt; if (remlen < MIN_EHDR_LEN) return (-1); /* * Do src based fanout if below tunable is set to B_TRUE or * when mac_ip_hdr_length_v6() fails because of malformed * packets or because mblk's need to be concatenated using * pullupmsg(). */ if (mac_src_ipv6_fanout || !mac_ip_hdr_length_v6(mp, ip6h, &hdr_len, &nexthdr, NULL, NULL)) { goto src_based_fanout; } whereptr = (uint8_t *)ip6h + hdr_len; /* If the transport is one of below, we do port based fanout */ switch (nexthdr) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_ESP: /* * If the ports in the transport header is not part of * the mblk, do src_based_fanout, instead of calling * pullupmsg(). */ if (mp->b_cont != NULL && whereptr + PORTS_SIZE > mp->b_wptr) { goto src_based_fanout; } break; default: break; } switch (nexthdr) { case IPPROTO_TCP: hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src), *(uint32_t *)whereptr); *indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count); *type = OTH; break; case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_ESP: if (mac_fanout_type == MAC_FANOUT_DEFAULT) { hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src), *(uint32_t *)whereptr); *indx = COMPUTE_INDEX(hash, mac_srs->srs_udp_ring_count); } else { *indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count; mac_srs->srs_ind++; } *type = OTH; break; /* For all other protocol, do source based fanout */ default: goto src_based_fanout; } } else { *indx = 0; *type = OTH; } return (0); src_based_fanout: hash = HASH_ADDR(V4_PART_OF_V6(ip6h->ip6_src), (uint32_t)0); *indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count); *type = OTH; return (0); } /* * mac_rx_srs_fanout * * This routine delivers packets destined to an SRS into a soft ring member * of the set. * * Given a chain of packets we need to split it up into multiple sub chains * destined for one of the TCP, UDP or OTH soft rings. Instead of entering * the soft ring one packet at a time, we want to enter it in the form of a * chain otherwise we get this start/stop behaviour where the worker thread * goes to sleep and then next packets comes in forcing it to wake up etc. * * Note: * Since we know what is the maximum fanout possible, we create a 2D array * of 'softring types * MAX_SR_FANOUT' for the head, tail, cnt and sz * variables so that we can enter the softrings with chain. We need the * MAX_SR_FANOUT so we can allocate the arrays on the stack (a kmem_alloc * for each packet would be expensive). If we ever want to have the * ability to have unlimited fanout, we should probably declare a head, * tail, cnt, sz with each soft ring (a data struct which contains a softring * along with these members) and create an array of this uber struct so we * don't have to do kmem_alloc. */ int fanout_oth1 = 0; int fanout_oth2 = 0; int fanout_oth3 = 0; int fanout_oth4 = 0; int fanout_oth5 = 0; static void mac_rx_srs_fanout(mac_soft_ring_set_t *mac_srs, mblk_t *head) { struct ether_header *ehp; struct ether_vlan_header *evhp; uint32_t sap; ipha_t *ipha; uint8_t *dstaddr; uint_t indx; size_t ports_offset; size_t ipha_len; size_t hdrsize; uint_t hash; mblk_t *mp; mblk_t *headmp[MAX_SR_TYPES][MAX_SR_FANOUT]; mblk_t *tailmp[MAX_SR_TYPES][MAX_SR_FANOUT]; int cnt[MAX_SR_TYPES][MAX_SR_FANOUT]; size_t sz[MAX_SR_TYPES][MAX_SR_FANOUT]; size_t sz1; boolean_t bw_ctl; boolean_t hw_classified; boolean_t dls_bypass; boolean_t is_ether; boolean_t is_unicast; int fanout_cnt; enum pkt_type type; mac_client_impl_t *mcip = mac_srs->srs_mcip; is_ether = (mcip->mci_mip->mi_info.mi_nativemedia == DL_ETHER); bw_ctl = ((mac_srs->srs_type & SRST_BW_CONTROL) != 0); /* * If we don't have a Rx ring, S/W classification would have done * its job and its a packet meant for us. If we were polling on * the default ring (i.e. there was a ring assigned to this SRS), * then we need to make sure that the mac address really belongs * to us. */ hw_classified = mac_srs->srs_ring != NULL && mac_srs->srs_ring->mr_classify_type == MAC_HW_CLASSIFIER; /* * Special clients (eg. VLAN, non ether, etc) need DLS * processing in the Rx path. SRST_DLS_BYPASS will be clear for * such SRSs. Another way of disabling bypass is to set the * MCIS_RX_BYPASS_DISABLE flag. */ dls_bypass = ((mac_srs->srs_type & SRST_DLS_BYPASS) != 0) && ((mcip->mci_state_flags & MCIS_RX_BYPASS_DISABLE) == 0); /* * Since the softrings are never destroyed and we always * create equal number of softrings for TCP, UDP and rest, * its OK to check one of them for count and use it without * any lock. In future, if soft rings get destroyed because * of reduction in fanout, we will need to ensure that happens * behind the SRS_PROC. */ fanout_cnt = mac_srs->srs_tcp_ring_count; bzero(headmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); bzero(tailmp, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (mblk_t *)); bzero(cnt, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (int)); bzero(sz, MAX_SR_TYPES * MAX_SR_FANOUT * sizeof (size_t)); /* * We got a chain from SRS that we need to send to the soft rings. * Since squeues for TCP & IPv4 sap poll their soft rings (for * performance reasons), we need to separate out v4_tcp, v4_udp * and the rest goes in other. */ while (head != NULL) { mp = head; head = head->b_next; mp->b_next = NULL; type = OTH; sz1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); if (is_ether) { /* * At this point we can be sure the packet at least * has an ether header. */ if (sz1 < sizeof (struct ether_header)) { mac_rx_drop_pkt(mac_srs, mp); continue; } ehp = (struct ether_header *)mp->b_rptr; /* * Determine if this is a VLAN or non-VLAN packet. */ if ((sap = ntohs(ehp->ether_type)) == VLAN_TPID) { evhp = (struct ether_vlan_header *)mp->b_rptr; sap = ntohs(evhp->ether_type); hdrsize = sizeof (struct ether_vlan_header); /* * Check if the VID of the packet, if any, * belongs to this client. */ if (!mac_client_check_flow_vid(mcip, VLAN_ID(ntohs(evhp->ether_tci)))) { mac_rx_drop_pkt(mac_srs, mp); continue; } } else { hdrsize = sizeof (struct ether_header); } is_unicast = ((((uint8_t *)&ehp->ether_dhost)[0] & 0x01) == 0); dstaddr = (uint8_t *)&ehp->ether_dhost; } else { mac_header_info_t mhi; if (mac_header_info((mac_handle_t)mcip->mci_mip, mp, &mhi) != 0) { mac_rx_drop_pkt(mac_srs, mp); continue; } hdrsize = mhi.mhi_hdrsize; sap = mhi.mhi_bindsap; is_unicast = (mhi.mhi_dsttype == MAC_ADDRTYPE_UNICAST); dstaddr = (uint8_t *)mhi.mhi_daddr; } if (!dls_bypass) { if (mac_rx_srs_long_fanout(mac_srs, mp, sap, hdrsize, &type, &indx) == -1) { mac_rx_drop_pkt(mac_srs, mp); continue; } FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx], cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp); continue; } /* * If we are using the default Rx ring where H/W or S/W * classification has not happened, we need to verify if * this unicast packet really belongs to us. */ if (sap == ETHERTYPE_IP) { /* * If we are H/W classified, but we have promisc * on, then we need to check for the unicast address. */ if (hw_classified && mcip->mci_promisc_list != NULL) { mac_address_t *map; rw_enter(&mcip->mci_rw_lock, RW_READER); map = mcip->mci_unicast; if (bcmp(dstaddr, map->ma_addr, map->ma_len) == 0) type = UNDEF; rw_exit(&mcip->mci_rw_lock); } else if (is_unicast) { type = UNDEF; } } /* * This needs to become a contract with the driver for * the fast path. */ ipha = (ipha_t *)(mp->b_rptr + hdrsize); if ((type != OTH) && MBLK_RX_FANOUT_SLOWPATH(mp, ipha)) { type = OTH; fanout_oth1++; } if (type != OTH) { uint16_t frag_offset_flags; switch (ipha->ipha_protocol) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_ESP: ipha_len = IPH_HDR_LENGTH(ipha); if ((uchar_t *)ipha + ipha_len + PORTS_SIZE > mp->b_wptr) { type = OTH; break; } frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags); if ((frag_offset_flags & (IPH_MF | IPH_OFFSET)) != 0) { type = OTH; fanout_oth3++; break; } ports_offset = hdrsize + ipha_len; break; default: type = OTH; fanout_oth4++; break; } } if (type == OTH) { if (mac_rx_srs_long_fanout(mac_srs, mp, sap, hdrsize, &type, &indx) == -1) { mac_rx_drop_pkt(mac_srs, mp); continue; } FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx], cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp); continue; } ASSERT(type == UNDEF); /* * XXX-Sunay: We should hold srs_lock since ring_count * below can change. But if we are always called from * mac_rx_srs_drain and SRS_PROC is set, then we can * enforce that ring_count can't be changed i.e. * to change fanout type or ring count, the calling * thread needs to be behind SRS_PROC. */ switch (ipha->ipha_protocol) { case IPPROTO_TCP: /* * Note that for ESP, we fanout on SPI and it is at the * same offset as the 2x16-bit ports. So it is clumped * along with TCP, UDP and SCTP. */ hash = HASH_ADDR(ipha->ipha_src, *(uint32_t *)(mp->b_rptr + ports_offset)); indx = COMPUTE_INDEX(hash, mac_srs->srs_tcp_ring_count); type = V4_TCP; mp->b_rptr += hdrsize; break; case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_ESP: if (mac_fanout_type == MAC_FANOUT_DEFAULT) { hash = HASH_ADDR(ipha->ipha_src, *(uint32_t *)(mp->b_rptr + ports_offset)); indx = COMPUTE_INDEX(hash, mac_srs->srs_udp_ring_count); } else { indx = mac_srs->srs_ind % mac_srs->srs_udp_ring_count; mac_srs->srs_ind++; } type = V4_UDP; mp->b_rptr += hdrsize; break; default: indx = 0; type = OTH; } FANOUT_ENQUEUE_MP(headmp[type][indx], tailmp[type][indx], cnt[type][indx], bw_ctl, sz[type][indx], sz1, mp); } for (type = V4_TCP; type < UNDEF; type++) { int i; for (i = 0; i < fanout_cnt; i++) { if (headmp[type][i] != NULL) { mac_soft_ring_t *softring; ASSERT(tailmp[type][i]->b_next == NULL); switch (type) { case V4_TCP: softring = mac_srs->srs_tcp_soft_rings[i]; break; case V4_UDP: softring = mac_srs->srs_udp_soft_rings[i]; break; case OTH: softring = mac_srs->srs_oth_soft_rings[i]; break; } mac_rx_soft_ring_process(mcip, softring, headmp[type][i], tailmp[type][i], cnt[type][i], sz[type][i]); } } } } #define SRS_BYTES_TO_PICKUP 150000 ssize_t max_bytes_to_pickup = SRS_BYTES_TO_PICKUP; /* * mac_rx_srs_poll_ring * * This SRS Poll thread uses this routine to poll the underlying hardware * Rx ring to get a chain of packets. It can inline process that chain * if mac_latency_optimize is set (default) or signal the SRS worker thread * to do the remaining processing. * * Since packets come in the system via interrupt or poll path, we also * update the stats and deal with promiscous clients here. */ void mac_rx_srs_poll_ring(mac_soft_ring_set_t *mac_srs) { kmutex_t *lock = &mac_srs->srs_lock; kcondvar_t *async = &mac_srs->srs_cv; mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; mblk_t *head, *tail, *mp; callb_cpr_t cprinfo; ssize_t bytes_to_pickup; size_t sz; int count; mac_client_impl_t *smcip; CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "mac_srs_poll"); mutex_enter(lock); start: for (;;) { if (mac_srs->srs_state & SRS_PAUSE) goto done; CALLB_CPR_SAFE_BEGIN(&cprinfo); cv_wait(async, lock); CALLB_CPR_SAFE_END(&cprinfo, lock); if (mac_srs->srs_state & SRS_PAUSE) goto done; check_again: if (mac_srs->srs_type & SRST_BW_CONTROL) { /* * We pick as many bytes as we are allowed to queue. * Its possible that we will exceed the total * packets queued in case this SRS is part of the * Rx ring group since > 1 poll thread can be pulling * upto the max allowed packets at the same time * but that should be OK. */ mutex_enter(&mac_srs->srs_bw->mac_bw_lock); bytes_to_pickup = mac_srs->srs_bw->mac_bw_drop_threshold - mac_srs->srs_bw->mac_bw_sz; /* * We shouldn't have been signalled if we * have 0 or less bytes to pick but since * some of the bytes accounting is driver * dependant, we do the safety check. */ if (bytes_to_pickup < 0) bytes_to_pickup = 0; mutex_exit(&mac_srs->srs_bw->mac_bw_lock); } else { /* * ToDO: Need to change the polling API * to add a packet count and a flag which * tells the driver whether we want packets * based on a count, or bytes, or all the * packets queued in the driver/HW. This * way, we never have to check the limits * on poll path. We truly let only as many * packets enter the system as we are willing * to process or queue. * * Something along the lines of * pkts_to_pickup = mac_soft_ring_max_q_cnt - * mac_srs->srs_poll_pkt_cnt */ /* * Since we are not doing B/W control, pick * as many packets as allowed. */ bytes_to_pickup = max_bytes_to_pickup; } /* Poll the underlying Hardware */ mutex_exit(lock); head = MAC_HWRING_POLL(mac_srs->srs_ring, (int)bytes_to_pickup); mutex_enter(lock); ASSERT((mac_srs->srs_state & SRS_POLL_THR_OWNER) == SRS_POLL_THR_OWNER); mp = tail = head; count = 0; sz = 0; while (mp != NULL) { tail = mp; sz += msgdsize(mp); mp = mp->b_next; count++; } if (head != NULL) { tail->b_next = NULL; smcip = mac_srs->srs_mcip; if ((mac_srs->srs_type & SRST_FLOW) || (smcip == NULL)) { FLOW_STAT_UPDATE(mac_srs->srs_flent, rbytes, sz); FLOW_STAT_UPDATE(mac_srs->srs_flent, ipackets, count); } /* * If there are any promiscuous mode callbacks * defined for this MAC client, pass them a copy * if appropriate and also update the counters. */ if (smcip != NULL) { smcip->mci_stat_ibytes += sz; smcip->mci_stat_ipackets += count; if (smcip->mci_mip->mi_promisc_list != NULL) { mutex_exit(lock); mac_promisc_dispatch(smcip->mci_mip, head, NULL); mutex_enter(lock); } } if (mac_srs->srs_type & SRST_BW_CONTROL) { mutex_enter(&mac_srs->srs_bw->mac_bw_lock); mac_srs->srs_bw->mac_bw_polled += sz; mutex_exit(&mac_srs->srs_bw->mac_bw_lock); } srs_rx->sr_poll_count += count; MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, head, tail, count, sz); if (count <= 10) srs_rx->sr_chain_cnt_undr10++; else if (count > 10 && count <= 50) srs_rx->sr_chain_cnt_10to50++; else srs_rx->sr_chain_cnt_over50++; } /* * We are guaranteed that SRS_PROC will be set if we * are here. Also, poll thread gets to run only if * the drain was being done by a worker thread although * its possible that worker thread is still running * and poll thread was sent down to keep the pipeline * going instead of doing a complete drain and then * trying to poll the NIC. * * So we need to check SRS_WORKER flag to make sure * that the worker thread is not processing the queue * in parallel to us. The flags and conditions are * protected by the srs_lock to prevent any race. We * ensure that we don't drop the srs_lock from now * till the end and similarly we don't drop the srs_lock * in mac_rx_srs_drain() till similar condition check * are complete. The mac_rx_srs_drain() needs to ensure * that SRS_WORKER flag remains set as long as its * processing the queue. */ if (!(mac_srs->srs_state & SRS_WORKER) && (mac_srs->srs_first != NULL)) { /* * We have packets to process and worker thread * is not running. Check to see if poll thread is * allowed to process. */ if (mac_srs->srs_state & SRS_LATENCY_OPT) { mac_srs->srs_drain_func(mac_srs, SRS_POLL_PROC); if (!(mac_srs->srs_state & SRS_PAUSE) && srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) { srs_rx->sr_poll_again++; goto check_again; } /* * We are already above low water mark * so stay in the polling mode but no * need to poll. Once we dip below * the polling threshold, the processing * thread (soft ring) will signal us * to poll again (MAC_UPDATE_SRS_COUNT) */ srs_rx->sr_poll_drain_no_poll++; mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); /* * In B/W control case, its possible * that the backlog built up due to * B/W limit being reached and packets * are queued only in SRS. In this case, * we should schedule worker thread * since no one else will wake us up. */ if ((mac_srs->srs_type & SRST_BW_CONTROL) && (mac_srs->srs_tid == NULL)) { mac_srs->srs_tid = timeout(mac_srs_fire, mac_srs, 1); srs_rx->sr_poll_worker_wakeup++; } } else { /* * Wakeup the worker thread for more processing. * We optimize for throughput in this case. */ mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); MAC_SRS_WORKER_WAKEUP(mac_srs); srs_rx->sr_poll_sig_worker++; } } else if ((mac_srs->srs_first == NULL) && !(mac_srs->srs_state & SRS_WORKER)) { /* * There is nothing queued in SRS and * no worker thread running. Plus we * didn't get anything from the H/W * as well (head == NULL); */ ASSERT(head == NULL); mac_srs->srs_state &= ~(SRS_PROC|SRS_GET_PKTS); /* * If we have a packets in soft ring, don't allow * more packets to come into this SRS by keeping the * interrupts off but not polling the H/W. The * poll thread will get signaled as soon as * srs_poll_pkt_cnt dips below poll threshold. */ if (srs_rx->sr_poll_pkt_cnt == 0) { srs_rx->sr_poll_intr_enable++; MAC_SRS_POLLING_OFF(mac_srs); } else { /* * We know nothing is queued in SRS * since we are here after checking * srs_first is NULL. The backlog * is entirely due to packets queued * in Soft ring which will wake us up * and get the interface out of polling * mode once the backlog dips below * sr_poll_thres. */ srs_rx->sr_poll_no_poll++; } } else { /* * Worker thread is already running. * Nothing much to do. If the polling * was enabled, worker thread will deal * with that. */ mac_srs->srs_state &= ~SRS_GET_PKTS; srs_rx->sr_poll_goto_sleep++; } } done: mac_srs->srs_state |= SRS_POLL_THR_QUIESCED; cv_signal(&mac_srs->srs_async); /* * If this is a temporary quiesce then wait for the restart signal * from the srs worker. Then clear the flags and signal the srs worker * to ensure a positive handshake and go back to start. */ while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_POLL_THR_RESTART))) cv_wait(async, lock); if (mac_srs->srs_state & SRS_POLL_THR_RESTART) { ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); mac_srs->srs_state &= ~(SRS_POLL_THR_QUIESCED | SRS_POLL_THR_RESTART); cv_signal(&mac_srs->srs_async); goto start; } else { mac_srs->srs_state |= SRS_POLL_THR_EXITED; cv_signal(&mac_srs->srs_async); CALLB_CPR_EXIT(&cprinfo); thread_exit(); } } /* * mac_srs_pick_chain * * In Bandwidth control case, checks how many packets can be processed * and return them in a sub chain. */ static mblk_t * mac_srs_pick_chain(mac_soft_ring_set_t *mac_srs, mblk_t **chain_tail, size_t *chain_sz, int *chain_cnt) { mblk_t *head = NULL; mblk_t *tail = NULL; size_t sz; size_t tsz = 0; int cnt = 0; mblk_t *mp; ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); mutex_enter(&mac_srs->srs_bw->mac_bw_lock); if (((mac_srs->srs_bw->mac_bw_used + mac_srs->srs_size) <= mac_srs->srs_bw->mac_bw_limit) || (mac_srs->srs_bw->mac_bw_limit == 0)) { mutex_exit(&mac_srs->srs_bw->mac_bw_lock); head = mac_srs->srs_first; mac_srs->srs_first = NULL; *chain_tail = mac_srs->srs_last; mac_srs->srs_last = NULL; *chain_sz = mac_srs->srs_size; *chain_cnt = mac_srs->srs_count; mac_srs->srs_count = 0; mac_srs->srs_size = 0; return (head); } /* * Can't clear the entire backlog. * Need to find how many packets to pick */ ASSERT(MUTEX_HELD(&mac_srs->srs_bw->mac_bw_lock)); while ((mp = mac_srs->srs_first) != NULL) { sz = msgdsize(mp); if ((tsz + sz + mac_srs->srs_bw->mac_bw_used) > mac_srs->srs_bw->mac_bw_limit) { if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; break; } /* * The _size & cnt is decremented from the softrings * when they send up the packet for polling to work * properly. */ tsz += sz; cnt++; mac_srs->srs_count--; mac_srs->srs_size -= sz; if (tail != NULL) tail->b_next = mp; else head = mp; tail = mp; mac_srs->srs_first = mac_srs->srs_first->b_next; } mutex_exit(&mac_srs->srs_bw->mac_bw_lock); if (mac_srs->srs_first == NULL) mac_srs->srs_last = NULL; if (tail != NULL) tail->b_next = NULL; *chain_tail = tail; *chain_cnt = cnt; *chain_sz = tsz; return (head); } /* * mac_rx_srs_drain * * The SRS drain routine. Gets to run to clear the queue. Any thread * (worker, interrupt, poll) can call this based on processing model. * The first thing we do is disable interrupts if possible and then * drain the queue. we also try to poll the underlying hardware if * there is a dedicated hardware Rx ring assigned to this SRS. * * There is a equivalent drain routine in bandwidth control mode * mac_rx_srs_drain_bw. There is some code duplication between the two * routines but they are highly performance sensitive and are easier * to read/debug if they stay separate. Any code changes here might * also apply to mac_rx_srs_drain_bw as well. */ void mac_rx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) { mblk_t *head; mblk_t *tail; timeout_id_t tid; int cnt = 0; mac_client_impl_t *mcip = mac_srs->srs_mcip; mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); ASSERT(!(mac_srs->srs_type & SRST_BW_CONTROL)); /* If we are blanked i.e. can't do upcalls, then we are done */ if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || (mac_srs->srs_state & SRS_PAUSE)); goto out; } if (mac_srs->srs_first == NULL) goto out; if (!(mac_srs->srs_state & SRS_LATENCY_OPT) && (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat)) { /* * In the normal case, the SRS worker thread does no * work and we wait for a backlog to build up before * we switch into polling mode. In case we are * optimizing for throughput, we use the worker thread * as well. The goal is to let worker thread process * the queue and poll thread to feed packets into * the queue. As such, we should signal the poll * thread to try and get more packets. * * We could have pulled this check in the POLL_RING * macro itself but keeping it explicit here makes * the architecture more human understandable. */ MAC_SRS_POLL_RING(mac_srs); } again: head = mac_srs->srs_first; mac_srs->srs_first = NULL; tail = mac_srs->srs_last; mac_srs->srs_last = NULL; cnt = mac_srs->srs_count; mac_srs->srs_count = 0; ASSERT(head != NULL); ASSERT(tail != NULL); if ((tid = mac_srs->srs_tid) != 0) mac_srs->srs_tid = 0; mac_srs->srs_state |= (SRS_PROC|proc_type); /* * mcip is NULL for broadcast and multicast flows. The promisc * callbacks for broadcast and multicast packets are delivered from * mac_rx() and we don't need to worry about that case in this path */ if (mcip != NULL && mcip->mci_promisc_list != NULL) { mutex_exit(&mac_srs->srs_lock); mac_promisc_client_dispatch(mcip, head); mutex_enter(&mac_srs->srs_lock); } /* * Check if SRS itself is doing the processing * This direct path does not apply when subflows are present. In this * case, packets need to be dispatched to a soft ring according to the * flow's bandwidth and other resources contraints. */ if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { mac_direct_rx_t proc; void *arg1; mac_resource_handle_t arg2; /* * This is the case when a Rx is directly * assigned and we have a fully classified * protocol chain. We can deal with it in * one shot. */ proc = srs_rx->sr_func; arg1 = srs_rx->sr_arg1; arg2 = srs_rx->sr_arg2; mac_srs->srs_state |= SRS_CLIENT_PROC; mutex_exit(&mac_srs->srs_lock); if (tid != 0) { (void) untimeout(tid); tid = 0; } proc(arg1, arg2, head, NULL); /* * Decrement the size and count here itelf * since the packet has been processed. */ mutex_enter(&mac_srs->srs_lock); MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); if (mac_srs->srs_state & SRS_CLIENT_WAIT) cv_signal(&mac_srs->srs_client_cv); mac_srs->srs_state &= ~SRS_CLIENT_PROC; } else { /* Some kind of softrings based fanout is required */ mutex_exit(&mac_srs->srs_lock); if (tid != 0) { (void) untimeout(tid); tid = 0; } /* * Since the fanout routines can deal with chains, * shoot the entire chain up. */ if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) mac_rx_srs_fanout(mac_srs, head); else mac_rx_srs_proto_fanout(mac_srs, head); mutex_enter(&mac_srs->srs_lock); } if (!(mac_srs->srs_state & (SRS_BLANK|SRS_PAUSE)) && (mac_srs->srs_first != NULL)) { /* * More packets arrived while we were clearing the * SRS. This can be possible because of one of * three conditions below: * 1) The driver is using multiple worker threads * to send the packets to us. * 2) The driver has a race in switching * between interrupt and polling mode or * 3) Packets are arriving in this SRS via the * S/W classification as well. * * We should switch to polling mode and see if we * need to send the poll thread down. Also, signal * the worker thread to process whats just arrived. */ MAC_SRS_POLLING_ON(mac_srs); if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) { srs_rx->sr_drain_poll_sig++; MAC_SRS_POLL_RING(mac_srs); } /* * If we didn't signal the poll thread, we need * to deal with the pending packets ourselves. */ if (proc_type == SRS_WORKER) { srs_rx->sr_drain_again++; goto again; } else { srs_rx->sr_drain_worker_sig++; cv_signal(&mac_srs->srs_async); } } out: if (mac_srs->srs_state & SRS_GET_PKTS) { /* * Poll thread is already running. Leave the * SRS_RPOC set and hand over the control to * poll thread. */ mac_srs->srs_state &= ~proc_type; srs_rx->sr_drain_poll_running++; return; } /* * Even if there are no packets queued in SRS, we * need to make sure that the shared counter is * clear and any associated softrings have cleared * all the backlog. Otherwise, leave the interface * in polling mode and the poll thread will get * signalled once the count goes down to zero. * * If someone is already draining the queue (SRS_PROC is * set) when the srs_poll_pkt_cnt goes down to zero, * then it means that drain is already running and we * will turn off polling at that time if there is * no backlog. * * As long as there are packets queued either * in soft ring set or its soft rings, we will leave * the interface in polling mode (even if the drain * was done being the interrupt thread). We signal * the poll thread as well if we have dipped below * low water mark. * * NOTE: We can't use the MAC_SRS_POLLING_ON macro * since that turn polling on only for worker thread. * Its not worth turning polling on for interrupt * thread (since NIC will not issue another interrupt) * unless a backlog builds up. */ if ((srs_rx->sr_poll_pkt_cnt > 0) && (mac_srs->srs_state & SRS_POLLING_CAPAB)) { mac_srs->srs_state &= ~(SRS_PROC|proc_type); srs_rx->sr_drain_keep_polling++; MAC_SRS_POLLING_ON(mac_srs); if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) MAC_SRS_POLL_RING(mac_srs); return; } /* Nothing else to do. Get out of poll mode */ MAC_SRS_POLLING_OFF(mac_srs); mac_srs->srs_state &= ~(SRS_PROC|proc_type); srs_rx->sr_drain_finish_intr++; } /* * mac_rx_srs_drain_bw * * The SRS BW drain routine. Gets to run to clear the queue. Any thread * (worker, interrupt, poll) can call this based on processing model. * The first thing we do is disable interrupts if possible and then * drain the queue. we also try to poll the underlying hardware if * there is a dedicated hardware Rx ring assigned to this SRS. * * There is a equivalent drain routine in non bandwidth control mode * mac_rx_srs_drain. There is some code duplication between the two * routines but they are highly performance sensitive and are easier * to read/debug if they stay separate. Any code changes here might * also apply to mac_rx_srs_drain as well. */ void mac_rx_srs_drain_bw(mac_soft_ring_set_t *mac_srs, uint_t proc_type) { mblk_t *head; mblk_t *tail; timeout_id_t tid; size_t sz = 0; int cnt = 0; mac_client_impl_t *mcip = mac_srs->srs_mcip; mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; clock_t now; ASSERT(MUTEX_HELD(&mac_srs->srs_lock)); ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); again: /* Check if we are doing B/W control */ mutex_enter(&mac_srs->srs_bw->mac_bw_lock); now = ddi_get_lbolt(); if (mac_srs->srs_bw->mac_bw_curr_time != now) { mac_srs->srs_bw->mac_bw_curr_time = now; mac_srs->srs_bw->mac_bw_used = 0; if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) mac_srs->srs_bw->mac_bw_state &= ~SRS_BW_ENFORCED; } else if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) { mutex_exit(&mac_srs->srs_bw->mac_bw_lock); goto done; } else if (mac_srs->srs_bw->mac_bw_used > mac_srs->srs_bw->mac_bw_limit) { mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; mutex_exit(&mac_srs->srs_bw->mac_bw_lock); goto done; } mutex_exit(&mac_srs->srs_bw->mac_bw_lock); /* If we are blanked i.e. can't do upcalls, then we are done */ if (mac_srs->srs_state & (SRS_BLANK | SRS_PAUSE)) { ASSERT((mac_srs->srs_type & SRST_NO_SOFT_RINGS) || (mac_srs->srs_state & SRS_PAUSE)); goto done; } sz = 0; cnt = 0; if ((head = mac_srs_pick_chain(mac_srs, &tail, &sz, &cnt)) == NULL) { /* * We couldn't pick up a single packet. */ mutex_enter(&mac_srs->srs_bw->mac_bw_lock); if ((mac_srs->srs_bw->mac_bw_used == 0) && (mac_srs->srs_size != 0) && !(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { /* * Seems like configured B/W doesn't * even allow processing of 1 packet * per tick. * * XXX: raise the limit to processing * at least 1 packet per tick. */ mac_srs->srs_bw->mac_bw_limit += mac_srs->srs_bw->mac_bw_limit; mac_srs->srs_bw->mac_bw_drop_threshold += mac_srs->srs_bw->mac_bw_drop_threshold; cmn_err(CE_NOTE, "mac_rx_srs_drain: srs(%p) " "raised B/W limit to %d since not even a " "single packet can be processed per " "tick %d\n", (void *)mac_srs, (int)mac_srs->srs_bw->mac_bw_limit, (int)msgdsize(mac_srs->srs_first)); } mutex_exit(&mac_srs->srs_bw->mac_bw_lock); goto done; } ASSERT(head != NULL); ASSERT(tail != NULL); /* zero bandwidth: drop all and return to interrupt mode */ mutex_enter(&mac_srs->srs_bw->mac_bw_lock); if (mac_srs->srs_bw->mac_bw_limit == 0) { srs_rx->sr_drop_count += cnt; ASSERT(mac_srs->srs_bw->mac_bw_sz >= sz); mac_srs->srs_bw->mac_bw_sz -= sz; mac_srs->srs_bw->mac_bw_drop_bytes += sz; mutex_exit(&mac_srs->srs_bw->mac_bw_lock); mac_pkt_drop(NULL, NULL, head, B_FALSE); goto leave_poll; } else { mutex_exit(&mac_srs->srs_bw->mac_bw_lock); } if ((tid = mac_srs->srs_tid) != 0) mac_srs->srs_tid = 0; mac_srs->srs_state |= (SRS_PROC|proc_type); MAC_SRS_WORKER_POLLING_ON(mac_srs); /* * mcip is NULL for broadcast and multicast flows. The promisc * callbacks for broadcast and multicast packets are delivered from * mac_rx() and we don't need to worry about that case in this path */ if (mcip != NULL && mcip->mci_promisc_list != NULL) { mutex_exit(&mac_srs->srs_lock); mac_promisc_client_dispatch(mcip, head); mutex_enter(&mac_srs->srs_lock); } /* * Check if SRS itself is doing the processing * This direct path does not apply when subflows are present. In this * case, packets need to be dispatched to a soft ring according to the * flow's bandwidth and other resources contraints. */ if (mac_srs->srs_type & SRST_NO_SOFT_RINGS) { mac_direct_rx_t proc; void *arg1; mac_resource_handle_t arg2; /* * This is the case when a Rx is directly * assigned and we have a fully classified * protocol chain. We can deal with it in * one shot. */ proc = srs_rx->sr_func; arg1 = srs_rx->sr_arg1; arg2 = srs_rx->sr_arg2; mac_srs->srs_state |= SRS_CLIENT_PROC; mutex_exit(&mac_srs->srs_lock); if (tid != 0) { (void) untimeout(tid); tid = 0; } proc(arg1, arg2, head, NULL); /* * Decrement the size and count here itelf * since the packet has been processed. */ mutex_enter(&mac_srs->srs_lock); MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); if (mac_srs->srs_state & SRS_CLIENT_WAIT) cv_signal(&mac_srs->srs_client_cv); mac_srs->srs_state &= ~SRS_CLIENT_PROC; } else { /* Some kind of softrings based fanout is required */ mutex_exit(&mac_srs->srs_lock); if (tid != 0) { (void) untimeout(tid); tid = 0; } /* * Since the fanout routines can deal with chains, * shoot the entire chain up. */ if (mac_srs->srs_type & SRST_FANOUT_SRC_IP) mac_rx_srs_fanout(mac_srs, head); else mac_rx_srs_proto_fanout(mac_srs, head); mutex_enter(&mac_srs->srs_lock); } /* * Send the poll thread to pick up any packets arrived * so far. This also serves as the last check in case * nothing else is queued in the SRS. The poll thread * is signalled only in the case the drain was done * by the worker thread and SRS_WORKER is set. The * worker thread can run in parallel as long as the * SRS_WORKER flag is set. We we have nothing else to * process, we can exit while leaving SRS_PROC set * which gives the poll thread control to process and * cleanup once it returns from the NIC. * * If we have nothing else to process, we need to * ensure that we keep holding the srs_lock till * all the checks below are done and control is * handed to the poll thread if it was running. */ mutex_enter(&mac_srs->srs_bw->mac_bw_lock); if (!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { if (mac_srs->srs_first != NULL) { if (proc_type == SRS_WORKER) { mutex_exit(&mac_srs->srs_bw->mac_bw_lock); if (srs_rx->sr_poll_pkt_cnt <= srs_rx->sr_lowat) MAC_SRS_POLL_RING(mac_srs); goto again; } else { cv_signal(&mac_srs->srs_async); } } } mutex_exit(&mac_srs->srs_bw->mac_bw_lock); done: if (mac_srs->srs_state & SRS_GET_PKTS) { /* * Poll thread is already running. Leave the * SRS_RPOC set and hand over the control to * poll thread. */ mac_srs->srs_state &= ~proc_type; return; } /* * If we can't process packets because we have exceeded * B/W limit for this tick, just set the timeout * and leave. * * Even if there are no packets queued in SRS, we * need to make sure that the shared counter is * clear and any associated softrings have cleared * all the backlog. Otherwise, leave the interface * in polling mode and the poll thread will get * signalled once the count goes down to zero. * * If someone is already draining the queue (SRS_PROC is * set) when the srs_poll_pkt_cnt goes down to zero, * then it means that drain is already running and we * will turn off polling at that time if there is * no backlog. As long as there are packets queued either * is soft ring set or its soft rings, we will leave * the interface in polling mode. */ mutex_enter(&mac_srs->srs_bw->mac_bw_lock); if ((mac_srs->srs_state & SRS_POLLING_CAPAB) && ((mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) || (srs_rx->sr_poll_pkt_cnt > 0))) { MAC_SRS_POLLING_ON(mac_srs); mac_srs->srs_state &= ~(SRS_PROC|proc_type); if ((mac_srs->srs_first != NULL) && (mac_srs->srs_tid == NULL)) mac_srs->srs_tid = timeout(mac_srs_fire, mac_srs, 1); mutex_exit(&mac_srs->srs_bw->mac_bw_lock); return; } mutex_exit(&mac_srs->srs_bw->mac_bw_lock); leave_poll: /* Nothing else to do. Get out of poll mode */ MAC_SRS_POLLING_OFF(mac_srs); mac_srs->srs_state &= ~(SRS_PROC|proc_type); } /* * mac_srs_worker * * The SRS worker routine. Drains the queue when no one else is * processing it. */ void mac_srs_worker(mac_soft_ring_set_t *mac_srs) { kmutex_t *lock = &mac_srs->srs_lock; kcondvar_t *async = &mac_srs->srs_async; callb_cpr_t cprinfo; boolean_t bw_ctl_flag; CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, "srs_worker"); mutex_enter(lock); start: for (;;) { bw_ctl_flag = B_FALSE; if (mac_srs->srs_type & SRST_BW_CONTROL) { MAC_SRS_BW_LOCK(mac_srs); MAC_SRS_CHECK_BW_CONTROL(mac_srs); if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) bw_ctl_flag = B_TRUE; MAC_SRS_BW_UNLOCK(mac_srs); } /* * The SRS_BW_ENFORCED flag may change since we have dropped * the mac_bw_lock. However the drain function can handle both * a drainable SRS or a bandwidth controlled SRS, and the * effect of scheduling a timeout is to wakeup the worker * thread which in turn will call the drain function. Since * we release the srs_lock atomically only in the cv_wait there * isn't a fear of waiting for ever. */ while (((mac_srs->srs_state & SRS_PROC) || (mac_srs->srs_first == NULL) || bw_ctl_flag || (mac_srs->srs_state & SRS_TX_BLOCKED)) && !(mac_srs->srs_state & SRS_PAUSE)) { /* * If we have packets queued and we are here * because B/W control is in place, we better * schedule the worker wakeup after 1 tick * to see if bandwidth control can be relaxed. */ if (bw_ctl_flag && mac_srs->srs_tid == NULL) { /* * We need to ensure that a timer is already * scheduled or we force schedule one for * later so that we can continue processing * after this quanta is over. */ mac_srs->srs_tid = timeout(mac_srs_fire, mac_srs, 1); } wait: CALLB_CPR_SAFE_BEGIN(&cprinfo); cv_wait(async, lock); CALLB_CPR_SAFE_END(&cprinfo, lock); if (mac_srs->srs_state & SRS_PAUSE) goto done; if (mac_srs->srs_state & SRS_PROC) goto wait; if (mac_srs->srs_first != NULL && mac_srs->srs_type & SRST_BW_CONTROL) { MAC_SRS_BW_LOCK(mac_srs); if (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED) { MAC_SRS_CHECK_BW_CONTROL(mac_srs); } bw_ctl_flag = mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED; MAC_SRS_BW_UNLOCK(mac_srs); } } if (mac_srs->srs_state & SRS_PAUSE) goto done; mac_srs->srs_drain_func(mac_srs, SRS_WORKER); } done: /* * The Rx SRS quiesce logic first cuts off packet supply to the SRS * from both hard and soft classifications and waits for such threads * to finish before signaling the worker. So at this point the only * thread left that could be competing with the worker is the poll * thread. In the case of Tx, there shouldn't be any thread holding * SRS_PROC at this point. */ if (!(mac_srs->srs_state & SRS_PROC)) { mac_srs->srs_state |= SRS_PROC; } else { ASSERT((mac_srs->srs_type & SRST_TX) == 0); /* * Poll thread still owns the SRS and is still running */ ASSERT((mac_srs->srs_poll_thr == NULL) || ((mac_srs->srs_state & SRS_POLL_THR_OWNER) == SRS_POLL_THR_OWNER)); } mac_srs_worker_quiesce(mac_srs); /* * Wait for the SRS_RESTART or SRS_CONDEMNED signal from the initiator * of the quiesce operation */ while (!(mac_srs->srs_state & (SRS_CONDEMNED | SRS_RESTART))) cv_wait(&mac_srs->srs_async, &mac_srs->srs_lock); if (mac_srs->srs_state & SRS_RESTART) { ASSERT(!(mac_srs->srs_state & SRS_CONDEMNED)); mac_srs_worker_restart(mac_srs); mac_srs->srs_state &= ~SRS_PROC; goto start; } if (!(mac_srs->srs_state & SRS_CONDEMNED_DONE)) mac_srs_worker_quiesce(mac_srs); mac_srs->srs_state &= ~SRS_PROC; /* The macro drops the srs_lock */ CALLB_CPR_EXIT(&cprinfo); thread_exit(); } /* * mac_rx_srs_subflow_process * * Receive side routine called from interrupt path when there are * sub flows present on this SRS. */ /* ARGSUSED */ void mac_rx_srs_subflow_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain, boolean_t loopback) { flow_entry_t *flent = NULL; flow_entry_t *prev_flent = NULL; mblk_t *mp = NULL; mblk_t *tail = NULL; mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; mac_client_impl_t *mcip; mcip = mac_srs->srs_mcip; ASSERT(mcip != NULL); /* * We need to determine the SRS for every packet * by walking the flow table, if we don't get any, * then we proceed using the SRS we came with. */ mp = tail = mp_chain; while (mp != NULL) { /* * We will increment the stats for the mactching subflow. * when we get the bytes/pkt count for the classified packets * later in mac_rx_srs_process. */ (void) mac_flow_lookup(mcip->mci_subflow_tab, mp, FLOW_INBOUND, &flent); if (mp == mp_chain || flent == prev_flent) { if (prev_flent != NULL) FLOW_REFRELE(prev_flent); prev_flent = flent; flent = NULL; tail = mp; mp = mp->b_next; continue; } tail->b_next = NULL; /* * A null indicates, this is for the mac_srs itself. * XXX-venu : probably assert for fe_rx_srs_cnt == 0. */ if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { mac_rx_srs_process(arg, (mac_resource_handle_t)mac_srs, mp_chain, loopback); } else { (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, prev_flent->fe_cb_arg2, mp_chain, loopback); FLOW_REFRELE(prev_flent); } prev_flent = flent; flent = NULL; mp_chain = mp; tail = mp; mp = mp->b_next; } /* Last chain */ ASSERT(mp_chain != NULL); if (prev_flent == NULL || prev_flent->fe_rx_srs_cnt == 0) { mac_rx_srs_process(arg, (mac_resource_handle_t)mac_srs, mp_chain, loopback); } else { (prev_flent->fe_cb_fn)(prev_flent->fe_cb_arg1, prev_flent->fe_cb_arg2, mp_chain, loopback); FLOW_REFRELE(prev_flent); } } /* * mac_rx_srs_process * * Receive side routine called from the interrupt path. * * loopback is set to force a context switch on the loopback * path between MAC clients. */ /* ARGSUSED */ void mac_rx_srs_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain, boolean_t loopback) { mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; mblk_t *mp, *tail, *head; int count = 0; int count1; size_t sz = 0; size_t chain_sz, sz1; mac_bw_ctl_t *mac_bw; mac_client_impl_t *smcip; mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; /* * Set the tail, count and sz. We set the sz irrespective * of whether we are doing B/W control or not for the * purpose of updating the stats. */ mp = tail = mp_chain; while (mp != NULL) { tail = mp; count++; sz += msgdsize(mp); mp = mp->b_next; } mutex_enter(&mac_srs->srs_lock); smcip = mac_srs->srs_mcip; if (mac_srs->srs_type & SRST_FLOW || smcip == NULL) { FLOW_STAT_UPDATE(mac_srs->srs_flent, rbytes, sz); FLOW_STAT_UPDATE(mac_srs->srs_flent, ipackets, count); } if (smcip != NULL) { smcip->mci_stat_ibytes += sz; smcip->mci_stat_ipackets += count; } /* * If the SRS in already being processed; has been blanked; * can be processed by worker thread only; or the B/W limit * has been reached, then queue the chain and check if * worker thread needs to be awakend. */ if (mac_srs->srs_type & SRST_BW_CONTROL) { mac_bw = mac_srs->srs_bw; ASSERT(mac_bw != NULL); mutex_enter(&mac_bw->mac_bw_lock); /* Count the packets and bytes via interrupt */ srs_rx->sr_intr_count += count; mac_bw->mac_bw_intr += sz; if (mac_bw->mac_bw_limit == 0) { /* zero bandwidth: drop all */ srs_rx->sr_drop_count += count; mac_bw->mac_bw_drop_bytes += sz; mutex_exit(&mac_bw->mac_bw_lock); mutex_exit(&mac_srs->srs_lock); mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); return; } else { if ((mac_bw->mac_bw_sz + sz) <= mac_bw->mac_bw_drop_threshold) { mutex_exit(&mac_bw->mac_bw_lock); MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz); } else { mp = mp_chain; chain_sz = 0; count1 = 0; tail = NULL; head = NULL; while (mp != NULL) { sz1 = msgdsize(mp); if (mac_bw->mac_bw_sz + chain_sz + sz1 > mac_bw->mac_bw_drop_threshold) break; chain_sz += sz1; count1++; tail = mp; mp = mp->b_next; } mutex_exit(&mac_bw->mac_bw_lock); if (tail != NULL) { head = tail->b_next; tail->b_next = NULL; MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count1, chain_sz); sz -= chain_sz; count -= count1; } else { /* Can't pick up any */ head = mp_chain; } if (head != NULL) { /* Drop any packet over the threshold */ srs_rx->sr_drop_count += count; mutex_enter(&mac_bw->mac_bw_lock); mac_bw->mac_bw_drop_bytes += sz; mutex_exit(&mac_bw->mac_bw_lock); freemsgchain(head); } } MAC_SRS_WORKER_WAKEUP(mac_srs); mutex_exit(&mac_srs->srs_lock); return; } } /* * If the total number of packets queued in the SRS and * its associated soft rings exceeds the max allowed, * then drop the chain. If we are polling capable, this * shouldn't be happening. */ if (!(mac_srs->srs_type & SRST_BW_CONTROL) && (srs_rx->sr_poll_pkt_cnt > srs_rx->sr_hiwat)) { mac_bw = mac_srs->srs_bw; srs_rx->sr_drop_count += count; mutex_enter(&mac_bw->mac_bw_lock); mac_bw->mac_bw_drop_bytes += sz; mutex_exit(&mac_bw->mac_bw_lock); freemsgchain(mp_chain); mutex_exit(&mac_srs->srs_lock); return; } MAC_RX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, count, sz); /* Count the packets entering via interrupt path */ srs_rx->sr_intr_count += count; if (!(mac_srs->srs_state & SRS_PROC)) { /* * If we are coming via loopback or if we are not * optimizing for latency, we should signal the * worker thread. */ if (loopback || !(mac_srs->srs_state & SRS_LATENCY_OPT)) { /* * For loopback, We need to let the worker take * over as we don't want to continue in the same * thread even if we can. This could lead to stack * overflows and may also end up using * resources (cpu) incorrectly. */ cv_signal(&mac_srs->srs_async); } else { /* * Seems like no one is processing the SRS and * there is no backlog. We also inline process * our packet if its a single packet in non * latency optimized case (in latency optimized * case, we inline process chains of any size). */ mac_srs->srs_drain_func(mac_srs, SRS_PROC_FAST); } } mutex_exit(&mac_srs->srs_lock); } /* TX SIDE ROUTINES (RUNTIME) */ /* * mac_tx_srs_no_desc * * This routine is called by Tx single ring default mode * when Tx ring runs out of descs. */ mac_tx_cookie_t mac_tx_srs_no_desc(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, uint16_t flag, mblk_t **ret_mp) { mac_tx_cookie_t cookie = NULL; mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; boolean_t wakeup_worker = B_TRUE; uint32_t tx_mode = srs_tx->st_mode; int cnt, sz; mblk_t *tail; ASSERT(tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_BW); if (flag & MAC_DROP_ON_NO_DESC) { MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); } else { if (mac_srs->srs_first != NULL) wakeup_worker = B_FALSE; MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); if (flag & MAC_TX_NO_ENQUEUE) { /* * If TX_QUEUED is not set, queue the * packet and let mac_tx_srs_drain() * set the TX_BLOCKED bit for the * reasons explained above. Otherwise, * return the mblks. */ if (wakeup_worker) { MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, cnt, sz); } else { MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain, ret_mp, cookie); } } else { MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, tail, cnt, sz, cookie); } if (wakeup_worker) cv_signal(&mac_srs->srs_async); } return (cookie); } /* * mac_tx_srs_enqueue * * This routine is called when Tx SRS is operating in either serializer * or bandwidth mode. In serializer mode, a packet will get enqueued * when a thread cannot enter SRS exclusively. In bandwidth mode, * packets gets queued if allowed byte-count limit for a tick is * exceeded. The action that gets taken when MAC_DROP_ON_NO_DESC and * MAC_TX_NO_ENQUEUE is set is different than when operaing in either * the default mode or fanout mode. Here packets get dropped or * returned back to the caller only after hi-watermark worth of data * is queued. */ static mac_tx_cookie_t mac_tx_srs_enqueue(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, uint16_t flag, uintptr_t fanout_hint, mblk_t **ret_mp) { mac_tx_cookie_t cookie = NULL; int cnt, sz; mblk_t *tail; boolean_t wakeup_worker = B_TRUE; /* * Ignore fanout hint if we don't have multiple tx rings. */ if (!TX_MULTI_RING_MODE(mac_srs)) fanout_hint = 0; if (mac_srs->srs_first != NULL) wakeup_worker = B_FALSE; MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); if (flag & MAC_DROP_ON_NO_DESC) { if (mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) { MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); } else { MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, cnt, sz); } } else if (flag & MAC_TX_NO_ENQUEUE) { if ((mac_srs->srs_count > mac_srs->srs_tx.st_hiwat) || (mac_srs->srs_state & SRS_TX_WAKEUP_CLIENT)) { MAC_TX_SET_NO_ENQUEUE(mac_srs, mp_chain, ret_mp, cookie); } else { mp_chain->b_prev = (mblk_t *)fanout_hint; MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, cnt, sz); } } else { /* * If you are BW_ENFORCED, just enqueue the * packet. srs_worker will drain it at the * prescribed rate. Before enqueueing, save * the fanout hint. */ mp_chain->b_prev = (mblk_t *)fanout_hint; MAC_TX_SRS_TEST_HIWAT(mac_srs, mp_chain, tail, cnt, sz, cookie); } if (wakeup_worker) cv_signal(&mac_srs->srs_async); return (cookie); } /* * There are five tx modes: * * 1) Default mode (SRS_TX_DEFAULT) * 2) Serialization mode (SRS_TX_SERIALIZE) * 3) Fanout mode (SRS_TX_FANOUT) * 4) Bandwdith mode (SRS_TX_BW) * 5) Fanout and Bandwidth mode (SRS_TX_BW_FANOUT) * * The tx mode in which an SRS operates is decided in mac_tx_srs_setup() * based on the number of Tx rings requested for an SRS and whether * bandwidth control is requested or not. * * In the default mode (i.e., no fanout/no bandwidth), the SRS acts as a * pass-thru. Packets will go directly to mac_tx_send(). When the underlying * Tx ring runs out of Tx descs, it starts queueing up packets in SRS. * When flow-control is relieved, the srs_worker drains the queued * packets and informs blocked clients to restart sending packets. * * In the SRS_TX_SERIALIZE mode, all calls to mac_tx() are serialized. * * In the SRS_TX_FANOUT mode, packets will be fanned out to multiple * Tx rings. Each Tx ring will have a soft ring associated with it. * These soft rings will be hung off the Tx SRS. Queueing if it happens * due to lack of Tx desc will be in individual soft ring (and not srs) * associated with Tx ring. * * In the TX_BW mode, tx srs will allow packets to go down to Tx ring * only if bw is available. Otherwise the packets will be queued in * SRS. If fanout to multiple Tx rings is configured, the packets will * be fanned out among the soft rings associated with the Tx rings. * * Four flags are used in srs_state for indicating flow control * conditions : SRS_TX_BLOCKED, SRS_TX_HIWAT, SRS_TX_WAKEUP_CLIENT. * SRS_TX_BLOCKED indicates out of Tx descs. SRS expects a wakeup from the * driver below. * SRS_TX_HIWAT indicates packet count enqueued in Tx SRS exceeded Tx hiwat * and flow-control pressure is applied back to clients. The clients expect * wakeup when flow-control is relieved. * SRS_TX_WAKEUP_CLIENT get set when (flag == MAC_TX_NO_ENQUEUE) and mblk * got returned back to client either due to lack of Tx descs or due to bw * control reasons. The clients expect a wakeup when condition is relieved. * * The fourth argument to mac_tx() is the flag. Normally it will be 0 but * some clients set the following values too: MAC_DROP_ON_NO_DESC, * MAC_TX_NO_ENQUEUE * Mac clients that do not want packets to be enqueued in the mac layer set * MAC_DROP_ON_NO_DESC value. The packets won't be queued in the Tx SRS or * Tx soft rings but instead get dropped when the NIC runs out of desc. The * behaviour of this flag is different when the Tx is running in serializer * or bandwidth mode. Under these (Serializer, bandwidth) modes, the packet * get dropped when Tx high watermark is reached. * There are some mac clients like vsw, aggr that want the mblks to be * returned back to clients instead of being queued in Tx SRS (or Tx soft * rings) under flow-control (i.e., out of desc or exceeding bw limits) * conditions. These clients call mac_tx() with MAC_TX_NO_ENQUEUE flag set. * In the default and Tx fanout mode, the un-transmitted mblks will be * returned back to the clients when the driver runs out of Tx descs. * SRS_TX_WAKEUP_CLIENT (or S_RING_WAKEUP_CLIENT) will be set in SRS (or * soft ring) so that the clients can be woken up when Tx desc become * available. When running in serializer or bandwidth mode mode, * SRS_TX_WAKEUP_CLIENT will be set when tx hi-watermark is reached. */ mac_tx_func_t mac_tx_get_func(uint32_t mode) { return (mac_tx_mode_list[mode].mac_tx_func); } /* ARGSUSED */ static mac_tx_cookie_t mac_tx_single_ring_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) { mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; boolean_t is_subflow; mac_tx_stats_t stats; mac_tx_cookie_t cookie = NULL; ASSERT(srs_tx->st_mode == SRS_TX_DEFAULT); /* Regular case with a single Tx ring */ /* * SRS_TX_BLOCKED is set when underlying NIC runs * out of Tx descs and messages start getting * queued. It won't get reset until * tx_srs_drain() completely drains out the * messages. */ if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { /* Tx descs/resources not available */ mutex_enter(&mac_srs->srs_lock); if ((mac_srs->srs_state & SRS_ENQUEUED) != 0) { cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp); mutex_exit(&mac_srs->srs_lock); return (cookie); } /* * While we were computing mblk count, the * flow control condition got relieved. * Continue with the transmission. */ mutex_exit(&mac_srs->srs_lock); } is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, mp_chain, (is_subflow ? &stats : NULL)); /* * Multiple threads could be here sending packets. * Under such conditions, it is not possible to * automically set SRS_TX_BLOCKED bit to indicate * out of tx desc condition. To atomically set * this, we queue the returned packet and do * the setting of SRS_TX_BLOCKED in * mac_tx_srs_drain(). */ if (mp_chain != NULL) { mutex_enter(&mac_srs->srs_lock); cookie = mac_tx_srs_no_desc(mac_srs, mp_chain, flag, ret_mp); mutex_exit(&mac_srs->srs_lock); return (cookie); } if (is_subflow) FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); return (NULL); } /* * mac_tx_serialize_mode * * This is an experimental mode implemented as per the request of PAE. * In this mode, all callers attempting to send a packet to the NIC * will get serialized. Only one thread at any time will access the * NIC to send the packet out. */ /* ARGSUSED */ static mac_tx_cookie_t mac_tx_serializer_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) { boolean_t is_subflow; mac_tx_stats_t stats; mac_tx_cookie_t cookie = NULL; mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; /* Single ring, serialize below */ ASSERT(srs_tx->st_mode == SRS_TX_SERIALIZE); mutex_enter(&mac_srs->srs_lock); if ((mac_srs->srs_first != NULL) || (mac_srs->srs_state & SRS_PROC)) { /* * In serialization mode, queue all packets until * TX_HIWAT is set. * If drop bit is set, drop if TX_HIWAT is set. * If no_enqueue is set, still enqueue until hiwat * is set and return mblks after TX_HIWAT is set. */ cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, NULL, ret_mp); mutex_exit(&mac_srs->srs_lock); return (cookie); } /* * No packets queued, nothing on proc and no flow * control condition. Fast-path, ok. Do inline * processing. */ mac_srs->srs_state |= SRS_PROC; mutex_exit(&mac_srs->srs_lock); is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, mp_chain, (is_subflow ? &stats : NULL)); mutex_enter(&mac_srs->srs_lock); mac_srs->srs_state &= ~SRS_PROC; if (mp_chain != NULL) { cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, NULL, ret_mp); } if (mac_srs->srs_first != NULL) { /* * We processed inline our packet and a new * packet/s got queued while we were * processing. Wakeup srs worker */ cv_signal(&mac_srs->srs_async); } mutex_exit(&mac_srs->srs_lock); if (is_subflow && cookie == NULL) FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); return (cookie); } /* * mac_tx_fanout_mode * * In this mode, the SRS will have access to multiple Tx rings to send * the packet out. The fanout hint that is passed as an argument is * used to find an appropriate ring to fanout the traffic. Each Tx * ring, in turn, will have a soft ring associated with it. If a Tx * ring runs out of Tx desc's the returned packet will be queued in * the soft ring associated with that Tx ring. The srs itself will not * queue any packets. */ #define MAC_TX_SOFT_RING_PROCESS(chain) { \ index = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count), \ softring = mac_srs->srs_oth_soft_rings[index]; \ cookie = mac_tx_soft_ring_process(softring, chain, flag, ret_mp); \ DTRACE_PROBE2(tx__fanout, uint64_t, hash, uint_t, index); \ } static mac_tx_cookie_t mac_tx_fanout_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) { mac_soft_ring_t *softring; uint64_t hash; uint_t index; mac_tx_cookie_t cookie = NULL; ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT); if (fanout_hint != 0) { /* * The hint is specified by the caller, simply pass the * whole chain to the soft ring. */ hash = HASH_HINT(fanout_hint); MAC_TX_SOFT_RING_PROCESS(mp_chain); } else { mblk_t *last_mp, *cur_mp, *sub_chain; uint64_t last_hash = 0; uint_t media = mac_srs->srs_mcip->mci_mip->mi_info.mi_media; /* * Compute the hash from the contents (headers) of the * packets of the mblk chain. Split the chains into * subchains of the same conversation. * * Since there may be more than one ring used for * sub-chains of the same call, and since the caller * does not maintain per conversation state since it * passed a zero hint, unsent subchains will be * dropped. */ flag |= MAC_DROP_ON_NO_DESC; ret_mp = NULL; ASSERT(ret_mp == NULL); sub_chain = NULL; last_mp = NULL; for (cur_mp = mp_chain; cur_mp != NULL; cur_mp = cur_mp->b_next) { hash = mac_pkt_hash(media, cur_mp, MAC_PKT_HASH_L4, B_TRUE); if (last_hash != 0 && hash != last_hash) { /* * Starting a different subchain, send current * chain out. */ ASSERT(last_mp != NULL); last_mp->b_next = NULL; MAC_TX_SOFT_RING_PROCESS(sub_chain); sub_chain = NULL; } /* add packet to subchain */ if (sub_chain == NULL) sub_chain = cur_mp; last_mp = cur_mp; last_hash = hash; } if (sub_chain != NULL) { /* send last subchain */ ASSERT(last_mp != NULL); last_mp->b_next = NULL; MAC_TX_SOFT_RING_PROCESS(sub_chain); } cookie = NULL; } return (cookie); } /* * mac_tx_bw_mode * * In the bandwidth mode, Tx srs will allow packets to go down to Tx ring * only if bw is available. Otherwise the packets will be queued in * SRS. If the SRS has multiple Tx rings, then packets will get fanned * out to a Tx rings. */ static mac_tx_cookie_t mac_tx_bw_mode(mac_soft_ring_set_t *mac_srs, mblk_t *mp_chain, uintptr_t fanout_hint, uint16_t flag, mblk_t **ret_mp) { int cnt, sz; mblk_t *tail; mac_tx_cookie_t cookie = NULL; mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; clock_t now; ASSERT(TX_BANDWIDTH_MODE(mac_srs)); ASSERT(mac_srs->srs_type & SRST_BW_CONTROL); mutex_enter(&mac_srs->srs_lock); if (mac_srs->srs_bw->mac_bw_limit == 0) { /* * zero bandwidth, no traffic is sent: drop the packets, * or return the whole chain if the caller requests all * unsent packets back. */ if (flag & MAC_TX_NO_ENQUEUE) { cookie = (mac_tx_cookie_t)mac_srs; *ret_mp = mp_chain; } else { MAC_TX_SRS_DROP_MESSAGE(mac_srs, mp_chain, cookie); } mutex_exit(&mac_srs->srs_lock); return (cookie); } else if ((mac_srs->srs_first != NULL) || (mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)) { cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, fanout_hint, ret_mp); mutex_exit(&mac_srs->srs_lock); return (cookie); } MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); now = ddi_get_lbolt(); if (mac_srs->srs_bw->mac_bw_curr_time != now) { mac_srs->srs_bw->mac_bw_curr_time = now; mac_srs->srs_bw->mac_bw_used = 0; } else if (mac_srs->srs_bw->mac_bw_used > mac_srs->srs_bw->mac_bw_limit) { mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; MAC_TX_SRS_ENQUEUE_CHAIN(mac_srs, mp_chain, tail, cnt, sz); /* * Wakeup worker thread. Note that worker * thread has to be woken up so that it * can fire up the timer to be woken up * on the next tick. Also once * BW_ENFORCED is set, it can only be * reset by srs_worker thread. Until then * all packets will get queued up in SRS * and hence this this code path won't be * entered until BW_ENFORCED is reset. */ cv_signal(&mac_srs->srs_async); mutex_exit(&mac_srs->srs_lock); return (cookie); } mac_srs->srs_bw->mac_bw_used += sz; mutex_exit(&mac_srs->srs_lock); if (srs_tx->st_mode == SRS_TX_BW_FANOUT) { mac_soft_ring_t *softring; uint_t indx, hash; hash = HASH_HINT(fanout_hint); indx = COMPUTE_INDEX(hash, mac_srs->srs_oth_ring_count); softring = mac_srs->srs_oth_soft_rings[indx]; return (mac_tx_soft_ring_process(softring, mp_chain, flag, ret_mp)); } else { boolean_t is_subflow; mac_tx_stats_t stats; is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); mp_chain = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, mp_chain, (is_subflow ? &stats : NULL)); if (mp_chain != NULL) { mutex_enter(&mac_srs->srs_lock); MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); if (mac_srs->srs_bw->mac_bw_used > sz) mac_srs->srs_bw->mac_bw_used -= sz; else mac_srs->srs_bw->mac_bw_used = 0; cookie = mac_tx_srs_enqueue(mac_srs, mp_chain, flag, fanout_hint, ret_mp); mutex_exit(&mac_srs->srs_lock); return (cookie); } if (is_subflow) FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); return (NULL); } } /* ARGSUSED */ void mac_tx_srs_drain(mac_soft_ring_set_t *mac_srs, uint_t proc_type) { mblk_t *head, *tail; size_t sz; uint32_t tx_mode; uint_t saved_pkt_count; boolean_t is_subflow; mac_tx_stats_t stats; mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; clock_t now; saved_pkt_count = 0; ASSERT(mutex_owned(&mac_srs->srs_lock)); ASSERT(!(mac_srs->srs_state & SRS_PROC)); mac_srs->srs_state |= SRS_PROC; is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); tx_mode = srs_tx->st_mode; if (tx_mode == SRS_TX_DEFAULT || tx_mode == SRS_TX_SERIALIZE) { if (mac_srs->srs_first != NULL) { head = mac_srs->srs_first; tail = mac_srs->srs_last; saved_pkt_count = mac_srs->srs_count; mac_srs->srs_first = NULL; mac_srs->srs_last = NULL; mac_srs->srs_count = 0; mutex_exit(&mac_srs->srs_lock); head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, head, &stats); mutex_enter(&mac_srs->srs_lock); if (head != NULL) { /* Device out of tx desc, set block */ if (head->b_next == NULL) VERIFY(head == tail); tail->b_next = mac_srs->srs_first; mac_srs->srs_first = head; mac_srs->srs_count += (saved_pkt_count - stats.ts_opackets); if (mac_srs->srs_last == NULL) mac_srs->srs_last = tail; MAC_TX_SRS_BLOCK(mac_srs, head); } else { srs_tx->st_woken_up = B_FALSE; if (is_subflow) { FLOW_TX_STATS_UPDATE( mac_srs->srs_flent, &stats); } } } } else if (tx_mode == SRS_TX_BW) { /* * We are here because the timer fired and we have some data * to tranmit. Also mac_tx_srs_worker should have reset * SRS_BW_ENFORCED flag */ ASSERT(!(mac_srs->srs_bw->mac_bw_state & SRS_BW_ENFORCED)); head = tail = mac_srs->srs_first; while (mac_srs->srs_first != NULL) { tail = mac_srs->srs_first; tail->b_prev = NULL; mac_srs->srs_first = tail->b_next; if (mac_srs->srs_first == NULL) mac_srs->srs_last = NULL; mac_srs->srs_count--; sz = msgdsize(tail); mac_srs->srs_size -= sz; saved_pkt_count++; MAC_TX_UPDATE_BW_INFO(mac_srs, sz); if (mac_srs->srs_bw->mac_bw_used < mac_srs->srs_bw->mac_bw_limit) continue; now = ddi_get_lbolt(); if (mac_srs->srs_bw->mac_bw_curr_time != now) { mac_srs->srs_bw->mac_bw_curr_time = now; mac_srs->srs_bw->mac_bw_used = sz; continue; } mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; break; } ASSERT((head == NULL && tail == NULL) || (head != NULL && tail != NULL)); if (tail != NULL) { tail->b_next = NULL; mutex_exit(&mac_srs->srs_lock); head = mac_tx_send(srs_tx->st_arg1, srs_tx->st_arg2, head, &stats); mutex_enter(&mac_srs->srs_lock); if (head != NULL) { uint_t size_sent; /* Device out of tx desc, set block */ if (head->b_next == NULL) VERIFY(head == tail); tail->b_next = mac_srs->srs_first; mac_srs->srs_first = head; mac_srs->srs_count += (saved_pkt_count - stats.ts_opackets); if (mac_srs->srs_last == NULL) mac_srs->srs_last = tail; size_sent = sz - stats.ts_obytes; mac_srs->srs_size += size_sent; mac_srs->srs_bw->mac_bw_sz += size_sent; if (mac_srs->srs_bw->mac_bw_used > size_sent) { mac_srs->srs_bw->mac_bw_used -= size_sent; } else { mac_srs->srs_bw->mac_bw_used = 0; } MAC_TX_SRS_BLOCK(mac_srs, head); } else { srs_tx->st_woken_up = B_FALSE; if (is_subflow) { FLOW_TX_STATS_UPDATE( mac_srs->srs_flent, &stats); } } } } else if (tx_mode == SRS_TX_BW_FANOUT) { mblk_t *prev; mac_soft_ring_t *softring; uint64_t hint; /* * We are here because the timer fired and we * have some quota to tranmit. */ prev = NULL; head = tail = mac_srs->srs_first; while (mac_srs->srs_first != NULL) { tail = mac_srs->srs_first; mac_srs->srs_first = tail->b_next; if (mac_srs->srs_first == NULL) mac_srs->srs_last = NULL; mac_srs->srs_count--; sz = msgdsize(tail); mac_srs->srs_size -= sz; mac_srs->srs_bw->mac_bw_used += sz; if (prev == NULL) hint = (ulong_t)tail->b_prev; if (hint != (ulong_t)tail->b_prev) { prev->b_next = NULL; mutex_exit(&mac_srs->srs_lock); TX_SRS_TO_SOFT_RING(mac_srs, head, hint); head = tail; hint = (ulong_t)tail->b_prev; mutex_enter(&mac_srs->srs_lock); } prev = tail; tail->b_prev = NULL; if (mac_srs->srs_bw->mac_bw_used < mac_srs->srs_bw->mac_bw_limit) continue; now = ddi_get_lbolt(); if (mac_srs->srs_bw->mac_bw_curr_time != now) { mac_srs->srs_bw->mac_bw_curr_time = now; mac_srs->srs_bw->mac_bw_used = 0; continue; } mac_srs->srs_bw->mac_bw_state |= SRS_BW_ENFORCED; break; } ASSERT((head == NULL && tail == NULL) || (head != NULL && tail != NULL)); if (tail != NULL) { tail->b_next = NULL; mutex_exit(&mac_srs->srs_lock); TX_SRS_TO_SOFT_RING(mac_srs, head, hint); mutex_enter(&mac_srs->srs_lock); } } /* * SRS_TX_FANOUT case not considered here because packets * won't be queued in the SRS for this case. Packets will * be sent directly to soft rings underneath and if there * is any queueing at all, it would be in Tx side soft * rings. */ /* * When srs_count becomes 0, reset SRS_TX_HIWAT and * SRS_TX_WAKEUP_CLIENT and wakeup registered clients. */ if (mac_srs->srs_count == 0 && (mac_srs->srs_state & (SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED))) { mac_tx_notify_cb_t *mtnfp; mac_cb_t *mcb; mac_client_impl_t *mcip = mac_srs->srs_mcip; boolean_t wakeup_required = B_FALSE; if (mac_srs->srs_state & (SRS_TX_HIWAT|SRS_TX_WAKEUP_CLIENT)) { wakeup_required = B_TRUE; } mac_srs->srs_state &= ~(SRS_TX_HIWAT | SRS_TX_WAKEUP_CLIENT | SRS_ENQUEUED); mutex_exit(&mac_srs->srs_lock); if (wakeup_required) { /* Wakeup callback registered clients */ MAC_CALLBACK_WALKER_INC(&mcip->mci_tx_notify_cb_info); for (mcb = mcip->mci_tx_notify_cb_list; mcb != NULL; mcb = mcb->mcb_nextp) { mtnfp = (mac_tx_notify_cb_t *)mcb->mcb_objp; mtnfp->mtnf_fn(mtnfp->mtnf_arg, (mac_tx_cookie_t)mac_srs); } MAC_CALLBACK_WALKER_DCR(&mcip->mci_tx_notify_cb_info, &mcip->mci_tx_notify_cb_list); /* * If the client is not the primary MAC client, then we * need to send the notification to the clients upper * MAC, i.e. mci_upper_mip. */ mac_tx_notify(mcip->mci_upper_mip != NULL ? mcip->mci_upper_mip : mcip->mci_mip); } mutex_enter(&mac_srs->srs_lock); } mac_srs->srs_state &= ~SRS_PROC; } /* * Given a packet, get the flow_entry that identifies the flow * to which that packet belongs. The flow_entry will contain * the transmit function to be used to send the packet. If the * function returns NULL, the packet should be sent using the * underlying NIC. */ static flow_entry_t * mac_tx_classify(mac_impl_t *mip, mblk_t *mp) { flow_entry_t *flent = NULL; mac_client_impl_t *mcip; int err; /* * Do classification on the packet. */ err = mac_flow_lookup(mip->mi_flow_tab, mp, FLOW_OUTBOUND, &flent); if (err != 0) return (NULL); /* * This flent might just be an additional one on the MAC client, * i.e. for classification purposes (different fdesc), however * the resources, SRS et. al., are in the mci_flent, so if * this isn't the mci_flent, we need to get it. */ if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) { FLOW_REFRELE(flent); flent = mcip->mci_flent; FLOW_TRY_REFHOLD(flent, err); if (err != 0) return (NULL); } return (flent); } /* * This macro is only meant to be used by mac_tx_send(). */ #define CHECK_VID_AND_ADD_TAG(mp) { \ if (vid_check) { \ int err = 0; \ \ MAC_VID_CHECK(src_mcip, (mp), err); \ if (err != 0) { \ freemsg((mp)); \ (mp) = next; \ oerrors++; \ continue; \ } \ } \ if (add_tag) { \ (mp) = mac_add_vlan_tag((mp), 0, vid); \ if ((mp) == NULL) { \ (mp) = next; \ oerrors++; \ continue; \ } \ } \ } mblk_t * mac_tx_send(mac_client_handle_t mch, mac_ring_handle_t ring, mblk_t *mp_chain, mac_tx_stats_t *stats) { mac_client_impl_t *src_mcip = (mac_client_impl_t *)mch; mac_impl_t *mip = src_mcip->mci_mip; uint_t obytes = 0, opackets = 0, oerrors = 0; mblk_t *mp = NULL, *next; boolean_t vid_check, add_tag; uint16_t vid = 0; if (mip->mi_nclients > 1) { vid_check = MAC_VID_CHECK_NEEDED(src_mcip); add_tag = MAC_TAG_NEEDED(src_mcip); if (add_tag) vid = mac_client_vid(mch); } else { ASSERT(mip->mi_nclients == 1); vid_check = add_tag = B_FALSE; } /* * Fastpath: if there's only one client, and there's no * multicast listeners, we simply send the packet down to the * underlying NIC. */ if (mip->mi_nactiveclients == 1 && mip->mi_promisc_list == NULL) { DTRACE_PROBE2(fastpath, mac_client_impl_t *, src_mcip, mblk_t *, mp_chain); mp = mp_chain; while (mp != NULL) { next = mp->b_next; mp->b_next = NULL; opackets++; obytes += (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp)); CHECK_VID_AND_ADD_TAG(mp); MAC_TX(mip, ring, mp, ((src_mcip->mci_state_flags & MCIS_SHARE_BOUND) != 0)); /* * If the driver is out of descriptors and does a * partial send it will return a chain of unsent * mblks. Adjust the accounting stats. */ if (mp != NULL) { opackets--; obytes -= msgdsize(mp); mp->b_next = next; break; } mp = next; } goto done; } /* * No fastpath, we either have more than one MAC client * defined on top of the same MAC, or one or more MAC * client promiscuous callbacks. */ DTRACE_PROBE3(slowpath, mac_client_impl_t *, src_mcip, int, mip->mi_nclients, mblk_t *, mp_chain); mp = mp_chain; while (mp != NULL) { flow_entry_t *dst_flow_ent; void *flow_cookie; size_t pkt_size; mblk_t *mp1; next = mp->b_next; mp->b_next = NULL; opackets++; pkt_size = (mp->b_cont == NULL ? MBLKL(mp) : msgdsize(mp)); obytes += pkt_size; CHECK_VID_AND_ADD_TAG(mp); /* * Check if there are promiscuous mode callbacks defined. */ if (mip->mi_promisc_list != NULL) mac_promisc_dispatch(mip, mp, src_mcip); /* * Find the destination. */ dst_flow_ent = mac_tx_classify(mip, mp); if (dst_flow_ent != NULL) { size_t hdrsize; int err = 0; if (mip->mi_info.mi_nativemedia == DL_ETHER) { struct ether_vlan_header *evhp = (struct ether_vlan_header *)mp->b_rptr; if (ntohs(evhp->ether_tpid) == ETHERTYPE_VLAN) hdrsize = sizeof (*evhp); else hdrsize = sizeof (struct ether_header); } else { mac_header_info_t mhi; err = mac_header_info((mac_handle_t)mip, mp, &mhi); if (err == 0) hdrsize = mhi.mhi_hdrsize; } /* * Got a matching flow. It's either another * MAC client, or a broadcast/multicast flow. * Make sure the packet size is within the * allowed size. If not drop the packet and * move to next packet. */ if (err != 0 || (pkt_size - hdrsize) > mip->mi_sdu_max) { oerrors++; DTRACE_PROBE2(loopback__drop, size_t, pkt_size, mblk_t *, mp); freemsg(mp); mp = next; FLOW_REFRELE(dst_flow_ent); continue; } flow_cookie = mac_flow_get_client_cookie(dst_flow_ent); if (flow_cookie != NULL) { /* * The vnic_bcast_send function expects * to receive the sender MAC client * as value for arg2. */ mac_bcast_send(flow_cookie, src_mcip, mp, B_TRUE); } else { /* * loopback the packet to a * local MAC client. We force a context * switch if both source and destination * MAC clients are used by IP, i.e. bypass * is set. */ boolean_t do_switch; mac_client_impl_t *dst_mcip = dst_flow_ent->fe_mcip; do_switch = ((src_mcip->mci_state_flags & dst_mcip->mci_state_flags & MCIS_CLIENT_POLL_CAPABLE) != 0); if ((mp1 = mac_fix_cksum(mp)) != NULL) { (dst_flow_ent->fe_cb_fn)( dst_flow_ent->fe_cb_arg1, dst_flow_ent->fe_cb_arg2, mp1, do_switch); } } FLOW_REFRELE(dst_flow_ent); } else { /* * Unknown destination, send via the underlying * NIC. */ MAC_TX(mip, ring, mp, ((src_mcip->mci_state_flags & MCIS_SHARE_BOUND) != 0)); if (mp != NULL) { /* * Adjust for the last packet that * could not be transmitted */ opackets--; obytes -= pkt_size; mp->b_next = next; break; } } mp = next; } done: src_mcip->mci_stat_obytes += obytes; src_mcip->mci_stat_opackets += opackets; src_mcip->mci_stat_oerrors += oerrors; if (stats != NULL) { stats->ts_opackets = opackets; stats->ts_obytes = obytes; stats->ts_oerrors = oerrors; } return (mp); } /* * mac_tx_srs_ring_present * * Returns whether the specified ring is part of the specified SRS. */ boolean_t mac_tx_srs_ring_present(mac_soft_ring_set_t *srs, mac_ring_t *tx_ring) { int i; mac_soft_ring_t *soft_ring; if (srs->srs_tx.st_arg2 == tx_ring) return (B_TRUE); for (i = 0; i < srs->srs_oth_ring_count; i++) { soft_ring = srs->srs_oth_soft_rings[i]; if (soft_ring->s_ring_tx_arg2 == tx_ring) return (B_TRUE); } return (B_FALSE); } /* * mac_tx_srs_wakeup * * Called when Tx desc become available. Wakeup the appropriate worker * thread after resetting the SRS_TX_BLOCKED/S_RING_BLOCK bit in the * state field. */ void mac_tx_srs_wakeup(mac_soft_ring_set_t *mac_srs, mac_ring_handle_t ring) { int i; mac_soft_ring_t *sringp; mac_srs_tx_t *srs_tx = &mac_srs->srs_tx; mutex_enter(&mac_srs->srs_lock); if (TX_SINGLE_RING_MODE(mac_srs)) { if (srs_tx->st_arg2 == ring && mac_srs->srs_state & SRS_TX_BLOCKED) { mac_srs->srs_state &= ~SRS_TX_BLOCKED; srs_tx->st_unblocked_cnt++; cv_signal(&mac_srs->srs_async); } /* * A wakeup can come before tx_srs_drain() could * grab srs lock and set SRS_TX_BLOCKED. So * always set woken_up flag when we come here. */ srs_tx->st_woken_up = B_TRUE; mutex_exit(&mac_srs->srs_lock); return; } /* If you are here, it is for FANOUT or BW_FANOUT case */ ASSERT(TX_MULTI_RING_MODE(mac_srs)); for (i = 0; i < mac_srs->srs_oth_ring_count; i++) { sringp = mac_srs->srs_oth_soft_rings[i]; mutex_enter(&sringp->s_ring_lock); if (sringp->s_ring_tx_arg2 == ring) { if (sringp->s_ring_state & S_RING_BLOCK) { sringp->s_ring_state &= ~S_RING_BLOCK; sringp->s_ring_unblocked_cnt++; cv_signal(&sringp->s_ring_async); } sringp->s_ring_tx_woken_up = B_TRUE; } mutex_exit(&sringp->s_ring_lock); } mutex_exit(&mac_srs->srs_lock); } /* * Once the driver is done draining, send a MAC_NOTE_TX notification to unleash * the blocked clients again. */ void mac_tx_notify(mac_impl_t *mip) { i_mac_notify(mip, MAC_NOTE_TX); } /* * RX SOFTRING RELATED FUNCTIONS * * These functions really belong in mac_soft_ring.c and here for * a short period. */ #define SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ /* \ * Enqueue our mblk chain. \ */ \ ASSERT(MUTEX_HELD(&(ringp)->s_ring_lock)); \ \ if ((ringp)->s_ring_last != NULL) \ (ringp)->s_ring_last->b_next = (mp); \ else \ (ringp)->s_ring_first = (mp); \ (ringp)->s_ring_last = (tail); \ (ringp)->s_ring_count += (cnt); \ ASSERT((ringp)->s_ring_count > 0); \ if ((ringp)->s_ring_type & ST_RING_BW_CTL) { \ (ringp)->s_ring_size += sz; \ } \ } /* * Default entry point to deliver a packet chain to a MAC client. * If the MAC client has flows, do the classification with these * flows as well. */ /* ARGSUSED */ void mac_rx_deliver(void *arg1, mac_resource_handle_t mrh, mblk_t *mp_chain, mac_header_info_t *arg3) { mac_client_impl_t *mcip = arg1; if (mcip->mci_nvids == 1 && !(mcip->mci_state_flags & MCIS_STRIP_DISABLE)) { /* * If the client has exactly one VID associated with it * and striping of VLAN header is not disabled, * remove the VLAN tag from the packet before * passing it on to the client's receive callback. * Note that this needs to be done after we dispatch * the packet to the promiscuous listeners of the * client, since they expect to see the whole * frame including the VLAN headers. */ mp_chain = mac_strip_vlan_tag_chain(mp_chain); } mcip->mci_rx_fn(mcip->mci_rx_arg, mrh, mp_chain, B_FALSE); } /* * mac_rx_soft_ring_process * * process a chain for a given soft ring. The number of packets queued * in the SRS and its associated soft rings (including this one) is * very small (tracked by srs_poll_pkt_cnt), then allow the entering * thread (interrupt or poll thread) to do inline processing. This * helps keep the latency down under low load. * * The proc and arg for each mblk is already stored in the mblk in * appropriate places. */ /* ARGSUSED */ void mac_rx_soft_ring_process(mac_client_impl_t *mcip, mac_soft_ring_t *ringp, mblk_t *mp_chain, mblk_t *tail, int cnt, size_t sz) { mac_direct_rx_t proc; void *arg1; mac_resource_handle_t arg2; mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; ASSERT(ringp != NULL); ASSERT(mp_chain != NULL); ASSERT(tail != NULL); ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); mutex_enter(&ringp->s_ring_lock); ringp->s_ring_total_inpkt += cnt; if ((mac_srs->srs_rx.sr_poll_pkt_cnt <= 1) && !(ringp->s_ring_type & ST_RING_WORKER_ONLY)) { /* If on processor or blanking on, then enqueue and return */ if (ringp->s_ring_state & S_RING_BLANK || ringp->s_ring_state & S_RING_PROC) { SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); mutex_exit(&ringp->s_ring_lock); return; } proc = ringp->s_ring_rx_func; arg1 = ringp->s_ring_rx_arg1; arg2 = ringp->s_ring_rx_arg2; /* * See if anything is already queued. If we are the * first packet, do inline processing else queue the * packet and do the drain. */ if (ringp->s_ring_first == NULL) { /* * Fast-path, ok to process and nothing queued. */ ringp->s_ring_run = curthread; ringp->s_ring_state |= (S_RING_PROC); mutex_exit(&ringp->s_ring_lock); /* * We are the chain of 1 packet so * go through this fast path. */ ASSERT(mp_chain->b_next == NULL); (*proc)(arg1, arg2, mp_chain, NULL); ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); /* * If we have a soft ring set which is doing * bandwidth control, we need to decrement * srs_size and count so it the SRS can have a * accurate idea of what is the real data * queued between SRS and its soft rings. We * decrement the counters only when the packet * gets processed by both SRS and the soft ring. */ mutex_enter(&mac_srs->srs_lock); MAC_UPDATE_SRS_COUNT_LOCKED(mac_srs, cnt); MAC_UPDATE_SRS_SIZE_LOCKED(mac_srs, sz); mutex_exit(&mac_srs->srs_lock); mutex_enter(&ringp->s_ring_lock); ringp->s_ring_run = NULL; ringp->s_ring_state &= ~S_RING_PROC; if (ringp->s_ring_state & S_RING_CLIENT_WAIT) cv_signal(&ringp->s_ring_client_cv); if ((ringp->s_ring_first == NULL) || (ringp->s_ring_state & S_RING_BLANK)) { /* * We processed inline our packet and * nothing new has arrived or our * receiver doesn't want to receive * any packets. We are done. */ mutex_exit(&ringp->s_ring_lock); return; } } else { SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); } /* * We are here because either we couldn't do inline * processing (because something was already * queued), or we had a chain of more than one * packet, or something else arrived after we were * done with inline processing. */ ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); ASSERT(ringp->s_ring_first != NULL); ringp->s_ring_drain_func(ringp); mutex_exit(&ringp->s_ring_lock); return; } else { /* ST_RING_WORKER_ONLY case */ SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); mac_soft_ring_worker_wakeup(ringp); mutex_exit(&ringp->s_ring_lock); } } /* * TX SOFTRING RELATED FUNCTIONS * * These functions really belong in mac_soft_ring.c and here for * a short period. */ #define TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp, tail, cnt, sz) { \ ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); \ ringp->s_ring_state |= S_RING_ENQUEUED; \ SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); \ } /* * mac_tx_sring_queued * * When we are out of transmit descriptors and we already have a * queue that exceeds hiwat (or the client called us with * MAC_TX_NO_ENQUEUE or MAC_DROP_ON_NO_DESC flag), return the * soft ring pointer as the opaque cookie for the client enable * flow control. */ static mac_tx_cookie_t mac_tx_sring_enqueue(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag, mblk_t **ret_mp) { int cnt; size_t sz; mblk_t *tail; mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; mac_tx_cookie_t cookie = NULL; boolean_t wakeup_worker = B_TRUE; ASSERT(MUTEX_HELD(&ringp->s_ring_lock)); MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); if (flag & MAC_DROP_ON_NO_DESC) { mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); /* increment freed stats */ ringp->s_ring_drops += cnt; cookie = (mac_tx_cookie_t)ringp; } else { if (ringp->s_ring_first != NULL) wakeup_worker = B_FALSE; if (flag & MAC_TX_NO_ENQUEUE) { /* * If QUEUED is not set, queue the packet * and let mac_tx_soft_ring_drain() set * the TX_BLOCKED bit for the reasons * explained above. Otherwise, return the * mblks. */ if (wakeup_worker) { TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); } else { ringp->s_ring_state |= S_RING_WAKEUP_CLIENT; cookie = (mac_tx_cookie_t)ringp; *ret_mp = mp_chain; } } else { boolean_t enqueue = B_TRUE; if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { /* * flow-controlled. Store ringp in cookie * so that it can be returned as * mac_tx_cookie_t to client */ ringp->s_ring_state |= S_RING_TX_HIWAT; cookie = (mac_tx_cookie_t)ringp; ringp->s_ring_hiwat_cnt++; if (ringp->s_ring_count > ringp->s_ring_tx_max_q_cnt) { /* increment freed stats */ ringp->s_ring_drops += cnt; /* * b_prev may be set to the fanout hint * hence can't use freemsg directly */ mac_pkt_drop(NULL, NULL, mp_chain, B_FALSE); DTRACE_PROBE1(tx_queued_hiwat, mac_soft_ring_t *, ringp); enqueue = B_FALSE; } } if (enqueue) { TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); } } if (wakeup_worker) cv_signal(&ringp->s_ring_async); } return (cookie); } /* * mac_tx_soft_ring_process * * This routine is called when fanning out outgoing traffic among * multipe Tx rings. * Note that a soft ring is associated with a h/w Tx ring. */ mac_tx_cookie_t mac_tx_soft_ring_process(mac_soft_ring_t *ringp, mblk_t *mp_chain, uint16_t flag, mblk_t **ret_mp) { mac_soft_ring_set_t *mac_srs = ringp->s_ring_set; int cnt; size_t sz; mblk_t *tail; mac_tx_cookie_t cookie = NULL; ASSERT(ringp != NULL); ASSERT(mp_chain != NULL); ASSERT(MUTEX_NOT_HELD(&ringp->s_ring_lock)); /* * Only two modes can come here; either it can be * SRS_TX_BW_FANOUT or SRS_TX_FANOUT */ ASSERT(mac_srs->srs_tx.st_mode == SRS_TX_FANOUT || mac_srs->srs_tx.st_mode == SRS_TX_BW_FANOUT); if (ringp->s_ring_type & ST_RING_WORKER_ONLY) { /* Serialization mode */ mutex_enter(&ringp->s_ring_lock); if (ringp->s_ring_count > ringp->s_ring_tx_hiwat) { cookie = mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp); mutex_exit(&ringp->s_ring_lock); return (cookie); } MAC_COUNT_CHAIN(mac_srs, mp_chain, tail, cnt, sz); TX_SOFT_RING_ENQUEUE_CHAIN(ringp, mp_chain, tail, cnt, sz); if (ringp->s_ring_state & (S_RING_BLOCK | S_RING_PROC)) { /* * If ring is blocked due to lack of Tx * descs, just return. Worker thread * will get scheduled when Tx desc's * become available. */ mutex_exit(&ringp->s_ring_lock); return (cookie); } mac_soft_ring_worker_wakeup(ringp); mutex_exit(&ringp->s_ring_lock); return (cookie); } else { /* Default fanout mode */ /* * S_RING_BLOCKED is set when underlying NIC runs * out of Tx descs and messages start getting * queued. It won't get reset until * tx_srs_drain() completely drains out the * messages. */ boolean_t is_subflow; mac_tx_stats_t stats; if (ringp->s_ring_state & S_RING_ENQUEUED) { /* Tx descs/resources not available */ mutex_enter(&ringp->s_ring_lock); if (ringp->s_ring_state & S_RING_ENQUEUED) { cookie = mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp); mutex_exit(&ringp->s_ring_lock); return (cookie); } /* * While we were computing mblk count, the * flow control condition got relieved. * Continue with the transmission. */ mutex_exit(&ringp->s_ring_lock); } is_subflow = ((mac_srs->srs_type & SRST_FLOW) != 0); mp_chain = mac_tx_send(ringp->s_ring_tx_arg1, ringp->s_ring_tx_arg2, mp_chain, (is_subflow ? &stats : NULL)); /* * Multiple threads could be here sending packets. * Under such conditions, it is not possible to * automically set S_RING_BLOCKED bit to indicate * out of tx desc condition. To atomically set * this, we queue the returned packet and do * the setting of S_RING_BLOCKED in * mac_tx_soft_ring_drain(). */ if (mp_chain != NULL) { mutex_enter(&ringp->s_ring_lock); cookie = mac_tx_sring_enqueue(ringp, mp_chain, flag, ret_mp); mutex_exit(&ringp->s_ring_lock); return (cookie); } if (is_subflow) { FLOW_TX_STATS_UPDATE(mac_srs->srs_flent, &stats); } return (NULL); } }