/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. * * Copyright 2013 Nexenta Systems, Inc. All rights reserved. */ /* * lofi (loopback file) driver - allows you to attach a file to a device, * which can then be accessed through that device. The simple model is that * you tell lofi to open a file, and then use the block device you get as * you would any block device. lofi translates access to the block device * into I/O on the underlying file. This is mostly useful for * mounting images of filesystems. * * lofi is controlled through /dev/lofictl - this is the only device exported * during attach, and is minor number 0. lofiadm communicates with lofi through * ioctls on this device. When a file is attached to lofi, block and character * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices * are identified by their minor number, and the minor number is also used * as the name in /dev/lofi. If we ever decide to support virtual disks, * we'll have to divide the minor number space to identify fdisk partitions * and slices, and the name will then be the minor number shifted down a * few bits. Minor devices are tracked with state structures handled with * ddi_soft_state(9F) for simplicity. * * A file attached to lofi is opened when attached and not closed until * explicitly detached from lofi. This seems more sensible than deferring * the open until the /dev/lofi device is opened, for a number of reasons. * One is that any failure is likely to be noticed by the person (or script) * running lofiadm. Another is that it would be a security problem if the * file was replaced by another one after being added but before being opened. * * The only hard part about lofi is the ioctls. In order to support things * like 'newfs' on a lofi device, it needs to support certain disk ioctls. * So it has to fake disk geometry and partition information. More may need * to be faked if your favorite utility doesn't work and you think it should * (fdformat doesn't work because it really wants to know the type of floppy * controller to talk to, and that didn't seem easy to fake. Or possibly even * necessary, since we have mkfs_pcfs now). * * Normally, a lofi device cannot be detached if it is open (i.e. busy). To * support simulation of hotplug events, an optional force flag is provided. * If a lofi device is open when a force detach is requested, then the * underlying file is closed and any subsequent operations return EIO. When the * device is closed for the last time, it will be cleaned up at that time. In * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is * detached but not removed. * * Known problems: * * UFS logging. Mounting a UFS filesystem image "logging" * works for basic copy testing but wedges during a build of ON through * that image. Some deadlock in lufs holding the log mutex and then * getting stuck on a buf. So for now, don't do that. * * Direct I/O. Since the filesystem data is being cached in the buffer * cache, _and_ again in the underlying filesystem, it's tempting to * enable direct I/O on the underlying file. Don't, because that deadlocks. * I think to fix the cache-twice problem we might need filesystem support. * * Interesting things to do: * * Allow multiple files for each device. A poor-man's metadisk, basically. * * Pass-through ioctls on block devices. You can (though it's not * documented), give lofi a block device as a file name. Then we shouldn't * need to fake a geometry, however, it may be relevant if you're replacing * metadisk, or using lofi to get crypto. * It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1 * and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home. * In fact this even makes sense if you have lofi "above" metadisk. * * Encryption: * Each lofi device can have its own symmetric key and cipher. * They are passed to us by lofiadm(1m) in the correct format for use * with the misc/kcf crypto_* routines. * * Each block has its own IV, that is calculated in lofi_blk_mech(), based * on the "master" key held in the lsp and the block number of the buffer. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The basis for CRYOFF is derived from usr/src/uts/common/sys/fs/ufs_fs.h. * Crypto metadata, if it exists, is located at the end of the boot block * (BBOFF + BBSIZE, which is SBOFF). The super block and everything after * is offset by the size of the crypto metadata which is handled by * lsp->ls_crypto_offset. */ #define CRYOFF ((off_t)8192) #define NBLOCKS_PROP_NAME "Nblocks" #define SIZE_PROP_NAME "Size" #define ZONE_PROP_NAME "zone" #define SETUP_C_DATA(cd, buf, len) \ (cd).cd_format = CRYPTO_DATA_RAW; \ (cd).cd_offset = 0; \ (cd).cd_miscdata = NULL; \ (cd).cd_length = (len); \ (cd).cd_raw.iov_base = (buf); \ (cd).cd_raw.iov_len = (len); #define UIO_CHECK(uio) \ if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \ ((uio)->uio_resid % DEV_BSIZE) != 0) { \ return (EINVAL); \ } static dev_info_t *lofi_dip = NULL; static void *lofi_statep = NULL; static kmutex_t lofi_lock; /* state lock */ static id_space_t *lofi_minor_id; static list_t lofi_list; static zone_key_t lofi_zone_key; /* * Because lofi_taskq_nthreads limits the actual swamping of the device, the * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively * high. If we want to be assured that the underlying device is always busy, * we must be sure that the number of bytes enqueued when the number of * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for * the duration of the sleep time in taskq_ent_alloc(). That is, lofi should * set maxalloc to be the maximum throughput (in bytes per second) of the * underlying device divided by the minimum I/O size. We assume a realistic * maximum throughput of one hundred megabytes per second; we set maxalloc on * the lofi task queue to be 104857600 divided by DEV_BSIZE. */ static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE; static int lofi_taskq_nthreads = 4; /* # of taskq threads per device */ const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC; /* * To avoid decompressing data in a compressed segment multiple times * when accessing small parts of a segment's data, we cache and reuse * the uncompressed segment's data. * * A single cached segment is sufficient to avoid lots of duplicate * segment decompress operations. A small cache size also reduces the * memory footprint. * * lofi_max_comp_cache is the maximum number of decompressed data segments * cached for each compressed lofi image. It can be set to 0 to disable * caching. */ uint32_t lofi_max_comp_cache = 1; static int gzip_decompress(void *src, size_t srclen, void *dst, size_t *destlen, int level); static int lzma_decompress(void *src, size_t srclen, void *dst, size_t *dstlen, int level); lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = { {gzip_decompress, NULL, 6, "gzip"}, /* default */ {gzip_decompress, NULL, 6, "gzip-6"}, {gzip_decompress, NULL, 9, "gzip-9"}, {lzma_decompress, NULL, 0, "lzma"} }; /*ARGSUSED*/ static void *SzAlloc(void *p, size_t size) { return (kmem_alloc(size, KM_SLEEP)); } /*ARGSUSED*/ static void SzFree(void *p, void *address, size_t size) { kmem_free(address, size); } static ISzAlloc g_Alloc = { SzAlloc, SzFree }; /* * Free data referenced by the linked list of cached uncompressed * segments. */ static void lofi_free_comp_cache(struct lofi_state *lsp) { struct lofi_comp_cache *lc; while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) { kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); kmem_free(lc, sizeof (struct lofi_comp_cache)); lsp->ls_comp_cache_count--; } ASSERT(lsp->ls_comp_cache_count == 0); } static int is_opened(struct lofi_state *lsp) { ASSERT(MUTEX_HELD(&lofi_lock)); return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count); } static int mark_opened(struct lofi_state *lsp, int otyp) { ASSERT(MUTEX_HELD(&lofi_lock)); switch (otyp) { case OTYP_CHR: lsp->ls_chr_open = 1; break; case OTYP_BLK: lsp->ls_blk_open = 1; break; case OTYP_LYR: lsp->ls_lyr_open_count++; break; default: return (-1); } return (0); } static void mark_closed(struct lofi_state *lsp, int otyp) { ASSERT(MUTEX_HELD(&lofi_lock)); switch (otyp) { case OTYP_CHR: lsp->ls_chr_open = 0; break; case OTYP_BLK: lsp->ls_blk_open = 0; break; case OTYP_LYR: lsp->ls_lyr_open_count--; break; default: break; } } static void lofi_free_crypto(struct lofi_state *lsp) { ASSERT(MUTEX_HELD(&lofi_lock)); if (lsp->ls_crypto_enabled) { /* * Clean up the crypto state so that it doesn't hang around * in memory after we are done with it. */ if (lsp->ls_key.ck_data != NULL) { bzero(lsp->ls_key.ck_data, CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); kmem_free(lsp->ls_key.ck_data, CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); lsp->ls_key.ck_data = NULL; lsp->ls_key.ck_length = 0; } if (lsp->ls_mech.cm_param != NULL) { kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); lsp->ls_mech.cm_param = NULL; lsp->ls_mech.cm_param_len = 0; } if (lsp->ls_iv_mech.cm_param != NULL) { kmem_free(lsp->ls_iv_mech.cm_param, lsp->ls_iv_mech.cm_param_len); lsp->ls_iv_mech.cm_param = NULL; lsp->ls_iv_mech.cm_param_len = 0; } mutex_destroy(&lsp->ls_crypto_lock); } } static void lofi_destroy(struct lofi_state *lsp, cred_t *credp) { minor_t minor = getminor(lsp->ls_dev); int i; ASSERT(MUTEX_HELD(&lofi_lock)); list_remove(&lofi_list, lsp); lofi_free_crypto(lsp); /* * Free pre-allocated compressed buffers */ if (lsp->ls_comp_bufs != NULL) { for (i = 0; i < lofi_taskq_nthreads; i++) { if (lsp->ls_comp_bufs[i].bufsize > 0) kmem_free(lsp->ls_comp_bufs[i].buf, lsp->ls_comp_bufs[i].bufsize); } kmem_free(lsp->ls_comp_bufs, sizeof (struct compbuf) * lofi_taskq_nthreads); } (void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag, 1, 0, credp, NULL); VN_RELE(lsp->ls_vp); if (lsp->ls_stacked_vp != lsp->ls_vp) VN_RELE(lsp->ls_stacked_vp); taskq_destroy(lsp->ls_taskq); if (lsp->ls_kstat != NULL) kstat_delete(lsp->ls_kstat); /* * Free cached decompressed segment data */ lofi_free_comp_cache(lsp); list_destroy(&lsp->ls_comp_cache); if (lsp->ls_uncomp_seg_sz > 0) { kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz); lsp->ls_uncomp_seg_sz = 0; } rctl_decr_lofi(lsp->ls_zone.zref_zone, 1); zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI); mutex_destroy(&lsp->ls_comp_cache_lock); mutex_destroy(&lsp->ls_comp_bufs_lock); mutex_destroy(&lsp->ls_kstat_lock); mutex_destroy(&lsp->ls_vp_lock); ASSERT(ddi_get_soft_state(lofi_statep, minor) == lsp); ddi_soft_state_free(lofi_statep, minor); id_free(lofi_minor_id, minor); } static void lofi_free_dev(dev_t dev) { minor_t minor = getminor(dev); char namebuf[50]; ASSERT(MUTEX_HELD(&lofi_lock)); (void) ddi_prop_remove(dev, lofi_dip, ZONE_PROP_NAME); (void) ddi_prop_remove(dev, lofi_dip, SIZE_PROP_NAME); (void) ddi_prop_remove(dev, lofi_dip, NBLOCKS_PROP_NAME); (void) snprintf(namebuf, sizeof (namebuf), "%d", minor); ddi_remove_minor_node(lofi_dip, namebuf); (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor); ddi_remove_minor_node(lofi_dip, namebuf); } /*ARGSUSED*/ static void lofi_zone_shutdown(zoneid_t zoneid, void *arg) { struct lofi_state *lsp; struct lofi_state *next; mutex_enter(&lofi_lock); for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) { /* lofi_destroy() frees lsp */ next = list_next(&lofi_list, lsp); if (lsp->ls_zone.zref_zone->zone_id != zoneid) continue; /* * No in-zone processes are running, but something has this * open. It's either a global zone process, or a lofi * mount. In either case we set ls_cleanup so the last * user destroys the device. */ if (is_opened(lsp)) { lsp->ls_cleanup = 1; } else { lofi_free_dev(lsp->ls_dev); lofi_destroy(lsp, kcred); } } mutex_exit(&lofi_lock); } /*ARGSUSED*/ static int lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp) { minor_t minor; struct lofi_state *lsp; /* * lofiadm -a /dev/lofi/1 gets us here. */ if (mutex_owner(&lofi_lock) == curthread) return (EINVAL); mutex_enter(&lofi_lock); minor = getminor(*devp); /* master control device */ if (minor == 0) { mutex_exit(&lofi_lock); return (0); } /* otherwise, the mapping should already exist */ lsp = ddi_get_soft_state(lofi_statep, minor); if (lsp == NULL) { mutex_exit(&lofi_lock); return (EINVAL); } if (lsp->ls_vp == NULL) { mutex_exit(&lofi_lock); return (ENXIO); } if (mark_opened(lsp, otyp) == -1) { mutex_exit(&lofi_lock); return (EINVAL); } if (lsp->ls_readonly && (flag & FWRITE)) { mutex_exit(&lofi_lock); return (EROFS); } mutex_exit(&lofi_lock); return (0); } /*ARGSUSED*/ static int lofi_close(dev_t dev, int flag, int otyp, struct cred *credp) { minor_t minor; struct lofi_state *lsp; mutex_enter(&lofi_lock); minor = getminor(dev); lsp = ddi_get_soft_state(lofi_statep, minor); if (lsp == NULL) { mutex_exit(&lofi_lock); return (EINVAL); } if (minor == 0) { mutex_exit(&lofi_lock); return (0); } mark_closed(lsp, otyp); /* * If we forcibly closed the underlying device (li_force), or * asked for cleanup (li_cleanup), finish up if we're the last * out of the door. */ if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) { lofi_free_dev(lsp->ls_dev); lofi_destroy(lsp, credp); } mutex_exit(&lofi_lock); return (0); } /* * Sets the mechanism's initialization vector (IV) if one is needed. * The IV is computed from the data block number. lsp->ls_mech is * altered so that: * lsp->ls_mech.cm_param_len is set to the IV len. * lsp->ls_mech.cm_param is set to the IV. */ static int lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno) { int ret; crypto_data_t cdata; char *iv; size_t iv_len; size_t min; void *data; size_t datasz; ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock)); if (lsp == NULL) return (CRYPTO_DEVICE_ERROR); /* lsp->ls_mech.cm_param{_len} has already been set for static iv */ if (lsp->ls_iv_type == IVM_NONE) { return (CRYPTO_SUCCESS); } /* * if kmem already alloced from previous call and it's the same size * we need now, just recycle it; allocate new kmem only if we have to */ if (lsp->ls_mech.cm_param == NULL || lsp->ls_mech.cm_param_len != lsp->ls_iv_len) { iv_len = lsp->ls_iv_len; iv = kmem_zalloc(iv_len, KM_SLEEP); } else { iv_len = lsp->ls_mech.cm_param_len; iv = lsp->ls_mech.cm_param; bzero(iv, iv_len); } switch (lsp->ls_iv_type) { case IVM_ENC_BLKNO: /* iv is not static, lblkno changes each time */ data = &lblkno; datasz = sizeof (lblkno); break; default: data = 0; datasz = 0; break; } /* * write blkno into the iv buffer padded on the left in case * blkno ever grows bigger than its current longlong_t size * or a variation other than blkno is used for the iv data */ min = MIN(datasz, iv_len); bcopy(data, iv + (iv_len - min), min); /* encrypt the data in-place to get the IV */ SETUP_C_DATA(cdata, iv, iv_len); ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key, NULL, NULL, NULL); if (ret != CRYPTO_SUCCESS) { cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)", lblkno, ret); if (lsp->ls_mech.cm_param != iv) kmem_free(iv, iv_len); return (ret); } /* clean up the iv from the last computation */ if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv) kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len); lsp->ls_mech.cm_param_len = iv_len; lsp->ls_mech.cm_param = iv; return (CRYPTO_SUCCESS); } /* * Performs encryption and decryption of a chunk of data of size "len", * one DEV_BSIZE block at a time. "len" is assumed to be a multiple of * DEV_BSIZE. */ static int lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext, caddr_t ciphertext, size_t len, boolean_t op_encrypt) { crypto_data_t cdata; crypto_data_t wdata; int ret; longlong_t lblkno = bp->b_lblkno; mutex_enter(&lsp->ls_crypto_lock); /* * though we could encrypt/decrypt entire "len" chunk of data, we need * to break it into DEV_BSIZE pieces to capture blkno incrementing */ SETUP_C_DATA(cdata, plaintext, len); cdata.cd_length = DEV_BSIZE; if (ciphertext != NULL) { /* not in-place crypto */ SETUP_C_DATA(wdata, ciphertext, len); wdata.cd_length = DEV_BSIZE; } do { ret = lofi_blk_mech(lsp, lblkno); if (ret != CRYPTO_SUCCESS) continue; if (op_encrypt) { ret = crypto_encrypt(&lsp->ls_mech, &cdata, &lsp->ls_key, NULL, ((ciphertext != NULL) ? &wdata : NULL), NULL); } else { ret = crypto_decrypt(&lsp->ls_mech, &cdata, &lsp->ls_key, NULL, ((ciphertext != NULL) ? &wdata : NULL), NULL); } cdata.cd_offset += DEV_BSIZE; if (ciphertext != NULL) wdata.cd_offset += DEV_BSIZE; lblkno++; } while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len); mutex_exit(&lsp->ls_crypto_lock); if (ret != CRYPTO_SUCCESS) { cmn_err(CE_WARN, "%s failed for block %lld: (0x%x)", op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()", lblkno, ret); } return (ret); } #define RDWR_RAW 1 #define RDWR_BCOPY 2 static int lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn) { ssize_t resid; int isread; int error; /* * Handles reads/writes for both plain and encrypted lofi * Note: offset is already shifted by lsp->ls_crypto_offset * when it gets here. */ isread = bp->b_flags & B_READ; if (isread) { if (method == RDWR_BCOPY) { /* DO NOT update bp->b_resid for bcopy */ bcopy(bcopy_locn, bufaddr, len); error = 0; } else { /* RDWR_RAW */ error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len, offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); bp->b_resid = resid; } if (lsp->ls_crypto_enabled && error == 0) { if (lofi_crypto(lsp, bp, bufaddr, NULL, len, B_FALSE) != CRYPTO_SUCCESS) { /* * XXX: original code didn't set residual * back to len because no error was expected * from bcopy() if encryption is not enabled */ if (method != RDWR_BCOPY) bp->b_resid = len; error = EIO; } } return (error); } else { void *iobuf = bufaddr; if (lsp->ls_crypto_enabled) { /* don't do in-place crypto to keep bufaddr intact */ iobuf = kmem_alloc(len, KM_SLEEP); if (lofi_crypto(lsp, bp, bufaddr, iobuf, len, B_TRUE) != CRYPTO_SUCCESS) { kmem_free(iobuf, len); if (method != RDWR_BCOPY) bp->b_resid = len; return (EIO); } } if (method == RDWR_BCOPY) { /* DO NOT update bp->b_resid for bcopy */ bcopy(iobuf, bcopy_locn, len); error = 0; } else { /* RDWR_RAW */ error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len, offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); bp->b_resid = resid; } if (lsp->ls_crypto_enabled) { kmem_free(iobuf, len); } return (error); } } static int lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp, struct lofi_state *lsp) { int error; offset_t alignedoffset, mapoffset; size_t xfersize; int isread; int smflags; caddr_t mapaddr; size_t len; enum seg_rw srw; int save_error; /* * Note: offset is already shifted by lsp->ls_crypto_offset * when it gets here. */ if (lsp->ls_crypto_enabled) ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size); /* * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on * an 8K boundary, but the buf transfer address may not be * aligned on more than a 512-byte boundary (we don't enforce * that even though we could). This matters since the initial * part of the transfer may not start at offset 0 within the * segmap'd chunk. So we have to compensate for that with * 'mapoffset'. Subsequent chunks always start off at the * beginning, and the last is capped by b_resid * * Visually, where "|" represents page map boundaries: * alignedoffset (mapaddr begins at this segmap boundary) * | offset (from beginning of file) * | | len * v v v * ===|====X========|====...======|========X====|==== * /-------------...---------------/ * ^ bp->b_bcount/bp->b_resid at start * /----/--------/----...------/--------/ * ^ ^ ^ ^ ^ * | | | | nth xfersize (<= MAXBSIZE) * | | 2nd thru n-1st xfersize (= MAXBSIZE) * | 1st xfersize (<= MAXBSIZE) * mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter) * * Notes: "alignedoffset" is "offset" rounded down to nearest * MAXBSIZE boundary. "len" is next page boundary of size * PAGESIZE after "alignedoffset". */ mapoffset = offset & MAXBOFFSET; alignedoffset = offset - mapoffset; bp->b_resid = bp->b_bcount; isread = bp->b_flags & B_READ; srw = isread ? S_READ : S_WRITE; do { xfersize = MIN(lsp->ls_vp_comp_size - offset, MIN(MAXBSIZE - mapoffset, bp->b_resid)); len = roundup(mapoffset + xfersize, PAGESIZE); mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp, alignedoffset, MAXBSIZE, 1, srw); /* * Now fault in the pages. This lets us check * for errors before we reference mapaddr and * try to resolve the fault in bcopy (which would * panic instead). And this can easily happen, * particularly if you've lofi'd a file over NFS * and someone deletes the file on the server. */ error = segmap_fault(kas.a_hat, segkmap, mapaddr, len, F_SOFTLOCK, srw); if (error) { (void) segmap_release(segkmap, mapaddr, 0); if (FC_CODE(error) == FC_OBJERR) error = FC_ERRNO(error); else error = EIO; break; } /* error may be non-zero for encrypted lofi */ error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize, RDWR_BCOPY, mapaddr + mapoffset); if (error == 0) { bp->b_resid -= xfersize; bufaddr += xfersize; offset += xfersize; } smflags = 0; if (isread) { smflags |= SM_FREE; /* * If we're reading an entire page starting * at a page boundary, there's a good chance * we won't need it again. Put it on the * head of the freelist. */ if (mapoffset == 0 && xfersize == MAXBSIZE) smflags |= SM_DONTNEED; } else { /* * Write back good pages, it is okay to * always release asynchronous here as we'll * follow with VOP_FSYNC for B_SYNC buffers. */ if (error == 0) smflags |= SM_WRITE | SM_ASYNC; } (void) segmap_fault(kas.a_hat, segkmap, mapaddr, len, F_SOFTUNLOCK, srw); save_error = segmap_release(segkmap, mapaddr, smflags); if (error == 0) error = save_error; /* only the first map may start partial */ mapoffset = 0; alignedoffset += MAXBSIZE; } while ((error == 0) && (bp->b_resid > 0) && (offset < lsp->ls_vp_comp_size)); return (error); } /* * Check if segment seg_index is present in the decompressed segment * data cache. * * Returns a pointer to the decompressed segment data cache entry if * found, and NULL when decompressed data for this segment is not yet * cached. */ static struct lofi_comp_cache * lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index) { struct lofi_comp_cache *lc; ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); for (lc = list_head(&lsp->ls_comp_cache); lc != NULL; lc = list_next(&lsp->ls_comp_cache, lc)) { if (lc->lc_index == seg_index) { /* * Decompressed segment data was found in the * cache. * * The cache uses an LRU replacement strategy; * move the entry to head of list. */ list_remove(&lsp->ls_comp_cache, lc); list_insert_head(&lsp->ls_comp_cache, lc); return (lc); } } return (NULL); } /* * Add the data for a decompressed segment at segment index * seg_index to the cache of the decompressed segments. * * Returns a pointer to the cache element structure in case * the data was added to the cache; returns NULL when the data * wasn't cached. */ static struct lofi_comp_cache * lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index, uchar_t *data) { struct lofi_comp_cache *lc; ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock)); while (lsp->ls_comp_cache_count > lofi_max_comp_cache) { lc = list_remove_tail(&lsp->ls_comp_cache); ASSERT(lc != NULL); kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); kmem_free(lc, sizeof (struct lofi_comp_cache)); lsp->ls_comp_cache_count--; } /* * Do not cache when disabled by tunable variable */ if (lofi_max_comp_cache == 0) return (NULL); /* * When the cache has not yet reached the maximum allowed * number of segments, allocate a new cache element. * Otherwise the cache is full; reuse the last list element * (LRU) for caching the decompressed segment data. * * The cache element for the new decompressed segment data is * added to the head of the list. */ if (lsp->ls_comp_cache_count < lofi_max_comp_cache) { lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP); lc->lc_data = NULL; list_insert_head(&lsp->ls_comp_cache, lc); lsp->ls_comp_cache_count++; } else { lc = list_remove_tail(&lsp->ls_comp_cache); if (lc == NULL) return (NULL); list_insert_head(&lsp->ls_comp_cache, lc); } /* * Free old uncompressed segment data when reusing a cache * entry. */ if (lc->lc_data != NULL) kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz); lc->lc_data = data; lc->lc_index = seg_index; return (lc); } /*ARGSUSED*/ static int gzip_decompress(void *src, size_t srclen, void *dst, size_t *dstlen, int level) { ASSERT(*dstlen >= srclen); if (z_uncompress(dst, dstlen, src, srclen) != Z_OK) return (-1); return (0); } #define LZMA_HEADER_SIZE (LZMA_PROPS_SIZE + 8) /*ARGSUSED*/ static int lzma_decompress(void *src, size_t srclen, void *dst, size_t *dstlen, int level) { size_t insizepure; void *actual_src; ELzmaStatus status; insizepure = srclen - LZMA_HEADER_SIZE; actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE); if (LzmaDecode((Byte *)dst, (size_t *)dstlen, (const Byte *)actual_src, &insizepure, (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, &g_Alloc) != SZ_OK) { return (-1); } return (0); } /* * This is basically what strategy used to be before we found we * needed task queues. */ static void lofi_strategy_task(void *arg) { struct buf *bp = (struct buf *)arg; int error; int syncflag = 0; struct lofi_state *lsp; offset_t offset; caddr_t bufaddr; size_t len; size_t xfersize; boolean_t bufinited = B_FALSE; lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev)); if (lsp == NULL) { error = ENXIO; goto errout; } if (lsp->ls_kstat) { mutex_enter(lsp->ls_kstat->ks_lock); kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat)); mutex_exit(lsp->ls_kstat->ks_lock); } bp_mapin(bp); bufaddr = bp->b_un.b_addr; offset = bp->b_lblkno * DEV_BSIZE; /* offset within file */ if (lsp->ls_crypto_enabled) { /* encrypted data really begins after crypto header */ offset += lsp->ls_crypto_offset; } len = bp->b_bcount; bufinited = B_TRUE; if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { error = EIO; goto errout; } /* * If we're writing and the buffer was not B_ASYNC * we'll follow up with a VOP_FSYNC() to force any * asynchronous I/O to stable storage. */ if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC)) syncflag = FSYNC; /* * We used to always use vn_rdwr here, but we cannot do that because * we might decide to read or write from the the underlying * file during this call, which would be a deadlock because * we have the rw_lock. So instead we page, unless it's not * mapable or it's a character device or it's an encrypted lofi. */ if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) || lsp->ls_crypto_enabled) { error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW, NULL); } else if (lsp->ls_uncomp_seg_sz == 0) { error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp); } else { uchar_t *compressed_seg = NULL, *cmpbuf; uchar_t *uncompressed_seg = NULL; lofi_compress_info_t *li; size_t oblkcount; ulong_t seglen; uint64_t sblkno, eblkno, cmpbytes; uint64_t uncompressed_seg_index; struct lofi_comp_cache *lc; offset_t sblkoff, eblkoff; u_offset_t salign, ealign; u_offset_t sdiff; uint32_t comp_data_sz; uint64_t i; int j; /* * From here on we're dealing primarily with compressed files */ ASSERT(!lsp->ls_crypto_enabled); /* * Compressed files can only be read from and * not written to */ if (!(bp->b_flags & B_READ)) { bp->b_resid = bp->b_bcount; error = EROFS; goto done; } ASSERT(lsp->ls_comp_algorithm_index >= 0); li = &lofi_compress_table[lsp->ls_comp_algorithm_index]; /* * Compute starting and ending compressed segment numbers * We use only bitwise operations avoiding division and * modulus because we enforce the compression segment size * to a power of 2 */ sblkno = offset >> lsp->ls_comp_seg_shift; sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1); eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift; eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1); /* * Check the decompressed segment cache. * * The cache is used only when the requested data * is within a segment. Requests that cross * segment boundaries bypass the cache. */ if (sblkno == eblkno || (sblkno + 1 == eblkno && eblkoff == 0)) { /* * Request doesn't cross a segment boundary, * now check the cache. */ mutex_enter(&lsp->ls_comp_cache_lock); lc = lofi_find_comp_data(lsp, sblkno); if (lc != NULL) { /* * We've found the decompressed segment * data in the cache; reuse it. */ bcopy(lc->lc_data + sblkoff, bufaddr, bp->b_bcount); mutex_exit(&lsp->ls_comp_cache_lock); bp->b_resid = 0; error = 0; goto done; } mutex_exit(&lsp->ls_comp_cache_lock); } /* * Align start offset to block boundary for segmap */ salign = lsp->ls_comp_seg_index[sblkno]; sdiff = salign & (DEV_BSIZE - 1); salign -= sdiff; if (eblkno >= (lsp->ls_comp_index_sz - 1)) { /* * We're dealing with the last segment of * the compressed file -- the size of this * segment *may not* be the same as the * segment size for the file */ eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_last_seg_sz - 1); ealign = lsp->ls_vp_comp_size; } else { ealign = lsp->ls_comp_seg_index[eblkno + 1]; } /* * Preserve original request paramaters */ oblkcount = bp->b_bcount; /* * Assign the calculated parameters */ comp_data_sz = ealign - salign; bp->b_bcount = comp_data_sz; /* * Buffers to hold compressed segments are pre-allocated * on a per-thread basis. Find a pre-allocated buffer * that is not currently in use and mark it for use. */ mutex_enter(&lsp->ls_comp_bufs_lock); for (j = 0; j < lofi_taskq_nthreads; j++) { if (lsp->ls_comp_bufs[j].inuse == 0) { lsp->ls_comp_bufs[j].inuse = 1; break; } } mutex_exit(&lsp->ls_comp_bufs_lock); ASSERT(j < lofi_taskq_nthreads); /* * If the pre-allocated buffer size does not match * the size of the I/O request, re-allocate it with * the appropriate size */ if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) { if (lsp->ls_comp_bufs[j].bufsize > 0) kmem_free(lsp->ls_comp_bufs[j].buf, lsp->ls_comp_bufs[j].bufsize); lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount, KM_SLEEP); lsp->ls_comp_bufs[j].bufsize = bp->b_bcount; } compressed_seg = lsp->ls_comp_bufs[j].buf; /* * Map in the calculated number of blocks */ error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign, bp, lsp); bp->b_bcount = oblkcount; bp->b_resid = oblkcount; if (error != 0) goto done; /* * decompress compressed blocks start */ cmpbuf = compressed_seg + sdiff; for (i = sblkno; i <= eblkno; i++) { ASSERT(i < lsp->ls_comp_index_sz - 1); uchar_t *useg; /* * The last segment is special in that it is * most likely not going to be the same * (uncompressed) size as the other segments. */ if (i == (lsp->ls_comp_index_sz - 2)) { seglen = lsp->ls_uncomp_last_seg_sz; } else { seglen = lsp->ls_uncomp_seg_sz; } /* * Each of the segment index entries contains * the starting block number for that segment. * The number of compressed bytes in a segment * is thus the difference between the starting * block number of this segment and the starting * block number of the next segment. */ cmpbytes = lsp->ls_comp_seg_index[i + 1] - lsp->ls_comp_seg_index[i]; /* * The first byte in a compressed segment is a flag * that indicates whether this segment is compressed * at all. * * The variable 'useg' is used (instead of * uncompressed_seg) in this loop to keep a * reference to the uncompressed segment. * * N.B. If 'useg' is replaced with uncompressed_seg, * it leads to memory leaks and heap corruption in * corner cases where compressed segments lie * adjacent to uncompressed segments. */ if (*cmpbuf == UNCOMPRESSED) { useg = cmpbuf + SEGHDR; } else { if (uncompressed_seg == NULL) uncompressed_seg = kmem_alloc(lsp->ls_uncomp_seg_sz, KM_SLEEP); useg = uncompressed_seg; uncompressed_seg_index = i; if (li->l_decompress((cmpbuf + SEGHDR), (cmpbytes - SEGHDR), uncompressed_seg, &seglen, li->l_level) != 0) { error = EIO; goto done; } } /* * Determine how much uncompressed data we * have to copy and copy it */ xfersize = lsp->ls_uncomp_seg_sz - sblkoff; if (i == eblkno) xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff); bcopy((useg + sblkoff), bufaddr, xfersize); cmpbuf += cmpbytes; bufaddr += xfersize; bp->b_resid -= xfersize; sblkoff = 0; if (bp->b_resid == 0) break; } /* decompress compressed blocks ends */ /* * Skip to done if there is no uncompressed data to cache */ if (uncompressed_seg == NULL) goto done; /* * Add the data for the last decompressed segment to * the cache. * * In case the uncompressed segment data was added to (and * is referenced by) the cache, make sure we don't free it * here. */ mutex_enter(&lsp->ls_comp_cache_lock); if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index, uncompressed_seg)) != NULL) { uncompressed_seg = NULL; } mutex_exit(&lsp->ls_comp_cache_lock); done: if (compressed_seg != NULL) { mutex_enter(&lsp->ls_comp_bufs_lock); lsp->ls_comp_bufs[j].inuse = 0; mutex_exit(&lsp->ls_comp_bufs_lock); } if (uncompressed_seg != NULL) kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz); } /* end of handling compressed files */ if ((error == 0) && (syncflag != 0)) error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL); errout: if (bufinited && lsp->ls_kstat) { size_t n_done = bp->b_bcount - bp->b_resid; kstat_io_t *kioptr; mutex_enter(lsp->ls_kstat->ks_lock); kioptr = KSTAT_IO_PTR(lsp->ls_kstat); if (bp->b_flags & B_READ) { kioptr->nread += n_done; kioptr->reads++; } else { kioptr->nwritten += n_done; kioptr->writes++; } kstat_runq_exit(kioptr); mutex_exit(lsp->ls_kstat->ks_lock); } mutex_enter(&lsp->ls_vp_lock); if (--lsp->ls_vp_iocount == 0) cv_broadcast(&lsp->ls_vp_cv); mutex_exit(&lsp->ls_vp_lock); bioerror(bp, error); biodone(bp); } static int lofi_strategy(struct buf *bp) { struct lofi_state *lsp; offset_t offset; /* * We cannot just do I/O here, because the current thread * _might_ end up back in here because the underlying filesystem * wants a buffer, which eventually gets into bio_recycle and * might call into lofi to write out a delayed-write buffer. * This is bad if the filesystem above lofi is the same as below. * * We could come up with a complex strategy using threads to * do the I/O asynchronously, or we could use task queues. task * queues were incredibly easy so they win. */ lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev)); if (lsp == NULL) { bioerror(bp, ENXIO); biodone(bp); return (0); } mutex_enter(&lsp->ls_vp_lock); if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) { bioerror(bp, EIO); biodone(bp); mutex_exit(&lsp->ls_vp_lock); return (0); } offset = bp->b_lblkno * DEV_BSIZE; /* offset within file */ if (lsp->ls_crypto_enabled) { /* encrypted data really begins after crypto header */ offset += lsp->ls_crypto_offset; } if (offset == lsp->ls_vp_size) { /* EOF */ if ((bp->b_flags & B_READ) != 0) { bp->b_resid = bp->b_bcount; bioerror(bp, 0); } else { /* writes should fail */ bioerror(bp, ENXIO); } biodone(bp); mutex_exit(&lsp->ls_vp_lock); return (0); } if (offset > lsp->ls_vp_size) { bioerror(bp, ENXIO); biodone(bp); mutex_exit(&lsp->ls_vp_lock); return (0); } lsp->ls_vp_iocount++; mutex_exit(&lsp->ls_vp_lock); if (lsp->ls_kstat) { mutex_enter(lsp->ls_kstat->ks_lock); kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat)); mutex_exit(lsp->ls_kstat->ks_lock); } (void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP); return (0); } /*ARGSUSED2*/ static int lofi_read(dev_t dev, struct uio *uio, struct cred *credp) { if (getminor(dev) == 0) return (EINVAL); UIO_CHECK(uio); return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio)); } /*ARGSUSED2*/ static int lofi_write(dev_t dev, struct uio *uio, struct cred *credp) { if (getminor(dev) == 0) return (EINVAL); UIO_CHECK(uio); return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio)); } /*ARGSUSED2*/ static int lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp) { if (getminor(dev) == 0) return (EINVAL); UIO_CHECK(aio->aio_uio); return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio)); } /*ARGSUSED2*/ static int lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp) { if (getminor(dev) == 0) return (EINVAL); UIO_CHECK(aio->aio_uio); return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio)); } /*ARGSUSED*/ static int lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = lofi_dip; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = 0; return (DDI_SUCCESS); } return (DDI_FAILURE); } static int lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { int error; if (cmd != DDI_ATTACH) return (DDI_FAILURE); lofi_minor_id = id_space_create("lofi_minor_id", 1, L_MAXMIN32 + 1); if (!lofi_minor_id) return (DDI_FAILURE); error = ddi_soft_state_zalloc(lofi_statep, 0); if (error == DDI_FAILURE) { id_space_destroy(lofi_minor_id); return (DDI_FAILURE); } error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0, DDI_PSEUDO, NULL); if (error == DDI_FAILURE) { ddi_soft_state_free(lofi_statep, 0); id_space_destroy(lofi_minor_id); return (DDI_FAILURE); } /* driver handles kernel-issued IOCTLs */ if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP, DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) { ddi_remove_minor_node(dip, NULL); ddi_soft_state_free(lofi_statep, 0); id_space_destroy(lofi_minor_id); return (DDI_FAILURE); } zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL); lofi_dip = dip; ddi_report_dev(dip); return (DDI_SUCCESS); } static int lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { if (cmd != DDI_DETACH) return (DDI_FAILURE); mutex_enter(&lofi_lock); if (!list_is_empty(&lofi_list)) { mutex_exit(&lofi_lock); return (DDI_FAILURE); } lofi_dip = NULL; ddi_remove_minor_node(dip, NULL); ddi_prop_remove_all(dip); mutex_exit(&lofi_lock); if (zone_key_delete(lofi_zone_key) != 0) cmn_err(CE_WARN, "failed to delete zone key"); ddi_soft_state_free(lofi_statep, 0); id_space_destroy(lofi_minor_id); return (DDI_SUCCESS); } /* * With addition of encryption, be careful that encryption key is wiped before * kernel memory structures are freed, and also that key is not accidentally * passed out into userland structures. */ static void free_lofi_ioctl(struct lofi_ioctl *klip) { /* Make sure this encryption key doesn't stick around */ bzero(klip->li_key, sizeof (klip->li_key)); kmem_free(klip, sizeof (struct lofi_ioctl)); } /* * These two just simplify the rest of the ioctls that need to copyin/out * the lofi_ioctl structure. */ int copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp, int flag) { struct lofi_ioctl *klip; int error; klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP); error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag); if (error) goto err; /* ensure NULL termination */ klip->li_filename[MAXPATHLEN-1] = '\0'; klip->li_algorithm[MAXALGLEN-1] = '\0'; klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0'; if (klip->li_minor > L_MAXMIN32) { error = EINVAL; goto err; } return (0); err: free_lofi_ioctl(klip); return (error); } int copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip, int flag) { int error; /* * NOTE: Do NOT copy the crypto_key_t "back" to userland. * This ensures that an attacker can't trivially find the * key for a mapping just by issuing the ioctl. * * It can still be found by poking around in kmem with mdb(1), * but there is no point in making it easy when the info isn't * of any use in this direction anyway. * * Either way we don't actually have the raw key stored in * a form that we can get it anyway, since we just used it * to create a ctx template and didn't keep "the original". */ error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag); if (error) return (EFAULT); return (0); } static int lofi_access(struct lofi_state *lsp) { ASSERT(MUTEX_HELD(&lofi_lock)); if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone) return (0); return (EPERM); } /* * Find the lofi state for the given filename. We compare by vnode to * allow the global zone visibility into NGZ lofi nodes. */ static int file_to_lofi_nocheck(char *filename, boolean_t readonly, struct lofi_state **lspp) { struct lofi_state *lsp; vnode_t *vp = NULL; int err = 0; int rdfiles = 0; ASSERT(MUTEX_HELD(&lofi_lock)); if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp)) != 0) goto out; if (vp->v_type == VREG) { vnode_t *realvp; if (VOP_REALVP(vp, &realvp, NULL) == 0) { VN_HOLD(realvp); VN_RELE(vp); vp = realvp; } } for (lsp = list_head(&lofi_list); lsp != NULL; lsp = list_next(&lofi_list, lsp)) { if (lsp->ls_vp == vp) { if (lspp != NULL) *lspp = lsp; if (lsp->ls_readonly) { rdfiles++; /* Skip if '-r' is specified */ if (readonly) continue; } goto out; } } err = ENOENT; /* * If a filename is given as an argument for lofi_unmap, we shouldn't * allow unmap if there are multiple read-only lofi devices associated * with this file. */ if (lspp != NULL) { if (rdfiles == 1) err = 0; else if (rdfiles > 1) err = EBUSY; } out: if (vp != NULL) VN_RELE(vp); return (err); } /* * Find the minor for the given filename, checking the zone can access * it. */ static int file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp) { int err = 0; ASSERT(MUTEX_HELD(&lofi_lock)); if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0) return (err); if ((err = lofi_access(*lspp)) != 0) return (err); return (0); } /* * Fakes up a disk geometry, and one big partition, based on the size * of the file. This is needed because we allow newfs'ing the device, * and newfs will do several disk ioctls to figure out the geometry and * partition information. It uses that information to determine the parameters * to pass to mkfs. Geometry is pretty much irrelevant these days, but we * have to support it. */ static void fake_disk_geometry(struct lofi_state *lsp) { u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset; /* dk_geom - see dkio(7I) */ /* * dkg_ncyl _could_ be set to one here (one big cylinder with gobs * of sectors), but that breaks programs like fdisk which want to * partition a disk by cylinder. With one cylinder, you can't create * an fdisk partition and put pcfs on it for testing (hard to pick * a number between one and one). * * The cheezy floppy test is an attempt to not have too few cylinders * for a small file, or so many on a big file that you waste space * for backup superblocks or cylinder group structures. */ if (dsize < (2 * 1024 * 1024)) /* floppy? */ lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024); else lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024); /* in case file file is < 100k */ if (lsp->ls_dkg.dkg_ncyl == 0) lsp->ls_dkg.dkg_ncyl = 1; lsp->ls_dkg.dkg_acyl = 0; lsp->ls_dkg.dkg_bcyl = 0; lsp->ls_dkg.dkg_nhead = 1; lsp->ls_dkg.dkg_obs1 = 0; lsp->ls_dkg.dkg_intrlv = 0; lsp->ls_dkg.dkg_obs2 = 0; lsp->ls_dkg.dkg_obs3 = 0; lsp->ls_dkg.dkg_apc = 0; lsp->ls_dkg.dkg_rpm = 7200; lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl; lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl); lsp->ls_dkg.dkg_write_reinstruct = 0; lsp->ls_dkg.dkg_read_reinstruct = 0; /* vtoc - see dkio(7I) */ bzero(&lsp->ls_vtoc, sizeof (struct vtoc)); lsp->ls_vtoc.v_sanity = VTOC_SANE; lsp->ls_vtoc.v_version = V_VERSION; (void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME, sizeof (lsp->ls_vtoc.v_volume)); lsp->ls_vtoc.v_sectorsz = DEV_BSIZE; lsp->ls_vtoc.v_nparts = 1; lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED; /* * A compressed file is read-only, other files can * be read-write */ if (lsp->ls_uncomp_seg_sz > 0) { lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY; } else { lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT; } lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0; /* * The partition size cannot just be the number of sectors, because * that might not end on a cylinder boundary. And if that's the case, * newfs/mkfs will print a scary warning. So just figure the size * based on the number of cylinders and sectors/cylinder. */ lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl * lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead; /* dk_cinfo - see dkio(7I) */ bzero(&lsp->ls_ci, sizeof (struct dk_cinfo)); (void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME); lsp->ls_ci.dki_ctype = DKC_MD; lsp->ls_ci.dki_flags = 0; lsp->ls_ci.dki_cnum = 0; lsp->ls_ci.dki_addr = 0; lsp->ls_ci.dki_space = 0; lsp->ls_ci.dki_prio = 0; lsp->ls_ci.dki_vec = 0; (void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME); lsp->ls_ci.dki_unit = 0; lsp->ls_ci.dki_slave = 0; lsp->ls_ci.dki_partition = 0; /* * newfs uses this to set maxcontig. Must not be < 16, or it * will be 0 when newfs multiplies it by DEV_BSIZE and divides * it by the block size. Then tunefs doesn't work because * maxcontig is 0. */ lsp->ls_ci.dki_maxtransfer = 16; } /* * map in a compressed file * * Read in the header and the index that follows. * * The header is as follows - * * Signature (name of the compression algorithm) * Compression segment size (a multiple of 512) * Number of index entries * Size of the last block * The array containing the index entries * * The header information is always stored in * network byte order on disk. */ static int lofi_map_compressed_file(struct lofi_state *lsp, char *buf) { uint32_t index_sz, header_len, i; ssize_t resid; enum uio_rw rw; char *tbuf = buf; int error; /* The signature has already been read */ tbuf += sizeof (lsp->ls_comp_algorithm); bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz)); lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz); /* * The compressed segment size must be a power of 2 */ if (lsp->ls_uncomp_seg_sz < DEV_BSIZE || !ISP2(lsp->ls_uncomp_seg_sz)) return (EINVAL); for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++) ; lsp->ls_comp_seg_shift = i; tbuf += sizeof (lsp->ls_uncomp_seg_sz); bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz)); lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz); tbuf += sizeof (lsp->ls_comp_index_sz); bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz), sizeof (lsp->ls_uncomp_last_seg_sz)); lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz); /* * Compute the total size of the uncompressed data * for use in fake_disk_geometry and other calculations. * Disk geometry has to be faked with respect to the * actual uncompressed data size rather than the * compressed file size. */ lsp->ls_vp_size = (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz + lsp->ls_uncomp_last_seg_sz; /* * Index size is rounded up to DEV_BSIZE for ease * of segmapping */ index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz; header_len = sizeof (lsp->ls_comp_algorithm) + sizeof (lsp->ls_uncomp_seg_sz) + sizeof (lsp->ls_comp_index_sz) + sizeof (lsp->ls_uncomp_last_seg_sz); lsp->ls_comp_offbase = header_len + index_sz; index_sz += header_len; index_sz = roundup(index_sz, DEV_BSIZE); lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP); lsp->ls_comp_index_data_sz = index_sz; /* * Read in the index -- this has a side-effect * of reading in the header as well */ rw = UIO_READ; error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz, 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); if (error != 0) return (error); /* Skip the header, this is where the index really begins */ lsp->ls_comp_seg_index = /*LINTED*/ (uint64_t *)(lsp->ls_comp_index_data + header_len); /* * Now recompute offsets in the index to account for * the header length */ for (i = 0; i < lsp->ls_comp_index_sz; i++) { lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase + BE_64(lsp->ls_comp_seg_index[i]); } return (error); } static int lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip) { struct crypto_meta chead; char buf[DEV_BSIZE]; ssize_t resid; char *marker; int error; int ret; int i; if (!klip->li_crypto_enabled) return (0); /* * All current algorithms have a max of 448 bits. */ if (klip->li_iv_len > CRYPTO_BITS2BYTES(512)) return (EINVAL); if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key)) return (EINVAL); lsp->ls_crypto_enabled = klip->li_crypto_enabled; mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL); lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher); if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) { cmn_err(CE_WARN, "invalid cipher %s requested for %s", klip->li_cipher, klip->li_filename); return (EINVAL); } /* this is just initialization here */ lsp->ls_mech.cm_param = NULL; lsp->ls_mech.cm_param_len = 0; lsp->ls_iv_type = klip->li_iv_type; lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher); if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) { cmn_err(CE_WARN, "invalid iv cipher %s requested" " for %s", klip->li_iv_cipher, klip->li_filename); return (EINVAL); } /* iv mech must itself take a null iv */ lsp->ls_iv_mech.cm_param = NULL; lsp->ls_iv_mech.cm_param_len = 0; lsp->ls_iv_len = klip->li_iv_len; /* * Create ctx using li_cipher & the raw li_key after checking * that it isn't a weak key. */ lsp->ls_key.ck_format = CRYPTO_KEY_RAW; lsp->ls_key.ck_length = klip->li_key_len; lsp->ls_key.ck_data = kmem_alloc( CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP); bcopy(klip->li_key, lsp->ls_key.ck_data, CRYPTO_BITS2BYTES(lsp->ls_key.ck_length)); ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key); if (ret != CRYPTO_SUCCESS) { cmn_err(CE_WARN, "weak key check failed for cipher " "%s on file %s (0x%x)", klip->li_cipher, klip->li_filename, ret); return (EINVAL); } error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); if (error != 0) return (error); /* * This is the case where the header in the lofi image is already * initialized to indicate it is encrypted. */ if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) { /* * The encryption header information is laid out this way: * 6 bytes: hex "CFLOFI" * 2 bytes: version = 0 ... for now * 96 bytes: reserved1 (not implemented yet) * 4 bytes: data_sector = 2 ... for now * more... not implemented yet */ marker = buf; /* copy the magic */ bcopy(marker, lsp->ls_crypto.magic, sizeof (lsp->ls_crypto.magic)); marker += sizeof (lsp->ls_crypto.magic); /* read the encryption version number */ bcopy(marker, &(lsp->ls_crypto.version), sizeof (lsp->ls_crypto.version)); lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version); marker += sizeof (lsp->ls_crypto.version); /* read a chunk of reserved data */ bcopy(marker, lsp->ls_crypto.reserved1, sizeof (lsp->ls_crypto.reserved1)); marker += sizeof (lsp->ls_crypto.reserved1); /* read block number where encrypted data begins */ bcopy(marker, &(lsp->ls_crypto.data_sector), sizeof (lsp->ls_crypto.data_sector)); lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector); marker += sizeof (lsp->ls_crypto.data_sector); /* and ignore the rest until it is implemented */ lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; return (0); } /* * We've requested encryption, but no magic was found, so it must be * a new image. */ for (i = 0; i < sizeof (struct crypto_meta); i++) { if (buf[i] != '\0') return (EINVAL); } marker = buf; bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic)); marker += sizeof (lofi_crypto_magic); chead.version = htons(LOFI_CRYPTO_VERSION); bcopy(&(chead.version), marker, sizeof (chead.version)); marker += sizeof (chead.version); marker += sizeof (chead.reserved1); chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR); bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector)); /* write the header */ error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE, CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); if (error != 0) return (error); /* fix things up so it looks like we read this info */ bcopy(lofi_crypto_magic, lsp->ls_crypto.magic, sizeof (lofi_crypto_magic)); lsp->ls_crypto.version = LOFI_CRYPTO_VERSION; lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR; lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE; return (0); } /* * Check to see if the passed in signature is a valid one. If it is * valid, return the index into lofi_compress_table. * * Return -1 if it is invalid */ static int lofi_compress_select(const char *signature) { int i; for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) { if (strcmp(lofi_compress_table[i].l_name, signature) == 0) return (i); } return (-1); } static int lofi_init_compress(struct lofi_state *lsp) { char buf[DEV_BSIZE]; int compress_index; ssize_t resid; int error; error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid); if (error != 0) return (error); if ((compress_index = lofi_compress_select(buf)) == -1) return (0); /* compression and encryption are mutually exclusive */ if (lsp->ls_crypto_enabled) return (ENOTSUP); /* initialize compression info for compressed lofi */ lsp->ls_comp_algorithm_index = compress_index; (void) strlcpy(lsp->ls_comp_algorithm, lofi_compress_table[compress_index].l_name, sizeof (lsp->ls_comp_algorithm)); /* Finally setup per-thread pre-allocated buffers */ lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads * sizeof (struct compbuf), KM_SLEEP); return (lofi_map_compressed_file(lsp, buf)); } /* * map a file to a minor number. Return the minor number. */ static int lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor, int *rvalp, struct cred *credp, int ioctl_flag) { minor_t minor = (minor_t)-1; struct lofi_state *lsp = NULL; struct lofi_ioctl *klip; int error; struct vnode *vp = NULL; vattr_t vattr; int flag; dev_t newdev; char namebuf[50]; error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); if (error != 0) return (error); mutex_enter(&lofi_lock); mutex_enter(&curproc->p_lock); if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) { mutex_exit(&curproc->p_lock); mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (error); } mutex_exit(&curproc->p_lock); if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly, NULL) == 0) { error = EBUSY; goto err; } if (pickminor) { minor = (minor_t)id_allocff_nosleep(lofi_minor_id); if (minor == (minor_t)-1) { error = EAGAIN; goto err; } } else { if (ddi_get_soft_state(lofi_statep, klip->li_minor) != NULL) { error = EEXIST; goto err; } minor = (minor_t) id_alloc_specific_nosleep(lofi_minor_id, klip->li_minor); ASSERT(minor != (minor_t)-1); } flag = FREAD | FWRITE | FOFFMAX | FEXCL; error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); if (error) { /* try read-only */ flag &= ~FWRITE; error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0); if (error) goto err; } if (!V_ISLOFIABLE(vp->v_type)) { error = EINVAL; goto err; } vattr.va_mask = AT_SIZE; error = VOP_GETATTR(vp, &vattr, 0, credp, NULL); if (error) goto err; /* the file needs to be a multiple of the block size */ if ((vattr.va_size % DEV_BSIZE) != 0) { error = EINVAL; goto err; } /* lsp alloc+init */ error = ddi_soft_state_zalloc(lofi_statep, minor); if (error == DDI_FAILURE) { error = ENOMEM; goto err; } lsp = ddi_get_soft_state(lofi_statep, minor); list_insert_tail(&lofi_list, lsp); newdev = makedevice(getmajor(dev), minor); lsp->ls_dev = newdev; zone_init_ref(&lsp->ls_zone); zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI); lsp->ls_uncomp_seg_sz = 0; lsp->ls_comp_algorithm[0] = '\0'; lsp->ls_crypto_offset = 0; cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL); mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL); (void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d", LOFI_DRIVER_NAME, minor); lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads, minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0); list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache), offsetof(struct lofi_comp_cache, lc_list)); /* * save open mode so file can be closed properly and vnode counts * updated correctly. */ lsp->ls_openflag = flag; lsp->ls_vp = vp; lsp->ls_stacked_vp = vp; /* * Try to handle stacked lofs vnodes. */ if (vp->v_type == VREG) { vnode_t *realvp; if (VOP_REALVP(vp, &realvp, NULL) == 0) { /* * We need to use the realvp for uniqueness * checking, but keep the stacked vp for * LOFI_GET_FILENAME display. */ VN_HOLD(realvp); lsp->ls_vp = realvp; } } lsp->ls_vp_size = vattr.va_size; lsp->ls_vp_comp_size = lsp->ls_vp_size; lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, minor, NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid()); if (lsp->ls_kstat == NULL) { error = ENOMEM; goto err; } lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock; kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID); lsp->ls_readonly = klip->li_readonly; if ((error = lofi_init_crypto(lsp, klip)) != 0) goto err; if ((error = lofi_init_compress(lsp)) != 0) goto err; fake_disk_geometry(lsp); /* create minor nodes */ (void) snprintf(namebuf, sizeof (namebuf), "%d", minor); error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, minor, DDI_PSEUDO, NULL); if (error != DDI_SUCCESS) { error = ENXIO; goto err; } (void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor); error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, minor, DDI_PSEUDO, NULL); if (error != DDI_SUCCESS) { /* remove block node */ (void) snprintf(namebuf, sizeof (namebuf), "%d", minor); ddi_remove_minor_node(lofi_dip, namebuf); error = ENXIO; goto err; } /* create DDI properties */ if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) { error = EINVAL; goto nodeerr; } if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME, (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE)) != DDI_PROP_SUCCESS) { error = EINVAL; goto nodeerr; } if (ddi_prop_update_string(newdev, lofi_dip, ZONE_PROP_NAME, (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) { error = EINVAL; goto nodeerr; } kstat_install(lsp->ls_kstat); mutex_exit(&lofi_lock); if (rvalp) *rvalp = (int)minor; klip->li_minor = minor; (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); free_lofi_ioctl(klip); return (0); nodeerr: lofi_free_dev(newdev); err: if (lsp != NULL) { lofi_destroy(lsp, credp); } else { if (vp != NULL) { (void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL); VN_RELE(vp); } if (minor != (minor_t)-1) id_free(lofi_minor_id, minor); rctl_decr_lofi(curproc->p_zone, 1); } mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (error); } /* * unmap a file. */ static int lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename, struct cred *credp, int ioctl_flag) { struct lofi_state *lsp; struct lofi_ioctl *klip; int err; err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); if (err != 0) return (err); mutex_enter(&lofi_lock); if (byfilename) { if ((err = file_to_lofi(klip->li_filename, klip->li_readonly, &lsp)) != 0) { mutex_exit(&lofi_lock); return (err); } } else if (klip->li_minor == 0) { mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (ENXIO); } else { lsp = ddi_get_soft_state(lofi_statep, klip->li_minor); } if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) { mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (ENXIO); } klip->li_minor = getminor(lsp->ls_dev); /* * If it's still held open, we'll do one of three things: * * If no flag is set, just return EBUSY. * * If the 'cleanup' flag is set, unmap and remove the device when * the last user finishes. * * If the 'force' flag is set, then we forcibly close the underlying * file. Subsequent operations will fail, and the DKIOCSTATE ioctl * will return DKIO_DEV_GONE. When the device is last closed, the * device will be cleaned up appropriately. * * This is complicated by the fact that we may have outstanding * dispatched I/Os. Rather than having a single mutex to serialize all * I/O, we keep a count of the number of outstanding I/O requests * (ls_vp_iocount), as well as a flag to indicate that no new I/Os * should be dispatched (ls_vp_closereq). * * We set the flag, wait for the number of outstanding I/Os to reach 0, * and then close the underlying vnode. */ if (is_opened(lsp)) { if (klip->li_force) { mutex_enter(&lsp->ls_vp_lock); lsp->ls_vp_closereq = B_TRUE; /* wake up any threads waiting on dkiocstate */ cv_broadcast(&lsp->ls_vp_cv); while (lsp->ls_vp_iocount > 0) cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock); mutex_exit(&lsp->ls_vp_lock); goto out; } else if (klip->li_cleanup) { lsp->ls_cleanup = 1; mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (0); } mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (EBUSY); } out: lofi_free_dev(lsp->ls_dev); lofi_destroy(lsp, credp); mutex_exit(&lofi_lock); (void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag); free_lofi_ioctl(klip); return (0); } /* * get the filename given the minor number, or the minor number given * the name. */ /*ARGSUSED*/ static int lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which, struct cred *credp, int ioctl_flag) { struct lofi_ioctl *klip; struct lofi_state *lsp; int error; error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag); if (error != 0) return (error); switch (which) { case LOFI_GET_FILENAME: if (klip->li_minor == 0) { free_lofi_ioctl(klip); return (EINVAL); } mutex_enter(&lofi_lock); lsp = ddi_get_soft_state(lofi_statep, klip->li_minor); if (lsp == NULL || lofi_access(lsp) != 0) { mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (ENXIO); } /* * This may fail if, for example, we're trying to look * up a zoned NFS path from the global zone. */ if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename, sizeof (klip->li_filename), CRED()) != 0) { (void) strlcpy(klip->li_filename, "?", sizeof (klip->li_filename)); } klip->li_readonly = lsp->ls_readonly; (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, sizeof (klip->li_algorithm)); klip->li_crypto_enabled = lsp->ls_crypto_enabled; mutex_exit(&lofi_lock); error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); free_lofi_ioctl(klip); return (error); case LOFI_GET_MINOR: mutex_enter(&lofi_lock); error = file_to_lofi(klip->li_filename, klip->li_readonly, &lsp); if (error == 0) klip->li_minor = getminor(lsp->ls_dev); mutex_exit(&lofi_lock); if (error == 0) error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); free_lofi_ioctl(klip); return (error); case LOFI_CHECK_COMPRESSED: mutex_enter(&lofi_lock); error = file_to_lofi(klip->li_filename, klip->li_readonly, &lsp); if (error != 0) { mutex_exit(&lofi_lock); free_lofi_ioctl(klip); return (error); } klip->li_minor = getminor(lsp->ls_dev); (void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm, sizeof (klip->li_algorithm)); mutex_exit(&lofi_lock); error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag); free_lofi_ioctl(klip); return (error); default: free_lofi_ioctl(klip); return (EINVAL); } } static int lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp) { int error; enum dkio_state dkstate; struct lofi_state *lsp; minor_t minor; minor = getminor(dev); /* lofi ioctls only apply to the master device */ if (minor == 0) { struct lofi_ioctl *lip = (struct lofi_ioctl *)arg; /* * the query command only need read-access - i.e., normal * users are allowed to do those on the ctl device as * long as they can open it read-only. */ switch (cmd) { case LOFI_MAP_FILE: if ((flag & FWRITE) == 0) return (EPERM); return (lofi_map_file(dev, lip, 1, rvalp, credp, flag)); case LOFI_MAP_FILE_MINOR: if ((flag & FWRITE) == 0) return (EPERM); return (lofi_map_file(dev, lip, 0, rvalp, credp, flag)); case LOFI_UNMAP_FILE: if ((flag & FWRITE) == 0) return (EPERM); return (lofi_unmap_file(lip, 1, credp, flag)); case LOFI_UNMAP_FILE_MINOR: if ((flag & FWRITE) == 0) return (EPERM); return (lofi_unmap_file(lip, 0, credp, flag)); case LOFI_GET_FILENAME: return (lofi_get_info(dev, lip, LOFI_GET_FILENAME, credp, flag)); case LOFI_GET_MINOR: return (lofi_get_info(dev, lip, LOFI_GET_MINOR, credp, flag)); /* * This API made limited sense when this value was fixed * at LOFI_MAX_FILES. However, its use to iterate * across all possible devices in lofiadm means we don't * want to return L_MAXMIN32, but the highest * *allocated* minor. */ case LOFI_GET_MAXMINOR: minor = 0; mutex_enter(&lofi_lock); for (lsp = list_head(&lofi_list); lsp != NULL; lsp = list_next(&lofi_list, lsp)) { if (lofi_access(lsp) != 0) continue; if (getminor(lsp->ls_dev) > minor) minor = getminor(lsp->ls_dev); } mutex_exit(&lofi_lock); error = ddi_copyout(&minor, &lip->li_minor, sizeof (minor), flag); if (error) return (EFAULT); return (0); case LOFI_CHECK_COMPRESSED: return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED, credp, flag)); default: return (EINVAL); } } mutex_enter(&lofi_lock); lsp = ddi_get_soft_state(lofi_statep, minor); if (lsp == NULL || lsp->ls_vp_closereq) { mutex_exit(&lofi_lock); return (ENXIO); } mutex_exit(&lofi_lock); /* * We explicitly allow DKIOCSTATE, but all other ioctls should fail with * EIO as if the device was no longer present. */ if (lsp->ls_vp == NULL && cmd != DKIOCSTATE) return (EIO); /* these are for faking out utilities like newfs */ switch (cmd) { case DKIOCGVTOC: switch (ddi_model_convert_from(flag & FMODELS)) { case DDI_MODEL_ILP32: { struct vtoc32 vtoc32; vtoctovtoc32(lsp->ls_vtoc, vtoc32); if (ddi_copyout(&vtoc32, (void *)arg, sizeof (struct vtoc32), flag)) return (EFAULT); break; } case DDI_MODEL_NONE: if (ddi_copyout(&lsp->ls_vtoc, (void *)arg, sizeof (struct vtoc), flag)) return (EFAULT); break; } return (0); case DKIOCINFO: error = ddi_copyout(&lsp->ls_ci, (void *)arg, sizeof (struct dk_cinfo), flag); if (error) return (EFAULT); return (0); case DKIOCG_VIRTGEOM: case DKIOCG_PHYGEOM: case DKIOCGGEOM: error = ddi_copyout(&lsp->ls_dkg, (void *)arg, sizeof (struct dk_geom), flag); if (error) return (EFAULT); return (0); case DKIOCSTATE: /* * Normally, lofi devices are always in the INSERTED state. If * a device is forcefully unmapped, then the device transitions * to the DKIO_DEV_GONE state. */ if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate), flag) != 0) return (EFAULT); mutex_enter(&lsp->ls_vp_lock); lsp->ls_vp_iocount++; while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) || (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) && !lsp->ls_vp_closereq) { /* * By virtue of having the device open, we know that * 'lsp' will remain valid when we return. */ if (!cv_wait_sig(&lsp->ls_vp_cv, &lsp->ls_vp_lock)) { lsp->ls_vp_iocount--; cv_broadcast(&lsp->ls_vp_cv); mutex_exit(&lsp->ls_vp_lock); return (EINTR); } } dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ? DKIO_INSERTED : DKIO_DEV_GONE); lsp->ls_vp_iocount--; cv_broadcast(&lsp->ls_vp_cv); mutex_exit(&lsp->ls_vp_lock); if (ddi_copyout(&dkstate, (void *)arg, sizeof (dkstate), flag) != 0) return (EFAULT); return (0); default: return (ENOTTY); } } static struct cb_ops lofi_cb_ops = { lofi_open, /* open */ lofi_close, /* close */ lofi_strategy, /* strategy */ nodev, /* print */ nodev, /* dump */ lofi_read, /* read */ lofi_write, /* write */ lofi_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ 0, /* streamtab */ D_64BIT | D_NEW | D_MP, /* Driver compatibility flag */ CB_REV, lofi_aread, lofi_awrite }; static struct dev_ops lofi_ops = { DEVO_REV, /* devo_rev, */ 0, /* refcnt */ lofi_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ lofi_attach, /* attach */ lofi_detach, /* detach */ nodev, /* reset */ &lofi_cb_ops, /* driver operations */ NULL, /* no bus operations */ NULL, /* power */ ddi_quiesce_not_needed, /* quiesce */ }; static struct modldrv modldrv = { &mod_driverops, "loopback file driver", &lofi_ops, }; static struct modlinkage modlinkage = { MODREV_1, &modldrv, NULL }; int _init(void) { int error; list_create(&lofi_list, sizeof (struct lofi_state), offsetof(struct lofi_state, ls_list)); error = ddi_soft_state_init(&lofi_statep, sizeof (struct lofi_state), 0); if (error) return (error); mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL); error = mod_install(&modlinkage); if (error) { mutex_destroy(&lofi_lock); ddi_soft_state_fini(&lofi_statep); list_destroy(&lofi_list); } return (error); } int _fini(void) { int error; mutex_enter(&lofi_lock); if (!list_is_empty(&lofi_list)) { mutex_exit(&lofi_lock); return (EBUSY); } mutex_exit(&lofi_lock); error = mod_remove(&modlinkage); if (error) return (error); mutex_destroy(&lofi_lock); ddi_soft_state_fini(&lofi_statep); list_destroy(&lofi_list); return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); }