/* * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. */ /* * Copyright 2014 Nexenta Systems, Inc. All rights reserved. */ /* * Intel Pro/100B Ethernet Driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iprb.h" #include "rcvbundl.h" /* * Intel has openly documented the programming interface for these * parts in the "Intel 8255x 10/100 Mbps Ethernet Controller Family * Open Source Software Developer Manual". * * While some open source systems have utilized many of the features * of some models in this family (especially scatter gather and IP * checksum support), we have elected to offer only the basic * functionality. These are only 10/100 parts, and the additional * complexity is not justified by the minimal performance benefit. * KISS. So, we are only supporting the simple 82557 features. */ static uint16_t iprb_mii_read(void *, uint8_t, uint8_t); static void iprb_mii_write(void *, uint8_t, uint8_t, uint16_t); static void iprb_mii_notify(void *, link_state_t); static int iprb_attach(dev_info_t *); static int iprb_detach(dev_info_t *); static int iprb_quiesce(dev_info_t *); static int iprb_suspend(dev_info_t *); static int iprb_resume(dev_info_t *); static int iprb_m_stat(void *, uint_t, uint64_t *); static int iprb_m_start(void *); static void iprb_m_stop(void *); static int iprb_m_promisc(void *, boolean_t); static int iprb_m_multicst(void *, boolean_t, const uint8_t *); static int iprb_m_unicst(void *, const uint8_t *); static mblk_t *iprb_m_tx(void *, mblk_t *); static void iprb_m_ioctl(void *, queue_t *, mblk_t *); static int iprb_m_setprop(void *, const char *, mac_prop_id_t, uint_t, const void *); static int iprb_m_getprop(void *, const char *, mac_prop_id_t, uint_t, void *); static void iprb_m_propinfo(void *, const char *, mac_prop_id_t, mac_prop_info_handle_t); static void iprb_destroy(iprb_t *); static int iprb_configure(iprb_t *); static void iprb_eeprom_sendbits(iprb_t *, uint32_t, uint8_t); static uint16_t iprb_eeprom_read(iprb_t *, uint16_t); static void iprb_identify(iprb_t *); static int iprb_cmd_submit(iprb_t *, uint16_t); static void iprb_cmd_reclaim(iprb_t *); static int iprb_cmd_ready(iprb_t *); static int iprb_cmd_drain(iprb_t *); static void iprb_rx_add(iprb_t *); static void iprb_rx_init(iprb_t *); static mblk_t *iprb_rx(iprb_t *); static mblk_t *iprb_send(iprb_t *, mblk_t *); static uint_t iprb_intr(caddr_t, caddr_t); static void iprb_periodic(void *); static int iprb_add_intr(iprb_t *); static int iprb_dma_alloc(iprb_t *, iprb_dma_t *, size_t); static void iprb_dma_free(iprb_dma_t *); static iprb_dma_t *iprb_cmd_next(iprb_t *); static int iprb_set_config(iprb_t *); static int iprb_set_unicast(iprb_t *); static int iprb_set_multicast(iprb_t *); static int iprb_set_ucode(iprb_t *); static void iprb_update_stats(iprb_t *); static int iprb_start(iprb_t *); static void iprb_stop(iprb_t *); static int iprb_ddi_attach(dev_info_t *, ddi_attach_cmd_t); static int iprb_ddi_detach(dev_info_t *, ddi_detach_cmd_t); static void iprb_error(iprb_t *, const char *, ...); static mii_ops_t iprb_mii_ops = { MII_OPS_VERSION, iprb_mii_read, iprb_mii_write, iprb_mii_notify, NULL, /* reset */ }; static mac_callbacks_t iprb_m_callbacks = { MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO, iprb_m_stat, iprb_m_start, iprb_m_stop, iprb_m_promisc, iprb_m_multicst, iprb_m_unicst, iprb_m_tx, NULL, iprb_m_ioctl, /* mc_ioctl */ NULL, /* mc_getcapab */ NULL, /* mc_open */ NULL, /* mc_close */ iprb_m_setprop, iprb_m_getprop, iprb_m_propinfo }; /* * Stream information */ DDI_DEFINE_STREAM_OPS(iprb_devops, nulldev, nulldev, iprb_ddi_attach, iprb_ddi_detach, nodev, NULL, D_MP, NULL, iprb_quiesce); static struct modldrv iprb_modldrv = { &mod_driverops, /* drv_modops */ "Intel 8255x Ethernet", /* drv_linkinfo */ &iprb_devops /* drv_dev_ops */ }; static struct modlinkage iprb_modlinkage = { MODREV_1, /* ml_rev */ { &iprb_modldrv, NULL } /* ml_linkage */ }; static ddi_device_acc_attr_t acc_attr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC }; static ddi_device_acc_attr_t buf_attr = { DDI_DEVICE_ATTR_V0, DDI_NEVERSWAP_ACC, DDI_STORECACHING_OK_ACC }; /* * The 8225x is a 32-bit addressing engine, but it can only address up * to 31 bits on a single transaction. (Far less in reality it turns * out.) Statistics buffers have to be 16-byte aligned, and as we * allocate individual data pieces for other things, there is no * compelling reason to use another attribute with support for less * strict alignment. */ static ddi_dma_attr_t dma_attr = { DMA_ATTR_V0, /* dma_attr_version */ 0, /* dma_attr_addr_lo */ 0xFFFFFFFFU, /* dma_attr_addr_hi */ 0x7FFFFFFFU, /* dma_attr_count_max */ 16, /* dma_attr_align */ 0x100, /* dma_attr_burstsizes */ 1, /* dma_attr_minxfer */ 0xFFFFFFFFU, /* dma_attr_maxxfer */ 0xFFFFFFFFU, /* dma_attr_seg */ 1, /* dma_attr_sgllen */ 1, /* dma_attr_granular */ 0 /* dma_attr_flags */ }; #define DECL_UCODE(x) \ static const uint32_t x ## _WORDS[] = x ## _RCVBUNDLE_UCODE DECL_UCODE(D101_A); DECL_UCODE(D101_B0); DECL_UCODE(D101M_B); DECL_UCODE(D101S); DECL_UCODE(D102_B); DECL_UCODE(D102_C); DECL_UCODE(D102_E); static uint8_t iprb_bcast[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* * We don't bother allowing for tuning of the CPU saver algorithm. * The ucode has reasonable defaults built-in. However, some variants * apparently have bug fixes delivered via this ucode, so we still * need to support the ucode upload. */ typedef struct { uint8_t rev; uint8_t length; const uint32_t *ucode; } iprb_ucode_t; #define UCODE(x) \ sizeof (x ## _WORDS) / sizeof (uint32_t), x ## _WORDS static const iprb_ucode_t iprb_ucode[] = { { REV_82558_A4, UCODE(D101_A) }, { REV_82558_B0, UCODE(D101_B0) }, { REV_82559_A0, UCODE(D101M_B) }, { REV_82559S_A, UCODE(D101S) }, { REV_82550, UCODE(D102_B) }, { REV_82550_C, UCODE(D102_C) }, { REV_82551_F, UCODE(D102_E) }, { 0 }, }; int _init(void) { int rv; mac_init_ops(&iprb_devops, "iprb"); if ((rv = mod_install(&iprb_modlinkage)) != DDI_SUCCESS) { mac_fini_ops(&iprb_devops); } return (rv); } int _fini(void) { int rv; if ((rv = mod_remove(&iprb_modlinkage)) == DDI_SUCCESS) { mac_fini_ops(&iprb_devops); } return (rv); } int _info(struct modinfo *modinfop) { return (mod_info(&iprb_modlinkage, modinfop)); } int iprb_attach(dev_info_t *dip) { iprb_t *ip; uint16_t w; int i; mac_register_t *macp; ip = kmem_zalloc(sizeof (*ip), KM_SLEEP); ddi_set_driver_private(dip, ip); ip->dip = dip; list_create(&ip->mcast, sizeof (struct iprb_mcast), offsetof(struct iprb_mcast, node)); /* we don't support high level interrupts, so we don't need cookies */ mutex_init(&ip->culock, NULL, MUTEX_DRIVER, NULL); mutex_init(&ip->rulock, NULL, MUTEX_DRIVER, NULL); if (pci_config_setup(dip, &ip->pcih) != DDI_SUCCESS) { iprb_error(ip, "unable to map configuration space"); iprb_destroy(ip); return (DDI_FAILURE); } if (ddi_regs_map_setup(dip, 1, &ip->regs, 0, 0, &acc_attr, &ip->regsh) != DDI_SUCCESS) { iprb_error(ip, "unable to map device registers"); iprb_destroy(ip); return (DDI_FAILURE); } /* Reset, but first go into idle state */ PUT32(ip, CSR_PORT, PORT_SEL_RESET); drv_usecwait(10); PUT32(ip, CSR_PORT, PORT_SW_RESET); drv_usecwait(10); PUT8(ip, CSR_INTCTL, INTCTL_MASK); (void) GET8(ip, CSR_INTCTL); /* * Precalculate watchdog times. */ ip->tx_timeout = TX_WATCHDOG; ip->rx_timeout = RX_WATCHDOG; iprb_identify(ip); /* Obtain our factory MAC address */ w = iprb_eeprom_read(ip, 0); ip->factaddr[0] = w & 0xff; ip->factaddr[1] = w >> 8; w = iprb_eeprom_read(ip, 1); ip->factaddr[2] = w & 0xff; ip->factaddr[3] = w >> 8; w = iprb_eeprom_read(ip, 2); ip->factaddr[4] = w & 0xff; ip->factaddr[5] = w >> 8; bcopy(ip->factaddr, ip->curraddr, 6); if (ip->resumebug) { /* * Generally, most devices we will ever see will * already have fixed firmware. Since I can't verify * the validity of the fix (no suitably downrev * hardware), we'll just do our best to avoid it for * devices that exhibit this behavior. */ if ((iprb_eeprom_read(ip, 10) & 0x02) == 0) { /* EEPROM fix was already applied, assume safe. */ ip->resumebug = B_FALSE; } } if ((iprb_eeprom_read(ip, 3) & 0x3) != 0x3) { cmn_err(CE_CONT, "?Enabling RX errata workaround.\n"); ip->rxhangbug = B_TRUE; } /* Determine whether we have an MII or a legacy 80c24 */ w = iprb_eeprom_read(ip, 6); if ((w & 0x3f00) != 0x0600) { if ((ip->miih = mii_alloc(ip, dip, &iprb_mii_ops)) == NULL) { iprb_error(ip, "unable to allocate MII ops vector"); iprb_destroy(ip); return (DDI_FAILURE); } if (ip->canpause) { mii_set_pauseable(ip->miih, B_TRUE, B_FALSE); } } /* Allocate cmds and tx region */ for (i = 0; i < NUM_TX; i++) { /* Command blocks */ if (iprb_dma_alloc(ip, &ip->cmds[i], CB_SIZE) != DDI_SUCCESS) { iprb_destroy(ip); return (DDI_FAILURE); } } for (i = 0; i < NUM_TX; i++) { iprb_dma_t *cb = &ip->cmds[i]; /* Link the command blocks into a ring */ PUTCB32(cb, CB_LNK_OFFSET, (ip->cmds[(i + 1) % NUM_TX].paddr)); } for (i = 0; i < NUM_RX; i++) { /* Rx packet buffers */ if (iprb_dma_alloc(ip, &ip->rxb[i], RFD_SIZE) != DDI_SUCCESS) { iprb_destroy(ip); return (DDI_FAILURE); } } if (iprb_dma_alloc(ip, &ip->stats, STATS_SIZE) != DDI_SUCCESS) { iprb_destroy(ip); return (DDI_FAILURE); } if (iprb_add_intr(ip) != DDI_SUCCESS) { iprb_destroy(ip); return (DDI_FAILURE); } if ((macp = mac_alloc(MAC_VERSION)) == NULL) { iprb_error(ip, "unable to allocate mac structure"); iprb_destroy(ip); return (DDI_FAILURE); } macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; macp->m_driver = ip; macp->m_dip = dip; macp->m_src_addr = ip->curraddr; macp->m_callbacks = &iprb_m_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = ETHERMTU; macp->m_margin = VLAN_TAGSZ; if (mac_register(macp, &ip->mach) != 0) { iprb_error(ip, "unable to register mac with framework"); mac_free(macp); iprb_destroy(ip); return (DDI_FAILURE); } mac_free(macp); return (DDI_SUCCESS); } int iprb_detach(dev_info_t *dip) { iprb_t *ip; ip = ddi_get_driver_private(dip); ASSERT(ip != NULL); if (mac_disable(ip->mach) != 0) return (DDI_FAILURE); (void) mac_unregister(ip->mach); iprb_destroy(ip); return (DDI_SUCCESS); } int iprb_add_intr(iprb_t *ip) { int actual; if (ddi_intr_alloc(ip->dip, &ip->intrh, DDI_INTR_TYPE_FIXED, 0, 1, &actual, DDI_INTR_ALLOC_STRICT) != DDI_SUCCESS) { iprb_error(ip, "failed allocating interrupt handle"); return (DDI_FAILURE); } if (ddi_intr_add_handler(ip->intrh, iprb_intr, ip, NULL) != DDI_SUCCESS) { (void) ddi_intr_free(ip->intrh); ip->intrh = NULL; iprb_error(ip, "failed adding interrupt handler"); return (DDI_FAILURE); } if (ddi_intr_enable(ip->intrh) != DDI_SUCCESS) { (void) ddi_intr_remove_handler(ip->intrh); (void) ddi_intr_free(ip->intrh); ip->intrh = NULL; iprb_error(ip, "failed enabling interrupt"); return (DDI_FAILURE); } return (DDI_SUCCESS); } int iprb_dma_alloc(iprb_t *ip, iprb_dma_t *h, size_t size) { size_t rlen; ddi_dma_cookie_t dmac; uint_t ndmac; if (ddi_dma_alloc_handle(ip->dip, &dma_attr, DDI_DMA_SLEEP, NULL, &h->dmah) != DDI_SUCCESS) { iprb_error(ip, "unable to allocate dma handle"); return (DDI_FAILURE); } if (ddi_dma_mem_alloc(h->dmah, size, &buf_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &h->vaddr, &rlen, &h->acch) != DDI_SUCCESS) { iprb_error(ip, "unable to allocate dma memory"); return (DDI_FAILURE); } bzero(h->vaddr, size); if (ddi_dma_addr_bind_handle(h->dmah, NULL, h->vaddr, size, DDI_DMA_CONSISTENT | DDI_DMA_RDWR, DDI_DMA_SLEEP, NULL, &dmac, &ndmac) != DDI_DMA_MAPPED) { iprb_error(ip, "unable to map command memory"); return (DDI_FAILURE); } h->paddr = dmac.dmac_address; return (DDI_SUCCESS); } void iprb_dma_free(iprb_dma_t *h) { if (h->paddr != 0) (void) ddi_dma_unbind_handle(h->dmah); h->paddr = 0; if (h->acch != NULL) ddi_dma_mem_free(&h->acch); h->acch = NULL; if (h->dmah != NULL) ddi_dma_free_handle(&h->dmah); h->dmah = NULL; } void iprb_destroy(iprb_t *ip) { int i; iprb_mcast_t *mc; /* shut down interrupts */ if (ip->intrh != NULL) { (void) ddi_intr_disable(ip->intrh); (void) ddi_intr_remove_handler(ip->intrh); (void) ddi_intr_free(ip->intrh); } /* release DMA resources */ for (i = 0; i < NUM_TX; i++) { iprb_dma_free(&ip->cmds[i]); } for (i = 0; i < NUM_RX; i++) { iprb_dma_free(&ip->rxb[i]); } iprb_dma_free(&ip->stats); if (ip->miih) mii_free(ip->miih); /* clean up the multicast list */ while ((mc = list_head(&ip->mcast)) != NULL) { list_remove(&ip->mcast, mc); kmem_free(mc, sizeof (*mc)); } /* tear down register mappings */ if (ip->pcih) pci_config_teardown(&ip->pcih); if (ip->regsh) ddi_regs_map_free(&ip->regsh); /* clean the dip */ ddi_set_driver_private(ip->dip, NULL); list_destroy(&ip->mcast); mutex_destroy(&ip->culock); mutex_destroy(&ip->rulock); /* and finally toss the structure itself */ kmem_free(ip, sizeof (*ip)); } void iprb_identify(iprb_t *ip) { ip->devid = pci_config_get16(ip->pcih, PCI_CONF_DEVID); ip->revid = pci_config_get8(ip->pcih, PCI_CONF_REVID); switch (ip->devid) { case 0x1229: /* 8255x family */ case 0x1030: /* Intel InBusiness */ if (ip->revid >= REV_82558_A4) { ip->canpause = B_TRUE; ip->canmwi = B_TRUE; } else { ip->is557 = B_TRUE; } if (ip->revid >= REV_82559_A0) ip->resumebug = B_TRUE; break; case 0x1209: /* Embedded 82559ER */ ip->canpause = B_TRUE; ip->resumebug = B_TRUE; ip->canmwi = B_TRUE; break; case 0x2449: /* ICH2 */ case 0x1031: /* Pro/100 VE (ICH3) */ case 0x1032: /* Pro/100 VE (ICH3) */ case 0x1033: /* Pro/100 VM (ICH3) */ case 0x1034: /* Pro/100 VM (ICH3) */ case 0x1038: /* Pro/100 VM (ICH3) */ ip->resumebug = B_TRUE; if (ip->revid >= REV_82558_A4) ip->canpause = B_TRUE; break; default: if (ip->revid >= REV_82558_A4) ip->canpause = B_TRUE; break; } /* Allow property override MWI support - not normally needed. */ if (ddi_prop_get_int(DDI_DEV_T_ANY, ip->dip, 0, "MWIEnable", 1) == 0) { ip->canmwi = B_FALSE; } } void iprb_eeprom_sendbits(iprb_t *ip, uint32_t val, uint8_t nbits) { uint32_t mask; uint16_t x; mask = 1U << (nbits - 1); while (mask) { x = (mask & val) ? EEPROM_EEDI : 0; PUT16(ip, CSR_EECTL, x | EEPROM_EECS); drv_usecwait(100); PUT16(ip, CSR_EECTL, x | EEPROM_EESK | EEPROM_EECS); drv_usecwait(100); PUT16(ip, CSR_EECTL, x | EEPROM_EECS); drv_usecwait(100); mask >>= 1; } } uint16_t iprb_eeprom_read(iprb_t *ip, uint16_t address) { uint16_t val; int mask; uint16_t n; uint16_t bits; /* if we don't know the address size yet call again to determine it */ if ((address != 0) && (ip->eeprom_bits == 0)) (void) iprb_eeprom_read(ip, 0); if ((bits = ip->eeprom_bits) == 0) { bits = 8; ASSERT(address == 0); } /* enable the EEPROM chip select */ PUT16(ip, CSR_EECTL, EEPROM_EECS); drv_usecwait(100); /* send a read command */ iprb_eeprom_sendbits(ip, 6, 3); n = 0; for (mask = (1U << (bits - 1)); mask != 0; mask >>= 1) { uint16_t x = (mask & address) ? EEPROM_EEDI : 0; PUT16(ip, CSR_EECTL, x | EEPROM_EECS); drv_usecwait(100); PUT16(ip, CSR_EECTL, x | EEPROM_EESK | EEPROM_EECS); drv_usecwait(100); PUT16(ip, CSR_EECTL, x | EEPROM_EECS); drv_usecwait(100); n++; /* check the dummy 0 bit */ if ((GET16(ip, CSR_EECTL) & EEPROM_EEDO) == 0) { if (ip->eeprom_bits == 0) { ip->eeprom_bits = n; cmn_err(CE_CONT, "?EEPROM size %d words.\n", 1U << ip->eeprom_bits); } break; } } if (n != ip->eeprom_bits) { iprb_error(ip, "cannot determine EEPROM size (%d, %d)", ip->eeprom_bits, n); } /* shift out a 16-bit word */ val = 0; for (mask = 0x8000; mask; mask >>= 1) { PUT16(ip, CSR_EECTL, EEPROM_EECS | EEPROM_EESK); drv_usecwait(100); if (GET16(ip, CSR_EECTL) & EEPROM_EEDO) val |= mask; drv_usecwait(100); PUT16(ip, CSR_EECTL, EEPROM_EECS); drv_usecwait(100); } /* and disable the eeprom */ PUT16(ip, CSR_EECTL, 0); drv_usecwait(100); return (val); } int iprb_cmd_ready(iprb_t *ip) { /* wait for pending SCB commands to be accepted */ for (int cnt = 1000000; cnt != 0; cnt -= 10) { if (GET8(ip, CSR_CMD) == 0) { return (DDI_SUCCESS); } drv_usecwait(10); } iprb_error(ip, "timeout waiting for chip to become ready"); return (DDI_FAILURE); } void iprb_cmd_reclaim(iprb_t *ip) { while (ip->cmd_count) { iprb_dma_t *cb = &ip->cmds[ip->cmd_tail]; SYNCCB(cb, CB_STS_OFFSET, 2, DDI_DMA_SYNC_FORKERNEL); if ((GETCB16(cb, CB_STS_OFFSET) & CB_STS_C) == 0) { break; } ip->cmd_tail++; ip->cmd_tail %= NUM_TX; ip->cmd_count--; if (ip->cmd_count == 0) { ip->tx_wdog = 0; } else { ip->tx_wdog = gethrtime(); } } } int iprb_cmd_drain(iprb_t *ip) { for (int i = 1000000; i; i -= 10) { iprb_cmd_reclaim(ip); if (ip->cmd_count == 0) return (DDI_SUCCESS); drv_usecwait(10); } iprb_error(ip, "time out waiting for commands to drain"); return (DDI_FAILURE); } int iprb_cmd_submit(iprb_t *ip, uint16_t cmd) { iprb_dma_t *ncb = &ip->cmds[ip->cmd_head]; iprb_dma_t *lcb = &ip->cmds[ip->cmd_last]; /* If this command will consume the last CB, interrupt when done */ ASSERT((ip->cmd_count) < NUM_TX); if (ip->cmd_count == (NUM_TX - 1)) { cmd |= CB_CMD_I; } /* clear the status entry */ PUTCB16(ncb, CB_STS_OFFSET, 0); /* suspend upon completion of this new command */ cmd |= CB_CMD_S; PUTCB16(ncb, CB_CMD_OFFSET, cmd); SYNCCB(ncb, 0, 0, DDI_DMA_SYNC_FORDEV); /* clear the suspend flag from the last submitted command */ SYNCCB(lcb, CB_CMD_OFFSET, 2, DDI_DMA_SYNC_FORKERNEL); PUTCB16(lcb, CB_CMD_OFFSET, GETCB16(lcb, CB_CMD_OFFSET) & ~CB_CMD_S); SYNCCB(lcb, CB_CMD_OFFSET, 2, DDI_DMA_SYNC_FORDEV); /* * If the chip has a resume bug, then we need to try this as a work * around. Some anecdotal evidence is that this will help solve * the resume bug. Its a performance hit, but only if the EEPROM * is not updated. (In theory we could do this only for 10Mbps HDX, * but since it should just about never get used, we keep it simple.) */ if (ip->resumebug) { if (iprb_cmd_ready(ip) != DDI_SUCCESS) return (DDI_FAILURE); PUT8(ip, CSR_CMD, CUC_NOP); (void) GET8(ip, CSR_CMD); drv_usecwait(1); } /* wait for the SCB to be ready to accept a new command */ if (iprb_cmd_ready(ip) != DDI_SUCCESS) return (DDI_FAILURE); /* * Finally we can resume the CU. Note that if this the first * command in the sequence (i.e. if the CU is IDLE), or if the * CU is already busy working, then this CU resume command * will not have any effect. */ PUT8(ip, CSR_CMD, CUC_RESUME); (void) GET8(ip, CSR_CMD); /* flush CSR */ ip->tx_wdog = gethrtime(); ip->cmd_last = ip->cmd_head; ip->cmd_head++; ip->cmd_head %= NUM_TX; ip->cmd_count++; return (DDI_SUCCESS); } iprb_dma_t * iprb_cmd_next(iprb_t *ip) { if (ip->cmd_count == NUM_TX) { return (NULL); } ASSERT(ip->cmd_count < NUM_TX); return (&ip->cmds[ip->cmd_head]); } int iprb_set_unicast(iprb_t *ip) { iprb_dma_t *cb; ASSERT(mutex_owned(&ip->culock)); if ((cb = iprb_cmd_next(ip)) == NULL) return (DDI_FAILURE); PUTCBEA(cb, CB_IAS_ADR_OFFSET, ip->curraddr); return (iprb_cmd_submit(ip, CB_CMD_IAS)); } int iprb_set_multicast(iprb_t *ip) { iprb_dma_t *cb; iprb_mcast_t *mc; int i; list_t *l; ASSERT(mutex_owned(&ip->culock)); if ((ip->nmcast <= 0) || (ip->nmcast > CB_MCS_CNT_MAX)) { /* * Only send the list if the total number of multicast * address is nonzero and small enough to fit. We * don't error out if it is too big, because in that * case we will use the "allmulticast" support * via iprb_set_config instead. */ return (DDI_SUCCESS); } if ((cb = iprb_cmd_next(ip)) == NULL) { return (DDI_FAILURE); } l = &ip->mcast; for (mc = list_head(l), i = 0; mc; mc = list_next(l, mc), i++) { PUTCBEA(cb, CB_MCS_ADR_OFFSET + (i * 6), mc->addr); } ASSERT(i == ip->nmcast); PUTCB16(cb, CB_MCS_CNT_OFFSET, i); return (iprb_cmd_submit(ip, CB_CMD_MCS)); } int iprb_set_config(iprb_t *ip) { iprb_dma_t *cb; ASSERT(mutex_owned(&ip->culock)); if ((cb = iprb_cmd_next(ip)) == NULL) { return (DDI_FAILURE); } PUTCB8(cb, CB_CONFIG_OFFSET + 0, 0x16); PUTCB8(cb, CB_CONFIG_OFFSET + 1, 0x8); PUTCB8(cb, CB_CONFIG_OFFSET + 2, 0); PUTCB8(cb, CB_CONFIG_OFFSET + 3, (ip->canmwi ? 1 : 0)); PUTCB8(cb, CB_CONFIG_OFFSET + 4, 0); PUTCB8(cb, CB_CONFIG_OFFSET + 5, 0); PUTCB8(cb, CB_CONFIG_OFFSET + 6, (ip->promisc ? 0x80 : 0) | 0x3a); PUTCB8(cb, CB_CONFIG_OFFSET + 7, (ip->promisc ? 0 : 0x1) | 2); PUTCB8(cb, CB_CONFIG_OFFSET + 8, (ip->miih ? 0x1 : 0)); PUTCB8(cb, CB_CONFIG_OFFSET + 9, 0); PUTCB8(cb, CB_CONFIG_OFFSET + 10, 0x2e); PUTCB8(cb, CB_CONFIG_OFFSET + 11, 0); PUTCB8(cb, CB_CONFIG_OFFSET + 12, (ip->is557 ? 0 : 1) | 0x60); PUTCB8(cb, CB_CONFIG_OFFSET + 13, 0); PUTCB8(cb, CB_CONFIG_OFFSET + 14, 0xf2); PUTCB8(cb, CB_CONFIG_OFFSET + 15, (ip->miih ? 0x80 : 0) | (ip->promisc ? 0x1 : 0) | 0x48); PUTCB8(cb, CB_CONFIG_OFFSET + 16, 0); PUTCB8(cb, CB_CONFIG_OFFSET + 17, (ip->canpause ? 0x40 : 0)); PUTCB8(cb, CB_CONFIG_OFFSET + 18, (ip->is557 ? 0 : 0x8) | 0xf2); PUTCB8(cb, CB_CONFIG_OFFSET + 19, ((ip->revid < REV_82558_B0) ? 0 : 0x80) | (ip->canpause ? 0x18 : 0)); PUTCB8(cb, CB_CONFIG_OFFSET + 20, 0x3f); PUTCB8(cb, CB_CONFIG_OFFSET + 21, ((ip->nmcast >= CB_MCS_CNT_MAX) ? 0x8 : 0) | 0x5); return (iprb_cmd_submit(ip, CB_CMD_CONFIG)); } int iprb_set_ucode(iprb_t *ip) { iprb_dma_t *cb; const iprb_ucode_t *uc = NULL; int i; for (i = 0; iprb_ucode[i].length; i++) { if (iprb_ucode[i].rev == ip->revid) { uc = &iprb_ucode[i]; break; } } if (uc == NULL) { /* no matching firmware found, assume success */ return (DDI_SUCCESS); } ASSERT(mutex_owned(&ip->culock)); if ((cb = iprb_cmd_next(ip)) == NULL) { return (DDI_FAILURE); } for (i = 0; i < uc->length; i++) { PUTCB32(cb, (CB_UCODE_OFFSET + i * 4), uc->ucode[i]); } return (iprb_cmd_submit(ip, CB_CMD_UCODE)); } int iprb_configure(iprb_t *ip) { ASSERT(mutex_owned(&ip->culock)); if (iprb_cmd_drain(ip) != DDI_SUCCESS) return (DDI_FAILURE); if (iprb_set_config(ip) != DDI_SUCCESS) return (DDI_FAILURE); if (iprb_set_unicast(ip) != DDI_SUCCESS) return (DDI_FAILURE); if (iprb_set_multicast(ip) != DDI_SUCCESS) return (DDI_FAILURE); return (DDI_SUCCESS); } void iprb_stop(iprb_t *ip) { /* go idle */ PUT32(ip, CSR_PORT, PORT_SEL_RESET); (void) GET32(ip, CSR_PORT); drv_usecwait(50); /* shut off device interrupts */ PUT8(ip, CSR_INTCTL, INTCTL_MASK); } int iprb_start(iprb_t *ip) { iprb_dma_t *cb; ASSERT(mutex_owned(&ip->rulock)); ASSERT(mutex_owned(&ip->culock)); /* Reset, but first go into idle state */ PUT32(ip, CSR_PORT, PORT_SEL_RESET); (void) GET32(ip, CSR_PORT); drv_usecwait(50); PUT32(ip, CSR_PORT, PORT_SW_RESET); (void) GET32(ip, CSR_PORT); drv_usecwait(10); PUT8(ip, CSR_INTCTL, INTCTL_MASK); /* Reset pointers */ ip->cmd_head = ip->cmd_tail = 0; ip->cmd_last = NUM_TX - 1; if (iprb_cmd_ready(ip) != DDI_SUCCESS) return (DDI_FAILURE); PUT32(ip, CSR_GEN_PTR, 0); PUT8(ip, CSR_CMD, CUC_CUBASE); (void) GET8(ip, CSR_CMD); if (iprb_cmd_ready(ip) != DDI_SUCCESS) return (DDI_FAILURE); PUT32(ip, CSR_GEN_PTR, 0); PUT8(ip, CSR_CMD, RUC_RUBASE); (void) GET8(ip, CSR_CMD); /* Send a NOP. This will be the first command seen by the device. */ cb = iprb_cmd_next(ip); ASSERT(cb); if (iprb_cmd_submit(ip, CB_CMD_NOP) != DDI_SUCCESS) return (DDI_FAILURE); /* as that was the first command, go ahead and submit a CU start */ if (iprb_cmd_ready(ip) != DDI_SUCCESS) return (DDI_FAILURE); PUT32(ip, CSR_GEN_PTR, cb->paddr); PUT8(ip, CSR_CMD, CUC_START); (void) GET8(ip, CSR_CMD); /* Upload firmware. */ if (iprb_set_ucode(ip) != DDI_SUCCESS) return (DDI_FAILURE); /* Set up RFDs */ iprb_rx_init(ip); PUT32(ip, CSR_GEN_PTR, ip->rxb[0].paddr); /* wait for the SCB */ (void) iprb_cmd_ready(ip); PUT8(ip, CSR_CMD, RUC_START); (void) GET8(ip, CSR_CMD); /* flush CSR */ /* Enable device interrupts */ PUT8(ip, CSR_INTCTL, 0); (void) GET8(ip, CSR_INTCTL); return (DDI_SUCCESS); } void iprb_update_stats(iprb_t *ip) { iprb_dma_t *sp = &ip->stats; hrtime_t tstamp; int i; ASSERT(mutex_owned(&ip->culock)); /* Collect the hardware stats, but don't keep redoing it */ tstamp = gethrtime(); if (tstamp / NANOSEC == ip->stats_time / NANOSEC) return; PUTSTAT(sp, STATS_DONE_OFFSET, 0); SYNCSTATS(sp, 0, 0, DDI_DMA_SYNC_FORDEV); if (iprb_cmd_ready(ip) != DDI_SUCCESS) return; PUT32(ip, CSR_GEN_PTR, sp->paddr); PUT8(ip, CSR_CMD, CUC_STATSBASE); (void) GET8(ip, CSR_CMD); if (iprb_cmd_ready(ip) != DDI_SUCCESS) return; PUT8(ip, CSR_CMD, CUC_STATS_RST); (void) GET8(ip, CSR_CMD); /* flush wb */ for (i = 10000; i; i -= 10) { SYNCSTATS(sp, 0, 0, DDI_DMA_SYNC_FORKERNEL); if (GETSTAT(sp, STATS_DONE_OFFSET) == STATS_RST_DONE) { /* yay stats are updated */ break; } drv_usecwait(10); } if (i == 0) { iprb_error(ip, "time out acquiring hardware statistics"); return; } ip->ex_coll += GETSTAT(sp, STATS_TX_MAXCOL_OFFSET); ip->late_coll += GETSTAT(sp, STATS_TX_LATECOL_OFFSET); ip->uflo += GETSTAT(sp, STATS_TX_UFLO_OFFSET); ip->defer_xmt += GETSTAT(sp, STATS_TX_DEFER_OFFSET); ip->one_coll += GETSTAT(sp, STATS_TX_ONECOL_OFFSET); ip->multi_coll += GETSTAT(sp, STATS_TX_MULTCOL_OFFSET); ip->collisions += GETSTAT(sp, STATS_TX_TOTCOL_OFFSET); ip->fcs_errs += GETSTAT(sp, STATS_RX_FCS_OFFSET); ip->align_errs += GETSTAT(sp, STATS_RX_ALIGN_OFFSET); ip->norcvbuf += GETSTAT(sp, STATS_RX_NOBUF_OFFSET); ip->oflo += GETSTAT(sp, STATS_RX_OFLO_OFFSET); ip->runt += GETSTAT(sp, STATS_RX_SHORT_OFFSET); ip->stats_time = tstamp; } mblk_t * iprb_send(iprb_t *ip, mblk_t *mp) { iprb_dma_t *cb; size_t sz; ASSERT(mutex_owned(&ip->culock)); /* possibly reclaim some CBs */ iprb_cmd_reclaim(ip); cb = iprb_cmd_next(ip); if (cb == NULL) { /* flow control */ ip->wantw = B_TRUE; return (mp); } if ((sz = msgsize(mp)) > (ETHERMAX + VLAN_TAGSZ)) { /* Generally this should never occur */ ip->macxmt_errs++; freemsg(mp); return (NULL); } ip->opackets++; ip->obytes += sz; PUTCB32(cb, CB_TX_TBD_OFFSET, 0xffffffffU); PUTCB16(cb, CB_TX_COUNT_OFFSET, (sz & 0x3fff) | CB_TX_EOF); PUTCB8(cb, CB_TX_THRESH_OFFSET, (sz / 8) & 0xff); PUTCB8(cb, CB_TX_NUMBER_OFFSET, 0); mcopymsg(mp, cb->vaddr + CB_TX_DATA_OFFSET); if (cb->vaddr[CB_TX_DATA_OFFSET] & 0x1) { if (bcmp(cb->vaddr + CB_TX_DATA_OFFSET, &iprb_bcast, 6) != 0) { ip->multixmt++; } else { ip->brdcstxmt++; } } SYNCCB(cb, 0, CB_TX_DATA_OFFSET + sz, DDI_DMA_SYNC_FORDEV); if (iprb_cmd_submit(ip, CB_CMD_TX) != DDI_SUCCESS) { ip->macxmt_errs++; } return (NULL); } void iprb_rx_add(iprb_t *ip) { uint16_t last, curr, next; iprb_dma_t *rfd, *nfd, *lfd; ASSERT(mutex_owned(&ip->rulock)); curr = ip->rx_index; last = ip->rx_last; next = (curr + 1) % NUM_RX; ip->rx_last = curr; ip->rx_index = next; lfd = &ip->rxb[last]; rfd = &ip->rxb[curr]; nfd = &ip->rxb[next]; PUTRFD32(rfd, RFD_LNK_OFFSET, nfd->paddr); PUTRFD16(rfd, RFD_CTL_OFFSET, RFD_CTL_EL); PUTRFD16(rfd, RFD_SIZ_OFFSET, RFD_SIZE - RFD_PKT_OFFSET); PUTRFD16(rfd, RFD_CNT_OFFSET, 0); SYNCRFD(rfd, 0, RFD_PKT_OFFSET, DDI_DMA_SYNC_FORDEV); /* clear the suspend & EL bits from the previous RFD */ PUTRFD16(lfd, RFD_CTL_OFFSET, 0); SYNCRFD(rfd, RFD_CTL_OFFSET, 2, DDI_DMA_SYNC_FORDEV); } void iprb_rx_init(iprb_t *ip) { ip->rx_index = 0; ip->rx_last = NUM_RX - 1; for (int i = 0; i < NUM_RX; i++) iprb_rx_add(ip); ip->rx_index = 0; ip->rx_last = NUM_RX - 1; } mblk_t * iprb_rx(iprb_t *ip) { iprb_dma_t *rfd; uint16_t cnt; uint16_t sts; int i; mblk_t *mplist; mblk_t **mpp; mblk_t *mp; mplist = NULL; mpp = &mplist; for (i = 0; i < NUM_RX; i++) { rfd = &ip->rxb[ip->rx_index]; SYNCRFD(rfd, RFD_STS_OFFSET, 2, DDI_DMA_SYNC_FORKERNEL); if ((GETRFD16(rfd, RFD_STS_OFFSET) & RFD_STS_C) == 0) { break; } ip->rx_wdog = gethrtime(); SYNCRFD(rfd, 0, 0, DDI_DMA_SYNC_FORKERNEL); cnt = GETRFD16(rfd, RFD_CNT_OFFSET); cnt &= ~(RFD_CNT_EOF | RFD_CNT_F); sts = GETRFD16(rfd, RFD_STS_OFFSET); if (cnt > (ETHERMAX + VLAN_TAGSZ)) { ip->toolong++; iprb_rx_add(ip); continue; } if (((sts & RFD_STS_OK) == 0) && (sts & RFD_STS_ERRS)) { iprb_rx_add(ip); continue; } if ((mp = allocb(cnt, BPRI_MED)) == NULL) { ip->norcvbuf++; iprb_rx_add(ip); continue; } bcopy(rfd->vaddr + RFD_PKT_OFFSET, mp->b_wptr, cnt); /* return it to the RFD list */ iprb_rx_add(ip); mp->b_wptr += cnt; ip->ipackets++; ip->rbytes += cnt; if (mp->b_rptr[0] & 0x1) { if (bcmp(mp->b_rptr, &iprb_bcast, 6) != 0) { ip->multircv++; } else { ip->brdcstrcv++; } } *mpp = mp; mpp = &mp->b_next; } return (mplist); } int iprb_m_promisc(void *arg, boolean_t on) { iprb_t *ip = arg; mutex_enter(&ip->culock); ip->promisc = on; if (ip->running && !ip->suspended) (void) iprb_configure(ip); mutex_exit(&ip->culock); return (0); } int iprb_m_unicst(void *arg, const uint8_t *macaddr) { iprb_t *ip = arg; mutex_enter(&ip->culock); bcopy(macaddr, ip->curraddr, 6); if (ip->running && !ip->suspended) (void) iprb_configure(ip); mutex_exit(&ip->culock); return (0); } int iprb_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr) { iprb_t *ip = arg; list_t *l = &ip->mcast; iprb_mcast_t *mc; if (add) { mc = kmem_alloc(sizeof (*mc), KM_NOSLEEP); if (mc == NULL) { return (ENOMEM); } bcopy(macaddr, mc->addr, 6); mutex_enter(&ip->culock); list_insert_head(l, mc); ip->nmcast++; if (ip->running && !ip->suspended) (void) iprb_configure(ip); mutex_exit(&ip->culock); } else { mutex_enter(&ip->culock); for (mc = list_head(l); mc != NULL; mc = list_next(l, mc)) { if (bcmp(macaddr, mc->addr, 6) == 0) { list_remove(&ip->mcast, mc); ip->nmcast--; if (ip->running && !ip->suspended) (void) iprb_configure(ip); break; } } mutex_exit(&ip->culock); if (mc) kmem_free(mc, sizeof (*mc)); } return (0); } int iprb_m_start(void *arg) { int rv; iprb_t *ip = arg; mutex_enter(&ip->rulock); mutex_enter(&ip->culock); rv = ip->suspended ? 0 : iprb_start(ip); if (rv == 0) ip->running = B_TRUE; ip->perh = ddi_periodic_add(iprb_periodic, ip, 5000000000, 0); mutex_exit(&ip->culock); mutex_exit(&ip->rulock); if (rv == 0) { if (ip->miih) mii_start(ip->miih); else /* might be a lie. */ mac_link_update(ip->mach, LINK_STATE_UP); } return (rv ? EIO : 0); } void iprb_m_stop(void *arg) { iprb_t *ip = arg; if (ip->miih) { mii_stop(ip->miih); } else { mac_link_update(ip->mach, LINK_STATE_DOWN); } ddi_periodic_delete(ip->perh); ip->perh = 0; mutex_enter(&ip->rulock); mutex_enter(&ip->culock); if (!ip->suspended) { iprb_update_stats(ip); iprb_stop(ip); } ip->running = B_FALSE; mutex_exit(&ip->culock); mutex_exit(&ip->rulock); } int iprb_m_stat(void *arg, uint_t stat, uint64_t *val) { iprb_t *ip = arg; if (ip->miih && (mii_m_getstat(ip->miih, stat, val) == 0)) { return (0); } mutex_enter(&ip->culock); if ((!ip->suspended) && (ip->running)) { iprb_update_stats(ip); } mutex_exit(&ip->culock); switch (stat) { case MAC_STAT_IFSPEED: if (ip->miih == NULL) { *val = 10000000; /* 10 Mbps */ } break; case ETHER_STAT_LINK_DUPLEX: if (ip->miih == NULL) { *val = LINK_DUPLEX_UNKNOWN; } break; case MAC_STAT_MULTIRCV: *val = ip->multircv; break; case MAC_STAT_BRDCSTRCV: *val = ip->brdcstrcv; break; case MAC_STAT_MULTIXMT: *val = ip->multixmt; break; case MAC_STAT_BRDCSTXMT: *val = ip->brdcstxmt; break; case MAC_STAT_IPACKETS: * val = ip->ipackets; break; case MAC_STAT_RBYTES: *val = ip->rbytes; break; case MAC_STAT_OPACKETS: *val = ip->opackets; break; case MAC_STAT_OBYTES: *val = ip->obytes; break; case MAC_STAT_NORCVBUF: *val = ip->norcvbuf; break; case MAC_STAT_COLLISIONS: *val = ip->collisions; break; case MAC_STAT_IERRORS: *val = ip->align_errs + ip->fcs_errs + ip->norcvbuf + ip->runt + ip->toolong + ip->macrcv_errs; break; case MAC_STAT_OERRORS: *val = ip->ex_coll + ip->late_coll + ip->uflo + ip->macxmt_errs + ip->nocarrier; break; case ETHER_STAT_ALIGN_ERRORS: *val = ip->align_errs; break; case ETHER_STAT_FCS_ERRORS: *val = ip->fcs_errs; break; case ETHER_STAT_DEFER_XMTS: *val = ip->defer_xmt; break; case ETHER_STAT_FIRST_COLLISIONS: *val = ip->one_coll + ip->multi_coll + ip->ex_coll; break; case ETHER_STAT_MULTI_COLLISIONS: *val = ip->multi_coll; break; case ETHER_STAT_TX_LATE_COLLISIONS: *val = ip->late_coll; break; case ETHER_STAT_EX_COLLISIONS: *val = ip->ex_coll; break; case MAC_STAT_OVERFLOWS: *val = ip->oflo; break; case MAC_STAT_UNDERFLOWS: *val = ip->uflo; break; case ETHER_STAT_TOOSHORT_ERRORS: *val = ip->runt; break; case ETHER_STAT_TOOLONG_ERRORS: *val = ip->toolong; break; case ETHER_STAT_CARRIER_ERRORS: *val = ip->nocarrier; /* reported only for "suspend" */ break; case ETHER_STAT_MACXMT_ERRORS: *val = ip->macxmt_errs; break; case ETHER_STAT_MACRCV_ERRORS: *val = ip->macrcv_errs; break; default: return (ENOTSUP); } return (0); } void iprb_m_propinfo(void *arg, const char *name, mac_prop_id_t id, mac_prop_info_handle_t pih) { iprb_t *ip = arg; if (ip->miih != NULL) { mii_m_propinfo(ip->miih, name, id, pih); return; } switch (id) { case MAC_PROP_DUPLEX: case MAC_PROP_SPEED: mac_prop_info_set_perm(pih, MAC_PROP_PERM_READ); break; } } int iprb_m_getprop(void *arg, const char *name, mac_prop_id_t id, uint_t sz, void *val) { iprb_t *ip = arg; uint64_t x; if (ip->miih != NULL) { return (mii_m_getprop(ip->miih, name, id, sz, val)); } switch (id) { case MAC_PROP_SPEED: x = 10000000; bcopy(&x, val, sizeof (x)); return (0); case MAC_PROP_DUPLEX: x = LINK_DUPLEX_UNKNOWN; bcopy(&x, val, sizeof (x)); return (0); } return (ENOTSUP); } int iprb_m_setprop(void *arg, const char *name, mac_prop_id_t id, uint_t sz, const void *val) { iprb_t *ip = arg; if (ip->miih != NULL) { return (mii_m_setprop(ip->miih, name, id, sz, val)); } return (ENOTSUP); } mblk_t * iprb_m_tx(void *arg, mblk_t *mp) { iprb_t *ip = arg; mblk_t *nmp; mutex_enter(&ip->culock); while (mp != NULL) { nmp = mp->b_next; mp->b_next = NULL; if (ip->suspended) { freemsg(mp); ip->nocarrier++; mp = nmp; continue; } if ((mp = iprb_send(ip, mp)) != NULL) { mp->b_next = nmp; break; } mp = nmp; } mutex_exit(&ip->culock); return (mp); } void iprb_m_ioctl(void *arg, queue_t *wq, mblk_t *mp) { iprb_t *ip = arg; if ((ip->miih != NULL) && (mii_m_loop_ioctl(ip->miih, wq, mp))) return; miocnak(wq, mp, 0, EINVAL); } uint16_t iprb_mii_read(void *arg, uint8_t phy, uint8_t reg) { iprb_t *ip = arg; uint32_t mdi; /* * NB: we are guaranteed by the MII layer not to be suspended. * Furthermore, we have an independent MII register. */ mdi = MDI_OP_RD | ((uint32_t)phy << MDI_PHYAD_SHIFT) | ((uint32_t)reg << MDI_REGAD_SHIFT); PUT32(ip, CSR_MDICTL, mdi); for (int i = 0; i < 100; i++) { mdi = GET32(ip, CSR_MDICTL); if (mdi & MDI_R) { return (mdi & 0xffff); } drv_usecwait(1); } return (0xffff); } void iprb_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t data) { iprb_t *ip = arg; uint32_t mdi; mdi = MDI_OP_WR | ((uint32_t)phy << MDI_PHYAD_SHIFT) | ((uint32_t)reg << MDI_REGAD_SHIFT) | (data); PUT32(ip, CSR_MDICTL, mdi); for (int i = 0; i < 100; i++) { if (GET32(ip, CSR_MDICTL) & MDI_R) break; } } void iprb_mii_notify(void *arg, link_state_t link) { iprb_t *ip = arg; mac_link_update(ip->mach, link); } uint_t iprb_intr(caddr_t arg1, caddr_t arg2) { iprb_t *ip = (void *)arg1; uint8_t sts; mblk_t *mp = NULL; _NOTE(ARGUNUSED(arg2)); mutex_enter(&ip->rulock); if (ip->suspended) { mutex_exit(&ip->rulock); return (DDI_INTR_UNCLAIMED); } sts = GET8(ip, CSR_STS); if (sts == 0) { /* No interrupt status! */ mutex_exit(&ip->rulock); return (DDI_INTR_UNCLAIMED); } /* acknowledge the interrupts */ PUT8(ip, CSR_STS, sts); if (sts & (STS_RNR | STS_FR)) { mp = iprb_rx(ip); if ((sts & STS_RNR) && ((GET8(ip, CSR_STATE) & STATE_RUS) == STATE_RUS_NORES)) { iprb_rx_init(ip); mutex_enter(&ip->culock); PUT32(ip, CSR_GEN_PTR, ip->rxb[0].paddr); /* wait for the SCB */ (void) iprb_cmd_ready(ip); PUT8(ip, CSR_CMD, RUC_START); (void) GET8(ip, CSR_CMD); /* flush CSR */ mutex_exit(&ip->culock); } } mutex_exit(&ip->rulock); if (mp) { mac_rx(ip->mach, NULL, mp); } if ((sts & (STS_CNA | STS_CX)) && ip->wantw) { ip->wantw = B_FALSE; mac_tx_update(ip->mach); } return (DDI_INTR_CLAIMED); } void iprb_periodic(void *arg) { iprb_t *ip = arg; boolean_t reset = B_FALSE; mutex_enter(&ip->rulock); if (ip->suspended || !ip->running) { mutex_exit(&ip->rulock); return; } /* * If we haven't received a packet in a while, and if the link * is up, then it might be a hung chip. This problem * reportedly only occurs at 10 Mbps. */ if (ip->rxhangbug && ((ip->miih == NULL) || (mii_get_speed(ip->miih) == 10000000)) && ((gethrtime() - ip->rx_wdog) > ip->rx_timeout)) { cmn_err(CE_CONT, "?Possible RU hang, resetting.\n"); reset = B_TRUE; } /* update the statistics */ mutex_enter(&ip->culock); if (ip->tx_wdog && ((gethrtime() - ip->tx_wdog) > ip->tx_timeout)) { /* transmit/CU hang? */ cmn_err(CE_CONT, "?CU stalled, resetting.\n"); reset = B_TRUE; } if (reset) { /* We want to reconfigure */ iprb_stop(ip); if (iprb_start(ip) != DDI_SUCCESS) { iprb_error(ip, "unable to restart chip"); } } iprb_update_stats(ip); mutex_exit(&ip->culock); mutex_exit(&ip->rulock); } int iprb_quiesce(dev_info_t *dip) { iprb_t *ip = ddi_get_driver_private(dip); /* Reset, but first go into idle state */ PUT32(ip, CSR_PORT, PORT_SEL_RESET); drv_usecwait(50); PUT32(ip, CSR_PORT, PORT_SW_RESET); drv_usecwait(10); PUT8(ip, CSR_INTCTL, INTCTL_MASK); return (DDI_SUCCESS); } int iprb_suspend(dev_info_t *dip) { iprb_t *ip = ddi_get_driver_private(dip); if (ip->miih) mii_suspend(ip->miih); mutex_enter(&ip->rulock); mutex_enter(&ip->culock); if (!ip->suspended) { ip->suspended = B_TRUE; if (ip->running) { iprb_update_stats(ip); iprb_stop(ip); } } mutex_exit(&ip->culock); mutex_exit(&ip->rulock); return (DDI_SUCCESS); } int iprb_resume(dev_info_t *dip) { iprb_t *ip = ddi_get_driver_private(dip); mutex_enter(&ip->rulock); mutex_enter(&ip->culock); ip->suspended = B_FALSE; if (ip->running) { if (iprb_start(ip) != DDI_SUCCESS) { iprb_error(ip, "unable to restart chip!"); ip->suspended = B_TRUE; mutex_exit(&ip->culock); mutex_exit(&ip->rulock); return (DDI_FAILURE); } } mutex_exit(&ip->culock); mutex_exit(&ip->rulock); if (ip->miih) mii_resume(ip->miih); return (DDI_SUCCESS); } int iprb_ddi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { switch (cmd) { case DDI_ATTACH: return (iprb_attach(dip)); case DDI_RESUME: return (iprb_resume(dip)); default: return (DDI_FAILURE); } } int iprb_ddi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { switch (cmd) { case DDI_DETACH: return (iprb_detach(dip)); case DDI_SUSPEND: return (iprb_suspend(dip)); default: return (DDI_FAILURE); } } void iprb_error(iprb_t *ip, const char *fmt, ...) { va_list ap; char buf[256]; va_start(ap, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, ap); va_end(ap); cmn_err(CE_WARN, "%s%d: %s", ddi_driver_name(ip->dip), ddi_get_instance(ip->dip), buf); }