/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright (c) 2007 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #define DMA_TO_DEVICE 0 #define DMA_FROM_DEVICE 1 #define RB_CLEAR_NODE(nodep) AVL_SETPARENT(nodep, nodep); /* * XXX * - build with sparse * - should we limit the size of a mr region? let transport return failure? * - should we detect duplicate keys on a socket? hmm. * - an rdma is an mlock, apply rlimit? */ /* * get the number of pages by looking at the page indices that the start and * end addresses fall in. * * Returns 0 if the vec is invalid. It is invalid if the number of bytes * causes the address to wrap or overflows an unsigned int. This comes * from being stored in the 'length' member of 'struct rdsv3_scatterlist'. */ static unsigned int rdsv3_pages_in_vec(struct rdsv3_iovec *vec) { if ((vec->addr + vec->bytes <= vec->addr) || (vec->bytes > (uint64_t)UINT_MAX)) { return (0); } return (((vec->addr + vec->bytes + PAGESIZE - 1) >> PAGESHIFT) - (vec->addr >> PAGESHIFT)); } static struct rdsv3_mr * rdsv3_mr_tree_walk(struct avl_tree *root, uint32_t key, struct rdsv3_mr *insert) { struct rdsv3_mr *mr; avl_index_t where; mr = avl_find(root, &key, &where); if ((mr == NULL) && (insert != NULL)) { avl_insert(root, (void *)insert, where); atomic_add_32(&insert->r_refcount, 1); return (NULL); } return (mr); } /* * Destroy the transport-specific part of a MR. */ static void rdsv3_destroy_mr(struct rdsv3_mr *mr) { struct rdsv3_sock *rs = mr->r_sock; void *trans_private = NULL; avl_node_t *np; RDSV3_DPRINTF5("rdsv3_destroy_mr", "RDS: destroy mr key is %x refcnt %u", mr->r_key, atomic_get(&mr->r_refcount)); if (test_and_set_bit(RDSV3_MR_DEAD, &mr->r_state)) return; mutex_enter(&rs->rs_rdma_lock); np = &mr->r_rb_node; if (AVL_XPARENT(np) != np) avl_remove(&rs->rs_rdma_keys, mr); trans_private = mr->r_trans_private; mr->r_trans_private = NULL; mutex_exit(&rs->rs_rdma_lock); if (trans_private) mr->r_trans->free_mr(trans_private, mr->r_invalidate); } void __rdsv3_put_mr_final(struct rdsv3_mr *mr) { rdsv3_destroy_mr(mr); kmem_free(mr, sizeof (*mr)); } /* * By the time this is called we can't have any more ioctls called on * the socket so we don't need to worry about racing with others. */ void rdsv3_rdma_drop_keys(struct rdsv3_sock *rs) { struct rdsv3_mr *mr; struct avl_node *node; /* Release any MRs associated with this socket */ mutex_enter(&rs->rs_rdma_lock); while ((node = avl_first(&rs->rs_rdma_keys))) { mr = container_of(node, struct rdsv3_mr, r_rb_node); if (mr->r_trans == rs->rs_transport) mr->r_invalidate = 0; avl_remove(&rs->rs_rdma_keys, &mr->r_rb_node); RB_CLEAR_NODE(&mr->r_rb_node) mutex_exit(&rs->rs_rdma_lock); rdsv3_destroy_mr(mr); rdsv3_mr_put(mr); mutex_enter(&rs->rs_rdma_lock); } mutex_exit(&rs->rs_rdma_lock); if (rs->rs_transport && rs->rs_transport->flush_mrs) rs->rs_transport->flush_mrs(); } /* * Helper function to pin user pages. */ #if 0 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, struct page **pages, int write) { unsigned long l_user_addr = user_addr; unsigned int l_nr_pages = nr_pages; struct page **l_pages = pages; int l_write = write; /* memory pin in rds_ib_get_mr() */ return (0); } #endif static int __rdsv3_rdma_map(struct rdsv3_sock *rs, struct rdsv3_get_mr_args *args, uint64_t *cookie_ret, struct rdsv3_mr **mr_ret) { struct rdsv3_mr *mr = NULL, *found; void *trans_private; rdsv3_rdma_cookie_t cookie; unsigned int nents = 0; int ret; if (rs->rs_bound_addr == 0) { ret = -ENOTCONN; /* XXX not a great errno */ goto out; } if (rs->rs_transport->get_mr == NULL) { ret = -EOPNOTSUPP; goto out; } mr = kmem_zalloc(sizeof (struct rdsv3_mr), KM_NOSLEEP); if (mr == NULL) { ret = -ENOMEM; goto out; } mr->r_refcount = 1; RB_CLEAR_NODE(&mr->r_rb_node); mr->r_trans = rs->rs_transport; mr->r_sock = rs; if (args->flags & RDSV3_RDMA_USE_ONCE) mr->r_use_once = 1; if (args->flags & RDSV3_RDMA_INVALIDATE) mr->r_invalidate = 1; if (args->flags & RDSV3_RDMA_READWRITE) mr->r_write = 1; /* * Obtain a transport specific MR. If this succeeds, the * s/g list is now owned by the MR. * Note that dma_map() implies that pending writes are * flushed to RAM, so no dma_sync is needed here. */ trans_private = rs->rs_transport->get_mr(&args->vec, nents, rs, &mr->r_key); if (IS_ERR(trans_private)) { ret = PTR_ERR(trans_private); goto out; } mr->r_trans_private = trans_private; /* * The user may pass us an unaligned address, but we can only * map page aligned regions. So we keep the offset, and build * a 64bit cookie containing and pass that * around. */ cookie = rdsv3_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGEMASK); if (cookie_ret) *cookie_ret = cookie; /* * copy value of cookie to user address at args->cookie_addr */ if (args->cookie_addr) { ret = ddi_copyout((void *)&cookie, (void *)((intptr_t)args->cookie_addr), sizeof (rdsv3_rdma_cookie_t), 0); if (ret != 0) { ret = -EFAULT; goto out; } } RDSV3_DPRINTF5("__rdsv3_rdma_map", "RDS: get_mr mr 0x%p addr 0x%llx key 0x%x", mr, args->vec.addr, mr->r_key); /* * Inserting the new MR into the rbtree bumps its * reference count. */ mutex_enter(&rs->rs_rdma_lock); found = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); mutex_exit(&rs->rs_rdma_lock); ASSERT(!(found && found != mr)); if (mr_ret) { atomic_add_32(&mr->r_refcount, 1); *mr_ret = mr; } ret = 0; out: if (mr) rdsv3_mr_put(mr); return (ret); } int rdsv3_get_mr(struct rdsv3_sock *rs, const void *optval, int optlen) { struct rdsv3_get_mr_args args; if (optlen != sizeof (struct rdsv3_get_mr_args)) return (-EINVAL); #if 1 bcopy((struct rdsv3_get_mr_args *)optval, &args, sizeof (struct rdsv3_get_mr_args)); #else if (ddi_copyin(optval, &args, optlen, 0)) return (-EFAULT); #endif return (__rdsv3_rdma_map(rs, &args, NULL, NULL)); } int rdsv3_get_mr_for_dest(struct rdsv3_sock *rs, const void *optval, int optlen) { struct rdsv3_get_mr_for_dest_args args; struct rdsv3_get_mr_args new_args; if (optlen != sizeof (struct rdsv3_get_mr_for_dest_args)) return (-EINVAL); #if 1 bcopy((struct rdsv3_get_mr_for_dest_args *)optval, &args, sizeof (struct rdsv3_get_mr_for_dest_args)); #else if (ddi_copyin(optval, &args, optlen, 0)) return (-EFAULT); #endif /* * Initially, just behave like get_mr(). * TODO: Implement get_mr as wrapper around this * and deprecate it. */ new_args.vec = args.vec; new_args.cookie_addr = args.cookie_addr; new_args.flags = args.flags; return (__rdsv3_rdma_map(rs, &new_args, NULL, NULL)); } /* * Free the MR indicated by the given R_Key */ int rdsv3_free_mr(struct rdsv3_sock *rs, const void *optval, int optlen) { struct rdsv3_free_mr_args args; struct rdsv3_mr *mr; if (optlen != sizeof (struct rdsv3_free_mr_args)) return (-EINVAL); #if 1 bcopy((struct rdsv3_free_mr_args *)optval, &args, sizeof (struct rdsv3_free_mr_args)); #else if (ddi_copyin((struct rdsv3_free_mr_args *)optval, &args, sizeof (struct rdsv3_free_mr_args), 0)) return (-EFAULT); #endif /* Special case - a null cookie means flush all unused MRs */ if (args.cookie == 0) { if (!rs->rs_transport || !rs->rs_transport->flush_mrs) return (-EINVAL); rs->rs_transport->flush_mrs(); return (0); } /* * Look up the MR given its R_key and remove it from the rbtree * so nobody else finds it. * This should also prevent races with rdsv3_rdma_unuse. */ mutex_enter(&rs->rs_rdma_lock); mr = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, rdsv3_rdma_cookie_key(args.cookie), NULL); if (mr) { avl_remove(&rs->rs_rdma_keys, &mr->r_rb_node); RB_CLEAR_NODE(&mr->r_rb_node); if (args.flags & RDSV3_RDMA_INVALIDATE) mr->r_invalidate = 1; } mutex_exit(&rs->rs_rdma_lock); if (!mr) return (-EINVAL); /* * call rdsv3_destroy_mr() ourselves so that we're sure it's done * by time we return. If we let rdsv3_mr_put() do it it might not * happen until someone else drops their ref. */ rdsv3_destroy_mr(mr); rdsv3_mr_put(mr); return (0); } /* * This is called when we receive an extension header that * tells us this MR was used. It allows us to implement * use_once semantics */ void rdsv3_rdma_unuse(struct rdsv3_sock *rs, uint32_t r_key, int force) { struct rdsv3_mr *mr; int zot_me = 0; RDSV3_DPRINTF4("rdsv3_rdma_unuse", "Enter rkey: 0x%x", r_key); mutex_enter(&rs->rs_rdma_lock); mr = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); if (mr && (mr->r_use_once || force)) { avl_remove(&rs->rs_rdma_keys, &mr->r_rb_node); RB_CLEAR_NODE(&mr->r_rb_node); zot_me = 1; } else if (mr) atomic_add_32(&mr->r_refcount, 1); mutex_exit(&rs->rs_rdma_lock); /* * May have to issue a dma_sync on this memory region. * Note we could avoid this if the operation was a RDMA READ, * but at this point we can't tell. */ if (mr != NULL) { RDSV3_DPRINTF4("rdsv3_rdma_unuse", "mr: %p zot_me %d", mr, zot_me); if (mr->r_trans->sync_mr) mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); /* * If the MR was marked as invalidate, this will * trigger an async flush. */ if (zot_me) rdsv3_destroy_mr(mr); rdsv3_mr_put(mr); } RDSV3_DPRINTF4("rdsv3_rdma_unuse", "Return"); } void rdsv3_rdma_free_op(struct rdsv3_rdma_op *ro) { unsigned int i; /* deallocate RDMA resources on rdsv3_message */ for (i = 0; i < ro->r_nents; i++) { ddi_umem_unlock(ro->r_rdma_sg[i].umem_cookie); } if (ro->r_notifier) kmem_free(ro->r_notifier, sizeof (*ro->r_notifier)); kmem_free(ro, sizeof (*ro)); } /* * args is a pointer to an in-kernel copy in the sendmsg cmsg. */ static struct rdsv3_rdma_op * rdsv3_rdma_prepare(struct rdsv3_sock *rs, struct rdsv3_rdma_args *args) { struct rdsv3_iovec vec; struct rdsv3_rdma_op *op = NULL; unsigned int nr_bytes; struct rdsv3_iovec *local_vec; unsigned int nr; unsigned int i; ddi_umem_cookie_t umem_cookie; size_t umem_len; caddr_t umem_addr; int ret; if (rs->rs_bound_addr == 0) { ret = -ENOTCONN; /* XXX not a great errno */ goto out; } if (args->nr_local > (uint64_t)UINT_MAX) { ret = -EMSGSIZE; goto out; } op = kmem_zalloc(offsetof(struct rdsv3_rdma_op, r_rdma_sg[args->nr_local]), KM_NOSLEEP); if (op == NULL) { ret = -ENOMEM; goto out; } op->r_write = !!(args->flags & RDSV3_RDMA_READWRITE); op->r_fence = !!(args->flags & RDSV3_RDMA_FENCE); op->r_notify = !!(args->flags & RDSV3_RDMA_NOTIFY_ME); op->r_recverr = rs->rs_recverr; if (op->r_notify || op->r_recverr) { /* * We allocate an uninitialized notifier here, because * we don't want to do that in the completion handler. We * would have to use GFP_ATOMIC there, and don't want to deal * with failed allocations. */ op->r_notifier = kmem_alloc(sizeof (struct rdsv3_notifier), KM_NOSLEEP); if (!op->r_notifier) { ret = -ENOMEM; goto out; } op->r_notifier->n_user_token = args->user_token; op->r_notifier->n_status = RDSV3_RDMA_SUCCESS; } /* * The cookie contains the R_Key of the remote memory region, and * optionally an offset into it. This is how we implement RDMA into * unaligned memory. * When setting up the RDMA, we need to add that offset to the * destination address (which is really an offset into the MR) * FIXME: We may want to move this into ib_rdma.c */ op->r_key = rdsv3_rdma_cookie_key(args->cookie); op->r_remote_addr = args->remote_vec.addr + rdsv3_rdma_cookie_offset(args->cookie); nr_bytes = 0; RDSV3_DPRINTF5("rdsv3_rdma_prepare", "RDS: rdma prepare nr_local %llu rva %llx rkey %x", (unsigned long long)args->nr_local, (unsigned long long)args->remote_vec.addr, op->r_key); local_vec = (struct rdsv3_iovec *)(unsigned long) args->local_vec_addr; /* pin the scatter list of user buffers */ for (i = 0; i < args->nr_local; i++) { if (ddi_copyin(&local_vec[i], &vec, sizeof (struct rdsv3_iovec), 0)) { ret = -EFAULT; goto out; } nr = rdsv3_pages_in_vec(&vec); if (nr == 0) { RDSV3_DPRINTF2("rdsv3_rdma_prepare", "rdsv3_pages_in_vec returned 0"); ret = -EINVAL; goto out; } rs->rs_user_addr = vec.addr; rs->rs_user_bytes = vec.bytes; /* pin user memory pages */ umem_len = ptob(btopr(vec.bytes + ((uintptr_t)vec.addr & PAGEOFFSET))); umem_addr = (caddr_t)((uintptr_t)vec.addr & ~PAGEOFFSET); ret = umem_lockmemory(umem_addr, umem_len, DDI_UMEMLOCK_WRITE | DDI_UMEMLOCK_READ, &umem_cookie, NULL, NULL); if (ret != 0) { RDSV3_DPRINTF2("rdsv3_rdma_prepare", "umem_lockmemory() returned %d", ret); ret = -EFAULT; goto out; } op->r_rdma_sg[i].umem_cookie = umem_cookie; op->r_rdma_sg[i].iovec = vec; nr_bytes += vec.bytes; RDSV3_DPRINTF5("rdsv3_rdma_prepare", "RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx", nr_bytes, nr, vec.bytes, vec.addr); } op->r_nents = i; if (nr_bytes > args->remote_vec.bytes) { RDSV3_DPRINTF2("rdsv3_rdma_prepare", "RDS nr_bytes %u remote_bytes %u do not match", nr_bytes, (unsigned int) args->remote_vec.bytes); ret = -EINVAL; goto out; } op->r_bytes = nr_bytes; ret = 0; out: if (ret) { if (op) rdsv3_rdma_free_op(op); op = ERR_PTR(ret); } return (op); } /* * The application asks for a RDMA transfer. * Extract all arguments and set up the rdma_op */ int rdsv3_cmsg_rdma_args(struct rdsv3_sock *rs, struct rdsv3_message *rm, struct cmsghdr *cmsg) { struct rdsv3_rdma_op *op; struct rdsv3_rdma_args *ap; if (cmsg->cmsg_len < CMSG_LEN(sizeof (struct rdsv3_rdma_args)) || rm->m_rdma_op != NULL) return (-EINVAL); /* uint64_t alignment on struct rdsv3_get_mr_args */ ap = (struct rdsv3_rdma_args *)kmem_alloc(cmsg->cmsg_len, KM_SLEEP); bcopy(CMSG_DATA(cmsg), ap, cmsg->cmsg_len); op = rdsv3_rdma_prepare(rs, ap); kmem_free(ap, cmsg->cmsg_len); if (IS_ERR(op)) return (PTR_ERR(op)); rdsv3_stats_inc(s_send_rdma); rm->m_rdma_op = op; return (0); } /* * The application wants us to pass an RDMA destination (aka MR) * to the remote */ int rdsv3_cmsg_rdma_dest(struct rdsv3_sock *rs, struct rdsv3_message *rm, struct cmsghdr *cmsg) { struct rdsv3_mr *mr; uint32_t r_key; int err = 0; if (cmsg->cmsg_len < CMSG_LEN(sizeof (rdsv3_rdma_cookie_t)) || rm->m_rdma_cookie != 0) return (-EINVAL); (void) memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof (rm->m_rdma_cookie)); /* * We are reusing a previously mapped MR here. Most likely, the * application has written to the buffer, so we need to explicitly * flush those writes to RAM. Otherwise the HCA may not see them * when doing a DMA from that buffer. */ r_key = rdsv3_rdma_cookie_key(rm->m_rdma_cookie); mutex_enter(&rs->rs_rdma_lock); mr = rdsv3_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); if (mr == NULL) err = -EINVAL; /* invalid r_key */ else atomic_add_32(&mr->r_refcount, 1); mutex_exit(&rs->rs_rdma_lock); if (mr) { mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); rm->m_rdma_mr = mr; } return (err); } /* * The application passes us an address range it wants to enable RDMA * to/from. We map the area, and save the pair * in rm->m_rdma_cookie. This causes it to be sent along to the peer * in an extension header. */ int rdsv3_cmsg_rdma_map(struct rdsv3_sock *rs, struct rdsv3_message *rm, struct cmsghdr *cmsg) { struct rdsv3_get_mr_args *mrp; int status; if (cmsg->cmsg_len < CMSG_LEN(sizeof (struct rdsv3_get_mr_args)) || rm->m_rdma_cookie != 0) return (-EINVAL); /* uint64_t alignment on struct rdsv3_get_mr_args */ mrp = (struct rdsv3_get_mr_args *)kmem_alloc(cmsg->cmsg_len, KM_SLEEP); bcopy(CMSG_DATA(cmsg), mrp, cmsg->cmsg_len); status = __rdsv3_rdma_map(rs, mrp, &rm->m_rdma_cookie, &rm->m_rdma_mr); kmem_free(mrp, cmsg->cmsg_len); return (status); }