/* * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. */ /* * Copyright 2015 OmniTI Computer Consulting, Inc. All rights reserved. * Copyright 2019 Joyent, Inc. * Copyright 2017 Tegile Systems, Inc. All rights reserved. * Copyright 2020 RackTop Systems, Inc. * Copyright 2020 Ryan Zezeski */ /* * i40e - Intel 10/40 Gb Ethernet driver * * The i40e driver is the main software device driver for the Intel 40 Gb family * of devices. Note that these devices come in many flavors with both 40 GbE * ports and 10 GbE ports. This device is the successor to the 82599 family of * devices (ixgbe). * * Unlike previous generations of Intel 1 GbE and 10 GbE devices, the 40 GbE * devices defined in the XL710 controller (previously known as Fortville) are a * rather different beast and have a small switch embedded inside of them. In * addition, the way that most of the programming is done has been overhauled. * As opposed to just using PCIe memory mapped registers, it also has an * administrative queue which is used to communicate with firmware running on * the chip. * * Each physical function in the hardware shows up as a device that this driver * will bind to. The hardware splits many resources evenly across all of the * physical functions present on the device, while other resources are instead * shared across the entire card and its up to the device driver to * intelligently partition them. * * ------------ * Organization * ------------ * * This driver is made up of several files which have their own theory * statements spread across them. We'll touch on the high level purpose of each * file here, and then we'll get into more discussion on how the device is * generally modelled with respect to the interfaces in illumos. * * i40e_gld.c: This file contains all of the bindings to MAC and the networking * stack. * * i40e_intr.c: This file contains all of the interrupt service routines and * contains logic to enable and disable interrupts on the hardware. * It also contains the logic to map hardware resources such as the * rings to and from interrupts and controls their ability to fire. * * There is a big theory statement on interrupts present there. * * i40e_main.c: The file that you're currently in. It interfaces with the * traditional OS DDI interfaces and is in charge of configuring * the device. * * i40e_osdep.[ch]: These files contain interfaces and definitions needed to * work with Intel's common code for the device. * * i40e_stats.c: This file contains the general work and logic around our * kstats. A theory statement on their organization and use of the * hardware exists there. * * i40e_sw.h: This header file contains all of the primary structure definitions * and constants that are used across the entire driver. * * i40e_transceiver.c: This file contains all of the logic for sending and * receiving data. It contains all of the ring and DMA * allocation logic, as well as, the actual interfaces to * send and receive data. * * A big theory statement on ring management, descriptors, * and how it ties into the OS is present there. * * -------------- * General Design * -------------- * * Before we go too far into the general way we've laid out data structures and * the like, it's worth taking some time to explain how the hardware is * organized. This organization informs a lot of how we do things at this time * in the driver. * * Each physical device consists of a number of one or more ports, which are * considered physical functions in the PCI sense and thus each get enumerated * by the system, resulting in an instance being created and attached to. While * there are many resources that are unique to each physical function eg. * instance of the device, there are many that are shared across all of them. * Several resources have an amount reserved for each Virtual Station Interface * (VSI) and then a static pool of resources, available for all functions on the * card. * * The most important resource in hardware are its transmit and receive queue * pairs (i40e_trqpair_t). These should be thought of as rings in GLDv3 * parlance. There are a set number of these on each device; however, they are * statically partitioned among all of the different physical functions. * * 'Fortville' (the code name for this device family) is basically a switch. To * map MAC addresses and other things to queues, we end up having to create * Virtual Station Interfaces (VSIs) and establish forwarding rules that direct * traffic to a queue. A VSI owns a collection of queues and has a series of * forwarding rules that point to it. One way to think of this is to treat it * like MAC does a VNIC. When MAC refers to a group, a collection of rings and * classification resources, that is a VSI in i40e. * * The sets of VSIs is shared across the entire device, though there may be some * amount that are reserved to each PF. Because the GLDv3 does not let us change * the number of groups dynamically, we instead statically divide this amount * evenly between all the functions that exist. In addition, we have the same * problem with the mac address forwarding rules. There are a static number that * exist shared across all the functions. * * To handle both of these resources, what we end up doing is going through and * determining which functions belong to the same device. Nominally one might do * this by having a nexus driver; however, a prime requirement for a nexus * driver is identifying the various children and activating them. While it is * possible to get this information from NVRAM, we would end up duplicating a * lot of the PCI enumeration logic. Really, at the end of the day, the device * doesn't give us the traditional identification properties we want from a * nexus driver. * * Instead, we rely on some properties that are guaranteed to be unique. While * it might be tempting to leverage the PBA or serial number of the device from * NVRAM, there is nothing that says that two devices can't be mis-programmed to * have the same values in NVRAM. Instead, we uniquely identify a group of * functions based on their parent in the /devices tree, their PCI bus and PCI * function identifiers. Using either on their own may not be sufficient. * * For each unique PCI device that we encounter, we'll create a i40e_device_t. * From there, because we don't have a good way to tell the GLDv3 about sharing * resources between everything, we'll end up just dividing the resources * evenly between all of the functions. Longer term, if we don't have to declare * to the GLDv3 that these resources are shared, then we'll maintain a pool and * have each PF allocate from the pool in the device, thus if only two of four * ports are being used, for example, then all of the resources can still be * used. * * ------------------------------------------- * Transmit and Receive Queue Pair Allocations * ------------------------------------------- * * NVRAM ends up assigning each PF its own share of the transmit and receive LAN * queue pairs, we have no way of modifying it, only observing it. From there, * it's up to us to map these queues to VSIs and VFs. Since we don't support any * VFs at this time, we only focus on assignments to VSIs. * * At the moment, we used a static mapping of transmit/receive queue pairs to a * given VSI (eg. rings to a group). Though in the fullness of time, we want to * make this something which is fully dynamic and take advantage of documented, * but not yet available functionality for adding filters based on VXLAN and * other encapsulation technologies. * * ------------------------------------- * Broadcast, Multicast, and Promiscuous * ------------------------------------- * * As part of the GLDv3, we need to make sure that we can handle receiving * broadcast and multicast traffic. As well as enabling promiscuous mode when * requested. GLDv3 requires that all broadcast and multicast traffic be * retrieved by the default group, eg. the first one. This is the same thing as * the default VSI. * * To receieve broadcast traffic, we enable it through the admin queue, rather * than use one of our filters for it. For multicast traffic, we reserve a * certain number of the hash filters and assign them to a given PF. When we * exceed those, we then switch to using promiscuous mode for multicast traffic. * * More specifically, once we exceed the number of filters (indicated because * the i40e_t`i40e_resources.ifr_nmcastfilt == * i40e_t`i40e_resources.ifr_nmcastfilt_used), we then instead need to toggle * promiscuous mode. If promiscuous mode is toggled then we keep track of the * number of MACs added to it by incrementing i40e_t`i40e_mcast_promisc_count. * That will stay enabled until that count reaches zero indicating that we have * only added multicast addresses that we have a corresponding entry for. * * Because MAC itself wants to toggle promiscuous mode, which includes both * unicast and multicast traffic, we go through and keep track of that * ourselves. That is maintained through the use of the i40e_t`i40e_promisc_on * member. * * -------------- * VSI Management * -------------- * * The PFs share 384 VSIs. The firmware creates one VSI per PF by default. * During chip start we retrieve the SEID of this VSI and assign it as the * default VSI for our VEB (one VEB per PF). We then add additional VSIs to * the VEB up to the determined number of rx groups: i40e_t`i40e_num_rx_groups. * We currently cap this number to I40E_GROUP_MAX to a) make sure all PFs can * allocate the same number of VSIs, and b) to keep the interrupt multiplexing * under control. In the future, when we improve the interrupt allocation, we * may want to revisit this cap to make better use of the available VSIs. The * VSI allocation and configuration can be found in i40e_chip_start(). * * ---------------- * Structure Layout * ---------------- * * The following images relates the core data structures together. The primary * structure in the system is the i40e_t. It itself contains multiple rings, * i40e_trqpair_t's which contain the various transmit and receive data. The * receive data is stored outside of the i40e_trqpair_t and instead in the * i40e_rx_data_t. The i40e_t has a corresponding i40e_device_t which keeps * track of per-physical device state. Finally, for every active descriptor, * there is a corresponding control block, which is where the * i40e_rx_control_block_t and the i40e_tx_control_block_t come from. * * +-----------------------+ +-----------------------+ * | Global i40e_t list | | Global Device list | * | | +--| | * | i40e_glist | | | i40e_dlist | * +-----------------------+ | +-----------------------+ * | v * | +------------------------+ +-----------------------+ * | | Device-wide Structure |----->| Device-wide Structure |--> ... * | | i40e_device_t | | i40e_device_t | * | | | +-----------------------+ * | | dev_info_t * ------+--> Parent in devices tree. * | | uint_t ------+--> PCI bus number * | | uint_t ------+--> PCI device number * | | uint_t ------+--> Number of functions * | | i40e_switch_rsrcs_t ---+--> Captured total switch resources * | | list_t ------+-------------+ * | +------------------------+ | * | ^ | * | +--------+ | * | | v * | +---------------------------+ | +-------------------+ * +->| GLDv3 Device, per PF |-----|-->| GLDv3 Device (PF) |--> ... * | i40e_t | | | i40e_t | * | **Primary Structure** | | +-------------------+ * | | | * | i40e_device_t * --+-----+ * | i40e_state_t --+---> Device State * | i40e_hw_t --+---> Intel common code structure * | mac_handle_t --+---> GLDv3 handle to MAC * | ddi_periodic_t --+---> Link activity timer * | i40e_vsi_t * --+---> Array of VSIs * | i40e_func_rsrc_t --+---> Available hardware resources * | i40e_switch_rsrc_t * --+---> Switch resource snapshot * | i40e_sdu --+---> Current MTU * | i40e_frame_max --+---> Current HW frame size * | i40e_uaddr_t * --+---> Array of assigned unicast MACs * | i40e_maddr_t * --+---> Array of assigned multicast MACs * | i40e_mcast_promisccount --+---> Active multicast state * | i40e_promisc_on --+---> Current promiscuous mode state * | uint_t --+---> Number of transmit/receive pairs * | i40e_rx_group_t * --+---> Array of Rx groups * | kstat_t * --+---> PF kstats * | i40e_pf_stats_t --+---> PF kstat backing data * | i40e_trqpair_t * --+---------+ * +---------------------------+ | * | * v * +-------------------------------+ +-----------------------------+ * | Transmit/Receive Queue Pair |-------| Transmit/Receive Queue Pair |->... * | i40e_trqpair_t | | i40e_trqpair_t | * + Ring Data Structure | +-----------------------------+ * | | * | mac_ring_handle_t +--> MAC RX ring handle * | mac_ring_handle_t +--> MAC TX ring handle * | i40e_rxq_stat_t --+--> RX Queue stats * | i40e_txq_stat_t --+--> TX Queue stats * | uint32_t (tx ring size) +--> TX Ring Size * | uint32_t (tx free list size) +--> TX Free List Size * | i40e_dma_buffer_t --------+--> TX Descriptor ring DMA * | i40e_tx_desc_t * --------+--> TX descriptor ring * | volatile unt32_t * +--> TX Write back head * | uint32_t -------+--> TX ring head * | uint32_t -------+--> TX ring tail * | uint32_t -------+--> Num TX desc free * | i40e_tx_control_block_t * --+--> TX control block array ---+ * | i40e_tx_control_block_t ** --+--> TCB work list ----+ * | i40e_tx_control_block_t ** --+--> TCB free list ---+ * | uint32_t -------+--> Free TCB count | * | i40e_rx_data_t * -------+--+ v * +-------------------------------+ | +---------------------------+ * | | Per-TX Frame Metadata | * | | i40e_tx_control_block_t | * +--------------------+ | | * | mblk to transmit <--+--- mblk_t * | * | type of transmit <--+--- i40e_tx_type_t | * | TX DMA handle <--+--- ddi_dma_handle_t | * v TX DMA buffer <--+--- i40e_dma_buffer_t | * +------------------------------+ +---------------------------+ * | Core Receive Data | * | i40e_rx_data_t | * | | * | i40e_dma_buffer_t --+--> RX descriptor DMA Data * | i40e_rx_desc_t --+--> RX descriptor ring * | uint32_t --+--> Next free desc. * | i40e_rx_control_block_t * --+--> RX Control Block Array ---+ * | i40e_rx_control_block_t ** --+--> RCB work list ---+ * | i40e_rx_control_block_t ** --+--> RCB free list ---+ * +------------------------------+ | * ^ | * | +---------------------------+ | * | | Per-RX Frame Metadata |<---------------+ * | | i40e_rx_control_block_t | * | | | * | | mblk_t * ----+--> Received mblk_t data * | | uint32_t ----+--> Reference count * | | i40e_dma_buffer_t ----+--> Receive data DMA info * | | frtn_t ----+--> mblk free function info * +-----+-- i40e_rx_data_t * | * +---------------------------+ * * ------------- * Lock Ordering * ------------- * * In order to ensure that we don't deadlock, the following represents the * lock order being used. When grabbing locks, follow the following order. Lower * numbers are more important. Thus, the i40e_glock which is number 0, must be * taken before any other locks in the driver. On the other hand, the * i40e_t`i40e_stat_lock, has the highest number because it's the least * important lock. Note, that just because one lock is higher than another does * not mean that all intermediary locks are required. * * 0) i40e_glock * 1) i40e_t`i40e_general_lock * * 2) i40e_trqpair_t`itrq_rx_lock * 3) i40e_trqpair_t`itrq_tx_lock * 4) i40e_trqpair_t`itrq_intr_lock * 5) i40e_t`i40e_rx_pending_lock * 6) i40e_trqpair_t`itrq_tcb_lock * * 7) i40e_t`i40e_stat_lock * * Rules and expectations: * * 1) A thread holding locks belong to one PF should not hold locks belonging to * a second. If for some reason this becomes necessary, locks should be grabbed * based on the list order in the i40e_device_t, which implies that the * i40e_glock is held. * * 2) When grabbing locks between multiple transmit and receive queues, the * locks for the lowest number transmit/receive queue should be grabbed first. * * 3) When grabbing both the transmit and receive lock for a given queue, always * grab i40e_trqpair_t`itrq_rx_lock before the i40e_trqpair_t`itrq_tx_lock. * * 4) The following pairs of locks are not expected to be held at the same time: * * o i40e_t`i40e_rx_pending_lock and i40e_trqpair_t`itrq_tcb_lock * o i40e_trqpair_t`itrq_intr_lock is not expected to be held with any * other lock except i40e_t`i40e_general_lock in mc_start(9E) and * mc_stop(9e). * * ----------- * Future Work * ----------- * * At the moment the i40e_t driver is rather bare bones, allowing us to start * getting data flowing and folks using it while we develop additional features. * While bugs have been filed to cover this future work, the following gives an * overview of expected work: * * o DMA binding and breaking up the locking in ring recycling. * o Enhanced detection of device errors * o Participation in IRM * o FMA device reset * o Stall detection, temperature error detection, etc. * o More dynamic resource pools */ #include "i40e_sw.h" static char i40e_ident[] = "Intel 10/40Gb Ethernet v1.0.3"; /* * The i40e_glock primarily protects the lists below and the i40e_device_t * structures. */ static kmutex_t i40e_glock; static list_t i40e_glist; static list_t i40e_dlist; /* * Access attributes for register mapping. */ static ddi_device_acc_attr_t i40e_regs_acc_attr = { DDI_DEVICE_ATTR_V1, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC, DDI_FLAGERR_ACC }; /* * Logging function for this driver. */ static void i40e_dev_err(i40e_t *i40e, int level, boolean_t console, const char *fmt, va_list ap) { char buf[1024]; (void) vsnprintf(buf, sizeof (buf), fmt, ap); if (i40e == NULL) { cmn_err(level, (console) ? "%s: %s" : "!%s: %s", I40E_MODULE_NAME, buf); } else { dev_err(i40e->i40e_dip, level, (console) ? "%s" : "!%s", buf); } } /* * Because there's the stupid trailing-comma problem with the C preprocessor * and variable arguments, I need to instantiate these. Pardon the redundant * code. */ /*PRINTFLIKE2*/ void i40e_error(i40e_t *i40e, const char *fmt, ...) { va_list ap; va_start(ap, fmt); i40e_dev_err(i40e, CE_WARN, B_FALSE, fmt, ap); va_end(ap); } /*PRINTFLIKE2*/ void i40e_log(i40e_t *i40e, const char *fmt, ...) { va_list ap; va_start(ap, fmt); i40e_dev_err(i40e, CE_NOTE, B_FALSE, fmt, ap); va_end(ap); } /*PRINTFLIKE2*/ void i40e_notice(i40e_t *i40e, const char *fmt, ...) { va_list ap; va_start(ap, fmt); i40e_dev_err(i40e, CE_NOTE, B_TRUE, fmt, ap); va_end(ap); } /* * Various parts of the driver need to know if the controller is from the X722 * family, which has a few additional capabilities and different programming * means. We don't consider virtual functions as part of this as they are quite * different and will require substantially more work. */ static boolean_t i40e_is_x722(i40e_t *i40e) { return (i40e->i40e_hw_space.mac.type == I40E_MAC_X722); } static void i40e_device_rele(i40e_t *i40e) { i40e_device_t *idp = i40e->i40e_device; if (idp == NULL) return; mutex_enter(&i40e_glock); VERIFY(idp->id_nreg > 0); list_remove(&idp->id_i40e_list, i40e); idp->id_nreg--; if (idp->id_nreg == 0) { list_remove(&i40e_dlist, idp); list_destroy(&idp->id_i40e_list); kmem_free(idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc); kmem_free(idp, sizeof (i40e_device_t)); } i40e->i40e_device = NULL; mutex_exit(&i40e_glock); } static i40e_device_t * i40e_device_find(i40e_t *i40e, dev_info_t *parent, uint_t bus, uint_t device) { i40e_device_t *idp; mutex_enter(&i40e_glock); for (idp = list_head(&i40e_dlist); idp != NULL; idp = list_next(&i40e_dlist, idp)) { if (idp->id_parent == parent && idp->id_pci_bus == bus && idp->id_pci_device == device) { break; } } if (idp != NULL) { VERIFY(idp->id_nreg < idp->id_nfuncs); idp->id_nreg++; } else { i40e_hw_t *hw = &i40e->i40e_hw_space; ASSERT(hw->num_ports > 0); ASSERT(hw->num_partitions > 0); /* * The Intel common code doesn't exactly keep the number of PCI * functions. But it calculates it during discovery of * partitions and ports. So what we do is undo the calculation * that it does originally, as functions are evenly spread * across ports in the rare case of partitions. */ idp = kmem_alloc(sizeof (i40e_device_t), KM_SLEEP); idp->id_parent = parent; idp->id_pci_bus = bus; idp->id_pci_device = device; idp->id_nfuncs = hw->num_ports * hw->num_partitions; idp->id_nreg = 1; idp->id_rsrcs_alloc = i40e->i40e_switch_rsrc_alloc; idp->id_rsrcs_act = i40e->i40e_switch_rsrc_actual; idp->id_rsrcs = kmem_alloc(sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc, KM_SLEEP); bcopy(i40e->i40e_switch_rsrcs, idp->id_rsrcs, sizeof (i40e_switch_rsrc_t) * idp->id_rsrcs_alloc); list_create(&idp->id_i40e_list, sizeof (i40e_t), offsetof(i40e_t, i40e_dlink)); list_insert_tail(&i40e_dlist, idp); } list_insert_tail(&idp->id_i40e_list, i40e); mutex_exit(&i40e_glock); return (idp); } static void i40e_link_state_set(i40e_t *i40e, link_state_t state) { if (i40e->i40e_link_state == state) return; i40e->i40e_link_state = state; mac_link_update(i40e->i40e_mac_hdl, i40e->i40e_link_state); } /* * This is a basic link check routine. Mostly we're using this just to see * if we can get any accurate information about the state of the link being * up or down, as well as updating the link state, speed, etc. information. */ void i40e_link_check(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; boolean_t ls; int ret; ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); hw->phy.get_link_info = B_TRUE; if ((ret = i40e_get_link_status(hw, &ls)) != I40E_SUCCESS) { i40e->i40e_s_link_status_errs++; i40e->i40e_s_link_status_lasterr = ret; return; } /* * Firmware abstracts all of the mac and phy information for us, so we * can use i40e_get_link_status to determine the current state. */ if (ls == B_TRUE) { enum i40e_aq_link_speed speed; speed = i40e_get_link_speed(hw); /* * Translate from an i40e value to a value in Mbits/s. */ switch (speed) { case I40E_LINK_SPEED_100MB: i40e->i40e_link_speed = 100; break; case I40E_LINK_SPEED_1GB: i40e->i40e_link_speed = 1000; break; case I40E_LINK_SPEED_10GB: i40e->i40e_link_speed = 10000; break; case I40E_LINK_SPEED_20GB: i40e->i40e_link_speed = 20000; break; case I40E_LINK_SPEED_40GB: i40e->i40e_link_speed = 40000; break; case I40E_LINK_SPEED_25GB: i40e->i40e_link_speed = 25000; break; default: i40e->i40e_link_speed = 0; break; } /* * At this time, hardware does not support half-duplex * operation, hence why we don't ask the hardware about our * current speed. */ i40e->i40e_link_duplex = LINK_DUPLEX_FULL; i40e_link_state_set(i40e, LINK_STATE_UP); } else { i40e->i40e_link_speed = 0; i40e->i40e_link_duplex = 0; i40e_link_state_set(i40e, LINK_STATE_DOWN); } } static void i40e_rem_intrs(i40e_t *i40e) { int i, rc; for (i = 0; i < i40e->i40e_intr_count; i++) { rc = ddi_intr_free(i40e->i40e_intr_handles[i]); if (rc != DDI_SUCCESS) { i40e_log(i40e, "failed to free interrupt %d: %d", i, rc); } } kmem_free(i40e->i40e_intr_handles, i40e->i40e_intr_size); i40e->i40e_intr_handles = NULL; } static void i40e_rem_intr_handlers(i40e_t *i40e) { int i, rc; for (i = 0; i < i40e->i40e_intr_count; i++) { rc = ddi_intr_remove_handler(i40e->i40e_intr_handles[i]); if (rc != DDI_SUCCESS) { i40e_log(i40e, "failed to remove interrupt %d: %d", i, rc); } } } /* * illumos Fault Management Architecture (FMA) support. */ int i40e_check_acc_handle(ddi_acc_handle_t handle) { ddi_fm_error_t de; ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION); ddi_fm_acc_err_clear(handle, DDI_FME_VERSION); return (de.fme_status); } int i40e_check_dma_handle(ddi_dma_handle_t handle) { ddi_fm_error_t de; ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION); return (de.fme_status); } /* * Fault service error handling callback function. */ /* ARGSUSED */ static int i40e_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) { pci_ereport_post(dip, err, NULL); return (err->fme_status); } static void i40e_fm_init(i40e_t *i40e) { ddi_iblock_cookie_t iblk; i40e->i40e_fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS, "fm_capable", DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); if (i40e->i40e_fm_capabilities < 0) { i40e->i40e_fm_capabilities = 0; } else if (i40e->i40e_fm_capabilities > 0xf) { i40e->i40e_fm_capabilities = DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE; } /* * Only register with IO Fault Services if we have some capability */ if (i40e->i40e_fm_capabilities & DDI_FM_ACCCHK_CAPABLE) { i40e_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC; } else { i40e_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC; } if (i40e->i40e_fm_capabilities) { ddi_fm_init(i40e->i40e_dip, &i40e->i40e_fm_capabilities, &iblk); if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) || DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) { pci_ereport_setup(i40e->i40e_dip); } if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) { ddi_fm_handler_register(i40e->i40e_dip, i40e_fm_error_cb, (void*)i40e); } } if (i40e->i40e_fm_capabilities & DDI_FM_DMACHK_CAPABLE) { i40e_init_dma_attrs(i40e, B_TRUE); } else { i40e_init_dma_attrs(i40e, B_FALSE); } } static void i40e_fm_fini(i40e_t *i40e) { if (i40e->i40e_fm_capabilities) { if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities) || DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) pci_ereport_teardown(i40e->i40e_dip); if (DDI_FM_ERRCB_CAP(i40e->i40e_fm_capabilities)) ddi_fm_handler_unregister(i40e->i40e_dip); ddi_fm_fini(i40e->i40e_dip); } } void i40e_fm_ereport(i40e_t *i40e, char *detail) { uint64_t ena; char buf[FM_MAX_CLASS]; (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); ena = fm_ena_generate(0, FM_ENA_FMT1); if (DDI_FM_EREPORT_CAP(i40e->i40e_fm_capabilities)) { ddi_fm_ereport_post(i40e->i40e_dip, buf, ena, DDI_NOSLEEP, FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); } } /* * Here we're trying to set the SEID of the default VSI. In general, * when we come through and look at this shortly after attach, we * expect there to only be a single element present, which is the * default VSI. Importantly, each PF seems to not see any other * devices, in part because of the simple switch mode that we're * using. If for some reason, we see more artifacts, we'll need to * revisit what we're doing here. */ static boolean_t i40e_set_def_vsi_seid(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_aqc_get_switch_config_resp *sw_config; uint8_t aq_buf[I40E_AQ_LARGE_BUF]; uint16_t next = 0; int rc; /* LINTED: E_BAD_PTR_CAST_ALIGN */ sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next, NULL); if (rc != I40E_SUCCESS) { i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d", rc, hw->aq.asq_last_status); return (B_FALSE); } if (LE_16(sw_config->header.num_reported) != 1) { i40e_error(i40e, "encountered multiple (%d) switching units " "during attach, not proceeding", LE_16(sw_config->header.num_reported)); return (B_FALSE); } I40E_DEF_VSI_SEID(i40e) = sw_config->element[0].seid; return (B_TRUE); } /* * Get the SEID of the uplink MAC. */ static int i40e_get_mac_seid(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_aqc_get_switch_config_resp *sw_config; uint8_t aq_buf[I40E_AQ_LARGE_BUF]; uint16_t next = 0; int rc; /* LINTED: E_BAD_PTR_CAST_ALIGN */ sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; rc = i40e_aq_get_switch_config(hw, sw_config, sizeof (aq_buf), &next, NULL); if (rc != I40E_SUCCESS) { i40e_error(i40e, "i40e_aq_get_switch_config() failed %d: %d", rc, hw->aq.asq_last_status); return (-1); } return (LE_16(sw_config->element[0].uplink_seid)); } /* * We need to fill the i40e_hw_t structure with the capabilities of this PF. We * must also provide the memory for it; however, we don't need to keep it around * to the call to the common code. It takes it and parses it into an internal * structure. */ static boolean_t i40e_get_hw_capabilities(i40e_t *i40e, i40e_hw_t *hw) { struct i40e_aqc_list_capabilities_element_resp *buf; int rc; size_t len; uint16_t needed; int nelems = I40E_HW_CAP_DEFAULT; len = nelems * sizeof (*buf); for (;;) { ASSERT(len > 0); buf = kmem_alloc(len, KM_SLEEP); rc = i40e_aq_discover_capabilities(hw, buf, len, &needed, i40e_aqc_opc_list_func_capabilities, NULL); kmem_free(buf, len); if (hw->aq.asq_last_status == I40E_AQ_RC_ENOMEM && nelems == I40E_HW_CAP_DEFAULT) { if (nelems == needed) { i40e_error(i40e, "Capability discovery failed " "due to byzantine common code"); return (B_FALSE); } len = needed; continue; } else if (rc != I40E_SUCCESS || hw->aq.asq_last_status != I40E_AQ_RC_OK) { i40e_error(i40e, "Capability discovery failed: %d", rc); return (B_FALSE); } break; } return (B_TRUE); } /* * Obtain the switch's capabilities as seen by this PF and keep it around for * our later use. */ static boolean_t i40e_get_switch_resources(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; uint8_t cnt = 2; uint8_t act; size_t size; i40e_switch_rsrc_t *buf; for (;;) { enum i40e_status_code ret; size = cnt * sizeof (i40e_switch_rsrc_t); ASSERT(size > 0); if (size > UINT16_MAX) return (B_FALSE); buf = kmem_alloc(size, KM_SLEEP); ret = i40e_aq_get_switch_resource_alloc(hw, &act, buf, cnt, NULL); if (ret == I40E_ERR_ADMIN_QUEUE_ERROR && hw->aq.asq_last_status == I40E_AQ_RC_EINVAL) { kmem_free(buf, size); cnt += I40E_SWITCH_CAP_DEFAULT; continue; } else if (ret != I40E_SUCCESS) { kmem_free(buf, size); i40e_error(i40e, "failed to retrieve switch statistics: %d", ret); return (B_FALSE); } break; } i40e->i40e_switch_rsrc_alloc = cnt; i40e->i40e_switch_rsrc_actual = act; i40e->i40e_switch_rsrcs = buf; return (B_TRUE); } static void i40e_cleanup_resources(i40e_t *i40e) { if (i40e->i40e_uaddrs != NULL) { kmem_free(i40e->i40e_uaddrs, sizeof (i40e_uaddr_t) * i40e->i40e_resources.ifr_nmacfilt); i40e->i40e_uaddrs = NULL; } if (i40e->i40e_maddrs != NULL) { kmem_free(i40e->i40e_maddrs, sizeof (i40e_maddr_t) * i40e->i40e_resources.ifr_nmcastfilt); i40e->i40e_maddrs = NULL; } if (i40e->i40e_switch_rsrcs != NULL) { size_t sz = sizeof (i40e_switch_rsrc_t) * i40e->i40e_switch_rsrc_alloc; ASSERT(sz > 0); kmem_free(i40e->i40e_switch_rsrcs, sz); i40e->i40e_switch_rsrcs = NULL; } if (i40e->i40e_device != NULL) i40e_device_rele(i40e); } static boolean_t i40e_get_available_resources(i40e_t *i40e) { dev_info_t *parent; uint16_t bus, device, func; uint_t nregs; int *regs, i; i40e_device_t *idp; i40e_hw_t *hw = &i40e->i40e_hw_space; parent = ddi_get_parent(i40e->i40e_dip); if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, i40e->i40e_dip, 0, "reg", ®s, &nregs) != DDI_PROP_SUCCESS) { return (B_FALSE); } if (nregs < 1) { ddi_prop_free(regs); return (B_FALSE); } bus = PCI_REG_BUS_G(regs[0]); device = PCI_REG_DEV_G(regs[0]); func = PCI_REG_FUNC_G(regs[0]); ddi_prop_free(regs); i40e->i40e_hw_space.bus.func = func; i40e->i40e_hw_space.bus.device = device; if (i40e_get_switch_resources(i40e) == B_FALSE) { return (B_FALSE); } /* * To calculate the total amount of a resource we have available, we * need to add how many our i40e_t thinks it has guaranteed, if any, and * then we need to go through and divide the number of available on the * device, which was snapshotted before anyone should have allocated * anything, and use that to derive how many are available from the * pool. Longer term, we may want to turn this into something that's * more of a pool-like resource that everything can share (though that * may require some more assistance from MAC). * * Though for transmit and receive queue pairs, we just have to ask * firmware instead. */ idp = i40e_device_find(i40e, parent, bus, device); i40e->i40e_device = idp; i40e->i40e_resources.ifr_nvsis = 0; i40e->i40e_resources.ifr_nvsis_used = 0; i40e->i40e_resources.ifr_nmacfilt = 0; i40e->i40e_resources.ifr_nmacfilt_used = 0; i40e->i40e_resources.ifr_nmcastfilt = 0; i40e->i40e_resources.ifr_nmcastfilt_used = 0; for (i = 0; i < i40e->i40e_switch_rsrc_actual; i++) { i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i]; switch (srp->resource_type) { case I40E_AQ_RESOURCE_TYPE_VSI: i40e->i40e_resources.ifr_nvsis += LE_16(srp->guaranteed); i40e->i40e_resources.ifr_nvsis_used = LE_16(srp->used); break; case I40E_AQ_RESOURCE_TYPE_MACADDR: i40e->i40e_resources.ifr_nmacfilt += LE_16(srp->guaranteed); i40e->i40e_resources.ifr_nmacfilt_used = LE_16(srp->used); break; case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH: i40e->i40e_resources.ifr_nmcastfilt += LE_16(srp->guaranteed); i40e->i40e_resources.ifr_nmcastfilt_used = LE_16(srp->used); break; default: break; } } for (i = 0; i < idp->id_rsrcs_act; i++) { i40e_switch_rsrc_t *srp = &i40e->i40e_switch_rsrcs[i]; switch (srp->resource_type) { case I40E_AQ_RESOURCE_TYPE_VSI: i40e->i40e_resources.ifr_nvsis += LE_16(srp->total_unalloced) / idp->id_nfuncs; break; case I40E_AQ_RESOURCE_TYPE_MACADDR: i40e->i40e_resources.ifr_nmacfilt += LE_16(srp->total_unalloced) / idp->id_nfuncs; break; case I40E_AQ_RESOURCE_TYPE_MULTICAST_HASH: i40e->i40e_resources.ifr_nmcastfilt += LE_16(srp->total_unalloced) / idp->id_nfuncs; default: break; } } i40e->i40e_resources.ifr_nrx_queue = hw->func_caps.num_rx_qp; i40e->i40e_resources.ifr_ntx_queue = hw->func_caps.num_tx_qp; i40e->i40e_uaddrs = kmem_zalloc(sizeof (i40e_uaddr_t) * i40e->i40e_resources.ifr_nmacfilt, KM_SLEEP); i40e->i40e_maddrs = kmem_zalloc(sizeof (i40e_maddr_t) * i40e->i40e_resources.ifr_nmcastfilt, KM_SLEEP); /* * Initialize these as multicast addresses to indicate it's invalid for * sanity purposes. Think of it like 0xdeadbeef. */ for (i = 0; i < i40e->i40e_resources.ifr_nmacfilt; i++) i40e->i40e_uaddrs[i].iua_mac[0] = 0x01; return (B_TRUE); } static boolean_t i40e_enable_interrupts(i40e_t *i40e) { int i, rc; if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) { rc = ddi_intr_block_enable(i40e->i40e_intr_handles, i40e->i40e_intr_count); if (rc != DDI_SUCCESS) { i40e_error(i40e, "Interrupt block-enable failed: %d", rc); return (B_FALSE); } } else { for (i = 0; i < i40e->i40e_intr_count; i++) { rc = ddi_intr_enable(i40e->i40e_intr_handles[i]); if (rc != DDI_SUCCESS) { i40e_error(i40e, "Failed to enable interrupt %d: %d", i, rc); while (--i >= 0) { (void) ddi_intr_disable( i40e->i40e_intr_handles[i]); } return (B_FALSE); } } } return (B_TRUE); } static boolean_t i40e_disable_interrupts(i40e_t *i40e) { int i, rc; if (i40e->i40e_intr_cap & DDI_INTR_FLAG_BLOCK) { rc = ddi_intr_block_disable(i40e->i40e_intr_handles, i40e->i40e_intr_count); if (rc != DDI_SUCCESS) { i40e_error(i40e, "Interrupt block-disabled failed: %d", rc); return (B_FALSE); } } else { for (i = 0; i < i40e->i40e_intr_count; i++) { rc = ddi_intr_disable(i40e->i40e_intr_handles[i]); if (rc != DDI_SUCCESS) { i40e_error(i40e, "Failed to disable interrupt %d: %d", i, rc); return (B_FALSE); } } } return (B_TRUE); } /* * Free receive & transmit rings. */ static void i40e_free_trqpairs(i40e_t *i40e) { i40e_trqpair_t *itrq; if (i40e->i40e_rx_groups != NULL) { kmem_free(i40e->i40e_rx_groups, sizeof (i40e_rx_group_t) * i40e->i40e_num_rx_groups); i40e->i40e_rx_groups = NULL; } if (i40e->i40e_trqpairs != NULL) { for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) { itrq = &i40e->i40e_trqpairs[i]; mutex_destroy(&itrq->itrq_intr_lock); mutex_destroy(&itrq->itrq_rx_lock); mutex_destroy(&itrq->itrq_tx_lock); mutex_destroy(&itrq->itrq_tcb_lock); cv_destroy(&itrq->itrq_intr_cv); cv_destroy(&itrq->itrq_tx_cv); i40e_stats_trqpair_fini(itrq); } kmem_free(i40e->i40e_trqpairs, sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs); i40e->i40e_trqpairs = NULL; } cv_destroy(&i40e->i40e_rx_pending_cv); mutex_destroy(&i40e->i40e_rx_pending_lock); mutex_destroy(&i40e->i40e_general_lock); } /* * Allocate transmit and receive rings, as well as other data structures that we * need. */ static boolean_t i40e_alloc_trqpairs(i40e_t *i40e) { void *mutexpri = DDI_INTR_PRI(i40e->i40e_intr_pri); /* * Now that we have the priority for the interrupts, initialize * all relevant locks. */ mutex_init(&i40e->i40e_general_lock, NULL, MUTEX_DRIVER, mutexpri); mutex_init(&i40e->i40e_rx_pending_lock, NULL, MUTEX_DRIVER, mutexpri); cv_init(&i40e->i40e_rx_pending_cv, NULL, CV_DRIVER, NULL); i40e->i40e_trqpairs = kmem_zalloc(sizeof (i40e_trqpair_t) * i40e->i40e_num_trqpairs, KM_SLEEP); for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) { i40e_trqpair_t *itrq = &i40e->i40e_trqpairs[i]; itrq->itrq_i40e = i40e; mutex_init(&itrq->itrq_intr_lock, NULL, MUTEX_DRIVER, mutexpri); mutex_init(&itrq->itrq_rx_lock, NULL, MUTEX_DRIVER, mutexpri); mutex_init(&itrq->itrq_tx_lock, NULL, MUTEX_DRIVER, mutexpri); mutex_init(&itrq->itrq_tcb_lock, NULL, MUTEX_DRIVER, mutexpri); cv_init(&itrq->itrq_intr_cv, NULL, CV_DRIVER, NULL); cv_init(&itrq->itrq_tx_cv, NULL, CV_DRIVER, NULL); itrq->itrq_index = i; itrq->itrq_intr_quiesce = B_TRUE; itrq->itrq_tx_quiesce = B_TRUE; } for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) { /* * Keeping this in a separate iteration makes the * clean up path safe. */ if (!i40e_stats_trqpair_init(&i40e->i40e_trqpairs[i])) { i40e_free_trqpairs(i40e); return (B_FALSE); } } i40e->i40e_rx_groups = kmem_zalloc(sizeof (i40e_rx_group_t) * i40e->i40e_num_rx_groups, KM_SLEEP); for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) { i40e_rx_group_t *rxg = &i40e->i40e_rx_groups[i]; rxg->irg_index = i; rxg->irg_i40e = i40e; } return (B_TRUE); } /* * Unless a .conf file already overrode i40e_t structure values, they will * be 0, and need to be set in conjunction with the now-available HW report. */ /* ARGSUSED */ static void i40e_hw_to_instance(i40e_t *i40e, i40e_hw_t *hw) { if (i40e->i40e_num_trqpairs_per_vsi == 0) { if (i40e_is_x722(i40e)) { i40e->i40e_num_trqpairs_per_vsi = I40E_722_MAX_TC_QUEUES; } else { i40e->i40e_num_trqpairs_per_vsi = I40E_710_MAX_TC_QUEUES; } } if (i40e->i40e_num_rx_groups == 0) { i40e->i40e_num_rx_groups = I40E_DEF_NUM_RX_GROUPS; } } /* * Free any resources required by, or setup by, the Intel common code. */ static void i40e_common_code_fini(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; int rc; rc = i40e_shutdown_lan_hmc(hw); if (rc != I40E_SUCCESS) i40e_error(i40e, "failed to shutdown LAN hmc: %d", rc); rc = i40e_shutdown_adminq(hw); if (rc != I40E_SUCCESS) i40e_error(i40e, "failed to shutdown admin queue: %d", rc); } /* * Initialize and call Intel common-code routines, includes some setup * the common code expects from the driver. Also prints on failure, so * the caller doesn't have to. */ static boolean_t i40e_common_code_init(i40e_t *i40e, i40e_hw_t *hw) { int rc; i40e_clear_hw(hw); rc = i40e_pf_reset(hw); if (rc != 0) { i40e_error(i40e, "failed to reset hardware: %d", rc); i40e_fm_ereport(i40e, DDI_FM_DEVICE_NO_RESPONSE); return (B_FALSE); } rc = i40e_init_shared_code(hw); if (rc != 0) { i40e_error(i40e, "failed to initialize i40e core: %d", rc); return (B_FALSE); } hw->aq.num_arq_entries = I40E_DEF_ADMINQ_SIZE; hw->aq.num_asq_entries = I40E_DEF_ADMINQ_SIZE; hw->aq.arq_buf_size = I40E_ADMINQ_BUFSZ; hw->aq.asq_buf_size = I40E_ADMINQ_BUFSZ; rc = i40e_init_adminq(hw); if (rc != 0) { i40e_error(i40e, "failed to initialize firmware admin queue: " "%d, potential firmware version mismatch", rc); i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE); return (B_FALSE); } if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw)) { i40e_log(i40e, "The driver for the device detected a newer " "version of the NVM image (%d.%d) than expected (%d.%d).\n" "Please install the most recent version of the network " "driver.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver, I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw)); } else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR || hw->aq.api_min_ver < (I40E_FW_MINOR_VERSION(hw) - 1)) { i40e_log(i40e, "The driver for the device detected an older" " version of the NVM image (%d.%d) than expected (%d.%d)." "\nPlease update the NVM image.\n", hw->aq.api_maj_ver, hw->aq.api_min_ver, I40E_FW_API_VERSION_MAJOR, I40E_FW_MINOR_VERSION(hw) - 1); } i40e_clear_pxe_mode(hw); /* * We need to call this so that the common code can discover * capabilities of the hardware, which it uses throughout the rest. */ if (!i40e_get_hw_capabilities(i40e, hw)) { i40e_error(i40e, "failed to obtain hardware capabilities"); return (B_FALSE); } if (i40e_get_available_resources(i40e) == B_FALSE) { i40e_error(i40e, "failed to obtain hardware resources"); return (B_FALSE); } i40e_hw_to_instance(i40e, hw); rc = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, hw->func_caps.num_rx_qp, 0, 0); if (rc != 0) { i40e_error(i40e, "failed to initialize hardware memory cache: " "%d", rc); return (B_FALSE); } rc = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); if (rc != 0) { i40e_error(i40e, "failed to configure hardware memory cache: " "%d", rc); return (B_FALSE); } (void) i40e_aq_stop_lldp(hw, TRUE, NULL); rc = i40e_get_mac_addr(hw, hw->mac.addr); if (rc != I40E_SUCCESS) { i40e_error(i40e, "failed to retrieve hardware mac address: %d", rc); return (B_FALSE); } rc = i40e_validate_mac_addr(hw->mac.addr); if (rc != 0) { i40e_error(i40e, "failed to validate internal mac address: " "%d", rc); return (B_FALSE); } bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL); if ((rc = i40e_get_port_mac_addr(hw, hw->mac.port_addr)) != I40E_SUCCESS) { i40e_error(i40e, "failed to retrieve port mac address: %d", rc); return (B_FALSE); } /* * We need to obtain the Default Virtual Station SEID (VSI) * before we can perform other operations on the device. */ if (!i40e_set_def_vsi_seid(i40e)) { i40e_error(i40e, "failed to obtain Default VSI SEID"); return (B_FALSE); } return (B_TRUE); } static void i40e_unconfigure(dev_info_t *devinfo, i40e_t *i40e) { int rc; if (i40e->i40e_attach_progress & I40E_ATTACH_ENABLE_INTR) (void) i40e_disable_interrupts(i40e); if ((i40e->i40e_attach_progress & I40E_ATTACH_LINK_TIMER) && i40e->i40e_periodic_id != 0) { ddi_periodic_delete(i40e->i40e_periodic_id); i40e->i40e_periodic_id = 0; } if (i40e->i40e_attach_progress & I40E_ATTACH_UFM_INIT) ddi_ufm_fini(i40e->i40e_ufmh); if (i40e->i40e_attach_progress & I40E_ATTACH_MAC) { rc = mac_unregister(i40e->i40e_mac_hdl); if (rc != 0) { i40e_error(i40e, "failed to unregister from mac: %d", rc); } } if (i40e->i40e_attach_progress & I40E_ATTACH_STATS) { i40e_stats_fini(i40e); } if (i40e->i40e_attach_progress & I40E_ATTACH_ADD_INTR) i40e_rem_intr_handlers(i40e); if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_RINGSLOCKS) i40e_free_trqpairs(i40e); if (i40e->i40e_attach_progress & I40E_ATTACH_ALLOC_INTR) i40e_rem_intrs(i40e); if (i40e->i40e_attach_progress & I40E_ATTACH_COMMON_CODE) i40e_common_code_fini(i40e); i40e_cleanup_resources(i40e); if (i40e->i40e_attach_progress & I40E_ATTACH_PROPS) (void) ddi_prop_remove_all(devinfo); if (i40e->i40e_attach_progress & I40E_ATTACH_REGS_MAP && i40e->i40e_osdep_space.ios_reg_handle != NULL) { ddi_regs_map_free(&i40e->i40e_osdep_space.ios_reg_handle); i40e->i40e_osdep_space.ios_reg_handle = NULL; } if ((i40e->i40e_attach_progress & I40E_ATTACH_PCI_CONFIG) && i40e->i40e_osdep_space.ios_cfg_handle != NULL) { pci_config_teardown(&i40e->i40e_osdep_space.ios_cfg_handle); i40e->i40e_osdep_space.ios_cfg_handle = NULL; } if (i40e->i40e_attach_progress & I40E_ATTACH_FM_INIT) i40e_fm_fini(i40e); kmem_free(i40e->i40e_aqbuf, I40E_ADMINQ_BUFSZ); kmem_free(i40e, sizeof (i40e_t)); ddi_set_driver_private(devinfo, NULL); } static boolean_t i40e_final_init(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_osdep *osdep = OS_DEP(hw); uint8_t pbanum[I40E_PBANUM_STRLEN]; enum i40e_status_code irc; char buf[I40E_DDI_PROP_LEN]; pbanum[0] = '\0'; irc = i40e_read_pba_string(hw, pbanum, sizeof (pbanum)); if (irc != I40E_SUCCESS) { i40e_log(i40e, "failed to read PBA string: %d", irc); } else { (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip, "printed-board-assembly", (char *)pbanum); } #ifdef DEBUG ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.fw_maj_ver, hw->aq.fw_min_ver) < sizeof (buf)); ASSERT(snprintf(NULL, 0, "%x", hw->aq.fw_build) < sizeof (buf)); ASSERT(snprintf(NULL, 0, "%d.%d", hw->aq.api_maj_ver, hw->aq.api_min_ver) < sizeof (buf)); #endif (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.fw_maj_ver, hw->aq.fw_min_ver); (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip, "firmware-version", buf); (void) snprintf(buf, sizeof (buf), "%x", hw->aq.fw_build); (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip, "firmware-build", buf); (void) snprintf(buf, sizeof (buf), "%d.%d", hw->aq.api_maj_ver, hw->aq.api_min_ver); (void) ddi_prop_update_string(DDI_DEV_T_NONE, i40e->i40e_dip, "api-version", buf); if (!i40e_set_hw_bus_info(hw)) return (B_FALSE); if (i40e_check_acc_handle(osdep->ios_reg_handle) != DDI_FM_OK) { ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST); return (B_FALSE); } return (B_TRUE); } static void i40e_identify_hardware(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_osdep *osdep = &i40e->i40e_osdep_space; hw->vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_VENID); hw->device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_DEVID); hw->revision_id = pci_config_get8(osdep->ios_cfg_handle, PCI_CONF_REVID); hw->subsystem_device_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBSYSID); hw->subsystem_vendor_id = pci_config_get16(osdep->ios_cfg_handle, PCI_CONF_SUBVENID); /* * Note that we set the hardware's bus information later on, in * i40e_get_available_resources(). The common code doesn't seem to * require that it be set in any ways, it seems to be mostly for * book-keeping. */ } static boolean_t i40e_regs_map(i40e_t *i40e) { dev_info_t *devinfo = i40e->i40e_dip; i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_osdep *osdep = &i40e->i40e_osdep_space; off_t memsize; int ret; if (ddi_dev_regsize(devinfo, I40E_ADAPTER_REGSET, &memsize) != DDI_SUCCESS) { i40e_error(i40e, "Used invalid register set to map PCIe regs"); return (B_FALSE); } if ((ret = ddi_regs_map_setup(devinfo, I40E_ADAPTER_REGSET, (caddr_t *)&hw->hw_addr, 0, memsize, &i40e_regs_acc_attr, &osdep->ios_reg_handle)) != DDI_SUCCESS) { i40e_error(i40e, "failed to map device registers: %d", ret); return (B_FALSE); } osdep->ios_reg_size = memsize; return (B_TRUE); } /* * Update parameters required when a new MTU has been configured. Calculate the * maximum frame size, as well as, size our DMA buffers which we size in * increments of 1K. */ void i40e_update_mtu(i40e_t *i40e) { uint32_t rx, tx; i40e->i40e_frame_max = i40e->i40e_sdu + sizeof (struct ether_vlan_header) + ETHERFCSL; rx = i40e->i40e_frame_max + I40E_BUF_IPHDR_ALIGNMENT; i40e->i40e_rx_buf_size = ((rx >> 10) + ((rx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10; tx = i40e->i40e_frame_max; i40e->i40e_tx_buf_size = ((tx >> 10) + ((tx & (((uint32_t)1 << 10) -1)) > 0 ? 1 : 0)) << 10; } static int i40e_get_prop(i40e_t *i40e, char *prop, int min, int max, int def) { int val; val = ddi_prop_get_int(DDI_DEV_T_ANY, i40e->i40e_dip, DDI_PROP_DONTPASS, prop, def); if (val > max) val = max; if (val < min) val = min; return (val); } static void i40e_init_properties(i40e_t *i40e) { i40e->i40e_sdu = i40e_get_prop(i40e, "default_mtu", I40E_MIN_MTU, I40E_MAX_MTU, I40E_DEF_MTU); i40e->i40e_intr_force = i40e_get_prop(i40e, "intr_force", I40E_INTR_NONE, I40E_INTR_LEGACY, I40E_INTR_NONE); i40e->i40e_mr_enable = i40e_get_prop(i40e, "mr_enable", B_FALSE, B_TRUE, B_TRUE); i40e->i40e_tx_ring_size = i40e_get_prop(i40e, "tx_ring_size", I40E_MIN_TX_RING_SIZE, I40E_MAX_TX_RING_SIZE, I40E_DEF_TX_RING_SIZE); if ((i40e->i40e_tx_ring_size % I40E_DESC_ALIGN) != 0) { i40e->i40e_tx_ring_size = P2ROUNDUP(i40e->i40e_tx_ring_size, I40E_DESC_ALIGN); } i40e->i40e_tx_block_thresh = i40e_get_prop(i40e, "tx_resched_threshold", I40E_MIN_TX_BLOCK_THRESH, i40e->i40e_tx_ring_size - I40E_TX_MAX_COOKIE, I40E_DEF_TX_BLOCK_THRESH); i40e->i40e_num_rx_groups = i40e_get_prop(i40e, "rx_num_groups", I40E_MIN_NUM_RX_GROUPS, I40E_MAX_NUM_RX_GROUPS, I40E_DEF_NUM_RX_GROUPS); i40e->i40e_rx_ring_size = i40e_get_prop(i40e, "rx_ring_size", I40E_MIN_RX_RING_SIZE, I40E_MAX_RX_RING_SIZE, I40E_DEF_RX_RING_SIZE); if ((i40e->i40e_rx_ring_size % I40E_DESC_ALIGN) != 0) { i40e->i40e_rx_ring_size = P2ROUNDUP(i40e->i40e_rx_ring_size, I40E_DESC_ALIGN); } i40e->i40e_rx_limit_per_intr = i40e_get_prop(i40e, "rx_limit_per_intr", I40E_MIN_RX_LIMIT_PER_INTR, I40E_MAX_RX_LIMIT_PER_INTR, I40E_DEF_RX_LIMIT_PER_INTR); i40e->i40e_tx_hcksum_enable = i40e_get_prop(i40e, "tx_hcksum_enable", B_FALSE, B_TRUE, B_TRUE); i40e->i40e_tx_lso_enable = i40e_get_prop(i40e, "tx_lso_enable", B_FALSE, B_TRUE, B_TRUE); i40e->i40e_rx_hcksum_enable = i40e_get_prop(i40e, "rx_hcksum_enable", B_FALSE, B_TRUE, B_TRUE); i40e->i40e_rx_dma_min = i40e_get_prop(i40e, "rx_dma_threshold", I40E_MIN_RX_DMA_THRESH, I40E_MAX_RX_DMA_THRESH, I40E_DEF_RX_DMA_THRESH); i40e->i40e_tx_dma_min = i40e_get_prop(i40e, "tx_dma_threshold", I40E_MIN_TX_DMA_THRESH, I40E_MAX_TX_DMA_THRESH, I40E_DEF_TX_DMA_THRESH); i40e->i40e_tx_itr = i40e_get_prop(i40e, "tx_intr_throttle", I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_TX_ITR); i40e->i40e_rx_itr = i40e_get_prop(i40e, "rx_intr_throttle", I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_RX_ITR); i40e->i40e_other_itr = i40e_get_prop(i40e, "other_intr_throttle", I40E_MIN_ITR, I40E_MAX_ITR, I40E_DEF_OTHER_ITR); if (!i40e->i40e_mr_enable) { i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX; i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX; } i40e_update_mtu(i40e); } /* * There are a few constraints on interrupts that we're currently imposing, some * of which are restrictions from hardware. For a fuller treatment, see * i40e_intr.c. * * Currently, to use MSI-X we require two interrupts be available though in * theory we should participate in IRM and happily use more interrupts. * * Hardware only supports a single MSI being programmed and therefore if we * don't have MSI-X interrupts available at this time, then we ratchet down the * number of rings and groups available. Obviously, we only bother with a single * fixed interrupt. */ static boolean_t i40e_alloc_intr_handles(i40e_t *i40e, dev_info_t *devinfo, int intr_type) { i40e_hw_t *hw = &i40e->i40e_hw_space; ddi_acc_handle_t rh = i40e->i40e_osdep_space.ios_reg_handle; int request, count, actual, rc, min; uint32_t reg; switch (intr_type) { case DDI_INTR_TYPE_FIXED: case DDI_INTR_TYPE_MSI: request = 1; min = 1; break; case DDI_INTR_TYPE_MSIX: min = 2; if (!i40e->i40e_mr_enable) { request = 2; break; } reg = I40E_READ_REG(hw, I40E_GLPCI_CNF2); /* * Should this read fail, we will drop back to using * MSI or fixed interrupts. */ if (i40e_check_acc_handle(rh) != DDI_FM_OK) { ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_DEGRADED); return (B_FALSE); } request = (reg & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >> I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT; request++; /* the register value is n - 1 */ break; default: panic("bad interrupt type passed to i40e_alloc_intr_handles: " "%d", intr_type); } rc = ddi_intr_get_nintrs(devinfo, intr_type, &count); if (rc != DDI_SUCCESS || count < min) { i40e_log(i40e, "Get interrupt number failed, " "returned %d, count %d", rc, count); return (B_FALSE); } rc = ddi_intr_get_navail(devinfo, intr_type, &count); if (rc != DDI_SUCCESS || count < min) { i40e_log(i40e, "Get AVAILABLE interrupt number failed, " "returned %d, count %d", rc, count); return (B_FALSE); } actual = 0; i40e->i40e_intr_count = 0; i40e->i40e_intr_count_max = 0; i40e->i40e_intr_count_min = 0; i40e->i40e_intr_size = request * sizeof (ddi_intr_handle_t); ASSERT(i40e->i40e_intr_size != 0); i40e->i40e_intr_handles = kmem_alloc(i40e->i40e_intr_size, KM_SLEEP); rc = ddi_intr_alloc(devinfo, i40e->i40e_intr_handles, intr_type, 0, min(request, count), &actual, DDI_INTR_ALLOC_NORMAL); if (rc != DDI_SUCCESS) { i40e_log(i40e, "Interrupt allocation failed with %d.", rc); goto alloc_handle_fail; } i40e->i40e_intr_count = actual; i40e->i40e_intr_count_max = request; i40e->i40e_intr_count_min = min; if (actual < min) { i40e_log(i40e, "actual (%d) is less than minimum (%d).", actual, min); goto alloc_handle_fail; } /* * Record the priority and capabilities for our first vector. Once * we have it, that's our priority until detach time. Even if we * eventually participate in IRM, our priority shouldn't change. */ rc = ddi_intr_get_pri(i40e->i40e_intr_handles[0], &i40e->i40e_intr_pri); if (rc != DDI_SUCCESS) { i40e_log(i40e, "Getting interrupt priority failed with %d.", rc); goto alloc_handle_fail; } rc = ddi_intr_get_cap(i40e->i40e_intr_handles[0], &i40e->i40e_intr_cap); if (rc != DDI_SUCCESS) { i40e_log(i40e, "Getting interrupt capabilities failed with %d.", rc); goto alloc_handle_fail; } i40e->i40e_intr_type = intr_type; return (B_TRUE); alloc_handle_fail: i40e_rem_intrs(i40e); return (B_FALSE); } static boolean_t i40e_alloc_intrs(i40e_t *i40e, dev_info_t *devinfo) { i40e_hw_t *hw = &i40e->i40e_hw_space; int intr_types, rc; uint_t max_trqpairs; if (i40e_is_x722(i40e)) { max_trqpairs = I40E_722_MAX_TC_QUEUES; } else { max_trqpairs = I40E_710_MAX_TC_QUEUES; } rc = ddi_intr_get_supported_types(devinfo, &intr_types); if (rc != DDI_SUCCESS) { i40e_error(i40e, "failed to get supported interrupt types: %d", rc); return (B_FALSE); } i40e->i40e_intr_type = 0; /* * We need to determine the number of queue pairs per traffic * class. We only have one traffic class (TC0), so we'll base * this off the number of interrupts provided. Furthermore, * since we only use one traffic class, the number of queues * per traffic class and per VSI are the same. */ if ((intr_types & DDI_INTR_TYPE_MSIX) && (i40e->i40e_intr_force <= I40E_INTR_MSIX) && (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSIX))) { uint32_t n, qp_cap, num_trqpairs; /* * While we want the number of queue pairs to match * the number of interrupts, we must keep stay in * bounds of the maximum number of queues per traffic * class. We subtract one from i40e_intr_count to * account for interrupt zero; which is currently * restricted to admin queue commands and other * interrupt causes. */ n = MIN(i40e->i40e_intr_count - 1, max_trqpairs); ASSERT3U(n, >, 0); /* * Round up to the nearest power of two to ensure that * the QBASE aligns with the TC size which must be * programmed as a power of two. See the queue mapping * description in section 7.4.9.5.5.1. * * If i40e_intr_count - 1 is not a power of two then * some queue pairs on the same VSI will have to share * an interrupt. * * We may want to revisit this logic in a future where * we have more interrupts and more VSIs. Otherwise, * each VSI will use as many interrupts as possible. * Using more QPs per VSI means better RSS for each * group, but at the same time may require more * sharing of interrupts across VSIs. This may be a * good candidate for a .conf tunable. */ n = 0x1 << ddi_fls(n); i40e->i40e_num_trqpairs_per_vsi = n; /* * Make sure the number of tx/rx qpairs does not exceed * the device's capabilities. */ ASSERT3U(i40e->i40e_num_rx_groups, >, 0); qp_cap = MIN(hw->func_caps.num_rx_qp, hw->func_caps.num_tx_qp); num_trqpairs = i40e->i40e_num_trqpairs_per_vsi * i40e->i40e_num_rx_groups; if (num_trqpairs > qp_cap) { i40e->i40e_num_rx_groups = MAX(1, qp_cap / i40e->i40e_num_trqpairs_per_vsi); num_trqpairs = i40e->i40e_num_trqpairs_per_vsi * i40e->i40e_num_rx_groups; i40e_log(i40e, "Rx groups restricted to %u", i40e->i40e_num_rx_groups); } ASSERT3U(num_trqpairs, >, 0); i40e->i40e_num_trqpairs = num_trqpairs; return (B_TRUE); } /* * We only use multiple transmit/receive pairs when MSI-X interrupts are * available due to the fact that the device basically only supports a * single MSI interrupt. */ i40e->i40e_num_trqpairs = I40E_TRQPAIR_NOMSIX; i40e->i40e_num_trqpairs_per_vsi = i40e->i40e_num_trqpairs; i40e->i40e_num_rx_groups = I40E_GROUP_NOMSIX; if ((intr_types & DDI_INTR_TYPE_MSI) && (i40e->i40e_intr_force <= I40E_INTR_MSI)) { if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_MSI)) return (B_TRUE); } if (intr_types & DDI_INTR_TYPE_FIXED) { if (i40e_alloc_intr_handles(i40e, devinfo, DDI_INTR_TYPE_FIXED)) return (B_TRUE); } return (B_FALSE); } /* * Map different interrupts to MSI-X vectors. */ static boolean_t i40e_map_intrs_to_vectors(i40e_t *i40e) { if (i40e->i40e_intr_type != DDI_INTR_TYPE_MSIX) { return (B_TRUE); } /* * Each queue pair is mapped to a single interrupt, so * transmit and receive interrupts for a given queue share the * same vector. Vector zero is reserved for the admin queue. */ for (uint_t i = 0; i < i40e->i40e_num_trqpairs; i++) { uint_t vector = i % (i40e->i40e_intr_count - 1); i40e->i40e_trqpairs[i].itrq_rx_intrvec = vector + 1; i40e->i40e_trqpairs[i].itrq_tx_intrvec = vector + 1; } return (B_TRUE); } static boolean_t i40e_add_intr_handlers(i40e_t *i40e) { int rc, vector; switch (i40e->i40e_intr_type) { case DDI_INTR_TYPE_MSIX: for (vector = 0; vector < i40e->i40e_intr_count; vector++) { rc = ddi_intr_add_handler( i40e->i40e_intr_handles[vector], (ddi_intr_handler_t *)i40e_intr_msix, i40e, (void *)(uintptr_t)vector); if (rc != DDI_SUCCESS) { i40e_log(i40e, "Add interrupt handler (MSI-X) " "failed: return %d, vector %d", rc, vector); for (vector--; vector >= 0; vector--) { (void) ddi_intr_remove_handler( i40e->i40e_intr_handles[vector]); } return (B_FALSE); } } break; case DDI_INTR_TYPE_MSI: rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0], (ddi_intr_handler_t *)i40e_intr_msi, i40e, NULL); if (rc != DDI_SUCCESS) { i40e_log(i40e, "Add interrupt handler (MSI) failed: " "return %d", rc); return (B_FALSE); } break; case DDI_INTR_TYPE_FIXED: rc = ddi_intr_add_handler(i40e->i40e_intr_handles[0], (ddi_intr_handler_t *)i40e_intr_legacy, i40e, NULL); if (rc != DDI_SUCCESS) { i40e_log(i40e, "Add interrupt handler (legacy) failed:" " return %d", rc); return (B_FALSE); } break; default: /* Cast to pacify lint */ panic("i40e_intr_type %p contains an unknown type: %d", (void *)i40e, i40e->i40e_intr_type); } return (B_TRUE); } /* * Perform periodic checks. Longer term, we should be thinking about additional * things here: * * o Stall Detection * o Temperature sensor detection * o Device resetting * o Statistics updating to avoid wraparound */ static void i40e_timer(void *arg) { i40e_t *i40e = arg; mutex_enter(&i40e->i40e_general_lock); i40e_link_check(i40e); mutex_exit(&i40e->i40e_general_lock); } /* * Get the hardware state, and scribble away anything that needs scribbling. */ static void i40e_get_hw_state(i40e_t *i40e, i40e_hw_t *hw) { int rc; ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); (void) i40e_aq_get_link_info(hw, TRUE, NULL, NULL); i40e_link_check(i40e); /* * Try and determine our PHY. Note that we may have to retry to and * delay to detect fiber correctly. */ rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy, NULL); if (rc == I40E_ERR_UNKNOWN_PHY) { i40e_msec_delay(200); rc = i40e_aq_get_phy_capabilities(hw, B_FALSE, B_TRUE, &i40e->i40e_phy, NULL); } if (rc != I40E_SUCCESS) { if (rc == I40E_ERR_UNKNOWN_PHY) { i40e_error(i40e, "encountered unknown PHY type, " "not attaching."); } else { i40e_error(i40e, "error getting physical capabilities: " "%d, %d", rc, hw->aq.asq_last_status); } } rc = i40e_update_link_info(hw); if (rc != I40E_SUCCESS) { i40e_error(i40e, "failed to update link information: %d", rc); } /* * In general, we don't want to mask off (as in stop from being a cause) * any of the interrupts that the phy might be able to generate. */ rc = i40e_aq_set_phy_int_mask(hw, 0, NULL); if (rc != I40E_SUCCESS) { i40e_error(i40e, "failed to update phy link mask: %d", rc); } } /* * Go through and re-initialize any existing filters that we may have set up for * this device. Note that we would only expect them to exist if hardware had * already been initialized and we had just reset it. While we're not * implementing this yet, we're keeping this around for when we add reset * capabilities, so this isn't forgotten. */ /* ARGSUSED */ static void i40e_init_macaddrs(i40e_t *i40e, i40e_hw_t *hw) { } /* * Set the properties which have common values across all the VSIs. * Consult the "Add VSI" command section (7.4.9.5.5.1) for a * complete description of these properties. */ static void i40e_set_shared_vsi_props(i40e_t *i40e, struct i40e_aqc_vsi_properties_data *info, uint_t vsi_idx) { uint_t tc_queues; uint16_t vsi_qp_base; /* * It's important that we use bitwise-OR here; callers to this * function might enable other sections before calling this * function. */ info->valid_sections |= LE_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID | I40E_AQ_VSI_PROP_VLAN_VALID); /* * Calculate the starting QP index for this VSI. This base is * relative to the PF queue space; so a value of 0 for PF#1 * represents the absolute index PFLAN_QALLOC_FIRSTQ for PF#1. */ vsi_qp_base = vsi_idx * i40e->i40e_num_trqpairs_per_vsi; info->mapping_flags = LE_16(I40E_AQ_VSI_QUE_MAP_CONTIG); info->queue_mapping[0] = LE_16((vsi_qp_base << I40E_AQ_VSI_QUEUE_SHIFT) & I40E_AQ_VSI_QUEUE_MASK); /* * tc_queues determines the size of the traffic class, where * the size is 2^^tc_queues to a maximum of 64 for the X710 * and 128 for the X722. * * Some examples: * i40e_num_trqpairs_per_vsi == 1 => tc_queues = 0, 2^^0 = 1. * i40e_num_trqpairs_per_vsi == 7 => tc_queues = 3, 2^^3 = 8. * i40e_num_trqpairs_per_vsi == 8 => tc_queues = 3, 2^^3 = 8. * i40e_num_trqpairs_per_vsi == 9 => tc_queues = 4, 2^^4 = 16. * i40e_num_trqpairs_per_vsi == 17 => tc_queues = 5, 2^^5 = 32. * i40e_num_trqpairs_per_vsi == 64 => tc_queues = 6, 2^^6 = 64. */ tc_queues = ddi_fls(i40e->i40e_num_trqpairs_per_vsi - 1); /* * The TC queue mapping is in relation to the VSI queue space. * Since we are only using one traffic class (TC0) we always * start at queue offset 0. */ info->tc_mapping[0] = LE_16(((0 << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) | ((tc_queues << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT) & I40E_AQ_VSI_TC_QUE_NUMBER_MASK)); /* * I40E_AQ_VSI_PVLAN_MODE_ALL ("VLAN driver insertion mode") * * Allow tagged and untagged packets to be sent to this * VSI from the host. * * I40E_AQ_VSI_PVLAN_EMOD_NOTHING ("VLAN and UP expose mode") * * Leave the tag on the frame and place no VLAN * information in the descriptor. We want this mode * because our MAC layer will take care of the VLAN tag, * if there is one. */ info->port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | I40E_AQ_VSI_PVLAN_EMOD_NOTHING; } /* * Delete the VSI at this index, if one exists. We assume there is no * action we can take if this command fails but to log the failure. */ static void i40e_delete_vsi(i40e_t *i40e, uint_t idx) { i40e_hw_t *hw = &i40e->i40e_hw_space; uint16_t seid = i40e->i40e_vsis[idx].iv_seid; if (seid != 0) { int rc; rc = i40e_aq_delete_element(hw, seid, NULL); if (rc != I40E_SUCCESS) { i40e_error(i40e, "Failed to delete VSI %d: %d", rc, hw->aq.asq_last_status); } i40e->i40e_vsis[idx].iv_seid = 0; } } /* * Add a new VSI. */ static boolean_t i40e_add_vsi(i40e_t *i40e, i40e_hw_t *hw, uint_t idx) { struct i40e_vsi_context ctx; i40e_rx_group_t *rxg; int rc; /* * The default VSI is created by the controller. This function * creates new, non-defualt VSIs only. */ ASSERT3U(idx, !=, 0); bzero(&ctx, sizeof (struct i40e_vsi_context)); ctx.uplink_seid = i40e->i40e_veb_seid; ctx.pf_num = hw->pf_id; ctx.flags = I40E_AQ_VSI_TYPE_PF; ctx.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL; i40e_set_shared_vsi_props(i40e, &ctx.info, idx); rc = i40e_aq_add_vsi(hw, &ctx, NULL); if (rc != I40E_SUCCESS) { i40e_error(i40e, "i40e_aq_add_vsi() failed %d: %d", rc, hw->aq.asq_last_status); return (B_FALSE); } rxg = &i40e->i40e_rx_groups[idx]; rxg->irg_vsi_seid = ctx.seid; i40e->i40e_vsis[idx].iv_number = ctx.vsi_number; i40e->i40e_vsis[idx].iv_seid = ctx.seid; i40e->i40e_vsis[idx].iv_stats_id = LE_16(ctx.info.stat_counter_idx); if (i40e_stat_vsi_init(i40e, idx) == B_FALSE) return (B_FALSE); return (B_TRUE); } /* * Configure the hardware for the Default Virtual Station Interface (VSI). */ static boolean_t i40e_config_def_vsi(i40e_t *i40e, i40e_hw_t *hw) { struct i40e_vsi_context ctx; i40e_rx_group_t *def_rxg; int err; struct i40e_aqc_remove_macvlan_element_data filt; bzero(&ctx, sizeof (struct i40e_vsi_context)); ctx.seid = I40E_DEF_VSI_SEID(i40e); ctx.pf_num = hw->pf_id; err = i40e_aq_get_vsi_params(hw, &ctx, NULL); if (err != I40E_SUCCESS) { i40e_error(i40e, "get VSI params failed with %d", err); return (B_FALSE); } ctx.info.valid_sections = 0; i40e->i40e_vsis[0].iv_number = ctx.vsi_number; i40e->i40e_vsis[0].iv_stats_id = LE_16(ctx.info.stat_counter_idx); if (i40e_stat_vsi_init(i40e, 0) == B_FALSE) return (B_FALSE); i40e_set_shared_vsi_props(i40e, &ctx.info, I40E_DEF_VSI_IDX); err = i40e_aq_update_vsi_params(hw, &ctx, NULL); if (err != I40E_SUCCESS) { i40e_error(i40e, "Update VSI params failed with %d", err); return (B_FALSE); } def_rxg = &i40e->i40e_rx_groups[0]; def_rxg->irg_vsi_seid = I40E_DEF_VSI_SEID(i40e); /* * We have seen three different behaviors in regards to the * Default VSI and its implicit L2 MAC+VLAN filter. * * 1. It has an implicit filter for the factory MAC address * and this filter counts against 'ifr_nmacfilt_used'. * * 2. It has an implicit filter for the factory MAC address * and this filter DOES NOT count against 'ifr_nmacfilt_used'. * * 3. It DOES NOT have an implicit filter. * * All three of these cases are accounted for below. If we * fail to remove the L2 filter (ENOENT) then we assume there * wasn't one. Otherwise, if we successfully remove the * filter, we make sure to update the 'ifr_nmacfilt_used' * count accordingly. * * We remove this filter to prevent duplicate delivery of * packets destined for the primary MAC address as DLS will * create the same filter on a non-default VSI for the primary * MAC client. * * If you change the following code please test it across as * many X700 series controllers and firmware revisions as you * can. */ bzero(&filt, sizeof (filt)); bcopy(hw->mac.port_addr, filt.mac_addr, ETHERADDRL); filt.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; filt.vlan_tag = 0; ASSERT3U(i40e->i40e_resources.ifr_nmacfilt_used, <=, 1); i40e_log(i40e, "Num L2 filters: %u", i40e->i40e_resources.ifr_nmacfilt_used); err = i40e_aq_remove_macvlan(hw, I40E_DEF_VSI_SEID(i40e), &filt, 1, NULL); if (err == I40E_SUCCESS) { i40e_log(i40e, "Removed L2 filter from Default VSI with SEID %u", I40E_DEF_VSI_SEID(i40e)); } else if (hw->aq.asq_last_status == ENOENT) { i40e_log(i40e, "No L2 filter for Default VSI with SEID %u", I40E_DEF_VSI_SEID(i40e)); } else { i40e_error(i40e, "Failed to remove L2 filter from" " Default VSI with SEID %u: %d (%d)", I40E_DEF_VSI_SEID(i40e), err, hw->aq.asq_last_status); return (B_FALSE); } /* * As mentioned above, the controller created an implicit L2 * filter for the primary MAC. We want to remove both the * filter and decrement the filter count. However, not all * controllers count this implicit filter against the total * MAC filter count. So here we are making sure it is either * one or zero. If it is one, then we know it is for the * implicit filter and we should decrement since we just * removed the filter above. If it is zero then we know the * controller that does not count the implicit filter, and it * was enough to just remove it; we leave the count alone. * But if it is neither, then we have never seen a controller * like this before and we should fail to attach. * * It is unfortunate that this code must exist but the * behavior of this implicit L2 filter and its corresponding * count were dicovered through empirical testing. The * programming manuals hint at this filter but do not * explicitly call out the exact behavior. */ if (i40e->i40e_resources.ifr_nmacfilt_used == 1) { i40e->i40e_resources.ifr_nmacfilt_used--; } else { if (i40e->i40e_resources.ifr_nmacfilt_used != 0) { i40e_error(i40e, "Unexpected L2 filter count: %u" " (expected 0)", i40e->i40e_resources.ifr_nmacfilt_used); return (B_FALSE); } } return (B_TRUE); } static boolean_t i40e_config_rss_key_x722(i40e_t *i40e, i40e_hw_t *hw) { for (uint_t i = 0; i < i40e->i40e_num_rx_groups; i++) { uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1]; struct i40e_aqc_get_set_rss_key_data key; const char *u8seed; enum i40e_status_code status; uint16_t vsi_number = i40e->i40e_vsis[i].iv_number; (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed)); u8seed = (char *)seed; CTASSERT(sizeof (key) >= (sizeof (key.standard_rss_key) + sizeof (key.extended_hash_key))); bcopy(u8seed, key.standard_rss_key, sizeof (key.standard_rss_key)); bcopy(&u8seed[sizeof (key.standard_rss_key)], key.extended_hash_key, sizeof (key.extended_hash_key)); ASSERT3U(vsi_number, !=, 0); status = i40e_aq_set_rss_key(hw, vsi_number, &key); if (status != I40E_SUCCESS) { i40e_error(i40e, "failed to set RSS key for VSI %u: %d", vsi_number, status); return (B_FALSE); } } return (B_TRUE); } /* * Configure the RSS key. For the X710 controller family, this is set on a * per-PF basis via registers. For the X722, this is done on a per-VSI basis * through the admin queue. */ static boolean_t i40e_config_rss_key(i40e_t *i40e, i40e_hw_t *hw) { if (i40e_is_x722(i40e)) { if (!i40e_config_rss_key_x722(i40e, hw)) return (B_FALSE); } else { uint32_t seed[I40E_PFQF_HKEY_MAX_INDEX + 1]; (void) random_get_pseudo_bytes((uint8_t *)seed, sizeof (seed)); for (uint_t i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) i40e_write_rx_ctl(hw, I40E_PFQF_HKEY(i), seed[i]); } return (B_TRUE); } /* * Populate the LUT. The size of each entry in the LUT depends on the controller * family, with the X722 using a known 7-bit width. On the X710 controller, this * is programmed through its control registers where as on the X722 this is * configured through the admin queue. Also of note, the X722 allows the LUT to * be set on a per-PF or VSI basis. At this time we use the PF setting. If we * decide to use the per-VSI LUT in the future, then we will need to modify the * i40e_add_vsi() function to set the RSS LUT bits in the queueing section. * * We populate the LUT in a round robin fashion with the rx queue indices from 0 * to i40e_num_trqpairs_per_vsi - 1. */ static boolean_t i40e_config_rss_hlut(i40e_t *i40e, i40e_hw_t *hw) { uint32_t *hlut; uint8_t lut_mask; uint_t i; boolean_t ret = B_FALSE; /* * We always configure the PF with a table size of 512 bytes in * i40e_chip_start(). */ hlut = kmem_alloc(I40E_HLUT_TABLE_SIZE, KM_NOSLEEP); if (hlut == NULL) { i40e_error(i40e, "i40e_config_rss() buffer allocation failed"); return (B_FALSE); } /* * The width of the X722 is apparently defined to be 7 bits, regardless * of the capability. */ if (i40e_is_x722(i40e)) { lut_mask = (1 << 7) - 1; } else { lut_mask = (1 << hw->func_caps.rss_table_entry_width) - 1; } for (i = 0; i < I40E_HLUT_TABLE_SIZE; i++) { ((uint8_t *)hlut)[i] = (i % i40e->i40e_num_trqpairs_per_vsi) & lut_mask; } if (i40e_is_x722(i40e)) { enum i40e_status_code status; status = i40e_aq_set_rss_lut(hw, 0, B_TRUE, (uint8_t *)hlut, I40E_HLUT_TABLE_SIZE); if (status != I40E_SUCCESS) { i40e_error(i40e, "failed to set RSS LUT %d: %d", status, hw->aq.asq_last_status); goto out; } } else { for (i = 0; i < I40E_HLUT_TABLE_SIZE >> 2; i++) { I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i), hlut[i]); } } ret = B_TRUE; out: kmem_free(hlut, I40E_HLUT_TABLE_SIZE); return (ret); } /* * Set up RSS. * 1. Seed the hash key. * 2. Enable PCTYPEs for the hash filter. * 3. Populate the LUT. */ static boolean_t i40e_config_rss(i40e_t *i40e, i40e_hw_t *hw) { uint64_t hena; /* * 1. Seed the hash key */ if (!i40e_config_rss_key(i40e, hw)) return (B_FALSE); /* * 2. Configure PCTYPES */ hena = (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6) | (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD); /* * Add additional types supported by the X722 controller. */ if (i40e_is_x722(i40e)) { hena |= (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP) | (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK); } i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (uint32_t)hena); i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32)); /* * 3. Populate LUT */ return (i40e_config_rss_hlut(i40e, hw)); } /* * Wrapper to kick the chipset on. */ static boolean_t i40e_chip_start(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_filter_control_settings filter; int rc; uint8_t err; if (((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver < 33)) || (hw->aq.fw_maj_ver < 4)) { i40e_msec_delay(75); if (i40e_aq_set_link_restart_an(hw, TRUE, NULL) != I40E_SUCCESS) { i40e_error(i40e, "failed to restart link: admin queue " "error: %d", hw->aq.asq_last_status); return (B_FALSE); } } /* Determine hardware state */ i40e_get_hw_state(i40e, hw); /* For now, we always disable Ethernet Flow Control. */ hw->fc.requested_mode = I40E_FC_NONE; rc = i40e_set_fc(hw, &err, B_TRUE); if (rc != I40E_SUCCESS) { i40e_error(i40e, "Setting flow control failed, returned %d" " with error: 0x%x", rc, err); return (B_FALSE); } /* Initialize mac addresses. */ i40e_init_macaddrs(i40e, hw); /* * Set up the filter control. If the hash lut size is changed from * I40E_HASH_LUT_SIZE_512 then I40E_HLUT_TABLE_SIZE and * i40e_config_rss_hlut() will need to be updated. */ bzero(&filter, sizeof (filter)); filter.enable_ethtype = TRUE; filter.enable_macvlan = TRUE; filter.hash_lut_size = I40E_HASH_LUT_SIZE_512; rc = i40e_set_filter_control(hw, &filter); if (rc != I40E_SUCCESS) { i40e_error(i40e, "i40e_set_filter_control() returned %d", rc); return (B_FALSE); } i40e_intr_chip_init(i40e); rc = i40e_get_mac_seid(i40e); if (rc == -1) { i40e_error(i40e, "failed to obtain MAC Uplink SEID"); return (B_FALSE); } i40e->i40e_mac_seid = (uint16_t)rc; /* * Create a VEB in order to support multiple VSIs. Each VSI * functions as a MAC group. This call sets the PF's MAC as * the uplink port and the PF's default VSI as the default * downlink port. */ rc = i40e_aq_add_veb(hw, i40e->i40e_mac_seid, I40E_DEF_VSI_SEID(i40e), 0x1, B_TRUE, &i40e->i40e_veb_seid, B_FALSE, NULL); if (rc != I40E_SUCCESS) { i40e_error(i40e, "i40e_aq_add_veb() failed %d: %d", rc, hw->aq.asq_last_status); return (B_FALSE); } if (!i40e_config_def_vsi(i40e, hw)) return (B_FALSE); for (uint_t i = 1; i < i40e->i40e_num_rx_groups; i++) { if (!i40e_add_vsi(i40e, hw, i)) return (B_FALSE); } if (!i40e_config_rss(i40e, hw)) return (B_FALSE); i40e_flush(hw); return (B_TRUE); } /* * Take care of tearing down the rx ring. See 8.3.3.1.2 for more information. */ static void i40e_shutdown_rx_ring(i40e_trqpair_t *itrq) { i40e_t *i40e = itrq->itrq_i40e; i40e_hw_t *hw = &i40e->i40e_hw_space; uint32_t reg; /* * Step 1. 8.3.3.1.2 suggests the interrupt is removed from the * hardware interrupt linked list (see i40e_intr.c) but for * simplicity we keep this list immutable until the device * (distinct from an individual ring) is stopped. */ /* * Step 2. Request the queue by clearing QENA_REQ. It may not be * set due to unwinding from failures and a partially enabled * ring set. */ reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index)); if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK)) return; VERIFY((reg & I40E_QRX_ENA_QENA_REQ_MASK) == I40E_QRX_ENA_QENA_REQ_MASK); reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg); /* * Step 3. Wait for the disable to take, by having QENA_STAT in the FPM * be cleared. Note that we could still receive data in the queue during * this time. We don't actually wait for this now and instead defer this * to i40e_shutdown_ring_wait(), after we've interleaved disabling the * TX queue as well. */ } static void i40e_shutdown_tx_ring(i40e_trqpair_t *itrq) { i40e_t *i40e = itrq->itrq_i40e; i40e_hw_t *hw = &i40e->i40e_hw_space; uint32_t reg; /* * Step 2. Set the SET_QDIS flag for the queue. */ i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_FALSE); /* * Step 3. Wait at least 400 usec. */ drv_usecwait(500); /* * Step 4. Clear the QENA_REQ flag which tells hardware to * quiesce. If QENA_REQ is not already set then that means that * we likely already tried to disable this queue. */ reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index)); if ((reg & I40E_QTX_ENA_QENA_REQ_MASK) != 0) { reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg); } /* * Step 5. Wait for the drain to finish. This will be done by the * hardware removing the QENA_STAT flag from the queue. Rather than * waiting here, we interleave it with the receive shutdown in * i40e_shutdown_ring_wait(). */ } /* * Wait for a ring to be shut down. e.g. Steps 2 and 5 from the above * functions. */ static boolean_t i40e_shutdown_ring_wait(i40e_trqpair_t *itrq) { i40e_t *i40e = itrq->itrq_i40e; i40e_hw_t *hw = &i40e->i40e_hw_space; uint32_t reg; int try; for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) { reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index)); if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) break; i40e_msec_delay(I40E_RING_WAIT_PAUSE); } if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) != 0) { i40e_error(i40e, "timed out disabling rx queue %d", itrq->itrq_index); return (B_FALSE); } for (try = 0; try < I40E_RING_WAIT_NTRIES; try++) { reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index)); if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) break; i40e_msec_delay(I40E_RING_WAIT_PAUSE); } if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) != 0) { i40e_error(i40e, "timed out disabling tx queue %d", itrq->itrq_index); return (B_FALSE); } return (B_TRUE); } /* * Shutdown an individual ring and release any memory. */ boolean_t i40e_shutdown_ring(i40e_trqpair_t *itrq) { boolean_t rv = B_TRUE; /* * Tell transmit path to quiesce, and wait until done. */ if (i40e_ring_tx_quiesce(itrq)) { /* Already quiesced. */ return (B_TRUE); } i40e_shutdown_rx_ring(itrq); i40e_shutdown_tx_ring(itrq); if (!i40e_shutdown_ring_wait(itrq)) rv = B_FALSE; /* * After the ring has stopped, we need to wait 50ms before * programming it again. Rather than wait here, we'll record * the time the ring was stopped. When the ring is started, we'll * check if enough time has expired and then wait if necessary. */ itrq->irtq_time_stopped = gethrtime(); /* * The rings have been stopped in the hardware, now wait for * a possibly active interrupt thread. */ i40e_intr_quiesce(itrq); mutex_enter(&itrq->itrq_tx_lock); i40e_tx_cleanup_ring(itrq); mutex_exit(&itrq->itrq_tx_lock); i40e_free_ring_mem(itrq, B_FALSE); return (rv); } /* * Shutdown all the rings. * Called from i40e_stop(), and hopefully the mac layer has already * called ring stop for each ring, which would make this almost a no-op. */ static boolean_t i40e_shutdown_rings(i40e_t *i40e) { boolean_t rv = B_TRUE; int i; for (i = 0; i < i40e->i40e_num_trqpairs; i++) { if (!i40e_shutdown_ring(&i40e->i40e_trqpairs[i])) rv = B_FALSE; } return (rv); } static void i40e_setup_rx_descs(i40e_trqpair_t *itrq) { int i; i40e_rx_data_t *rxd = itrq->itrq_rxdata; for (i = 0; i < rxd->rxd_ring_size; i++) { i40e_rx_control_block_t *rcb; i40e_rx_desc_t *rdesc; rcb = rxd->rxd_work_list[i]; rdesc = &rxd->rxd_desc_ring[i]; rdesc->read.pkt_addr = CPU_TO_LE64((uintptr_t)rcb->rcb_dma.dmab_dma_address); rdesc->read.hdr_addr = 0; } } static boolean_t i40e_setup_rx_hmc(i40e_trqpair_t *itrq) { i40e_rx_data_t *rxd = itrq->itrq_rxdata; i40e_t *i40e = itrq->itrq_i40e; i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_hmc_obj_rxq rctx; int err; bzero(&rctx, sizeof (struct i40e_hmc_obj_rxq)); rctx.base = rxd->rxd_desc_area.dmab_dma_address / I40E_HMC_RX_CTX_UNIT; rctx.qlen = rxd->rxd_ring_size; VERIFY(i40e->i40e_rx_buf_size >= I40E_HMC_RX_DBUFF_MIN); VERIFY(i40e->i40e_rx_buf_size <= I40E_HMC_RX_DBUFF_MAX); rctx.dbuff = i40e->i40e_rx_buf_size >> I40E_RXQ_CTX_DBUFF_SHIFT; rctx.hbuff = 0 >> I40E_RXQ_CTX_HBUFF_SHIFT; rctx.dtype = I40E_HMC_RX_DTYPE_NOSPLIT; rctx.dsize = I40E_HMC_RX_DSIZE_32BYTE; rctx.crcstrip = I40E_HMC_RX_CRCSTRIP_ENABLE; rctx.fc_ena = I40E_HMC_RX_FC_DISABLE; rctx.l2tsel = I40E_HMC_RX_L2TAGORDER; rctx.hsplit_0 = I40E_HMC_RX_HDRSPLIT_DISABLE; rctx.hsplit_1 = I40E_HMC_RX_HDRSPLIT_DISABLE; rctx.showiv = I40E_HMC_RX_INVLAN_DONTSTRIP; rctx.rxmax = i40e->i40e_frame_max; rctx.tphrdesc_ena = I40E_HMC_RX_TPH_DISABLE; rctx.tphwdesc_ena = I40E_HMC_RX_TPH_DISABLE; rctx.tphdata_ena = I40E_HMC_RX_TPH_DISABLE; rctx.tphhead_ena = I40E_HMC_RX_TPH_DISABLE; rctx.lrxqthresh = I40E_HMC_RX_LOWRXQ_NOINTR; /* * This must be set to 0x1, see Table 8-12 in section 8.3.3.2.2. */ rctx.prefena = I40E_HMC_RX_PREFENA; err = i40e_clear_lan_rx_queue_context(hw, itrq->itrq_index); if (err != I40E_SUCCESS) { i40e_error(i40e, "failed to clear rx queue %d context: %d", itrq->itrq_index, err); return (B_FALSE); } err = i40e_set_lan_rx_queue_context(hw, itrq->itrq_index, &rctx); if (err != I40E_SUCCESS) { i40e_error(i40e, "failed to set rx queue %d context: %d", itrq->itrq_index, err); return (B_FALSE); } return (B_TRUE); } /* * Take care of setting up the descriptor ring and actually programming the * device. See 8.3.3.1.1 for the full list of steps we need to do to enable the * rx rings. */ static boolean_t i40e_setup_rx_ring(i40e_trqpair_t *itrq) { i40e_t *i40e = itrq->itrq_i40e; i40e_hw_t *hw = &i40e->i40e_hw_space; i40e_rx_data_t *rxd = itrq->itrq_rxdata; uint32_t reg; int i; /* * Step 1. Program all receive ring descriptors. */ i40e_setup_rx_descs(itrq); /* * Step 2. Program the queue's FPM/HMC context. */ if (!i40e_setup_rx_hmc(itrq)) return (B_FALSE); /* * Step 3. Clear the queue's tail pointer and set it to the end * of the space. */ I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index), 0); I40E_WRITE_REG(hw, I40E_QRX_TAIL(itrq->itrq_index), rxd->rxd_ring_size - 1); /* * Step 4. Enable the queue via the QENA_REQ. */ reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index)); VERIFY0(reg & (I40E_QRX_ENA_QENA_REQ_MASK | I40E_QRX_ENA_QENA_STAT_MASK)); reg |= I40E_QRX_ENA_QENA_REQ_MASK; I40E_WRITE_REG(hw, I40E_QRX_ENA(itrq->itrq_index), reg); /* * Step 5. Verify that QENA_STAT has been set. It's promised * that this should occur within about 10 us, but like other * systems, we give the card a bit more time. */ for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) { reg = I40E_READ_REG(hw, I40E_QRX_ENA(itrq->itrq_index)); if (reg & I40E_QRX_ENA_QENA_STAT_MASK) break; i40e_msec_delay(I40E_RING_WAIT_PAUSE); } if ((reg & I40E_QRX_ENA_QENA_STAT_MASK) == 0) { i40e_error(i40e, "failed to enable rx queue %d, timed " "out.", itrq->itrq_index); return (B_FALSE); } return (B_TRUE); } static boolean_t i40e_setup_tx_hmc(i40e_trqpair_t *itrq) { i40e_t *i40e = itrq->itrq_i40e; i40e_hw_t *hw = &i40e->i40e_hw_space; struct i40e_hmc_obj_txq tctx; struct i40e_vsi_context context; int err; bzero(&tctx, sizeof (struct i40e_hmc_obj_txq)); tctx.new_context = I40E_HMC_TX_NEW_CONTEXT; tctx.base = itrq->itrq_desc_area.dmab_dma_address / I40E_HMC_TX_CTX_UNIT; tctx.fc_ena = I40E_HMC_TX_FC_DISABLE; tctx.timesync_ena = I40E_HMC_TX_TS_DISABLE; tctx.fd_ena = I40E_HMC_TX_FD_DISABLE; tctx.alt_vlan_ena = I40E_HMC_TX_ALT_VLAN_DISABLE; tctx.head_wb_ena = I40E_HMC_TX_WB_ENABLE; tctx.qlen = itrq->itrq_tx_ring_size; tctx.tphrdesc_ena = I40E_HMC_TX_TPH_DISABLE; tctx.tphrpacket_ena = I40E_HMC_TX_TPH_DISABLE; tctx.tphwdesc_ena = I40E_HMC_TX_TPH_DISABLE; tctx.head_wb_addr = itrq->itrq_desc_area.dmab_dma_address + sizeof (i40e_tx_desc_t) * itrq->itrq_tx_ring_size; /* * This field isn't actually documented, like crc, but it suggests that * it should be zeroed. We leave both of these here because of that for * now. We should check with Intel on why these are here even. */ tctx.crc = 0; tctx.rdylist_act = 0; /* * We're supposed to assign the rdylist field with the value of the * traffic class index for the first device. We query the VSI parameters * again to get what the handle is. Note that every queue is always * assigned to traffic class zero, because we don't actually use them. */ bzero(&context, sizeof (struct i40e_vsi_context)); context.seid = I40E_DEF_VSI_SEID(i40e); context.pf_num = hw->pf_id; err = i40e_aq_get_vsi_params(hw, &context, NULL); if (err != I40E_SUCCESS) { i40e_error(i40e, "get VSI params failed with %d", err); return (B_FALSE); } tctx.rdylist = LE_16(context.info.qs_handle[0]); err = i40e_clear_lan_tx_queue_context(hw, itrq->itrq_index); if (err != I40E_SUCCESS) { i40e_error(i40e, "failed to clear tx queue %d context: %d", itrq->itrq_index, err); return (B_FALSE); } err = i40e_set_lan_tx_queue_context(hw, itrq->itrq_index, &tctx); if (err != I40E_SUCCESS) { i40e_error(i40e, "failed to set tx queue %d context: %d", itrq->itrq_index, err); return (B_FALSE); } return (B_TRUE); } /* * Take care of setting up the descriptor ring and actually programming the * device. See 8.4.3.1.1 for what we need to do here. */ static boolean_t i40e_setup_tx_ring(i40e_trqpair_t *itrq) { i40e_t *i40e = itrq->itrq_i40e; i40e_hw_t *hw = &i40e->i40e_hw_space; uint32_t reg; int i; /* * Step 1. Clear the queue disable flag and verify that the * index is set correctly. */ i40e_pre_tx_queue_cfg(hw, itrq->itrq_index, B_TRUE); /* * Step 2. Prepare the queue's FPM/HMC context. */ if (!i40e_setup_tx_hmc(itrq)) return (B_FALSE); /* * Step 3. Verify that it's clear that this PF owns this queue. */ reg = I40E_QTX_CTL_PF_QUEUE; reg |= (hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & I40E_QTX_CTL_PF_INDX_MASK; I40E_WRITE_REG(hw, I40E_QTX_CTL(itrq->itrq_index), reg); i40e_flush(hw); /* * Step 4. Set the QENA_REQ flag. */ reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index)); VERIFY0(reg & (I40E_QTX_ENA_QENA_REQ_MASK | I40E_QTX_ENA_QENA_STAT_MASK)); reg |= I40E_QTX_ENA_QENA_REQ_MASK; I40E_WRITE_REG(hw, I40E_QTX_ENA(itrq->itrq_index), reg); /* * Step 5. Verify that QENA_STAT has been set. It's promised * that this should occur within about 10 us, but like BSD, * we'll try for up to 100 ms for this queue. */ for (i = 0; i < I40E_RING_WAIT_NTRIES; i++) { reg = I40E_READ_REG(hw, I40E_QTX_ENA(itrq->itrq_index)); if (reg & I40E_QTX_ENA_QENA_STAT_MASK) break; i40e_msec_delay(I40E_RING_WAIT_PAUSE); } if ((reg & I40E_QTX_ENA_QENA_STAT_MASK) == 0) { i40e_error(i40e, "failed to enable tx queue %d, timed " "out", itrq->itrq_index); return (B_FALSE); } return (B_TRUE); } int i40e_setup_ring(i40e_trqpair_t *itrq) { i40e_t *i40e = itrq->itrq_i40e; hrtime_t now, gap; if (!i40e_alloc_ring_mem(itrq)) { i40e_error(i40e, "Failed to allocate ring memory"); return (ENOMEM); } /* * 8.3.3.1.1 Receive Queue Enable Flow states software should * wait at least 50ms between ring disable and enable. See how * long we need to wait, and wait only if required. */ now = gethrtime(); gap = NSEC2MSEC(now - itrq->irtq_time_stopped); if (gap < I40E_RING_ENABLE_GAP && gap != 0) delay(drv_usectohz(gap * 1000)); mutex_enter(&itrq->itrq_intr_lock); if (!i40e_setup_rx_ring(itrq)) goto failed; if (!i40e_setup_tx_ring(itrq)) goto failed; if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) != DDI_FM_OK) goto failed; itrq->itrq_intr_quiesce = B_FALSE; mutex_exit(&itrq->itrq_intr_lock); mutex_enter(&itrq->itrq_tx_lock); itrq->itrq_tx_quiesce = B_FALSE; mutex_exit(&itrq->itrq_tx_lock); return (0); failed: mutex_exit(&itrq->itrq_intr_lock); i40e_free_ring_mem(itrq, B_TRUE); ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST); return (EIO); } void i40e_stop(i40e_t *i40e) { uint_t i; i40e_hw_t *hw = &i40e->i40e_hw_space; ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); /* * Shutdown and drain the tx and rx pipeline. We do this using the * following steps. * * 1) Shutdown interrupts to all the queues (trying to keep the admin * queue alive). * * 2) Remove all of the interrupt tx and rx causes by setting the * interrupt linked lists to zero. * * 2) Shutdown the tx and rx rings. Because i40e_shutdown_rings() should * wait for all the queues to be disabled, once we reach that point * it should be safe to free associated data. * * 4) Wait 50ms after all that is done. This ensures that the rings are * ready for programming again and we don't have to think about this * in other parts of the driver. * * 5) Disable remaining chip interrupts, (admin queue, etc.) * * 6) Verify that FM is happy with all the register accesses we * performed. */ i40e_intr_io_disable_all(i40e); i40e_intr_io_clear_cause(i40e); if (!i40e_shutdown_rings(i40e)) ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST); /* * We don't delete the default VSI because it replaces the VEB * after VEB deletion (see the "Delete Element" section). * Furthermore, since the default VSI is provided by the * firmware, we never attempt to delete it. */ for (i = 1; i < i40e->i40e_num_rx_groups; i++) { i40e_delete_vsi(i40e, i); } if (i40e->i40e_veb_seid != 0) { int rc = i40e_aq_delete_element(hw, i40e->i40e_veb_seid, NULL); if (rc != I40E_SUCCESS) { i40e_error(i40e, "Failed to delete VEB %d: %d", rc, hw->aq.asq_last_status); } i40e->i40e_veb_seid = 0; } i40e_intr_chip_fini(i40e); if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) != DDI_FM_OK) { ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST); } for (i = 0; i < i40e->i40e_num_rx_groups; i++) { i40e_stat_vsi_fini(i40e, i); } i40e->i40e_link_speed = 0; i40e->i40e_link_duplex = 0; i40e_link_state_set(i40e, LINK_STATE_UNKNOWN); } boolean_t i40e_start(i40e_t *i40e) { i40e_hw_t *hw = &i40e->i40e_hw_space; boolean_t rc = B_TRUE; int err; ASSERT(MUTEX_HELD(&i40e->i40e_general_lock)); if (!i40e_chip_start(i40e)) { i40e_fm_ereport(i40e, DDI_FM_DEVICE_INVAL_STATE); rc = B_FALSE; goto done; } /* * Enable broadcast traffic; however, do not enable multicast traffic. * That's handle exclusively through MAC's mc_multicst routines. */ err = i40e_aq_set_vsi_broadcast(hw, I40E_DEF_VSI_SEID(i40e), B_TRUE, NULL); if (err != I40E_SUCCESS) { i40e_error(i40e, "failed to set default VSI: %d", err); rc = B_FALSE; goto done; } err = i40e_aq_set_mac_config(hw, i40e->i40e_frame_max, B_TRUE, 0, NULL); if (err != I40E_SUCCESS) { i40e_error(i40e, "failed to set MAC config: %d", err); rc = B_FALSE; goto done; } /* * Finally, make sure that we're happy from an FM perspective. */ if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_reg_handle) != DDI_FM_OK) { rc = B_FALSE; goto done; } /* Clear state bits prior to final interrupt enabling. */ atomic_and_32(&i40e->i40e_state, ~(I40E_ERROR | I40E_STALL | I40E_OVERTEMP)); i40e_intr_io_enable_all(i40e); done: if (rc == B_FALSE) { i40e_stop(i40e); ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST); } return (rc); } /* * We may have loaned up descriptors to the stack. As such, if we still have * them outstanding, then we will not continue with detach. */ static boolean_t i40e_drain_rx(i40e_t *i40e) { mutex_enter(&i40e->i40e_rx_pending_lock); while (i40e->i40e_rx_pending > 0) { if (cv_reltimedwait(&i40e->i40e_rx_pending_cv, &i40e->i40e_rx_pending_lock, drv_usectohz(I40E_DRAIN_RX_WAIT), TR_CLOCK_TICK) == -1) { mutex_exit(&i40e->i40e_rx_pending_lock); return (B_FALSE); } } mutex_exit(&i40e->i40e_rx_pending_lock); return (B_TRUE); } /* * DDI UFM Callbacks */ static int i40e_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, ddi_ufm_image_t *img) { if (imgno != 0) return (EINVAL); ddi_ufm_image_set_desc(img, "Firmware"); ddi_ufm_image_set_nslots(img, 1); return (0); } static int i40e_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno, uint_t slotno, ddi_ufm_slot_t *slot) { i40e_t *i40e = (i40e_t *)arg; char *fw_ver = NULL, *fw_bld = NULL, *api_ver = NULL; nvlist_t *misc = NULL; uint_t flags = DDI_PROP_DONTPASS; int err; if (imgno != 0 || slotno != 0 || ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags, "firmware-version", &fw_ver) != DDI_PROP_SUCCESS || ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags, "firmware-build", &fw_bld) != DDI_PROP_SUCCESS || ddi_prop_lookup_string(DDI_DEV_T_ANY, i40e->i40e_dip, flags, "api-version", &api_ver) != DDI_PROP_SUCCESS) { err = EINVAL; goto err; } ddi_ufm_slot_set_attrs(slot, DDI_UFM_ATTR_ACTIVE); ddi_ufm_slot_set_version(slot, fw_ver); (void) nvlist_alloc(&misc, NV_UNIQUE_NAME, KM_SLEEP); if ((err = nvlist_add_string(misc, "firmware-build", fw_bld)) != 0 || (err = nvlist_add_string(misc, "api-version", api_ver)) != 0) { goto err; } ddi_ufm_slot_set_misc(slot, misc); ddi_prop_free(fw_ver); ddi_prop_free(fw_bld); ddi_prop_free(api_ver); return (0); err: nvlist_free(misc); if (fw_ver != NULL) ddi_prop_free(fw_ver); if (fw_bld != NULL) ddi_prop_free(fw_bld); if (api_ver != NULL) ddi_prop_free(api_ver); return (err); } static int i40e_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps) { *caps = DDI_UFM_CAP_REPORT; return (0); } static ddi_ufm_ops_t i40e_ufm_ops = { NULL, i40e_ufm_fill_image, i40e_ufm_fill_slot, i40e_ufm_getcaps }; static int i40e_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) { i40e_t *i40e; struct i40e_osdep *osdep; i40e_hw_t *hw; int instance; if (cmd != DDI_ATTACH) return (DDI_FAILURE); instance = ddi_get_instance(devinfo); i40e = kmem_zalloc(sizeof (i40e_t), KM_SLEEP); i40e->i40e_aqbuf = kmem_zalloc(I40E_ADMINQ_BUFSZ, KM_SLEEP); i40e->i40e_instance = instance; i40e->i40e_dip = devinfo; hw = &i40e->i40e_hw_space; osdep = &i40e->i40e_osdep_space; hw->back = osdep; osdep->ios_i40e = i40e; ddi_set_driver_private(devinfo, i40e); i40e_fm_init(i40e); i40e->i40e_attach_progress |= I40E_ATTACH_FM_INIT; if (pci_config_setup(devinfo, &osdep->ios_cfg_handle) != DDI_SUCCESS) { i40e_error(i40e, "Failed to map PCI configurations."); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_PCI_CONFIG; i40e_identify_hardware(i40e); if (!i40e_regs_map(i40e)) { i40e_error(i40e, "Failed to map device registers."); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_REGS_MAP; i40e_init_properties(i40e); i40e->i40e_attach_progress |= I40E_ATTACH_PROPS; if (!i40e_common_code_init(i40e, hw)) goto attach_fail; i40e->i40e_attach_progress |= I40E_ATTACH_COMMON_CODE; /* * When we participate in IRM, we should make sure that we register * ourselves with it before callbacks. */ if (!i40e_alloc_intrs(i40e, devinfo)) { i40e_error(i40e, "Failed to allocate interrupts."); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_INTR; if (!i40e_alloc_trqpairs(i40e)) { i40e_error(i40e, "Failed to allocate receive & transmit rings."); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_ALLOC_RINGSLOCKS; if (!i40e_map_intrs_to_vectors(i40e)) { i40e_error(i40e, "Failed to map interrupts to vectors."); goto attach_fail; } if (!i40e_add_intr_handlers(i40e)) { i40e_error(i40e, "Failed to add the interrupt handlers."); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_ADD_INTR; if (!i40e_final_init(i40e)) { i40e_error(i40e, "Final initialization failed."); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_INIT; if (i40e_check_acc_handle(i40e->i40e_osdep_space.ios_cfg_handle) != DDI_FM_OK) { ddi_fm_service_impact(i40e->i40e_dip, DDI_SERVICE_LOST); goto attach_fail; } if (!i40e_stats_init(i40e)) { i40e_error(i40e, "Stats initialization failed."); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_STATS; if (!i40e_register_mac(i40e)) { i40e_error(i40e, "Failed to register to MAC/GLDv3"); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_MAC; i40e->i40e_periodic_id = ddi_periodic_add(i40e_timer, i40e, I40E_CYCLIC_PERIOD, DDI_IPL_0); if (i40e->i40e_periodic_id == 0) { i40e_error(i40e, "Failed to add the link-check timer"); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_LINK_TIMER; if (!i40e_enable_interrupts(i40e)) { i40e_error(i40e, "Failed to enable DDI interrupts"); goto attach_fail; } i40e->i40e_attach_progress |= I40E_ATTACH_ENABLE_INTR; if (i40e->i40e_hw_space.bus.func == 0) { if (ddi_ufm_init(i40e->i40e_dip, DDI_UFM_CURRENT_VERSION, &i40e_ufm_ops, &i40e->i40e_ufmh, i40e) != 0) { i40e_error(i40e, "failed to initialize UFM subsystem"); goto attach_fail; } ddi_ufm_update(i40e->i40e_ufmh); i40e->i40e_attach_progress |= I40E_ATTACH_UFM_INIT; } atomic_or_32(&i40e->i40e_state, I40E_INITIALIZED); mutex_enter(&i40e_glock); list_insert_tail(&i40e_glist, i40e); mutex_exit(&i40e_glock); return (DDI_SUCCESS); attach_fail: i40e_unconfigure(devinfo, i40e); return (DDI_FAILURE); } static int i40e_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) { i40e_t *i40e; if (cmd != DDI_DETACH) return (DDI_FAILURE); i40e = (i40e_t *)ddi_get_driver_private(devinfo); if (i40e == NULL) { i40e_log(NULL, "i40e_detach() called with no i40e pointer!"); return (DDI_FAILURE); } if (i40e_drain_rx(i40e) == B_FALSE) { i40e_log(i40e, "timed out draining DMA resources, %d buffers " "remain", i40e->i40e_rx_pending); return (DDI_FAILURE); } mutex_enter(&i40e_glock); list_remove(&i40e_glist, i40e); mutex_exit(&i40e_glock); i40e_unconfigure(devinfo, i40e); return (DDI_SUCCESS); } static struct cb_ops i40e_cb_ops = { nulldev, /* cb_open */ nulldev, /* cb_close */ nodev, /* cb_strategy */ nodev, /* cb_print */ nodev, /* cb_dump */ nodev, /* cb_read */ nodev, /* cb_write */ nodev, /* cb_ioctl */ nodev, /* cb_devmap */ nodev, /* cb_mmap */ nodev, /* cb_segmap */ nochpoll, /* cb_chpoll */ ddi_prop_op, /* cb_prop_op */ NULL, /* cb_stream */ D_MP | D_HOTPLUG, /* cb_flag */ CB_REV, /* cb_rev */ nodev, /* cb_aread */ nodev /* cb_awrite */ }; static struct dev_ops i40e_dev_ops = { DEVO_REV, /* devo_rev */ 0, /* devo_refcnt */ NULL, /* devo_getinfo */ nulldev, /* devo_identify */ nulldev, /* devo_probe */ i40e_attach, /* devo_attach */ i40e_detach, /* devo_detach */ nodev, /* devo_reset */ &i40e_cb_ops, /* devo_cb_ops */ NULL, /* devo_bus_ops */ nulldev, /* devo_power */ ddi_quiesce_not_supported /* devo_quiesce */ }; static struct modldrv i40e_modldrv = { &mod_driverops, i40e_ident, &i40e_dev_ops }; static struct modlinkage i40e_modlinkage = { MODREV_1, &i40e_modldrv, NULL }; /* * Module Initialization Functions. */ int _init(void) { int status; list_create(&i40e_glist, sizeof (i40e_t), offsetof(i40e_t, i40e_glink)); list_create(&i40e_dlist, sizeof (i40e_device_t), offsetof(i40e_device_t, id_link)); mutex_init(&i40e_glock, NULL, MUTEX_DRIVER, NULL); mac_init_ops(&i40e_dev_ops, I40E_MODULE_NAME); status = mod_install(&i40e_modlinkage); if (status != DDI_SUCCESS) { mac_fini_ops(&i40e_dev_ops); mutex_destroy(&i40e_glock); list_destroy(&i40e_dlist); list_destroy(&i40e_glist); } return (status); } int _info(struct modinfo *modinfop) { return (mod_info(&i40e_modlinkage, modinfop)); } int _fini(void) { int status; status = mod_remove(&i40e_modlinkage); if (status == DDI_SUCCESS) { mac_fini_ops(&i40e_dev_ops); mutex_destroy(&i40e_glock); list_destroy(&i40e_dlist); list_destroy(&i40e_glist); } return (status); }