/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #define TCAM_COMPLETION_TRY_COUNT 10 #define HXGE_VLAN_TABLE_ENTRIES 128 #define HXGE_PFC_INT_STATUS_CLEAR 0x7ULL static uint64_t hpi_pfc_tcam_check_completion(hpi_handle_t handle, tcam_op_t op_type) { uint32_t try_counter, tcam_delay = 10; pfc_tcam_ctrl_t tctl; try_counter = TCAM_COMPLETION_TRY_COUNT; switch (op_type) { case TCAM_RWC_STAT: READ_TCAM_REG_CTL(handle, &tctl.value); while ((try_counter) && (tctl.bits.status != TCAM_CTL_RWC_RWC_STAT)) { try_counter--; HXGE_DELAY(tcam_delay); READ_TCAM_REG_CTL(handle, &tctl.value); } if (!try_counter) { HPI_ERROR_MSG((handle.function, HPI_ERR_CTL, " TCAM RWC_STAT operation" " failed to complete \n")); return (HPI_PFC_TCAM_HW_ERROR); } tctl.value = 0; break; case TCAM_RWC_MATCH: READ_TCAM_REG_CTL(handle, &tctl.value); while ((try_counter) && (tctl.bits.match != TCAM_CTL_RWC_RWC_MATCH)) { try_counter--; HXGE_DELAY(tcam_delay); READ_TCAM_REG_CTL(handle, &tctl.value); } if (!try_counter) { HPI_ERROR_MSG((handle.function, HPI_ERR_CTL, " TCAM Match operationfailed to find match \n")); } break; default: HPI_ERROR_MSG((handle.function, HPI_ERR_CTL, " Invalid TCAM completion Request \n")); return (HPI_PFC_ERROR | HPI_TCAM_ERROR | OPCODE_INVALID); } return (tctl.value); } hpi_status_t hpi_pfc_tcam_entry_read(hpi_handle_t handle, uint32_t location, hxge_tcam_entry_t *tcam_ptr) { pfc_tcam_ctrl_t tctl; pfc_tcam_ctrl_t tctl_rv; /* * Hydra doesn't allow to read TCAM entries. Use compare instead. */ WRITE_TCAM_REG_MASK0(handle, tcam_ptr->mask0); WRITE_TCAM_REG_MASK1(handle, tcam_ptr->mask1); WRITE_TCAM_REG_KEY0(handle, tcam_ptr->key0); WRITE_TCAM_REG_KEY1(handle, tcam_ptr->key1); tctl.value = 0; tctl.bits.addr = location; tctl.bits.cmd = TCAM_CTL_RWC_TCAM_CMP; WRITE_TCAM_REG_CTL(handle, tctl.value); tctl_rv.value = hpi_pfc_tcam_check_completion(handle, TCAM_RWC_MATCH); if (tctl_rv.bits.match) return (HPI_SUCCESS); else return (HPI_FAILURE); } hpi_status_t hpi_pfc_tcam_asc_ram_entry_read(hpi_handle_t handle, uint32_t location, uint64_t *ram_data) { uint64_t tcam_stat; pfc_tcam_ctrl_t tctl; tctl.value = 0; tctl.bits.addr = location; tctl.bits.cmd = TCAM_CTL_RWC_RAM_RD; WRITE_TCAM_REG_CTL(handle, tctl.value); tcam_stat = hpi_pfc_tcam_check_completion(handle, TCAM_RWC_STAT); if (tcam_stat & HPI_FAILURE) { HPI_ERROR_MSG((handle.function, HPI_ERR_CTL, "TCAM RAM read failed loc %d \n", location)); return (HPI_PFC_ASC_RAM_RD_ERROR); } READ_TCAM_REG_KEY0(handle, ram_data); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_tcam_asc_ram_entry_write(hpi_handle_t handle, uint32_t location, uint64_t ram_data) { uint64_t tcam_stat = 0; pfc_tcam_ctrl_t tctl; WRITE_TCAM_REG_KEY0(handle, ram_data); tctl.value = 0; tctl.bits.addr = location; tctl.bits.cmd = TCAM_CTL_RWC_RAM_WR; HPI_DEBUG_MSG((handle.function, HPI_PFC_CTL, " tcam ascr write: location %x data %llx ctl value %llx \n", location, ram_data, tctl.value)); WRITE_TCAM_REG_CTL(handle, tctl.value); tcam_stat = hpi_pfc_tcam_check_completion(handle, TCAM_RWC_STAT); if (tcam_stat & HPI_FAILURE) { HPI_ERROR_MSG((handle.function, HPI_ERR_CTL, "TCAM RAM write failed loc %d \n", location)); return (HPI_PFC_ASC_RAM_WR_ERROR); } return (HPI_SUCCESS); } static hpi_status_t hpi_pfc_set_config(hpi_handle_t handle, pfc_config_t config) { uint64_t offset; offset = PFC_CONFIG; REG_PIO_WRITE64(handle, offset, config.value); return (HPI_SUCCESS); } static hpi_status_t hpi_pfc_get_config(hpi_handle_t handle, pfc_config_t *configp) { uint64_t offset; offset = PFC_CONFIG; REG_PIO_READ64(handle, offset, &configp->value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_tcam_enable(hpi_handle_t handle, boolean_t tcam) { pfc_config_t config; /* * Read the register first. */ (void) hpi_pfc_get_config(handle, &config); if (tcam) config.bits.tcam_en = 1; else config.bits.tcam_en = 0; return (hpi_pfc_set_config(handle, config)); } hpi_status_t hpi_pfc_set_l2_hash(hpi_handle_t handle, boolean_t l2_hash) { pfc_config_t config; /* * Read the register first. */ (void) hpi_pfc_get_config(handle, &config); if (l2_hash) config.bits.l2_hash_en = 1; else config.bits.l2_hash_en = 0; return (hpi_pfc_set_config(handle, config)); } hpi_status_t hpi_pfc_set_tcp_cksum(hpi_handle_t handle, boolean_t cksum) { pfc_config_t config; /* * Read the register first. */ (void) hpi_pfc_get_config(handle, &config); if (cksum) config.bits.tcp_cs_en = 1; else config.bits.tcp_cs_en = 0; return (hpi_pfc_set_config(handle, config)); } hpi_status_t hpi_pfc_set_default_dma(hpi_handle_t handle, uint32_t dma_channel_no) { pfc_config_t config; (void) hpi_pfc_get_config(handle, &config); if (dma_channel_no > PFC_MAX_DMA_CHANNELS) return (HPI_FAILURE); config.bits.default_dma = dma_channel_no; return (hpi_pfc_set_config(handle, config)); } hpi_status_t hpi_pfc_mac_addr_enable(hpi_handle_t handle, uint32_t slot) { pfc_config_t config; uint32_t bit; if (slot >= PFC_N_MAC_ADDRESSES) { return (HPI_FAILURE); } (void) hpi_pfc_get_config(handle, &config); if (slot < 24) { bit = 1 << slot; config.bits.mac_addr_en_l = config.bits.mac_addr_en_l | bit; } else { bit = 1 << (slot - 24); config.bits.mac_addr_en = config.bits.mac_addr_en | bit; } return (hpi_pfc_set_config(handle, config)); } hpi_status_t hpi_pfc_mac_addr_disable(hpi_handle_t handle, uint32_t slot) { pfc_config_t config; uint32_t bit; if (slot >= PFC_N_MAC_ADDRESSES) { return (HPI_FAILURE); } (void) hpi_pfc_get_config(handle, &config); if (slot < 24) { bit = 1 << slot; config.bits.mac_addr_en_l = config.bits.mac_addr_en_l & ~bit; } else { bit = 1 << (slot - 24); config.bits.mac_addr_en = config.bits.mac_addr_en & ~bit; } return (hpi_pfc_set_config(handle, config)); } hpi_status_t hpi_pfc_set_force_csum(hpi_handle_t handle, boolean_t force) { pfc_config_t config; (void) hpi_pfc_get_config(handle, &config); if (force) config.bits.force_cs_en = 1; else config.bits.force_cs_en = 0; return (hpi_pfc_set_config(handle, config)); } hpi_status_t hpi_pfc_cfg_vlan_table_clear(hpi_handle_t handle) { int i; int offset; int step = 8; pfc_vlan_table_t table_entry; table_entry.value = 0; for (i = 0; i < HXGE_VLAN_TABLE_ENTRIES; i++) { table_entry.bits.member = 0; offset = PFC_VLAN_TABLE + i * step; REG_PIO_WRITE64(handle, offset, table_entry.value); } return (HPI_SUCCESS); } hpi_status_t hpi_pfc_cfg_vlan_table_entry_clear(hpi_handle_t handle, vlan_id_t vlan_id) { uint64_t offset; pfc_vlan_table_t vlan_tbl_entry; uint64_t bit; /* * Assumes that the hardware will generate the new parity * data. */ offset = PFC_VLAN_REG_OFFSET(vlan_id); REG_PIO_READ64(handle, offset, (uint64_t *)&vlan_tbl_entry.value); bit = PFC_VLAN_BIT_OFFSET(vlan_id); bit = 1 << bit; vlan_tbl_entry.bits.member = vlan_tbl_entry.bits.member & ~bit; REG_PIO_WRITE64(handle, offset, vlan_tbl_entry.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_cfg_vlan_table_entry_set(hpi_handle_t handle, vlan_id_t vlan_id) { uint64_t offset; pfc_vlan_table_t vlan_tbl_entry; uint64_t bit; /* * Assumes that the hardware will generate the new parity * data. */ offset = PFC_VLAN_REG_OFFSET(vlan_id); REG_PIO_READ64(handle, offset, (uint64_t *)&vlan_tbl_entry.value); bit = PFC_VLAN_BIT_OFFSET(vlan_id); bit = 1 << bit; vlan_tbl_entry.bits.member = vlan_tbl_entry.bits.member | bit; REG_PIO_WRITE64(handle, offset, vlan_tbl_entry.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_cfg_vlan_control_set(hpi_handle_t handle, boolean_t parity, boolean_t valid, vlan_id_t vlan_id) { pfc_vlan_ctrl_t vlan_control; vlan_control.value = 0; if (parity) vlan_control.bits.par_en = 1; else vlan_control.bits.par_en = 0; if (valid) vlan_control.bits.valid = 1; else vlan_control.bits.valid = 0; vlan_control.bits.id = vlan_id; REG_PIO_WRITE64(handle, PFC_VLAN_CTRL, vlan_control.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_vlan_parity_log(hpi_handle_t handle, pfc_vlan_par_err_log_t *logp) { uint64_t offset; offset = PFC_VLAN_PAR_ERR_LOG; REG_PIO_READ64(handle, offset, &logp->value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_mac_address(hpi_handle_t handle, uint32_t slot, uint64_t address) { uint64_t offset; uint64_t moffset; pfc_mac_addr_mask_t mask; pfc_mac_addr_t addr; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); offset = PFC_MAC_ADDRESS(slot); moffset = PFC_MAC_ADDRESS_MASK(slot); addr.bits.addr = address >> 32; addr.bits.addr_l = address & 0xffffffff; mask.bits.mask = 0x0; mask.bits.mask_l = 0x0; REG_PIO_WRITE64(handle, offset, addr.value); REG_PIO_WRITE64(handle, moffset, mask.value); return (hpi_pfc_mac_addr_enable(handle, slot)); } hpi_status_t hpi_pfc_clear_mac_address(hpi_handle_t handle, uint32_t slot) { uint64_t offset, moffset; uint64_t zaddr = 0x0ULL; uint64_t zmask = 0x0ULL; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); (void) hpi_pfc_mac_addr_disable(handle, slot); offset = PFC_MAC_ADDRESS(slot); moffset = PFC_MAC_ADDRESS_MASK(slot); REG_PIO_WRITE64(handle, offset, zaddr); REG_PIO_WRITE64(handle, moffset, zmask); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_clear_multicast_hash_table(hpi_handle_t handle, uint32_t slot) { uint64_t offset; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); offset = PFC_HASH_ADDR(slot); REG_PIO_WRITE64(handle, offset, 0ULL); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_multicast_hash_table(hpi_handle_t handle, uint32_t slot, uint64_t address) { uint64_t offset; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); offset = PFC_HASH_ADDR(slot); REG_PIO_WRITE64(handle, offset, address); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_l2_class_slot(hpi_handle_t handle, uint16_t etype, boolean_t valid, int slot) { pfc_l2_class_config_t l2_config; uint64_t offset; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); l2_config.value = 0; if (valid) l2_config.bits.valid = 1; else l2_config.bits.valid = 0; l2_config.bits.etype = etype; l2_config.bits.rsrvd = 0; offset = PFC_L2_CONFIG(slot); REG_PIO_WRITE64(handle, offset, l2_config.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_l3_class_config(hpi_handle_t handle, tcam_class_t slot, tcam_key_cfg_t cfg) { pfc_l3_class_config_t l3_config; uint64_t offset; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); l3_config.value = 0; if (cfg.lookup_enable) l3_config.bits.tsel = 1; else l3_config.bits.tsel = 0; if (cfg.discard) l3_config.bits.discard = 1; else l3_config.bits.discard = 0; offset = PFC_L3_CONFIG(slot); REG_PIO_WRITE64(handle, offset, l3_config.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_l3_class_config(hpi_handle_t handle, tcam_class_t slot, tcam_key_cfg_t *cfg) { pfc_l3_class_config_t l3_config; uint64_t offset; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); offset = PFC_L3_CONFIG(slot); REG_PIO_READ64(handle, offset, &l3_config.value); if (l3_config.bits.tsel) cfg->lookup_enable = 1; else cfg->lookup_enable = 0; if (l3_config.bits.discard) cfg->discard = 1; else cfg->discard = 0; return (HPI_SUCCESS); } static hpi_status_t hpi_pfc_set_tcam_control(hpi_handle_t handle, pfc_tcam_ctrl_t *tcontrolp) { uint64_t offset; offset = PFC_TCAM_CTRL; REG_PIO_WRITE64(handle, offset, tcontrolp->value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_tcam_entry_invalidate(hpi_handle_t handle, uint32_t location) { hxge_tcam_entry_t tcam_ptr; (void) memset(&tcam_ptr, 0, sizeof (hxge_tcam_entry_t)); (void) hpi_pfc_tcam_entry_write(handle, location, &tcam_ptr); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_tcam_invalidate_all(hpi_handle_t handle) { int i; pfc_tcam_ctrl_t tcontrol; tcontrol.value = 0; for (i = 0; i < PFC_N_TCAM_ENTRIES; i++) { (void) hpi_pfc_set_tcam_control(handle, &tcontrol); (void) hpi_pfc_tcam_entry_invalidate(handle, i); } return (HPI_SUCCESS); } hpi_status_t hpi_pfc_tcam_entry_write(hpi_handle_t handle, uint32_t location, hxge_tcam_entry_t *tcam_ptr) { uint64_t tcam_stat; pfc_tcam_ctrl_t tctl; WRITE_TCAM_REG_MASK0(handle, tcam_ptr->mask0); WRITE_TCAM_REG_MASK1(handle, tcam_ptr->mask1); WRITE_TCAM_REG_KEY0(handle, tcam_ptr->key0); WRITE_TCAM_REG_KEY1(handle, tcam_ptr->key1); HPI_DEBUG_MSG((handle.function, HPI_PFC_CTL, " tcam write: location %x\n key: %llx %llx\n mask: %llx %llx\n", location, tcam_ptr->key0, tcam_ptr->key1, tcam_ptr->mask0, tcam_ptr->mask1)); tctl.value = 0; tctl.bits.addr = location; tctl.bits.cmd = TCAM_CTL_RWC_TCAM_WR; HPI_DEBUG_MSG((handle.function, HPI_PFC_CTL, " tcam write: ctl value %llx \n", tctl.value)); WRITE_TCAM_REG_CTL(handle, tctl.value); tcam_stat = hpi_pfc_tcam_check_completion(handle, TCAM_RWC_STAT); if (tcam_stat & HPI_FAILURE) { HPI_ERROR_MSG((handle.function, HPI_ERR_CTL, "TCAM Write failed loc %d \n", location)); return (HPI_PFC_TCAM_WR_ERROR); } return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_tcam_parity_log(hpi_handle_t handle, pfc_tcam_par_err_log_t *logp) { uint64_t offset; offset = PFC_TCAM_PAR_ERR_LOG; REG_PIO_READ64(handle, offset, &logp->value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_tcam_auto_init(hpi_handle_t handle, pfc_auto_init_t *autoinitp) { uint64_t offset; offset = PFC_AUTO_INIT; REG_PIO_READ64(handle, offset, &autoinitp->value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_tcp_control_discard(hpi_handle_t handle, boolean_t discard) { uint64_t offset; tcp_ctrl_mask_t tcp; tcp.value = 0; offset = TCP_CTRL_MASK; REG_PIO_READ64(handle, offset, &tcp.value); if (discard) tcp.bits.discard = 1; else tcp.bits.discard = 0; REG_PIO_WRITE64(handle, offset, tcp.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_tcp_control_fin(hpi_handle_t handle, boolean_t fin) { uint64_t offset; tcp_ctrl_mask_t tcp; tcp.value = 0; offset = TCP_CTRL_MASK; REG_PIO_READ64(handle, offset, &tcp.value); if (fin) tcp.bits.fin = 1; else tcp.bits.fin = 0; REG_PIO_WRITE64(handle, offset, tcp.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_tcp_control_syn(hpi_handle_t handle, boolean_t syn) { uint64_t offset; tcp_ctrl_mask_t tcp; tcp.value = 0; offset = TCP_CTRL_MASK; REG_PIO_READ64(handle, offset, &tcp.value); if (syn) tcp.bits.syn = 1; else tcp.bits.syn = 0; REG_PIO_WRITE64(handle, offset, tcp.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_tcp_control_rst(hpi_handle_t handle, boolean_t rst) { uint64_t offset; tcp_ctrl_mask_t tcp; tcp.value = 0; offset = TCP_CTRL_MASK; REG_PIO_READ64(handle, offset, &tcp.value); if (rst) tcp.bits.rst = 1; else tcp.bits.rst = 0; REG_PIO_WRITE64(handle, offset, tcp.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_tcp_control_psh(hpi_handle_t handle, boolean_t push) { uint64_t offset; tcp_ctrl_mask_t tcp; tcp.value = 0; offset = TCP_CTRL_MASK; REG_PIO_READ64(handle, offset, &tcp.value); if (push) tcp.bits.psh = 1; else tcp.bits.psh = 0; REG_PIO_WRITE64(handle, offset, tcp.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_tcp_control_ack(hpi_handle_t handle, boolean_t ack) { uint64_t offset; tcp_ctrl_mask_t tcp; tcp.value = 0; offset = TCP_CTRL_MASK; REG_PIO_READ64(handle, offset, &tcp.value); if (ack) tcp.bits.ack = 1; else tcp.bits.ack = 0; REG_PIO_WRITE64(handle, offset, tcp.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_hash_seed_value(hpi_handle_t handle, uint32_t seed) { uint64_t offset; src_hash_val_t src_hash_seed; src_hash_seed.value = 0; src_hash_seed.bits.seed = seed; offset = SRC_HASH_VAL; REG_PIO_WRITE64(handle, offset, src_hash_seed.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_interrupt_status(hpi_handle_t handle, pfc_int_status_t *statusp) { uint64_t offset; offset = PFC_INT_STATUS; REG_PIO_READ64(handle, offset, &statusp->value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_clear_interrupt_status(hpi_handle_t handle) { uint64_t offset; offset = PFC_INT_STATUS; REG_PIO_WRITE64(handle, offset, HXGE_PFC_INT_STATUS_CLEAR); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_interrupt_mask(hpi_handle_t handle, boolean_t drop, boolean_t tcam_parity_error, boolean_t vlan_parity_error) { pfc_int_mask_t mask; uint64_t offset; mask.value = 0; if (drop) mask.bits.pkt_drop_mask = 1; else mask.bits.pkt_drop_mask = 0; if (tcam_parity_error) mask.bits.tcam_parity_err_mask = 1; else mask.bits.tcam_parity_err_mask = 0; if (vlan_parity_error) mask.bits.vlan_parity_err_mask = 1; else mask.bits.vlan_parity_err_mask = 0; offset = PFC_INT_MASK; REG_PIO_WRITE64(handle, offset, mask.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_drop_log(hpi_handle_t handle, pfc_drop_log_t *logp) { uint64_t offset; offset = PFC_DROP_LOG; REG_PIO_READ64(handle, offset, &logp->value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_set_drop_log_mask(hpi_handle_t handle, boolean_t vlan_drop, boolean_t tcam_drop, boolean_t class_code_drop, boolean_t l2_addr_drop, boolean_t tcp_ctrl_drop) { uint64_t offset; pfc_drop_log_mask_t log; log.value = 0; if (vlan_drop) log.bits.vlan_drop_mask = 1; if (tcam_drop) log.bits.tcam_drop_mask = 1; if (class_code_drop) log.bits.class_code_drop_mask = 1; if (l2_addr_drop) log.bits.l2_addr_drop_mask = 1; if (tcp_ctrl_drop) log.bits.tcp_ctrl_drop_mask = 1; offset = PFC_DROP_LOG_MASK; REG_PIO_WRITE64(handle, offset, log.value); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_bad_csum_counter(hpi_handle_t handle, uint64_t *countp) { uint64_t offset; offset = PFC_BAD_CS_COUNTER; REG_PIO_READ64(handle, offset, countp); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_drop_counter(hpi_handle_t handle, uint64_t *countp) { uint64_t offset; offset = PFC_DROP_COUNTER; REG_PIO_READ64(handle, offset, countp); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_get_number_mac_addrs(hpi_handle_t handle, uint32_t *n_of_addrs) { HXGE_REG_RD32(handle, HCR_REG + HCR_N_MAC_ADDRS, n_of_addrs); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_mac_addr_get_i(hpi_handle_t handle, uint8_t *data, int slot) { uint32_t step = sizeof (uint32_t); uint32_t addr_hi = 0, addr_lo = 0; if (slot >= PFC_N_MAC_ADDRESSES) return (HPI_FAILURE); /* * Read the MAC address out of the SPROM at the blade's * specific location. */ HXGE_REG_RD32(handle, HCR_REG + HCR_ADDR_LO + slot * step, &addr_lo); HXGE_REG_RD32(handle, HCR_REG + HCR_ADDR_HI + slot * step, &addr_hi); data[0] = addr_lo & 0x000000ff; data[1] = (addr_lo & 0x0000ff00) >> 8; data[2] = (addr_lo & 0x00ff0000) >> 16; data[3] = (addr_lo & 0xff000000) >> 24; data[4] = (addr_hi & 0x00000ff00) >> 8; data[5] = (addr_hi & 0x0000000ff); return (HPI_SUCCESS); } hpi_status_t hpi_pfc_num_macs_get(hpi_handle_t handle, uint8_t *data) { uint8_t addr[6]; uint8_t num = 0; int i; for (i = 0; i < 16; i++) { (void) hpi_pfc_mac_addr_get_i(handle, addr, i); if (addr[0] || addr[1] || addr[2] || addr[3] || addr[4] || addr[5]) num++; } *data = num; return (HPI_SUCCESS); }