/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Data-Link Services Module */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static kmem_cache_t *i_dls_link_cachep; static mod_hash_t *i_dls_link_hash; static uint_t i_dls_link_count; static krwlock_t i_dls_link_lock; #define LINK_HASHSZ 67 /* prime */ #define IMPL_HASHSZ 67 /* prime */ /* * Construct a hash key encompassing both DLSAP value and VLAN idenitifier. */ #define MAKE_KEY(_sap, _vid) \ ((mod_hash_key_t)(uintptr_t) \ (((_sap) << VLAN_ID_SIZE) | (_vid) & VLAN_ID_MASK)) /* * Extract the DLSAP value from the hash key. */ #define KEY_SAP(_key) \ (((uint32_t)(uintptr_t)(_key)) >> VLAN_ID_SIZE) #define DLS_STRIP_PADDING(pktsize, p) { \ if (pktsize != 0) { \ ssize_t delta = pktsize - msgdsize(p); \ \ if (delta < 0) \ (void) adjmsg(p, delta); \ } \ } /* * Private functions. */ /*ARGSUSED*/ static int i_dls_link_constructor(void *buf, void *arg, int kmflag) { dls_link_t *dlp = buf; char name[MAXNAMELEN]; bzero(buf, sizeof (dls_link_t)); (void) snprintf(name, MAXNAMELEN, "dls_link_t_%p_hash", buf); dlp->dl_impl_hash = mod_hash_create_idhash(name, IMPL_HASHSZ, mod_hash_null_valdtor); mutex_init(&dlp->dl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&dlp->dl_promisc_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&dlp->dl_impl_lock, NULL, RW_DEFAULT, NULL); return (0); } /*ARGSUSED*/ static void i_dls_link_destructor(void *buf, void *arg) { dls_link_t *dlp = buf; ASSERT(dlp->dl_ref == 0); ASSERT(dlp->dl_mh == NULL); ASSERT(dlp->dl_unknowns == 0); mod_hash_destroy_idhash(dlp->dl_impl_hash); dlp->dl_impl_hash = NULL; mutex_destroy(&dlp->dl_lock); mutex_destroy(&dlp->dl_promisc_lock); rw_destroy(&dlp->dl_impl_lock); } /* * - Parse the mac header information of the given packet. * - Strip the padding and skip over the header. Note that because some * DLS consumers only check the db_ref count of the first mblk, we * pullup the message into a single mblk. Because the original message * is freed as the result of message pulling up, dls_link_header_info() * is called again to update the mhi_saddr and mhi_daddr pointers in the * mhip. Further, the dls_link_header_info() function ensures that the * size of the pulled message is greater than the MAC header size, * therefore we can directly advance b_rptr to point at the payload. * * We choose to use a macro for performance reasons. */ #define DLS_PREPARE_PKT(dlp, mp, mhip, err) { \ mblk_t *nextp = (mp)->b_next; \ if (((err) = dls_link_header_info((dlp), (mp), (mhip))) == 0) { \ DLS_STRIP_PADDING((mhip)->mhi_pktsize, (mp)); \ if (MBLKL((mp)) < (mhip)->mhi_hdrsize) { \ mblk_t *newmp; \ if ((newmp = msgpullup((mp), -1)) == NULL) { \ (err) = EINVAL; \ } else { \ (mp)->b_next = NULL; \ freemsg((mp)); \ (mp) = newmp; \ VERIFY(dls_link_header_info((dlp), \ (mp), (mhip)) == 0); \ (mp)->b_next = nextp; \ (mp)->b_rptr += (mhip)->mhi_hdrsize; \ } \ } else { \ (mp)->b_rptr += (mhip)->mhi_hdrsize; \ } \ } \ } /* * Truncate the chain starting at mp such that all packets in the chain * have identical source and destination addresses, saps, and tag types * (see below). It returns a pointer to the mblk following the chain, * NULL if there is no further packet following the processed chain. * The countp argument is set to the number of valid packets in the chain. * Note that the whole MAC header (including the VLAN tag if any) in each * packet will be stripped. */ static mblk_t * i_dls_link_subchain(dls_link_t *dlp, mblk_t *mp, const mac_header_info_t *mhip, uint_t *countp) { mblk_t *prevp; uint_t npacket = 1; size_t addr_size = dlp->dl_mip->mi_addr_length; uint16_t vid = VLAN_ID(mhip->mhi_tci); uint16_t pri = VLAN_PRI(mhip->mhi_tci); /* * Compare with subsequent headers until we find one that has * differing header information. After checking each packet * strip padding and skip over the header. */ for (prevp = mp; (mp = mp->b_next) != NULL; prevp = mp) { mac_header_info_t cmhi; uint16_t cvid, cpri; int err; DLS_PREPARE_PKT(dlp, mp, &cmhi, err); if (err != 0) break; prevp->b_next = mp; /* * The source, destination, sap, vlan id and the MSGNOLOOP * flag must all match in a given subchain. */ if (memcmp(mhip->mhi_daddr, cmhi.mhi_daddr, addr_size) != 0 || memcmp(mhip->mhi_saddr, cmhi.mhi_saddr, addr_size) != 0 || mhip->mhi_bindsap != cmhi.mhi_bindsap || mhip->mhi_prom_looped != cmhi.mhi_prom_looped) { /* * Note that we don't need to restore the padding. */ mp->b_rptr -= cmhi.mhi_hdrsize; break; } cvid = VLAN_ID(cmhi.mhi_tci); cpri = VLAN_PRI(cmhi.mhi_tci); /* * There are several types of packets. Packets don't match * if they are classified to different type or if they are * VLAN packets but belong to different VLANs: * * packet type tagged vid pri * --------------------------------------------------------- * untagged No zero zero * VLAN packets Yes non-zero - * priority tagged Yes zero non-zero * 0 tagged Yes zero zero */ if ((mhip->mhi_istagged != cmhi.mhi_istagged) || (vid != cvid) || ((vid == VLAN_ID_NONE) && (((pri == 0) && (cpri != 0)) || ((pri != 0) && (cpri == 0))))) { mp->b_rptr -= cmhi.mhi_hdrsize; break; } npacket++; } /* * Break the chain at this point and return a pointer to the next * sub-chain. */ prevp->b_next = NULL; *countp = npacket; return (mp); } static void i_dls_head_hold(dls_head_t *dhp) { atomic_inc_32(&dhp->dh_ref); } static void i_dls_head_rele(dls_head_t *dhp) { atomic_dec_32(&dhp->dh_ref); } static dls_head_t * i_dls_head_alloc(mod_hash_key_t key) { dls_head_t *dhp; dhp = kmem_zalloc(sizeof (dls_head_t), KM_SLEEP); dhp->dh_key = key; return (dhp); } static void i_dls_head_free(dls_head_t *dhp) { ASSERT(dhp->dh_ref == 0); kmem_free(dhp, sizeof (dls_head_t)); } /* * Try to send mp up to the streams of the given sap and vid. Return B_TRUE * if this message is sent to any streams. * Note that this function will copy the message chain and the original * mp will remain valid after this function */ static uint_t i_dls_link_rx_func(dls_link_t *dlp, mac_resource_handle_t mrh, mac_header_info_t *mhip, mblk_t *mp, uint32_t sap, uint16_t vid, boolean_t (*acceptfunc)()) { mod_hash_t *hash = dlp->dl_impl_hash; mod_hash_key_t key; dls_head_t *dhp; dls_impl_t *dip; mblk_t *nmp; dls_rx_t di_rx; void *di_rx_arg; uint_t naccepted = 0; /* * Construct a hash key from the VLAN identifier and the * DLSAP that represents dls_impl_t in promiscuous mode. */ key = MAKE_KEY(sap, vid); /* * Search the hash table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); return (B_FALSE); } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) { if (!acceptfunc(dip, mhip, &di_rx, &di_rx_arg)) continue; /* * We have at least one acceptor. */ naccepted ++; /* * There will normally be at least more dls_impl_t * (since we've yet to check for non-promiscuous * dls_impl_t) so dup the sub-chain. */ if ((nmp = copymsgchain(mp)) != NULL) di_rx(di_rx_arg, mrh, nmp, mhip); } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); return (naccepted); } static void i_dls_link_rx(void *arg, mac_resource_handle_t mrh, mblk_t *mp) { dls_link_t *dlp = arg; mod_hash_t *hash = dlp->dl_impl_hash; mblk_t *nextp; mac_header_info_t mhi; dls_head_t *dhp; dls_impl_t *dip; dls_impl_t *ndip; mblk_t *nmp; mod_hash_key_t key; uint_t npacket; boolean_t accepted; dls_rx_t di_rx, ndi_rx; void *di_rx_arg, *ndi_rx_arg; uint16_t vid; int err; /* * Walk the packet chain. */ for (; mp != NULL; mp = nextp) { /* * Wipe the accepted state. */ accepted = B_FALSE; DLS_PREPARE_PKT(dlp, mp, &mhi, err); if (err != 0) { atomic_add_32(&(dlp->dl_unknowns), 1); nextp = mp->b_next; mp->b_next = NULL; freemsg(mp); continue; } /* * Grab the longest sub-chain we can process as a single * unit. */ nextp = i_dls_link_subchain(dlp, mp, &mhi, &npacket); ASSERT(npacket != 0); vid = VLAN_ID(mhi.mhi_tci); if (mhi.mhi_istagged) { /* * If it is tagged traffic, send it upstream to * all dls_impl_t which are attached to the physical * link and bound to SAP 0x8100. */ if (i_dls_link_rx_func(dlp, mrh, &mhi, mp, ETHERTYPE_VLAN, VLAN_ID_NONE, dls_accept) > 0) { accepted = B_TRUE; } /* * Don't pass the packets up if they are tagged * packets and: * - their VID and priority are both zero (invalid * packets). * - their sap is ETHERTYPE_VLAN and their VID is * zero as they have already been sent upstreams. */ if ((vid == VLAN_ID_NONE && VLAN_PRI(mhi.mhi_tci) == 0) || (mhi.mhi_bindsap == ETHERTYPE_VLAN && vid == VLAN_ID_NONE)) { freemsgchain(mp); goto loop; } } /* * Construct a hash key from the VLAN identifier and the * DLSAP. */ key = MAKE_KEY(mhi.mhi_bindsap, vid); /* * Search the has table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); freemsgchain(mp); goto loop; } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find the first dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) if (dls_accept(dip, &mhi, &di_rx, &di_rx_arg)) break; /* * If we did not find any dls_impl_t willing to accept the * sub-chain then throw it away. */ if (dip == NULL) { i_dls_head_rele(dhp); freemsgchain(mp); goto loop; } /* * We have at least one acceptor. */ accepted = B_TRUE; for (;;) { /* * Find the next dls_impl_t that will accept the * sub-chain. */ for (ndip = dip->di_nextp; ndip != NULL; ndip = ndip->di_nextp) if (dls_accept(ndip, &mhi, &ndi_rx, &ndi_rx_arg)) break; /* * If there are no more dls_impl_t that are willing * to accept the sub-chain then we don't need to dup * it before handing it to the current one. */ if (ndip == NULL) { di_rx(di_rx_arg, mrh, mp, &mhi); /* * Since there are no more dls_impl_t, we're * done. */ break; } /* * There are more dls_impl_t so dup the sub-chain. */ if ((nmp = copymsgchain(mp)) != NULL) di_rx(di_rx_arg, mrh, nmp, &mhi); dip = ndip; di_rx = ndi_rx; di_rx_arg = ndi_rx_arg; } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); loop: /* * If there were no acceptors then add the packet count to the * 'unknown' count. */ if (!accepted) atomic_add_32(&(dlp->dl_unknowns), npacket); } } /* * Try to send mp up to the DLS_SAP_PROMISC listeners. Return B_TRUE if this * message is sent to any streams. */ static uint_t i_dls_link_rx_common_promisc(dls_link_t *dlp, mac_resource_handle_t mrh, mac_header_info_t *mhip, mblk_t *mp, uint16_t vid, boolean_t (*acceptfunc)()) { uint_t naccepted; naccepted = i_dls_link_rx_func(dlp, mrh, mhip, mp, DLS_SAP_PROMISC, vid, acceptfunc); if (vid != VLAN_ID_NONE) { naccepted += i_dls_link_rx_func(dlp, mrh, mhip, mp, DLS_SAP_PROMISC, VLAN_ID_NONE, acceptfunc); } return (naccepted); } static void i_dls_link_rx_common(void *arg, mac_resource_handle_t mrh, mblk_t *mp, boolean_t (*acceptfunc)()) { dls_link_t *dlp = arg; mod_hash_t *hash = dlp->dl_impl_hash; mblk_t *nextp; mac_header_info_t mhi; uint16_t vid, vidkey, pri; dls_head_t *dhp; dls_impl_t *dip; mblk_t *nmp; mod_hash_key_t key; uint_t npacket; uint32_t sap; boolean_t accepted; dls_rx_t di_rx, fdi_rx; void *di_rx_arg, *fdi_rx_arg; boolean_t pass2; int err; /* * Walk the packet chain. */ for (; mp != NULL; mp = nextp) { /* * Wipe the accepted state and the receive information of * the first eligible dls_impl_t. */ accepted = B_FALSE; pass2 = B_FALSE; fdi_rx = NULL; fdi_rx_arg = NULL; DLS_PREPARE_PKT(dlp, mp, &mhi, err); if (err != 0) { if (acceptfunc == dls_accept) atomic_add_32(&(dlp->dl_unknowns), 1); nextp = mp->b_next; mp->b_next = NULL; freemsg(mp); continue; } /* * Grab the longest sub-chain we can process as a single * unit. */ nextp = i_dls_link_subchain(dlp, mp, &mhi, &npacket); ASSERT(npacket != 0); vid = VLAN_ID(mhi.mhi_tci); pri = VLAN_PRI(mhi.mhi_tci); vidkey = vid; /* * Note that we need to first send to the dls_impl_t * in promiscuous mode in order to avoid the packet reordering * when snooping. */ if (i_dls_link_rx_common_promisc(dlp, mrh, &mhi, mp, vidkey, acceptfunc) > 0) { accepted = B_TRUE; } /* * Non promisc case. Two passes: * 1. send tagged packets to ETHERTYPE_VLAN listeners * 2. send packets to listeners bound to the specific SAP. */ if (mhi.mhi_istagged) { vidkey = VLAN_ID_NONE; sap = ETHERTYPE_VLAN; } else { goto non_promisc_loop; } non_promisc: /* * Construct a hash key from the VLAN identifier and the * DLSAP. */ key = MAKE_KEY(sap, vidkey); /* * Search the has table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); goto non_promisc_loop; } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find the first dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) { if (!acceptfunc(dip, &mhi, &di_rx, &di_rx_arg)) continue; accepted = B_TRUE; /* * To avoid the extra copymsgchain(), if this * is the first eligible dls_impl_t, remember required * information and send up the message afterwards. */ if (fdi_rx == NULL) { fdi_rx = di_rx; fdi_rx_arg = di_rx_arg; continue; } if ((nmp = copymsgchain(mp)) != NULL) di_rx(di_rx_arg, mrh, nmp, &mhi); } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); non_promisc_loop: /* * Don't pass the packets up again if: * - First pass is done and the packets are tagged and their: * - VID and priority are both zero (invalid packets). * - their sap is ETHERTYPE_VLAN and their VID is zero * (they have already been sent upstreams). * - Second pass is done: */ if (pass2 || (mhi.mhi_istagged && ((vid == VLAN_ID_NONE && pri == 0) || (mhi.mhi_bindsap == ETHERTYPE_VLAN && vid == VLAN_ID_NONE)))) { /* * Send the message up to the first eligible dls_impl_t. */ if (fdi_rx != NULL) fdi_rx(fdi_rx_arg, mrh, mp, &mhi); else freemsgchain(mp); } else { vidkey = vid; sap = mhi.mhi_bindsap; pass2 = B_TRUE; goto non_promisc; } /* * If there were no acceptors then add the packet count to the * 'unknown' count. */ if (!accepted && (acceptfunc == dls_accept)) atomic_add_32(&(dlp->dl_unknowns), npacket); } } static void i_dls_link_rx_promisc(void *arg, mac_resource_handle_t mrh, mblk_t *mp) { i_dls_link_rx_common(arg, mrh, mp, dls_accept); } void dls_link_txloop(void *arg, mblk_t *mp) { i_dls_link_rx_common(arg, NULL, mp, dls_accept_loopback); } /*ARGSUSED*/ static uint_t i_dls_link_walk(mod_hash_key_t key, mod_hash_val_t *val, void *arg) { boolean_t *promiscp = arg; uint32_t sap = KEY_SAP(key); if (sap == DLS_SAP_PROMISC) { *promiscp = B_TRUE; return (MH_WALK_TERMINATE); } return (MH_WALK_CONTINUE); } static int i_dls_link_create(const char *name, dls_link_t **dlpp) { dls_link_t *dlp; /* * Allocate a new dls_link_t structure. */ dlp = kmem_cache_alloc(i_dls_link_cachep, KM_SLEEP); /* * Name the dls_link_t after the MAC interface it represents. */ (void) strlcpy(dlp->dl_name, name, sizeof (dlp->dl_name)); /* * Initialize promiscuous bookkeeping fields. */ dlp->dl_npromisc = 0; dlp->dl_mth = NULL; *dlpp = dlp; return (0); } static void i_dls_link_destroy(dls_link_t *dlp) { ASSERT(dlp->dl_npromisc == 0); ASSERT(dlp->dl_nactive == 0); ASSERT(dlp->dl_mth == NULL); ASSERT(dlp->dl_macref == 0); ASSERT(dlp->dl_mh == NULL); ASSERT(dlp->dl_mip == NULL); ASSERT(dlp->dl_impl_count == 0); ASSERT(dlp->dl_mrh == NULL); /* * Free the structure back to the cache. */ dlp->dl_unknowns = 0; kmem_cache_free(i_dls_link_cachep, dlp); } /* * Module initialization functions. */ void dls_link_init(void) { /* * Create a kmem_cache of dls_link_t structures. */ i_dls_link_cachep = kmem_cache_create("dls_link_cache", sizeof (dls_link_t), 0, i_dls_link_constructor, i_dls_link_destructor, NULL, NULL, NULL, 0); ASSERT(i_dls_link_cachep != NULL); /* * Create a dls_link_t hash table and associated lock. */ i_dls_link_hash = mod_hash_create_extended("dls_link_hash", IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); rw_init(&i_dls_link_lock, NULL, RW_DEFAULT, NULL); i_dls_link_count = 0; } int dls_link_fini(void) { if (i_dls_link_count > 0) return (EBUSY); /* * Destroy the kmem_cache. */ kmem_cache_destroy(i_dls_link_cachep); /* * Destroy the hash table and associated lock. */ mod_hash_destroy_hash(i_dls_link_hash); rw_destroy(&i_dls_link_lock); return (0); } /* * Exported functions. */ int dls_link_hold(const char *name, dls_link_t **dlpp) { dls_link_t *dlp; int err; /* * Look up a dls_link_t corresponding to the given mac_handle_t * in the global hash table. We need to hold i_dls_link_lock in * order to atomically find and insert a dls_link_t into the * hash table. */ rw_enter(&i_dls_link_lock, RW_WRITER); if ((err = mod_hash_find(i_dls_link_hash, (mod_hash_key_t)name, (mod_hash_val_t *)&dlp)) == 0) goto done; ASSERT(err == MH_ERR_NOTFOUND); /* * We didn't find anything so we need to create one. */ if ((err = i_dls_link_create(name, &dlp)) != 0) { rw_exit(&i_dls_link_lock); return (err); } /* * Insert the dls_link_t. */ err = mod_hash_insert(i_dls_link_hash, (mod_hash_key_t)dlp->dl_name, (mod_hash_val_t)dlp); ASSERT(err == 0); i_dls_link_count++; ASSERT(i_dls_link_count != 0); done: /* * Bump the reference count and hand back the reference. */ dlp->dl_ref++; *dlpp = dlp; rw_exit(&i_dls_link_lock); return (0); } void dls_link_rele(dls_link_t *dlp) { mod_hash_val_t val; rw_enter(&i_dls_link_lock, RW_WRITER); /* * Check if there are any more references. */ if (--dlp->dl_ref != 0) { /* * There are more references so there's nothing more to do. */ goto done; } (void) mod_hash_remove(i_dls_link_hash, (mod_hash_key_t)dlp->dl_name, &val); ASSERT(dlp == (dls_link_t *)val); /* * Destroy the dls_link_t. */ i_dls_link_destroy(dlp); ASSERT(i_dls_link_count > 0); i_dls_link_count--; done: rw_exit(&i_dls_link_lock); } int dls_mac_hold(dls_link_t *dlp) { mac_handle_t mh; int err = 0; err = mac_open(dlp->dl_name, &mh); mutex_enter(&dlp->dl_lock); ASSERT(IMPLY(dlp->dl_macref != 0, dlp->dl_mh != NULL)); ASSERT(IMPLY(dlp->dl_macref == 0, dlp->dl_mh == NULL)); if (err == 0) { ASSERT(dlp->dl_mh == NULL || dlp->dl_mh == mh); if (dlp->dl_mh == NULL) { dlp->dl_mh = mh; dlp->dl_mip = mac_info(mh); } dlp->dl_macref++; } mutex_exit(&dlp->dl_lock); return (err); } void dls_mac_rele(dls_link_t *dlp) { mutex_enter(&dlp->dl_lock); ASSERT(dlp->dl_mh != NULL); mac_close(dlp->dl_mh); if (--dlp->dl_macref == 0) { dlp->dl_mh = NULL; dlp->dl_mip = NULL; } mutex_exit(&dlp->dl_lock); } void dls_link_add(dls_link_t *dlp, uint32_t sap, dls_impl_t *dip) { dls_vlan_t *dvp = dip->di_dvp; mod_hash_t *hash = dlp->dl_impl_hash; mod_hash_key_t key; dls_head_t *dhp; dls_impl_t *p; mac_rx_t rx; int err; boolean_t promisc = B_FALSE; /* * Generate a hash key based on the sap and the VLAN id. */ key = MAKE_KEY(sap, dvp->dv_id); /* * We need dl_lock here because we want to be able to walk * the hash table *and* set the mac rx func atomically. if * these two operations are separate, someone else could * insert/remove dls_impl_t from the hash table after we * drop the hash lock and this could cause our chosen rx * func to be incorrect. note that we cannot call mac_rx_add * when holding the hash lock because this can cause deadlock. */ mutex_enter(&dlp->dl_lock); /* * Search the table for a list head with this key. */ rw_enter(&dlp->dl_impl_lock, RW_WRITER); if ((err = mod_hash_find(hash, key, (mod_hash_val_t *)&dhp)) != 0) { ASSERT(err == MH_ERR_NOTFOUND); dhp = i_dls_head_alloc(key); err = mod_hash_insert(hash, key, (mod_hash_val_t)dhp); ASSERT(err == 0); } /* * Add the dls_impl_t to the head of the list. */ ASSERT(dip->di_nextp == NULL); p = dhp->dh_list; dip->di_nextp = p; dhp->dh_list = dip; /* * Save a pointer to the list head. */ dip->di_headp = dhp; dlp->dl_impl_count++; /* * Walk the bound dls_impl_t to see if there are any * in promiscuous 'all sap' mode. */ mod_hash_walk(hash, i_dls_link_walk, (void *)&promisc); rw_exit(&dlp->dl_impl_lock); /* * If there are then we need to use a receive routine * which will route packets to those dls_impl_t as well * as ones bound to the DLSAP of the packet. */ if (promisc) rx = i_dls_link_rx_promisc; else rx = i_dls_link_rx; /* Replace the existing receive function if there is one. */ if (dlp->dl_mrh != NULL) mac_rx_remove(dlp->dl_mh, dlp->dl_mrh, B_TRUE); dlp->dl_mrh = mac_active_rx_add(dlp->dl_mh, rx, (void *)dlp); mutex_exit(&dlp->dl_lock); } void dls_link_remove(dls_link_t *dlp, dls_impl_t *dip) { mod_hash_t *hash = dlp->dl_impl_hash; dls_impl_t **pp; dls_impl_t *p; dls_head_t *dhp; mac_rx_t rx; /* * We need dl_lock here because we want to be able to walk * the hash table *and* set the mac rx func atomically. if * these two operations are separate, someone else could * insert/remove dls_impl_t from the hash table after we * drop the hash lock and this could cause our chosen rx * func to be incorrect. note that we cannot call mac_rx_add * when holding the hash lock because this can cause deadlock. */ mutex_enter(&dlp->dl_lock); rw_enter(&dlp->dl_impl_lock, RW_WRITER); /* * Poll the hash table entry until all references have been dropped. * We need to drop all locks before sleeping because we don't want * the interrupt handler to block. We set di_removing here to * tell the receive callbacks not to pass up packets anymore. * This is only a hint to quicken the decrease of the refcnt so * the assignment need not be protected by any lock. */ dhp = dip->di_headp; dip->di_removing = B_TRUE; while (dhp->dh_ref != 0) { rw_exit(&dlp->dl_impl_lock); mutex_exit(&dlp->dl_lock); delay(drv_usectohz(1000)); /* 1ms delay */ mutex_enter(&dlp->dl_lock); rw_enter(&dlp->dl_impl_lock, RW_WRITER); } /* * Walk the list and remove the dls_impl_t. */ for (pp = &dhp->dh_list; (p = *pp) != NULL; pp = &(p->di_nextp)) { if (p == dip) break; } ASSERT(p != NULL); *pp = p->di_nextp; p->di_nextp = NULL; ASSERT(dlp->dl_impl_count > 0); dlp->dl_impl_count--; if (dhp->dh_list == NULL) { mod_hash_val_t val = NULL; /* * The list is empty so remove the hash table entry. */ (void) mod_hash_remove(hash, dhp->dh_key, &val); ASSERT(dhp == (dls_head_t *)val); i_dls_head_free(dhp); } dip->di_removing = B_FALSE; /* * If there are no dls_impl_t then there's no need to register a * receive function with the mac. */ if (dlp->dl_impl_count == 0) { rw_exit(&dlp->dl_impl_lock); mac_rx_remove(dlp->dl_mh, dlp->dl_mrh, B_TRUE); dlp->dl_mrh = NULL; } else { boolean_t promisc = B_FALSE; /* * Walk the bound dls_impl_t to see if there are any * in promiscuous 'all sap' mode. */ mod_hash_walk(hash, i_dls_link_walk, (void *)&promisc); rw_exit(&dlp->dl_impl_lock); /* * If there are then we need to use a receive routine * which will route packets to those dls_impl_t as well * as ones bound to the DLSAP of the packet. */ if (promisc) rx = i_dls_link_rx_promisc; else rx = i_dls_link_rx; mac_rx_remove(dlp->dl_mh, dlp->dl_mrh, B_TRUE); dlp->dl_mrh = mac_active_rx_add(dlp->dl_mh, rx, (void *)dlp); } mutex_exit(&dlp->dl_lock); } int dls_link_header_info(dls_link_t *dlp, mblk_t *mp, mac_header_info_t *mhip) { boolean_t is_ethernet = (dlp->dl_mip->mi_media == DL_ETHER); int err = 0; /* * Packets should always be at least 16 bit aligned. */ ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t))); if ((err = mac_header_info(dlp->dl_mh, mp, mhip)) != 0) return (err); /* * If this is a VLAN-tagged Ethernet packet, then the SAP in the * mac_header_info_t as returned by mac_header_info() is * ETHERTYPE_VLAN. We need to grab the ethertype from the VLAN header. */ if (is_ethernet && (mhip->mhi_bindsap == ETHERTYPE_VLAN)) { struct ether_vlan_header *evhp; uint16_t sap; mblk_t *tmp = NULL; size_t size; size = sizeof (struct ether_vlan_header); if (MBLKL(mp) < size) { /* * Pullup the message in order to get the MAC header * infomation. Note that this is a read-only function, * we keep the input packet intact. */ if ((tmp = msgpullup(mp, size)) == NULL) return (EINVAL); mp = tmp; } evhp = (struct ether_vlan_header *)mp->b_rptr; sap = ntohs(evhp->ether_type); (void) mac_sap_verify(dlp->dl_mh, sap, &mhip->mhi_bindsap); mhip->mhi_hdrsize = sizeof (struct ether_vlan_header); mhip->mhi_tci = ntohs(evhp->ether_tci); mhip->mhi_istagged = B_TRUE; freemsg(tmp); if (VLAN_CFI(mhip->mhi_tci) != ETHER_CFI) return (EINVAL); } else { mhip->mhi_istagged = B_FALSE; mhip->mhi_tci = 0; } /* * The messsage is looped back from the underlying driver. */ mhip->mhi_prom_looped = (mp->b_flag & MSGNOLOOP); return (0); }