/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Copyright 2019 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "stmf_impl.h" #include "lun_map.h" #include "stmf_state.h" #include "stmf_stats.h" /* * Lock order: * stmf_state_lock --> ilport_lock/iss_lockp --> ilu_task_lock */ static uint64_t stmf_session_counter = 0; static uint16_t stmf_rtpid_counter = 0; /* start messages at 1 */ static uint64_t stmf_proxy_msg_id = 1; #define MSG_ID_TM_BIT 0x8000000000000000 #define ALIGNED_TO_8BYTE_BOUNDARY(i) (((i) + 7) & ~7) /* * When stmf_io_deadman_enabled is set to B_TRUE, we check that finishing up * I/O operations on an offlining LU doesn't take longer than stmf_io_deadman * seconds. If it does, we trigger a panic to inform the user of hung I/O * blocking us for too long. */ boolean_t stmf_io_deadman_enabled = B_TRUE; int stmf_io_deadman = 1000; /* seconds */ struct stmf_svc_clocks; static int stmf_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); static int stmf_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); static int stmf_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result); static int stmf_open(dev_t *devp, int flag, int otype, cred_t *credp); static int stmf_close(dev_t dev, int flag, int otype, cred_t *credp); static int stmf_ioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *credp, int *rval); static int stmf_get_stmf_state(stmf_state_desc_t *std); static int stmf_set_stmf_state(stmf_state_desc_t *std); static void stmf_abort_task_offline(scsi_task_t *task, int offline_lu, char *info); static int stmf_set_alua_state(stmf_alua_state_desc_t *alua_state); static void stmf_get_alua_state(stmf_alua_state_desc_t *alua_state); static void stmf_task_audit(stmf_i_scsi_task_t *itask, task_audit_event_t te, uint32_t cmd_or_iof, stmf_data_buf_t *dbuf); static boolean_t stmf_base16_str_to_binary(char *c, int dplen, uint8_t *dp); static char stmf_ctoi(char c); stmf_xfer_data_t *stmf_prepare_tpgs_data(uint8_t ilu_alua); void stmf_svc_init(); stmf_status_t stmf_svc_fini(); void stmf_svc(void *arg); static void stmf_wait_ilu_tasks_finish(stmf_i_lu_t *ilu); void stmf_svc_queue(int cmd, void *obj, stmf_state_change_info_t *info); static void stmf_svc_kill_obj_requests(void *obj); static void stmf_svc_timeout(struct stmf_svc_clocks *); void stmf_check_freetask(); void stmf_abort_target_reset(scsi_task_t *task); stmf_status_t stmf_lun_reset_poll(stmf_lu_t *lu, struct scsi_task *task, int target_reset); void stmf_target_reset_poll(struct scsi_task *task); void stmf_handle_lun_reset(scsi_task_t *task); void stmf_handle_target_reset(scsi_task_t *task); void stmf_xd_to_dbuf(stmf_data_buf_t *dbuf, int set_rel_off); int stmf_load_ppd_ioctl(stmf_ppioctl_data_t *ppi, uint64_t *ppi_token, uint32_t *err_ret); int stmf_delete_ppd_ioctl(stmf_ppioctl_data_t *ppi); int stmf_get_ppd_ioctl(stmf_ppioctl_data_t *ppi, stmf_ppioctl_data_t *ppi_out, uint32_t *err_ret); void stmf_delete_ppd(stmf_pp_data_t *ppd); void stmf_delete_all_ppds(); void stmf_trace_clear(); void stmf_worker_init(); stmf_status_t stmf_worker_fini(); void stmf_worker_task(void *arg); static void stmf_task_lu_free(scsi_task_t *task, stmf_i_scsi_session_t *iss); static stmf_status_t stmf_ic_lu_reg(stmf_ic_reg_dereg_lun_msg_t *msg, uint32_t type); static stmf_status_t stmf_ic_lu_dereg(stmf_ic_reg_dereg_lun_msg_t *msg); static stmf_status_t stmf_ic_rx_scsi_status(stmf_ic_scsi_status_msg_t *msg); static stmf_status_t stmf_ic_rx_status(stmf_ic_status_msg_t *msg); static stmf_status_t stmf_ic_rx_scsi_data(stmf_ic_scsi_data_msg_t *msg); void stmf_task_lu_killall(stmf_lu_t *lu, scsi_task_t *tm_task, stmf_status_t s); /* pppt modhandle */ ddi_modhandle_t pppt_mod; /* pppt modload imported functions */ stmf_ic_reg_port_msg_alloc_func_t ic_reg_port_msg_alloc; stmf_ic_dereg_port_msg_alloc_func_t ic_dereg_port_msg_alloc; stmf_ic_reg_lun_msg_alloc_func_t ic_reg_lun_msg_alloc; stmf_ic_dereg_lun_msg_alloc_func_t ic_dereg_lun_msg_alloc; stmf_ic_lun_active_msg_alloc_func_t ic_lun_active_msg_alloc; stmf_ic_scsi_cmd_msg_alloc_func_t ic_scsi_cmd_msg_alloc; stmf_ic_scsi_data_xfer_done_msg_alloc_func_t ic_scsi_data_xfer_done_msg_alloc; stmf_ic_session_create_msg_alloc_func_t ic_session_reg_msg_alloc; stmf_ic_session_destroy_msg_alloc_func_t ic_session_dereg_msg_alloc; stmf_ic_tx_msg_func_t ic_tx_msg; stmf_ic_msg_free_func_t ic_msg_free; static void stmf_itl_task_start(stmf_i_scsi_task_t *itask); static void stmf_itl_lu_new_task(stmf_i_scsi_task_t *itask); static void stmf_itl_task_done(stmf_i_scsi_task_t *itask); static void stmf_lport_xfer_start(stmf_i_scsi_task_t *itask, stmf_data_buf_t *dbuf); static void stmf_lport_xfer_done(stmf_i_scsi_task_t *itask, stmf_data_buf_t *dbuf); static void stmf_update_kstat_lu_q(scsi_task_t *, void()); static void stmf_update_kstat_lport_q(scsi_task_t *, void()); static void stmf_update_kstat_lu_io(scsi_task_t *, stmf_data_buf_t *); static void stmf_update_kstat_lport_io(scsi_task_t *, stmf_data_buf_t *); static hrtime_t stmf_update_rport_timestamps(hrtime_t *start_tstamp, hrtime_t *done_tstamp, stmf_i_scsi_task_t *itask); static int stmf_irport_compare(const void *void_irport1, const void *void_irport2); static void stmf_create_kstat_rport(stmf_i_remote_port_t *irport); static void stmf_destroy_kstat_rport(stmf_i_remote_port_t *irport); static int stmf_kstat_rport_update(kstat_t *ksp, int rw); static stmf_i_remote_port_t *stmf_irport_create(scsi_devid_desc_t *rport_devid); static void stmf_irport_destroy(stmf_i_remote_port_t *irport); static stmf_i_remote_port_t *stmf_irport_register( scsi_devid_desc_t *rport_devid); static stmf_i_remote_port_t *stmf_irport_lookup_locked( scsi_devid_desc_t *rport_devid); static void stmf_irport_deregister(stmf_i_remote_port_t *irport); extern struct mod_ops mod_driverops; /* =====[ Tunables ]===== */ /* Internal tracing */ volatile int stmf_trace_on = 0; volatile int stmf_trace_buf_size = (1 * 1024 * 1024); /* * The reason default task timeout is 75 is because we want the * host to timeout 1st and mostly host timeout is 60 seconds. */ volatile int stmf_default_task_timeout = 75; /* * Setting this to one means, you are responsible for config load and keeping * things in sync with persistent database. */ volatile int stmf_allow_modunload = 0; volatile int stmf_nworkers = 512; /* === [ Debugging and fault injection ] === */ #ifdef DEBUG volatile int stmf_drop_task_counter = 0; volatile int stmf_drop_buf_counter = 0; #endif stmf_state_t stmf_state; static stmf_lu_t *dlun0; static uint8_t stmf_first_zero[] = { 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0xff }; static uint8_t stmf_first_one[] = { 0xff, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; static kmutex_t trace_buf_lock; static int trace_buf_size; static int trace_buf_curndx; caddr_t stmf_trace_buf; static enum { STMF_WORKERS_DISABLED = 0, STMF_WORKERS_ENABLING, STMF_WORKERS_ENABLED } stmf_workers_state = STMF_WORKERS_DISABLED; static kmutex_t stmf_worker_sel_mx; volatile uint32_t stmf_nworkers_cur = 0; /* # of workers currently running */ static int stmf_worker_sel_counter = 0; static uint32_t stmf_cur_ntasks = 0; static clock_t stmf_wm_next = 0; static int stmf_nworkers_accepting_cmds; static stmf_worker_t *stmf_workers = NULL; static clock_t stmf_worker_scale_down_timer = 0; static int stmf_worker_scale_down_qd = 0; static struct cb_ops stmf_cb_ops = { stmf_open, /* open */ stmf_close, /* close */ nodev, /* strategy */ nodev, /* print */ nodev, /* dump */ nodev, /* read */ nodev, /* write */ stmf_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* chpoll */ ddi_prop_op, /* cb_prop_op */ 0, /* streamtab */ D_NEW | D_MP, /* cb_flag */ CB_REV, /* rev */ nodev, /* aread */ nodev /* awrite */ }; static struct dev_ops stmf_ops = { DEVO_REV, 0, stmf_getinfo, nulldev, /* identify */ nulldev, /* probe */ stmf_attach, stmf_detach, nodev, /* reset */ &stmf_cb_ops, NULL, /* bus_ops */ NULL /* power */ }; #define STMF_NAME "COMSTAR STMF" #define STMF_MODULE_NAME "stmf" static struct modldrv modldrv = { &mod_driverops, STMF_NAME, &stmf_ops }; static struct modlinkage modlinkage = { MODREV_1, &modldrv, NULL }; int _init(void) { int ret; ret = mod_install(&modlinkage); if (ret) return (ret); stmf_trace_buf = kmem_zalloc(stmf_trace_buf_size, KM_SLEEP); trace_buf_size = stmf_trace_buf_size; trace_buf_curndx = 0; mutex_init(&trace_buf_lock, NULL, MUTEX_DRIVER, 0); mutex_init(&stmf_worker_sel_mx, NULL, MUTEX_ADAPTIVE, 0); bzero(&stmf_state, sizeof (stmf_state_t)); /* STMF service is off by default */ stmf_state.stmf_service_running = 0; /* default lu/lport states are online */ stmf_state.stmf_default_lu_state = STMF_STATE_ONLINE; stmf_state.stmf_default_lport_state = STMF_STATE_ONLINE; mutex_init(&stmf_state.stmf_lock, NULL, MUTEX_DRIVER, NULL); cv_init(&stmf_state.stmf_cv, NULL, CV_DRIVER, NULL); stmf_session_counter = (uint64_t)ddi_get_lbolt(); avl_create(&stmf_state.stmf_irportlist, stmf_irport_compare, sizeof (stmf_i_remote_port_t), offsetof(stmf_i_remote_port_t, irport_ln)); stmf_state.stmf_ilport_inst_space = id_space_create("lport-instances", 0, MAX_ILPORT); stmf_state.stmf_irport_inst_space = id_space_create("rport-instances", 0, MAX_IRPORT); stmf_view_init(); stmf_svc_init(); stmf_dlun_init(); return (ret); } int _fini(void) { int ret; stmf_i_remote_port_t *irport; void *avl_dest_cookie = NULL; if (stmf_state.stmf_service_running) return (EBUSY); if ((!stmf_allow_modunload) && (stmf_state.stmf_config_state != STMF_CONFIG_NONE)) { return (EBUSY); } if (stmf_state.stmf_nlps || stmf_state.stmf_npps) { return (EBUSY); } if (stmf_dlun_fini() != STMF_SUCCESS) return (EBUSY); if (stmf_worker_fini() != STMF_SUCCESS) { stmf_dlun_init(); return (EBUSY); } if (stmf_svc_fini() != STMF_SUCCESS) { stmf_dlun_init(); stmf_worker_init(); return (EBUSY); } ret = mod_remove(&modlinkage); if (ret) { stmf_svc_init(); stmf_dlun_init(); stmf_worker_init(); return (ret); } stmf_view_clear_config(); while ((irport = avl_destroy_nodes(&stmf_state.stmf_irportlist, &avl_dest_cookie)) != NULL) stmf_irport_destroy(irport); avl_destroy(&stmf_state.stmf_irportlist); id_space_destroy(stmf_state.stmf_ilport_inst_space); id_space_destroy(stmf_state.stmf_irport_inst_space); kmem_free(stmf_trace_buf, stmf_trace_buf_size); mutex_destroy(&trace_buf_lock); mutex_destroy(&stmf_state.stmf_lock); mutex_destroy(&stmf_worker_sel_mx); cv_destroy(&stmf_state.stmf_cv); return (ret); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* ARGSUSED */ static int stmf_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result) { switch (cmd) { case DDI_INFO_DEVT2DEVINFO: *result = stmf_state.stmf_dip; break; case DDI_INFO_DEVT2INSTANCE: *result = (void *)(uintptr_t)ddi_get_instance(stmf_state.stmf_dip); break; default: return (DDI_FAILURE); } return (DDI_SUCCESS); } static int stmf_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { switch (cmd) { case DDI_ATTACH: stmf_state.stmf_dip = dip; if (ddi_create_minor_node(dip, "admin", S_IFCHR, 0, DDI_NT_STMF, 0) != DDI_SUCCESS) { break; } ddi_report_dev(dip); return (DDI_SUCCESS); } return (DDI_FAILURE); } static int stmf_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { switch (cmd) { case DDI_DETACH: ddi_remove_minor_node(dip, 0); return (DDI_SUCCESS); } return (DDI_FAILURE); } /* ARGSUSED */ static int stmf_open(dev_t *devp, int flag, int otype, cred_t *credp) { mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_exclusive_open) { mutex_exit(&stmf_state.stmf_lock); return (EBUSY); } if (flag & FEXCL) { if (stmf_state.stmf_opened) { mutex_exit(&stmf_state.stmf_lock); return (EBUSY); } stmf_state.stmf_exclusive_open = 1; } stmf_state.stmf_opened = 1; mutex_exit(&stmf_state.stmf_lock); return (0); } /* ARGSUSED */ static int stmf_close(dev_t dev, int flag, int otype, cred_t *credp) { mutex_enter(&stmf_state.stmf_lock); stmf_state.stmf_opened = 0; if (stmf_state.stmf_exclusive_open && (stmf_state.stmf_config_state != STMF_CONFIG_INIT_DONE)) { stmf_state.stmf_config_state = STMF_CONFIG_NONE; stmf_delete_all_ppds(); stmf_view_clear_config(); stmf_view_init(); } stmf_state.stmf_exclusive_open = 0; mutex_exit(&stmf_state.stmf_lock); return (0); } int stmf_copyin_iocdata(intptr_t data, int mode, stmf_iocdata_t **iocd, void **ibuf, void **obuf) { int ret; *ibuf = NULL; *obuf = NULL; *iocd = kmem_zalloc(sizeof (stmf_iocdata_t), KM_SLEEP); ret = ddi_copyin((void *)data, *iocd, sizeof (stmf_iocdata_t), mode); if (ret) return (EFAULT); if ((*iocd)->stmf_version != STMF_VERSION_1) { ret = EINVAL; goto copyin_iocdata_done; } if ((*iocd)->stmf_ibuf_size) { *ibuf = kmem_zalloc((*iocd)->stmf_ibuf_size, KM_SLEEP); ret = ddi_copyin((void *)((unsigned long)(*iocd)->stmf_ibuf), *ibuf, (*iocd)->stmf_ibuf_size, mode); } if ((*iocd)->stmf_obuf_size) *obuf = kmem_zalloc((*iocd)->stmf_obuf_size, KM_SLEEP); if (ret == 0) return (0); ret = EFAULT; copyin_iocdata_done:; if (*obuf) { kmem_free(*obuf, (*iocd)->stmf_obuf_size); *obuf = NULL; } if (*ibuf) { kmem_free(*ibuf, (*iocd)->stmf_ibuf_size); *ibuf = NULL; } kmem_free(*iocd, sizeof (stmf_iocdata_t)); return (ret); } int stmf_copyout_iocdata(intptr_t data, int mode, stmf_iocdata_t *iocd, void *obuf) { int ret; if (iocd->stmf_obuf_size) { ret = ddi_copyout(obuf, (void *)(unsigned long)iocd->stmf_obuf, iocd->stmf_obuf_size, mode); if (ret) return (EFAULT); } ret = ddi_copyout(iocd, (void *)data, sizeof (stmf_iocdata_t), mode); if (ret) return (EFAULT); return (0); } /* ARGSUSED */ static int stmf_ioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *credp, int *rval) { stmf_iocdata_t *iocd; void *ibuf = NULL, *obuf = NULL; slist_lu_t *luid_list; slist_target_port_t *lportid_list; stmf_i_lu_t *ilu; stmf_i_local_port_t *ilport; stmf_i_scsi_session_t *iss; slist_scsi_session_t *iss_list; sioc_lu_props_t *lup; sioc_target_port_props_t *lportp; stmf_ppioctl_data_t *ppi, *ppi_out = NULL; uint64_t *ppi_token = NULL; uint8_t *p_id, *id; stmf_state_desc_t *std; stmf_status_t ctl_ret; stmf_state_change_info_t ssi; int ret = 0; uint32_t n; int i; stmf_group_op_data_t *grp_entry; stmf_group_name_t *grpname; stmf_view_op_entry_t *ve; stmf_id_type_t idtype; stmf_id_data_t *id_entry; stmf_id_list_t *id_list; stmf_view_entry_t *view_entry; stmf_set_props_t *stmf_set_props; uint32_t veid; if ((cmd & 0xff000000) != STMF_IOCTL) { return (ENOTTY); } if (drv_priv(credp) != 0) { return (EPERM); } ret = stmf_copyin_iocdata(data, mode, &iocd, &ibuf, &obuf); if (ret) return (ret); iocd->stmf_error = 0; switch (cmd) { case STMF_IOCTL_LU_LIST: /* retrieves both registered/unregistered */ mutex_enter(&stmf_state.stmf_lock); id_list = &stmf_state.stmf_luid_list; n = min(id_list->id_count, (iocd->stmf_obuf_size)/sizeof (slist_lu_t)); iocd->stmf_obuf_max_nentries = id_list->id_count; luid_list = (slist_lu_t *)obuf; id_entry = id_list->idl_head; for (i = 0; i < n; i++) { bcopy(id_entry->id_data, luid_list[i].lu_guid, 16); id_entry = id_entry->id_next; } n = iocd->stmf_obuf_size/sizeof (slist_lu_t); for (ilu = stmf_state.stmf_ilulist; ilu; ilu = ilu->ilu_next) { id = (uint8_t *)ilu->ilu_lu->lu_id; if (stmf_lookup_id(id_list, 16, id + 4) == NULL) { iocd->stmf_obuf_max_nentries++; if (i < n) { bcopy(id + 4, luid_list[i].lu_guid, sizeof (slist_lu_t)); i++; } } } iocd->stmf_obuf_nentries = i; mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_REG_LU_LIST: mutex_enter(&stmf_state.stmf_lock); iocd->stmf_obuf_max_nentries = stmf_state.stmf_nlus; n = min(stmf_state.stmf_nlus, (iocd->stmf_obuf_size)/sizeof (slist_lu_t)); iocd->stmf_obuf_nentries = n; ilu = stmf_state.stmf_ilulist; luid_list = (slist_lu_t *)obuf; for (i = 0; i < n; i++) { uint8_t *id; id = (uint8_t *)ilu->ilu_lu->lu_id; bcopy(id + 4, luid_list[i].lu_guid, 16); ilu = ilu->ilu_next; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_VE_LU_LIST: mutex_enter(&stmf_state.stmf_lock); id_list = &stmf_state.stmf_luid_list; n = min(id_list->id_count, (iocd->stmf_obuf_size)/sizeof (slist_lu_t)); iocd->stmf_obuf_max_nentries = id_list->id_count; iocd->stmf_obuf_nentries = n; luid_list = (slist_lu_t *)obuf; id_entry = id_list->idl_head; for (i = 0; i < n; i++) { bcopy(id_entry->id_data, luid_list[i].lu_guid, 16); id_entry = id_entry->id_next; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_TARGET_PORT_LIST: mutex_enter(&stmf_state.stmf_lock); iocd->stmf_obuf_max_nentries = stmf_state.stmf_nlports; n = min(stmf_state.stmf_nlports, (iocd->stmf_obuf_size)/sizeof (slist_target_port_t)); iocd->stmf_obuf_nentries = n; ilport = stmf_state.stmf_ilportlist; lportid_list = (slist_target_port_t *)obuf; for (i = 0; i < n; i++) { uint8_t *id; id = (uint8_t *)ilport->ilport_lport->lport_id; bcopy(id, lportid_list[i].target, id[3] + 4); ilport = ilport->ilport_next; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_SESSION_LIST: p_id = (uint8_t *)ibuf; if ((p_id == NULL) || (iocd->stmf_ibuf_size < 4) || (iocd->stmf_ibuf_size < (p_id[3] + 4))) { ret = EINVAL; break; } mutex_enter(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport; ilport = ilport->ilport_next) { uint8_t *id; id = (uint8_t *)ilport->ilport_lport->lport_id; if ((p_id[3] == id[3]) && (bcmp(p_id + 4, id + 4, id[3]) == 0)) { break; } } if (ilport == NULL) { mutex_exit(&stmf_state.stmf_lock); ret = ENOENT; break; } iocd->stmf_obuf_max_nentries = ilport->ilport_nsessions; n = min(ilport->ilport_nsessions, (iocd->stmf_obuf_size)/sizeof (slist_scsi_session_t)); iocd->stmf_obuf_nentries = n; iss = ilport->ilport_ss_list; iss_list = (slist_scsi_session_t *)obuf; for (i = 0; i < n; i++) { uint8_t *id; id = (uint8_t *)iss->iss_ss->ss_rport_id; bcopy(id, iss_list[i].initiator, id[3] + 4); iss_list[i].creation_time = (uint32_t) iss->iss_creation_time; if (iss->iss_ss->ss_rport_alias) { (void) strncpy(iss_list[i].alias, iss->iss_ss->ss_rport_alias, 255); iss_list[i].alias[255] = '\0'; } else { iss_list[i].alias[0] = '\0'; } iss = iss->iss_next; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_GET_LU_PROPERTIES: p_id = (uint8_t *)ibuf; if ((iocd->stmf_ibuf_size < 16) || (iocd->stmf_obuf_size < sizeof (sioc_lu_props_t)) || (p_id[0] == 0)) { ret = EINVAL; break; } mutex_enter(&stmf_state.stmf_lock); for (ilu = stmf_state.stmf_ilulist; ilu; ilu = ilu->ilu_next) { if (bcmp(p_id, ilu->ilu_lu->lu_id->ident, 16) == 0) break; } if (ilu == NULL) { mutex_exit(&stmf_state.stmf_lock); ret = ENOENT; break; } lup = (sioc_lu_props_t *)obuf; bcopy(ilu->ilu_lu->lu_id->ident, lup->lu_guid, 16); lup->lu_state = ilu->ilu_state & 0x0f; lup->lu_present = 1; /* XXX */ (void) strncpy(lup->lu_provider_name, ilu->ilu_lu->lu_lp->lp_name, 255); lup->lu_provider_name[254] = '\0'; if (ilu->ilu_lu->lu_alias) { (void) strncpy(lup->lu_alias, ilu->ilu_lu->lu_alias, 255); lup->lu_alias[255] = '\0'; } else { lup->lu_alias[0] = '\0'; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_GET_TARGET_PORT_PROPERTIES: p_id = (uint8_t *)ibuf; if ((p_id == NULL) || (iocd->stmf_ibuf_size < (p_id[3] + 4)) || (iocd->stmf_obuf_size < sizeof (sioc_target_port_props_t))) { ret = EINVAL; break; } mutex_enter(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport; ilport = ilport->ilport_next) { uint8_t *id; id = (uint8_t *)ilport->ilport_lport->lport_id; if ((p_id[3] == id[3]) && (bcmp(p_id+4, id+4, id[3]) == 0)) break; } if (ilport == NULL) { mutex_exit(&stmf_state.stmf_lock); ret = ENOENT; break; } lportp = (sioc_target_port_props_t *)obuf; bcopy(ilport->ilport_lport->lport_id, lportp->tgt_id, ilport->ilport_lport->lport_id->ident_length + 4); lportp->tgt_state = ilport->ilport_state & 0x0f; lportp->tgt_present = 1; /* XXX */ (void) strncpy(lportp->tgt_provider_name, ilport->ilport_lport->lport_pp->pp_name, 255); lportp->tgt_provider_name[254] = '\0'; if (ilport->ilport_lport->lport_alias) { (void) strncpy(lportp->tgt_alias, ilport->ilport_lport->lport_alias, 255); lportp->tgt_alias[255] = '\0'; } else { lportp->tgt_alias[0] = '\0'; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_SET_STMF_STATE: if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_state_desc_t))) { ret = EINVAL; break; } ret = stmf_set_stmf_state((stmf_state_desc_t *)ibuf); break; case STMF_IOCTL_GET_STMF_STATE: if ((obuf == NULL) || (iocd->stmf_obuf_size < sizeof (stmf_state_desc_t))) { ret = EINVAL; break; } ret = stmf_get_stmf_state((stmf_state_desc_t *)obuf); break; case STMF_IOCTL_SET_ALUA_STATE: if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_alua_state_desc_t))) { ret = EINVAL; break; } ret = stmf_set_alua_state((stmf_alua_state_desc_t *)ibuf); break; case STMF_IOCTL_GET_ALUA_STATE: if ((obuf == NULL) || (iocd->stmf_obuf_size < sizeof (stmf_alua_state_desc_t))) { ret = EINVAL; break; } stmf_get_alua_state((stmf_alua_state_desc_t *)obuf); break; case STMF_IOCTL_SET_LU_STATE: ssi.st_rflags = STMF_RFLAG_USER_REQUEST; ssi.st_additional_info = NULL; std = (stmf_state_desc_t *)ibuf; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_state_desc_t))) { ret = EINVAL; break; } p_id = std->ident; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); ret = EBUSY; break; } for (ilu = stmf_state.stmf_ilulist; ilu; ilu = ilu->ilu_next) { if (bcmp(p_id, ilu->ilu_lu->lu_id->ident, 16) == 0) break; } if (ilu == NULL) { mutex_exit(&stmf_state.stmf_lock); ret = ENOENT; break; } stmf_state.stmf_inventory_locked = 1; mutex_exit(&stmf_state.stmf_lock); cmd = (std->state == STMF_STATE_ONLINE) ? STMF_CMD_LU_ONLINE : STMF_CMD_LU_OFFLINE; ctl_ret = stmf_ctl(cmd, (void *)ilu->ilu_lu, &ssi); if (ctl_ret == STMF_ALREADY) ret = 0; else if (ctl_ret == STMF_BUSY) ret = EBUSY; else if (ctl_ret != STMF_SUCCESS) ret = EIO; mutex_enter(&stmf_state.stmf_lock); stmf_state.stmf_inventory_locked = 0; mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_SET_STMF_PROPS: if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_set_props_t))) { ret = EINVAL; break; } stmf_set_props = (stmf_set_props_t *)ibuf; mutex_enter(&stmf_state.stmf_lock); if ((stmf_set_props->default_lu_state_value == STMF_STATE_OFFLINE) || (stmf_set_props->default_lu_state_value == STMF_STATE_ONLINE)) { stmf_state.stmf_default_lu_state = stmf_set_props->default_lu_state_value; } if ((stmf_set_props->default_target_state_value == STMF_STATE_OFFLINE) || (stmf_set_props->default_target_state_value == STMF_STATE_ONLINE)) { stmf_state.stmf_default_lport_state = stmf_set_props->default_target_state_value; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_SET_TARGET_PORT_STATE: ssi.st_rflags = STMF_RFLAG_USER_REQUEST; ssi.st_additional_info = NULL; std = (stmf_state_desc_t *)ibuf; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_state_desc_t))) { ret = EINVAL; break; } p_id = std->ident; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); ret = EBUSY; break; } for (ilport = stmf_state.stmf_ilportlist; ilport; ilport = ilport->ilport_next) { uint8_t *id; id = (uint8_t *)ilport->ilport_lport->lport_id; if ((id[3] == p_id[3]) && (bcmp(id+4, p_id+4, id[3]) == 0)) { break; } } if (ilport == NULL) { mutex_exit(&stmf_state.stmf_lock); ret = ENOENT; break; } stmf_state.stmf_inventory_locked = 1; mutex_exit(&stmf_state.stmf_lock); cmd = (std->state == STMF_STATE_ONLINE) ? STMF_CMD_LPORT_ONLINE : STMF_CMD_LPORT_OFFLINE; ctl_ret = stmf_ctl(cmd, (void *)ilport->ilport_lport, &ssi); if (ctl_ret == STMF_ALREADY) ret = 0; else if (ctl_ret == STMF_BUSY) ret = EBUSY; else if (ctl_ret != STMF_SUCCESS) ret = EIO; mutex_enter(&stmf_state.stmf_lock); stmf_state.stmf_inventory_locked = 0; mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_ADD_HG_ENTRY: idtype = STMF_ID_TYPE_HOST; /* FALLTHROUGH */ case STMF_IOCTL_ADD_TG_ENTRY: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } if (cmd == STMF_IOCTL_ADD_TG_ENTRY) { idtype = STMF_ID_TYPE_TARGET; } grp_entry = (stmf_group_op_data_t *)ibuf; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_group_op_data_t))) { ret = EINVAL; break; } if (grp_entry->group.name[0] == '*') { ret = EINVAL; break; /* not allowed */ } mutex_enter(&stmf_state.stmf_lock); ret = stmf_add_group_member(grp_entry->group.name, grp_entry->group.name_size, grp_entry->ident + 4, grp_entry->ident[3], idtype, &iocd->stmf_error); mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_REMOVE_HG_ENTRY: idtype = STMF_ID_TYPE_HOST; /* FALLTHROUGH */ case STMF_IOCTL_REMOVE_TG_ENTRY: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } if (cmd == STMF_IOCTL_REMOVE_TG_ENTRY) { idtype = STMF_ID_TYPE_TARGET; } grp_entry = (stmf_group_op_data_t *)ibuf; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_group_op_data_t))) { ret = EINVAL; break; } if (grp_entry->group.name[0] == '*') { ret = EINVAL; break; /* not allowed */ } mutex_enter(&stmf_state.stmf_lock); ret = stmf_remove_group_member(grp_entry->group.name, grp_entry->group.name_size, grp_entry->ident + 4, grp_entry->ident[3], idtype, &iocd->stmf_error); mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_CREATE_HOST_GROUP: idtype = STMF_ID_TYPE_HOST_GROUP; /* FALLTHROUGH */ case STMF_IOCTL_CREATE_TARGET_GROUP: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } grpname = (stmf_group_name_t *)ibuf; if (cmd == STMF_IOCTL_CREATE_TARGET_GROUP) idtype = STMF_ID_TYPE_TARGET_GROUP; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_group_name_t))) { ret = EINVAL; break; } if (grpname->name[0] == '*') { ret = EINVAL; break; /* not allowed */ } mutex_enter(&stmf_state.stmf_lock); ret = stmf_add_group(grpname->name, grpname->name_size, idtype, &iocd->stmf_error); mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_REMOVE_HOST_GROUP: idtype = STMF_ID_TYPE_HOST_GROUP; /* FALLTHROUGH */ case STMF_IOCTL_REMOVE_TARGET_GROUP: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } grpname = (stmf_group_name_t *)ibuf; if (cmd == STMF_IOCTL_REMOVE_TARGET_GROUP) idtype = STMF_ID_TYPE_TARGET_GROUP; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_group_name_t))) { ret = EINVAL; break; } if (grpname->name[0] == '*') { ret = EINVAL; break; /* not allowed */ } mutex_enter(&stmf_state.stmf_lock); ret = stmf_remove_group(grpname->name, grpname->name_size, idtype, &iocd->stmf_error); mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_VALIDATE_VIEW: case STMF_IOCTL_ADD_VIEW_ENTRY: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } ve = (stmf_view_op_entry_t *)ibuf; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_view_op_entry_t))) { ret = EINVAL; break; } if (!ve->ve_lu_number_valid) ve->ve_lu_nbr[2] = 0xFF; if (ve->ve_all_hosts) { ve->ve_host_group.name[0] = '*'; ve->ve_host_group.name_size = 1; } if (ve->ve_all_targets) { ve->ve_target_group.name[0] = '*'; ve->ve_target_group.name_size = 1; } if (ve->ve_ndx_valid) veid = ve->ve_ndx; else veid = 0xffffffff; mutex_enter(&stmf_state.stmf_lock); if (cmd == STMF_IOCTL_ADD_VIEW_ENTRY) { ret = stmf_add_ve(ve->ve_host_group.name, ve->ve_host_group.name_size, ve->ve_target_group.name, ve->ve_target_group.name_size, ve->ve_guid, &veid, ve->ve_lu_nbr, &iocd->stmf_error); } else { /* STMF_IOCTL_VALIDATE_VIEW */ ret = stmf_validate_lun_ve(ve->ve_host_group.name, ve->ve_host_group.name_size, ve->ve_target_group.name, ve->ve_target_group.name_size, ve->ve_lu_nbr, &iocd->stmf_error); } mutex_exit(&stmf_state.stmf_lock); if (ret == 0 && (!ve->ve_ndx_valid || !ve->ve_lu_number_valid) && iocd->stmf_obuf_size >= sizeof (stmf_view_op_entry_t)) { stmf_view_op_entry_t *ve_ret = (stmf_view_op_entry_t *)obuf; iocd->stmf_obuf_nentries = 1; iocd->stmf_obuf_max_nentries = 1; if (!ve->ve_ndx_valid) { ve_ret->ve_ndx = veid; ve_ret->ve_ndx_valid = 1; } if (!ve->ve_lu_number_valid) { ve_ret->ve_lu_number_valid = 1; bcopy(ve->ve_lu_nbr, ve_ret->ve_lu_nbr, 8); } } break; case STMF_IOCTL_REMOVE_VIEW_ENTRY: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } ve = (stmf_view_op_entry_t *)ibuf; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_view_op_entry_t))) { ret = EINVAL; break; } if (!ve->ve_ndx_valid) { ret = EINVAL; break; } mutex_enter(&stmf_state.stmf_lock); ret = stmf_remove_ve_by_id(ve->ve_guid, ve->ve_ndx, &iocd->stmf_error); mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_GET_HG_LIST: id_list = &stmf_state.stmf_hg_list; /* FALLTHROUGH */ case STMF_IOCTL_GET_TG_LIST: if (cmd == STMF_IOCTL_GET_TG_LIST) id_list = &stmf_state.stmf_tg_list; mutex_enter(&stmf_state.stmf_lock); iocd->stmf_obuf_max_nentries = id_list->id_count; n = min(id_list->id_count, (iocd->stmf_obuf_size)/sizeof (stmf_group_name_t)); iocd->stmf_obuf_nentries = n; id_entry = id_list->idl_head; grpname = (stmf_group_name_t *)obuf; for (i = 0; i < n; i++) { if (id_entry->id_data[0] == '*') { if (iocd->stmf_obuf_nentries > 0) { iocd->stmf_obuf_nentries--; } id_entry = id_entry->id_next; continue; } grpname->name_size = id_entry->id_data_size; bcopy(id_entry->id_data, grpname->name, id_entry->id_data_size); grpname++; id_entry = id_entry->id_next; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_GET_HG_ENTRIES: id_list = &stmf_state.stmf_hg_list; /* FALLTHROUGH */ case STMF_IOCTL_GET_TG_ENTRIES: grpname = (stmf_group_name_t *)ibuf; if ((ibuf == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_group_name_t))) { ret = EINVAL; break; } if (cmd == STMF_IOCTL_GET_TG_ENTRIES) { id_list = &stmf_state.stmf_tg_list; } mutex_enter(&stmf_state.stmf_lock); id_entry = stmf_lookup_id(id_list, grpname->name_size, grpname->name); if (!id_entry) ret = ENODEV; else { stmf_ge_ident_t *grp_entry; id_list = (stmf_id_list_t *)id_entry->id_impl_specific; iocd->stmf_obuf_max_nentries = id_list->id_count; n = min(id_list->id_count, iocd->stmf_obuf_size/sizeof (stmf_ge_ident_t)); iocd->stmf_obuf_nentries = n; id_entry = id_list->idl_head; grp_entry = (stmf_ge_ident_t *)obuf; for (i = 0; i < n; i++) { bcopy(id_entry->id_data, grp_entry->ident, id_entry->id_data_size); grp_entry->ident_size = id_entry->id_data_size; id_entry = id_entry->id_next; grp_entry++; } } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_GET_VE_LIST: n = iocd->stmf_obuf_size/sizeof (stmf_view_op_entry_t); mutex_enter(&stmf_state.stmf_lock); ve = (stmf_view_op_entry_t *)obuf; for (id_entry = stmf_state.stmf_luid_list.idl_head; id_entry; id_entry = id_entry->id_next) { for (view_entry = (stmf_view_entry_t *) id_entry->id_impl_specific; view_entry; view_entry = view_entry->ve_next) { iocd->stmf_obuf_max_nentries++; if (iocd->stmf_obuf_nentries >= n) continue; ve->ve_ndx_valid = 1; ve->ve_ndx = view_entry->ve_id; ve->ve_lu_number_valid = 1; bcopy(view_entry->ve_lun, ve->ve_lu_nbr, 8); bcopy(view_entry->ve_luid->id_data, ve->ve_guid, view_entry->ve_luid->id_data_size); if (view_entry->ve_hg->id_data[0] == '*') { ve->ve_all_hosts = 1; } else { bcopy(view_entry->ve_hg->id_data, ve->ve_host_group.name, view_entry->ve_hg->id_data_size); ve->ve_host_group.name_size = view_entry->ve_hg->id_data_size; } if (view_entry->ve_tg->id_data[0] == '*') { ve->ve_all_targets = 1; } else { bcopy(view_entry->ve_tg->id_data, ve->ve_target_group.name, view_entry->ve_tg->id_data_size); ve->ve_target_group.name_size = view_entry->ve_tg->id_data_size; } ve++; iocd->stmf_obuf_nentries++; } } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_LU_VE_LIST: p_id = (uint8_t *)ibuf; if ((iocd->stmf_ibuf_size != 16) || (iocd->stmf_obuf_size < sizeof (stmf_view_op_entry_t))) { ret = EINVAL; break; } n = iocd->stmf_obuf_size/sizeof (stmf_view_op_entry_t); mutex_enter(&stmf_state.stmf_lock); ve = (stmf_view_op_entry_t *)obuf; for (id_entry = stmf_state.stmf_luid_list.idl_head; id_entry; id_entry = id_entry->id_next) { if (bcmp(id_entry->id_data, p_id, 16) != 0) continue; for (view_entry = (stmf_view_entry_t *) id_entry->id_impl_specific; view_entry; view_entry = view_entry->ve_next) { iocd->stmf_obuf_max_nentries++; if (iocd->stmf_obuf_nentries >= n) continue; ve->ve_ndx_valid = 1; ve->ve_ndx = view_entry->ve_id; ve->ve_lu_number_valid = 1; bcopy(view_entry->ve_lun, ve->ve_lu_nbr, 8); bcopy(view_entry->ve_luid->id_data, ve->ve_guid, view_entry->ve_luid->id_data_size); if (view_entry->ve_hg->id_data[0] == '*') { ve->ve_all_hosts = 1; } else { bcopy(view_entry->ve_hg->id_data, ve->ve_host_group.name, view_entry->ve_hg->id_data_size); ve->ve_host_group.name_size = view_entry->ve_hg->id_data_size; } if (view_entry->ve_tg->id_data[0] == '*') { ve->ve_all_targets = 1; } else { bcopy(view_entry->ve_tg->id_data, ve->ve_target_group.name, view_entry->ve_tg->id_data_size); ve->ve_target_group.name_size = view_entry->ve_tg->id_data_size; } ve++; iocd->stmf_obuf_nentries++; } break; } mutex_exit(&stmf_state.stmf_lock); break; case STMF_IOCTL_LOAD_PP_DATA: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } ppi = (stmf_ppioctl_data_t *)ibuf; if ((ppi == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_ppioctl_data_t))) { ret = EINVAL; break; } /* returned token */ ppi_token = (uint64_t *)obuf; if ((ppi_token == NULL) || (iocd->stmf_obuf_size < sizeof (uint64_t))) { ret = EINVAL; break; } ret = stmf_load_ppd_ioctl(ppi, ppi_token, &iocd->stmf_error); break; case STMF_IOCTL_GET_PP_DATA: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } ppi = (stmf_ppioctl_data_t *)ibuf; if (ppi == NULL || (iocd->stmf_ibuf_size < sizeof (stmf_ppioctl_data_t))) { ret = EINVAL; break; } ppi_out = (stmf_ppioctl_data_t *)obuf; if ((ppi_out == NULL) || (iocd->stmf_obuf_size < sizeof (stmf_ppioctl_data_t))) { ret = EINVAL; break; } ret = stmf_get_ppd_ioctl(ppi, ppi_out, &iocd->stmf_error); break; case STMF_IOCTL_CLEAR_PP_DATA: if (stmf_state.stmf_config_state == STMF_CONFIG_NONE) { ret = EACCES; iocd->stmf_error = STMF_IOCERR_UPDATE_NEED_CFG_INIT; break; } ppi = (stmf_ppioctl_data_t *)ibuf; if ((ppi == NULL) || (iocd->stmf_ibuf_size < sizeof (stmf_ppioctl_data_t))) { ret = EINVAL; break; } ret = stmf_delete_ppd_ioctl(ppi); break; case STMF_IOCTL_CLEAR_TRACE: stmf_trace_clear(); break; case STMF_IOCTL_ADD_TRACE: if (iocd->stmf_ibuf_size && ibuf) { ((uint8_t *)ibuf)[iocd->stmf_ibuf_size - 1] = '\0'; stmf_trace("\nstradm", "%s\n", ibuf); } break; case STMF_IOCTL_GET_TRACE_POSITION: if (obuf && (iocd->stmf_obuf_size > 3)) { mutex_enter(&trace_buf_lock); *((int *)obuf) = trace_buf_curndx; mutex_exit(&trace_buf_lock); } else { ret = EINVAL; } break; case STMF_IOCTL_GET_TRACE: if ((iocd->stmf_obuf_size == 0) || (iocd->stmf_ibuf_size < 4)) { ret = EINVAL; break; } i = *((int *)ibuf); if ((i > trace_buf_size) || ((i + iocd->stmf_obuf_size) > trace_buf_size)) { ret = EINVAL; break; } mutex_enter(&trace_buf_lock); bcopy(stmf_trace_buf + i, obuf, iocd->stmf_obuf_size); mutex_exit(&trace_buf_lock); break; default: ret = ENOTTY; } if (ret == 0) { ret = stmf_copyout_iocdata(data, mode, iocd, obuf); } else if (iocd->stmf_error) { (void) stmf_copyout_iocdata(data, mode, iocd, obuf); } if (obuf) { kmem_free(obuf, iocd->stmf_obuf_size); obuf = NULL; } if (ibuf) { kmem_free(ibuf, iocd->stmf_ibuf_size); ibuf = NULL; } kmem_free(iocd, sizeof (stmf_iocdata_t)); return (ret); } static int stmf_get_service_state() { stmf_i_local_port_t *ilport; stmf_i_lu_t *ilu; int online = 0; int offline = 0; int onlining = 0; int offlining = 0; ASSERT(mutex_owned(&stmf_state.stmf_lock)); for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { if (ilport->ilport_state == STMF_STATE_OFFLINE) offline++; else if (ilport->ilport_state == STMF_STATE_ONLINE) online++; else if (ilport->ilport_state == STMF_STATE_ONLINING) onlining++; else if (ilport->ilport_state == STMF_STATE_OFFLINING) offlining++; } for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { if (ilu->ilu_state == STMF_STATE_OFFLINE) offline++; else if (ilu->ilu_state == STMF_STATE_ONLINE) online++; else if (ilu->ilu_state == STMF_STATE_ONLINING) onlining++; else if (ilu->ilu_state == STMF_STATE_OFFLINING) offlining++; } if (stmf_state.stmf_service_running) { if (onlining) return (STMF_STATE_ONLINING); else return (STMF_STATE_ONLINE); } if (offlining) { return (STMF_STATE_OFFLINING); } return (STMF_STATE_OFFLINE); } static int stmf_set_stmf_state(stmf_state_desc_t *std) { stmf_i_local_port_t *ilport; stmf_i_lu_t *ilu; stmf_state_change_info_t ssi; int svc_state; ssi.st_rflags = STMF_RFLAG_USER_REQUEST; ssi.st_additional_info = NULL; mutex_enter(&stmf_state.stmf_lock); if (!stmf_state.stmf_exclusive_open) { mutex_exit(&stmf_state.stmf_lock); return (EACCES); } if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); return (EBUSY); } if ((std->state != STMF_STATE_ONLINE) && (std->state != STMF_STATE_OFFLINE)) { mutex_exit(&stmf_state.stmf_lock); return (EINVAL); } svc_state = stmf_get_service_state(); if ((svc_state == STMF_STATE_OFFLINING) || (svc_state == STMF_STATE_ONLINING)) { mutex_exit(&stmf_state.stmf_lock); return (EBUSY); } if (svc_state == STMF_STATE_OFFLINE) { if (std->config_state == STMF_CONFIG_INIT) { if (std->state != STMF_STATE_OFFLINE) { mutex_exit(&stmf_state.stmf_lock); return (EINVAL); } stmf_state.stmf_config_state = STMF_CONFIG_INIT; stmf_delete_all_ppds(); stmf_view_clear_config(); stmf_view_init(); mutex_exit(&stmf_state.stmf_lock); return (0); } if ((stmf_state.stmf_config_state == STMF_CONFIG_INIT) || (stmf_state.stmf_config_state == STMF_CONFIG_NONE)) { if (std->config_state != STMF_CONFIG_INIT_DONE) { mutex_exit(&stmf_state.stmf_lock); return (EINVAL); } stmf_state.stmf_config_state = STMF_CONFIG_INIT_DONE; } if (std->state == STMF_STATE_OFFLINE) { mutex_exit(&stmf_state.stmf_lock); return (0); } if (stmf_state.stmf_config_state == STMF_CONFIG_INIT) { mutex_exit(&stmf_state.stmf_lock); return (EINVAL); } stmf_state.stmf_inventory_locked = 1; stmf_state.stmf_service_running = 1; mutex_exit(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { if (stmf_state.stmf_default_lport_state != STMF_STATE_ONLINE) continue; (void) stmf_ctl(STMF_CMD_LPORT_ONLINE, ilport->ilport_lport, &ssi); } for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { if (stmf_state.stmf_default_lu_state != STMF_STATE_ONLINE) continue; (void) stmf_ctl(STMF_CMD_LU_ONLINE, ilu->ilu_lu, &ssi); } mutex_enter(&stmf_state.stmf_lock); stmf_state.stmf_inventory_locked = 0; mutex_exit(&stmf_state.stmf_lock); return (0); } /* svc_state is STMF_STATE_ONLINE here */ if ((std->state != STMF_STATE_OFFLINE) || (std->config_state == STMF_CONFIG_INIT)) { mutex_exit(&stmf_state.stmf_lock); return (EACCES); } stmf_state.stmf_inventory_locked = 1; stmf_state.stmf_service_running = 0; mutex_exit(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { if (ilport->ilport_state != STMF_STATE_ONLINE) continue; (void) stmf_ctl(STMF_CMD_LPORT_OFFLINE, ilport->ilport_lport, &ssi); } for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { if (ilu->ilu_state != STMF_STATE_ONLINE) continue; (void) stmf_ctl(STMF_CMD_LU_OFFLINE, ilu->ilu_lu, &ssi); } mutex_enter(&stmf_state.stmf_lock); stmf_state.stmf_inventory_locked = 0; mutex_exit(&stmf_state.stmf_lock); return (0); } static int stmf_get_stmf_state(stmf_state_desc_t *std) { mutex_enter(&stmf_state.stmf_lock); std->state = stmf_get_service_state(); std->config_state = stmf_state.stmf_config_state; mutex_exit(&stmf_state.stmf_lock); return (0); } /* * handles registration message from pppt for a logical unit */ stmf_status_t stmf_ic_lu_reg(stmf_ic_reg_dereg_lun_msg_t *msg, uint32_t type) { stmf_i_lu_provider_t *ilp; stmf_lu_provider_t *lp; mutex_enter(&stmf_state.stmf_lock); for (ilp = stmf_state.stmf_ilplist; ilp != NULL; ilp = ilp->ilp_next) { if (strcmp(msg->icrl_lu_provider_name, ilp->ilp_lp->lp_name) == 0) { lp = ilp->ilp_lp; mutex_exit(&stmf_state.stmf_lock); lp->lp_proxy_msg(msg->icrl_lun_id, msg->icrl_cb_arg, msg->icrl_cb_arg_len, type); return (STMF_SUCCESS); } } mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } /* * handles de-registration message from pppt for a logical unit */ stmf_status_t stmf_ic_lu_dereg(stmf_ic_reg_dereg_lun_msg_t *msg) { stmf_i_lu_provider_t *ilp; stmf_lu_provider_t *lp; mutex_enter(&stmf_state.stmf_lock); for (ilp = stmf_state.stmf_ilplist; ilp != NULL; ilp = ilp->ilp_next) { if (strcmp(msg->icrl_lu_provider_name, ilp->ilp_lp->lp_name) == 0) { lp = ilp->ilp_lp; mutex_exit(&stmf_state.stmf_lock); lp->lp_proxy_msg(msg->icrl_lun_id, NULL, 0, STMF_MSG_LU_DEREGISTER); return (STMF_SUCCESS); } } mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } /* * helper function to find a task that matches a task_msgid */ scsi_task_t * find_task_from_msgid(uint8_t *lu_id, stmf_ic_msgid_t task_msgid) { stmf_i_lu_t *ilu; stmf_i_scsi_task_t *itask; mutex_enter(&stmf_state.stmf_lock); for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { if (bcmp(lu_id, ilu->ilu_lu->lu_id->ident, 16) == 0) { break; } } if (ilu == NULL) { mutex_exit(&stmf_state.stmf_lock); return (NULL); } mutex_enter(&ilu->ilu_task_lock); for (itask = ilu->ilu_tasks; itask != NULL; itask = itask->itask_lu_next) { mutex_enter(&itask->itask_mutex); if (itask->itask_flags & (ITASK_IN_FREE_LIST | ITASK_BEING_ABORTED)) { mutex_exit(&itask->itask_mutex); continue; } mutex_exit(&itask->itask_mutex); if (itask->itask_proxy_msg_id == task_msgid) { break; } } mutex_exit(&ilu->ilu_task_lock); mutex_exit(&stmf_state.stmf_lock); if (itask != NULL) { return (itask->itask_task); } else { /* task not found. Likely already aborted. */ return (NULL); } } /* * message received from pppt/ic */ stmf_status_t stmf_msg_rx(stmf_ic_msg_t *msg) { mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_alua_state != 1) { mutex_exit(&stmf_state.stmf_lock); cmn_err(CE_WARN, "stmf alua state is disabled"); ic_msg_free(msg); return (STMF_FAILURE); } mutex_exit(&stmf_state.stmf_lock); switch (msg->icm_msg_type) { case STMF_ICM_REGISTER_LUN: (void) stmf_ic_lu_reg( (stmf_ic_reg_dereg_lun_msg_t *)msg->icm_msg, STMF_MSG_LU_REGISTER); break; case STMF_ICM_LUN_ACTIVE: (void) stmf_ic_lu_reg( (stmf_ic_reg_dereg_lun_msg_t *)msg->icm_msg, STMF_MSG_LU_ACTIVE); break; case STMF_ICM_DEREGISTER_LUN: (void) stmf_ic_lu_dereg( (stmf_ic_reg_dereg_lun_msg_t *)msg->icm_msg); break; case STMF_ICM_SCSI_DATA: (void) stmf_ic_rx_scsi_data( (stmf_ic_scsi_data_msg_t *)msg->icm_msg); break; case STMF_ICM_SCSI_STATUS: (void) stmf_ic_rx_scsi_status( (stmf_ic_scsi_status_msg_t *)msg->icm_msg); break; case STMF_ICM_STATUS: (void) stmf_ic_rx_status( (stmf_ic_status_msg_t *)msg->icm_msg); break; default: cmn_err(CE_WARN, "unknown message received %d", msg->icm_msg_type); ic_msg_free(msg); return (STMF_FAILURE); } ic_msg_free(msg); return (STMF_SUCCESS); } stmf_status_t stmf_ic_rx_status(stmf_ic_status_msg_t *msg) { stmf_i_local_port_t *ilport; if (msg->ics_msg_type != STMF_ICM_REGISTER_PROXY_PORT) { /* for now, ignore other message status */ return (STMF_SUCCESS); } if (msg->ics_status != STMF_SUCCESS) { return (STMF_SUCCESS); } mutex_enter(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { if (msg->ics_msgid == ilport->ilport_reg_msgid) { ilport->ilport_proxy_registered = 1; break; } } mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } /* * handles scsi status message from pppt */ stmf_status_t stmf_ic_rx_scsi_status(stmf_ic_scsi_status_msg_t *msg) { scsi_task_t *task; /* is this a task management command */ if (msg->icss_task_msgid & MSG_ID_TM_BIT) { return (STMF_SUCCESS); } task = find_task_from_msgid(msg->icss_lun_id, msg->icss_task_msgid); if (task == NULL) { return (STMF_SUCCESS); } task->task_scsi_status = msg->icss_status; task->task_sense_data = msg->icss_sense; task->task_sense_length = msg->icss_sense_len; (void) stmf_send_scsi_status(task, STMF_IOF_LU_DONE); return (STMF_SUCCESS); } /* * handles scsi data message from pppt */ stmf_status_t stmf_ic_rx_scsi_data(stmf_ic_scsi_data_msg_t *msg) { stmf_i_scsi_task_t *itask; scsi_task_t *task; stmf_xfer_data_t *xd = NULL; stmf_data_buf_t *dbuf; uint32_t sz, minsz, xd_sz, asz; /* is this a task management command */ if (msg->icsd_task_msgid & MSG_ID_TM_BIT) { return (STMF_SUCCESS); } task = find_task_from_msgid(msg->icsd_lun_id, msg->icsd_task_msgid); if (task == NULL) { stmf_ic_msg_t *ic_xfer_done_msg = NULL; static uint64_t data_msg_id; stmf_status_t ic_ret = STMF_FAILURE; mutex_enter(&stmf_state.stmf_lock); data_msg_id = stmf_proxy_msg_id++; mutex_exit(&stmf_state.stmf_lock); /* * send xfer done status to pppt * for now, set the session id to 0 as we cannot * ascertain it since we cannot find the task */ ic_xfer_done_msg = ic_scsi_data_xfer_done_msg_alloc( msg->icsd_task_msgid, 0, STMF_FAILURE, data_msg_id); if (ic_xfer_done_msg) { ic_ret = ic_tx_msg(ic_xfer_done_msg); if (ic_ret != STMF_IC_MSG_SUCCESS) { cmn_err(CE_WARN, "unable to xmit proxy msg"); } } return (STMF_FAILURE); } itask = (stmf_i_scsi_task_t *)task->task_stmf_private; dbuf = itask->itask_proxy_dbuf; task->task_cmd_xfer_length += msg->icsd_data_len; if (task->task_additional_flags & TASK_AF_NO_EXPECTED_XFER_LENGTH) { task->task_expected_xfer_length = task->task_cmd_xfer_length; } sz = min(task->task_expected_xfer_length, task->task_cmd_xfer_length); xd_sz = msg->icsd_data_len; asz = xd_sz + sizeof (*xd) - 4; xd = (stmf_xfer_data_t *)kmem_zalloc(asz, KM_NOSLEEP); if (xd == NULL) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return (STMF_FAILURE); } xd->alloc_size = asz; xd->size_left = xd_sz; bcopy(msg->icsd_data, xd->buf, xd_sz); sz = min(sz, xd->size_left); xd->size_left = sz; minsz = min(512, sz); if (dbuf == NULL) dbuf = stmf_alloc_dbuf(task, sz, &minsz, 0); if (dbuf == NULL) { kmem_free(xd, xd->alloc_size); stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return (STMF_FAILURE); } dbuf->db_lu_private = xd; dbuf->db_relative_offset = task->task_nbytes_transferred; stmf_xd_to_dbuf(dbuf, 0); dbuf->db_flags = DB_DIRECTION_TO_RPORT; (void) stmf_xfer_data(task, dbuf, 0); return (STMF_SUCCESS); } stmf_status_t stmf_proxy_scsi_cmd(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_i_local_port_t *ilport = (stmf_i_local_port_t *)task->task_lport->lport_stmf_private; stmf_ic_msg_t *ic_cmd_msg; stmf_ic_msg_status_t ic_ret; stmf_status_t ret = STMF_FAILURE; if (stmf_state.stmf_alua_state != 1) { cmn_err(CE_WARN, "stmf alua state is disabled"); return (STMF_FAILURE); } if (ilport->ilport_proxy_registered == 0) { return (STMF_FAILURE); } mutex_enter(&stmf_state.stmf_lock); itask->itask_proxy_msg_id = stmf_proxy_msg_id++; mutex_exit(&stmf_state.stmf_lock); itask->itask_proxy_dbuf = dbuf; /* * stmf will now take over the task handling for this task * but it still needs to be treated differently from other * default handled tasks, hence the ITASK_PROXY_TASK. * If this is a task management function, we're really just * duping the command to the peer. Set the TM bit so that * we can recognize this on return since we won't be completing * the proxied task in that case. */ mutex_enter(&itask->itask_mutex); if (task->task_mgmt_function) { itask->itask_proxy_msg_id |= MSG_ID_TM_BIT; } else { if (itask->itask_flags & ITASK_BEING_ABORTED) { mutex_exit(&itask->itask_mutex); return (STMF_FAILURE); } itask->itask_flags |= ITASK_DEFAULT_HANDLING | ITASK_PROXY_TASK; } if (dbuf) { ic_cmd_msg = ic_scsi_cmd_msg_alloc(itask->itask_proxy_msg_id, task, dbuf->db_data_size, dbuf->db_sglist[0].seg_addr, itask->itask_proxy_msg_id); } else { ic_cmd_msg = ic_scsi_cmd_msg_alloc(itask->itask_proxy_msg_id, task, 0, NULL, itask->itask_proxy_msg_id); } mutex_exit(&itask->itask_mutex); if (ic_cmd_msg) { ic_ret = ic_tx_msg(ic_cmd_msg); if (ic_ret == STMF_IC_MSG_SUCCESS) { ret = STMF_SUCCESS; } } return (ret); } stmf_status_t pppt_modload() { int error; if (pppt_mod == NULL && ((pppt_mod = ddi_modopen("drv/pppt", KRTLD_MODE_FIRST, &error)) == NULL)) { cmn_err(CE_WARN, "Unable to load pppt"); return (STMF_FAILURE); } if (ic_reg_port_msg_alloc == NULL && ((ic_reg_port_msg_alloc = (stmf_ic_reg_port_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_reg_port_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_reg_port_msg_alloc"); return (STMF_FAILURE); } if (ic_dereg_port_msg_alloc == NULL && ((ic_dereg_port_msg_alloc = (stmf_ic_dereg_port_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_dereg_port_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_dereg_port_msg_alloc"); return (STMF_FAILURE); } if (ic_reg_lun_msg_alloc == NULL && ((ic_reg_lun_msg_alloc = (stmf_ic_reg_lun_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_reg_lun_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_reg_lun_msg_alloc"); return (STMF_FAILURE); } if (ic_lun_active_msg_alloc == NULL && ((ic_lun_active_msg_alloc = (stmf_ic_lun_active_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_lun_active_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_lun_active_msg_alloc"); return (STMF_FAILURE); } if (ic_dereg_lun_msg_alloc == NULL && ((ic_dereg_lun_msg_alloc = (stmf_ic_dereg_lun_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_dereg_lun_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_dereg_lun_msg_alloc"); return (STMF_FAILURE); } if (ic_scsi_cmd_msg_alloc == NULL && ((ic_scsi_cmd_msg_alloc = (stmf_ic_scsi_cmd_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_scsi_cmd_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_scsi_cmd_msg_alloc"); return (STMF_FAILURE); } if (ic_scsi_data_xfer_done_msg_alloc == NULL && ((ic_scsi_data_xfer_done_msg_alloc = (stmf_ic_scsi_data_xfer_done_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_scsi_data_xfer_done_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol -" "stmf_ic_scsi_data_xfer_done_msg_alloc"); return (STMF_FAILURE); } if (ic_session_reg_msg_alloc == NULL && ((ic_session_reg_msg_alloc = (stmf_ic_session_create_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_session_create_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol -" "stmf_ic_session_create_msg_alloc"); return (STMF_FAILURE); } if (ic_session_dereg_msg_alloc == NULL && ((ic_session_dereg_msg_alloc = (stmf_ic_session_destroy_msg_alloc_func_t) ddi_modsym(pppt_mod, "stmf_ic_session_destroy_msg_alloc", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol -" "stmf_ic_session_destroy_msg_alloc"); return (STMF_FAILURE); } if (ic_tx_msg == NULL && ((ic_tx_msg = (stmf_ic_tx_msg_func_t)ddi_modsym(pppt_mod, "stmf_ic_tx_msg", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_tx_msg"); return (STMF_FAILURE); } if (ic_msg_free == NULL && ((ic_msg_free = (stmf_ic_msg_free_func_t)ddi_modsym(pppt_mod, "stmf_ic_msg_free", &error)) == NULL)) { cmn_err(CE_WARN, "Unable to find symbol - stmf_ic_msg_free"); return (STMF_FAILURE); } return (STMF_SUCCESS); } static void stmf_get_alua_state(stmf_alua_state_desc_t *alua_state) { mutex_enter(&stmf_state.stmf_lock); alua_state->alua_node = stmf_state.stmf_alua_node; alua_state->alua_state = stmf_state.stmf_alua_state; mutex_exit(&stmf_state.stmf_lock); } static int stmf_set_alua_state(stmf_alua_state_desc_t *alua_state) { stmf_i_local_port_t *ilport; stmf_i_lu_t *ilu; stmf_lu_t *lu; stmf_ic_msg_status_t ic_ret; stmf_ic_msg_t *ic_reg_lun, *ic_reg_port; stmf_local_port_t *lport; int ret = 0; if (alua_state->alua_state > 1 || alua_state->alua_node > 1) { return (EINVAL); } mutex_enter(&stmf_state.stmf_lock); if (alua_state->alua_state == 1) { if (pppt_modload() == STMF_FAILURE) { ret = EIO; goto err; } if (alua_state->alua_node != 0) { /* reset existing rtpids to new base */ stmf_rtpid_counter = 255; } stmf_state.stmf_alua_node = alua_state->alua_node; stmf_state.stmf_alua_state = 1; /* register existing local ports with ppp */ for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { /* skip standby ports and non-alua participants */ if (ilport->ilport_standby == 1 || ilport->ilport_alua == 0) { continue; } if (alua_state->alua_node != 0) { ilport->ilport_rtpid = atomic_inc_16_nv(&stmf_rtpid_counter); } lport = ilport->ilport_lport; ic_reg_port = ic_reg_port_msg_alloc( lport->lport_id, ilport->ilport_rtpid, 0, NULL, stmf_proxy_msg_id); if (ic_reg_port) { ic_ret = ic_tx_msg(ic_reg_port); if (ic_ret == STMF_IC_MSG_SUCCESS) { ilport->ilport_reg_msgid = stmf_proxy_msg_id++; } else { cmn_err(CE_WARN, "error on port registration " "port - %s", ilport->ilport_kstat_tgt_name); } } } /* register existing logical units */ for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { if (ilu->ilu_access != STMF_LU_ACTIVE) { continue; } /* register with proxy module */ lu = ilu->ilu_lu; if (lu->lu_lp && lu->lu_lp->lp_lpif_rev == LPIF_REV_2 && lu->lu_lp->lp_alua_support) { ilu->ilu_alua = 1; /* allocate the register message */ ic_reg_lun = ic_reg_lun_msg_alloc( lu->lu_id->ident, lu->lu_lp->lp_name, lu->lu_proxy_reg_arg_len, (uint8_t *)lu->lu_proxy_reg_arg, stmf_proxy_msg_id); /* send the message */ if (ic_reg_lun) { ic_ret = ic_tx_msg(ic_reg_lun); if (ic_ret == STMF_IC_MSG_SUCCESS) { stmf_proxy_msg_id++; } } } } } else { stmf_state.stmf_alua_state = 0; } err: mutex_exit(&stmf_state.stmf_lock); return (ret); } typedef struct { void *bp; /* back pointer from internal struct to main struct */ int alloc_size; } __istmf_t; typedef struct { __istmf_t *fp; /* Framework private */ void *cp; /* Caller private */ void *ss; /* struct specific */ } __stmf_t; static struct { int shared; int fw_private; } stmf_sizes[] = { { 0, 0 }, { GET_STRUCT_SIZE(stmf_lu_provider_t), GET_STRUCT_SIZE(stmf_i_lu_provider_t) }, { GET_STRUCT_SIZE(stmf_port_provider_t), GET_STRUCT_SIZE(stmf_i_port_provider_t) }, { GET_STRUCT_SIZE(stmf_local_port_t), GET_STRUCT_SIZE(stmf_i_local_port_t) }, { GET_STRUCT_SIZE(stmf_lu_t), GET_STRUCT_SIZE(stmf_i_lu_t) }, { GET_STRUCT_SIZE(stmf_scsi_session_t), GET_STRUCT_SIZE(stmf_i_scsi_session_t) }, { GET_STRUCT_SIZE(scsi_task_t), GET_STRUCT_SIZE(stmf_i_scsi_task_t) }, { GET_STRUCT_SIZE(stmf_data_buf_t), GET_STRUCT_SIZE(__istmf_t) }, { GET_STRUCT_SIZE(stmf_dbuf_store_t), GET_STRUCT_SIZE(__istmf_t) } }; void * stmf_alloc(stmf_struct_id_t struct_id, int additional_size, int flags) { int stmf_size; int kmem_flag; __stmf_t *sh; if ((struct_id == 0) || (struct_id >= STMF_MAX_STRUCT_IDS)) return (NULL); if ((curthread->t_flag & T_INTR_THREAD) || (flags & AF_FORCE_NOSLEEP)) { kmem_flag = KM_NOSLEEP; } else { kmem_flag = KM_SLEEP; } additional_size = (additional_size + 7) & (~7); stmf_size = stmf_sizes[struct_id].shared + stmf_sizes[struct_id].fw_private + additional_size; if (flags & AF_DONTZERO) sh = (__stmf_t *)kmem_alloc(stmf_size, kmem_flag); else sh = (__stmf_t *)kmem_zalloc(stmf_size, kmem_flag); if (sh == NULL) return (NULL); /* * In principle, the implementation inside stmf_alloc should not * be changed anyway. But the original order of framework private * data and caller private data does not support sglist in the caller * private data. * To work around this, the memory segments of framework private * data and caller private data are re-ordered here. * A better solution is to provide a specific interface to allocate * the sglist, then we will not need this workaround any more. * But before the new interface is available, the memory segment * ordering should be kept as is. */ sh->cp = GET_BYTE_OFFSET(sh, stmf_sizes[struct_id].shared); sh->fp = (__istmf_t *)GET_BYTE_OFFSET(sh, stmf_sizes[struct_id].shared + additional_size); sh->fp->bp = sh; /* Just store the total size instead of storing additional size */ sh->fp->alloc_size = stmf_size; return (sh); } void stmf_free(void *ptr) { __stmf_t *sh = (__stmf_t *)ptr; /* * So far we dont need any struct specific processing. If such * a need ever arises, then store the struct id in the framework * private section and get it here as sh->fp->struct_id. */ kmem_free(ptr, sh->fp->alloc_size); } /* * Given a pointer to stmf_lu_t, verifies if this lu is registered with the * framework and returns a pointer to framework private data for the lu. * Returns NULL if the lu was not found. */ stmf_i_lu_t * stmf_lookup_lu(stmf_lu_t *lu) { stmf_i_lu_t *ilu; ASSERT(mutex_owned(&stmf_state.stmf_lock)); for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { if (ilu->ilu_lu == lu) return (ilu); } return (NULL); } /* * Given a pointer to stmf_local_port_t, verifies if this lport is registered * with the framework and returns a pointer to framework private data for * the lport. * Returns NULL if the lport was not found. */ stmf_i_local_port_t * stmf_lookup_lport(stmf_local_port_t *lport) { stmf_i_local_port_t *ilport; ASSERT(mutex_owned(&stmf_state.stmf_lock)); for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { if (ilport->ilport_lport == lport) return (ilport); } return (NULL); } stmf_status_t stmf_register_lu_provider(stmf_lu_provider_t *lp) { stmf_i_lu_provider_t *ilp = (stmf_i_lu_provider_t *)lp->lp_stmf_private; stmf_pp_data_t *ppd; uint32_t cb_flags; if (lp->lp_lpif_rev != LPIF_REV_1 && lp->lp_lpif_rev != LPIF_REV_2) return (STMF_FAILURE); mutex_enter(&stmf_state.stmf_lock); ilp->ilp_next = stmf_state.stmf_ilplist; stmf_state.stmf_ilplist = ilp; stmf_state.stmf_nlps++; /* See if we need to do a callback */ for (ppd = stmf_state.stmf_ppdlist; ppd != NULL; ppd = ppd->ppd_next) { if (strcmp(ppd->ppd_name, lp->lp_name) == 0) { break; } } if ((ppd == NULL) || (ppd->ppd_nv == NULL)) { goto rlp_bail_out; } ilp->ilp_ppd = ppd; ppd->ppd_provider = ilp; if (lp->lp_cb == NULL) goto rlp_bail_out; ilp->ilp_cb_in_progress = 1; cb_flags = STMF_PCB_PREG_COMPLETE; if (stmf_state.stmf_config_state == STMF_CONFIG_INIT) cb_flags |= STMF_PCB_STMF_ONLINING; mutex_exit(&stmf_state.stmf_lock); lp->lp_cb(lp, STMF_PROVIDER_DATA_UPDATED, ppd->ppd_nv, cb_flags); mutex_enter(&stmf_state.stmf_lock); ilp->ilp_cb_in_progress = 0; rlp_bail_out: mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } stmf_status_t stmf_deregister_lu_provider(stmf_lu_provider_t *lp) { stmf_i_lu_provider_t **ppilp; stmf_i_lu_provider_t *ilp = (stmf_i_lu_provider_t *)lp->lp_stmf_private; mutex_enter(&stmf_state.stmf_lock); if (ilp->ilp_nlus || ilp->ilp_cb_in_progress) { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } for (ppilp = &stmf_state.stmf_ilplist; *ppilp != NULL; ppilp = &((*ppilp)->ilp_next)) { if (*ppilp == ilp) { *ppilp = ilp->ilp_next; stmf_state.stmf_nlps--; if (ilp->ilp_ppd) { ilp->ilp_ppd->ppd_provider = NULL; ilp->ilp_ppd = NULL; } mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } } mutex_exit(&stmf_state.stmf_lock); return (STMF_NOT_FOUND); } stmf_status_t stmf_register_port_provider(stmf_port_provider_t *pp) { stmf_i_port_provider_t *ipp = (stmf_i_port_provider_t *)pp->pp_stmf_private; stmf_pp_data_t *ppd; uint32_t cb_flags; if (pp->pp_portif_rev != PORTIF_REV_1) return (STMF_FAILURE); mutex_enter(&stmf_state.stmf_lock); ipp->ipp_next = stmf_state.stmf_ipplist; stmf_state.stmf_ipplist = ipp; stmf_state.stmf_npps++; /* See if we need to do a callback */ for (ppd = stmf_state.stmf_ppdlist; ppd != NULL; ppd = ppd->ppd_next) { if (strcmp(ppd->ppd_name, pp->pp_name) == 0) { break; } } if ((ppd == NULL) || (ppd->ppd_nv == NULL)) { goto rpp_bail_out; } ipp->ipp_ppd = ppd; ppd->ppd_provider = ipp; if (pp->pp_cb == NULL) goto rpp_bail_out; ipp->ipp_cb_in_progress = 1; cb_flags = STMF_PCB_PREG_COMPLETE; if (stmf_state.stmf_config_state == STMF_CONFIG_INIT) cb_flags |= STMF_PCB_STMF_ONLINING; mutex_exit(&stmf_state.stmf_lock); pp->pp_cb(pp, STMF_PROVIDER_DATA_UPDATED, ppd->ppd_nv, cb_flags); mutex_enter(&stmf_state.stmf_lock); ipp->ipp_cb_in_progress = 0; rpp_bail_out: mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } stmf_status_t stmf_deregister_port_provider(stmf_port_provider_t *pp) { stmf_i_port_provider_t *ipp = (stmf_i_port_provider_t *)pp->pp_stmf_private; stmf_i_port_provider_t **ppipp; mutex_enter(&stmf_state.stmf_lock); if (ipp->ipp_npps || ipp->ipp_cb_in_progress) { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } for (ppipp = &stmf_state.stmf_ipplist; *ppipp != NULL; ppipp = &((*ppipp)->ipp_next)) { if (*ppipp == ipp) { *ppipp = ipp->ipp_next; stmf_state.stmf_npps--; if (ipp->ipp_ppd) { ipp->ipp_ppd->ppd_provider = NULL; ipp->ipp_ppd = NULL; } mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } } mutex_exit(&stmf_state.stmf_lock); return (STMF_NOT_FOUND); } int stmf_load_ppd_ioctl(stmf_ppioctl_data_t *ppi, uint64_t *ppi_token, uint32_t *err_ret) { stmf_i_port_provider_t *ipp; stmf_i_lu_provider_t *ilp; stmf_pp_data_t *ppd; nvlist_t *nv; int s; int ret; *err_ret = 0; if ((ppi->ppi_lu_provider + ppi->ppi_port_provider) != 1) { return (EINVAL); } mutex_enter(&stmf_state.stmf_lock); for (ppd = stmf_state.stmf_ppdlist; ppd != NULL; ppd = ppd->ppd_next) { if (ppi->ppi_lu_provider) { if (!ppd->ppd_lu_provider) continue; } else if (ppi->ppi_port_provider) { if (!ppd->ppd_port_provider) continue; } if (strncmp(ppi->ppi_name, ppd->ppd_name, 254) == 0) break; } if (ppd == NULL) { /* New provider */ s = strlen(ppi->ppi_name); if (s > 254) { mutex_exit(&stmf_state.stmf_lock); return (EINVAL); } s += sizeof (stmf_pp_data_t) - 7; ppd = kmem_zalloc(s, KM_NOSLEEP); if (ppd == NULL) { mutex_exit(&stmf_state.stmf_lock); return (ENOMEM); } ppd->ppd_alloc_size = s; (void) strcpy(ppd->ppd_name, ppi->ppi_name); /* See if this provider already exists */ if (ppi->ppi_lu_provider) { ppd->ppd_lu_provider = 1; for (ilp = stmf_state.stmf_ilplist; ilp != NULL; ilp = ilp->ilp_next) { if (strcmp(ppi->ppi_name, ilp->ilp_lp->lp_name) == 0) { ppd->ppd_provider = ilp; ilp->ilp_ppd = ppd; break; } } } else { ppd->ppd_port_provider = 1; for (ipp = stmf_state.stmf_ipplist; ipp != NULL; ipp = ipp->ipp_next) { if (strcmp(ppi->ppi_name, ipp->ipp_pp->pp_name) == 0) { ppd->ppd_provider = ipp; ipp->ipp_ppd = ppd; break; } } } /* Link this ppd in */ ppd->ppd_next = stmf_state.stmf_ppdlist; stmf_state.stmf_ppdlist = ppd; } /* * User is requesting that the token be checked. * If there was another set after the user's get * it's an error */ if (ppi->ppi_token_valid) { if (ppi->ppi_token != ppd->ppd_token) { *err_ret = STMF_IOCERR_PPD_UPDATED; mutex_exit(&stmf_state.stmf_lock); return (EINVAL); } } if ((ret = nvlist_unpack((char *)ppi->ppi_data, (size_t)ppi->ppi_data_size, &nv, KM_NOSLEEP)) != 0) { mutex_exit(&stmf_state.stmf_lock); return (ret); } /* Free any existing lists and add this one to the ppd */ if (ppd->ppd_nv) nvlist_free(ppd->ppd_nv); ppd->ppd_nv = nv; /* set the token for writes */ ppd->ppd_token++; /* return token to caller */ if (ppi_token) { *ppi_token = ppd->ppd_token; } /* If there is a provider registered, do the notifications */ if (ppd->ppd_provider) { uint32_t cb_flags = 0; if (stmf_state.stmf_config_state == STMF_CONFIG_INIT) cb_flags |= STMF_PCB_STMF_ONLINING; if (ppi->ppi_lu_provider) { ilp = (stmf_i_lu_provider_t *)ppd->ppd_provider; if (ilp->ilp_lp->lp_cb == NULL) goto bail_out; ilp->ilp_cb_in_progress = 1; mutex_exit(&stmf_state.stmf_lock); ilp->ilp_lp->lp_cb(ilp->ilp_lp, STMF_PROVIDER_DATA_UPDATED, ppd->ppd_nv, cb_flags); mutex_enter(&stmf_state.stmf_lock); ilp->ilp_cb_in_progress = 0; } else { ipp = (stmf_i_port_provider_t *)ppd->ppd_provider; if (ipp->ipp_pp->pp_cb == NULL) goto bail_out; ipp->ipp_cb_in_progress = 1; mutex_exit(&stmf_state.stmf_lock); ipp->ipp_pp->pp_cb(ipp->ipp_pp, STMF_PROVIDER_DATA_UPDATED, ppd->ppd_nv, cb_flags); mutex_enter(&stmf_state.stmf_lock); ipp->ipp_cb_in_progress = 0; } } bail_out: mutex_exit(&stmf_state.stmf_lock); return (0); } void stmf_delete_ppd(stmf_pp_data_t *ppd) { stmf_pp_data_t **pppd; ASSERT(mutex_owned(&stmf_state.stmf_lock)); if (ppd->ppd_provider) { if (ppd->ppd_lu_provider) { ((stmf_i_lu_provider_t *) ppd->ppd_provider)->ilp_ppd = NULL; } else { ((stmf_i_port_provider_t *) ppd->ppd_provider)->ipp_ppd = NULL; } ppd->ppd_provider = NULL; } for (pppd = &stmf_state.stmf_ppdlist; *pppd != NULL; pppd = &((*pppd)->ppd_next)) { if (*pppd == ppd) break; } if (*pppd == NULL) return; *pppd = ppd->ppd_next; if (ppd->ppd_nv) nvlist_free(ppd->ppd_nv); kmem_free(ppd, ppd->ppd_alloc_size); } int stmf_delete_ppd_ioctl(stmf_ppioctl_data_t *ppi) { stmf_pp_data_t *ppd; int ret = ENOENT; if ((ppi->ppi_lu_provider + ppi->ppi_port_provider) != 1) { return (EINVAL); } mutex_enter(&stmf_state.stmf_lock); for (ppd = stmf_state.stmf_ppdlist; ppd != NULL; ppd = ppd->ppd_next) { if (ppi->ppi_lu_provider) { if (!ppd->ppd_lu_provider) continue; } else if (ppi->ppi_port_provider) { if (!ppd->ppd_port_provider) continue; } if (strncmp(ppi->ppi_name, ppd->ppd_name, 254) == 0) break; } if (ppd) { ret = 0; stmf_delete_ppd(ppd); } mutex_exit(&stmf_state.stmf_lock); return (ret); } int stmf_get_ppd_ioctl(stmf_ppioctl_data_t *ppi, stmf_ppioctl_data_t *ppi_out, uint32_t *err_ret) { stmf_pp_data_t *ppd; size_t req_size; int ret = ENOENT; char *bufp = (char *)ppi_out->ppi_data; if ((ppi->ppi_lu_provider + ppi->ppi_port_provider) != 1) { return (EINVAL); } mutex_enter(&stmf_state.stmf_lock); for (ppd = stmf_state.stmf_ppdlist; ppd != NULL; ppd = ppd->ppd_next) { if (ppi->ppi_lu_provider) { if (!ppd->ppd_lu_provider) continue; } else if (ppi->ppi_port_provider) { if (!ppd->ppd_port_provider) continue; } if (strncmp(ppi->ppi_name, ppd->ppd_name, 254) == 0) break; } if (ppd && ppd->ppd_nv) { ppi_out->ppi_token = ppd->ppd_token; if ((ret = nvlist_size(ppd->ppd_nv, &req_size, NV_ENCODE_XDR)) != 0) { goto done; } ppi_out->ppi_data_size = req_size; if (req_size > ppi->ppi_data_size) { *err_ret = STMF_IOCERR_INSUFFICIENT_BUF; ret = EINVAL; goto done; } if ((ret = nvlist_pack(ppd->ppd_nv, &bufp, &req_size, NV_ENCODE_XDR, 0)) != 0) { goto done; } ret = 0; } done: mutex_exit(&stmf_state.stmf_lock); return (ret); } void stmf_delete_all_ppds() { stmf_pp_data_t *ppd, *nppd; ASSERT(mutex_owned(&stmf_state.stmf_lock)); for (ppd = stmf_state.stmf_ppdlist; ppd != NULL; ppd = nppd) { nppd = ppd->ppd_next; stmf_delete_ppd(ppd); } } /* * 16 is the max string length of a protocol_ident, increase * the size if needed. */ #define STMF_KSTAT_LU_SZ (STMF_GUID_INPUT + 1 + 256) #define STMF_KSTAT_TGT_SZ (256 * 2 + 16) #define STMF_KSTAT_RPORT_DATAMAX (sizeof (stmf_kstat_rport_info_t) / \ sizeof (kstat_named_t)) /* * This array matches the Protocol Identifier in stmf_ioctl.h */ #define MAX_PROTO_STR_LEN 32 char *protocol_ident[PROTOCOL_ANY] = { "Fibre Channel", "Parallel SCSI", "SSA", "IEEE_1394", "SRP", "iSCSI", "SAS", "ADT", "ATAPI", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN" }; /* * Update the lun wait/run queue count */ static void stmf_update_kstat_lu_q(scsi_task_t *task, void func()) { stmf_i_lu_t *ilu; kstat_io_t *kip; if (task->task_lu == dlun0) return; ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; if (ilu != NULL && ilu->ilu_kstat_io != NULL) { kip = KSTAT_IO_PTR(ilu->ilu_kstat_io); if (kip != NULL) { func(kip); } } } /* * Update the target(lport) wait/run queue count */ static void stmf_update_kstat_lport_q(scsi_task_t *task, void func()) { stmf_i_local_port_t *ilp; kstat_io_t *kip; ilp = (stmf_i_local_port_t *)task->task_lport->lport_stmf_private; if (ilp != NULL && ilp->ilport_kstat_io != NULL) { kip = KSTAT_IO_PTR(ilp->ilport_kstat_io); if (kip != NULL) { mutex_enter(ilp->ilport_kstat_io->ks_lock); func(kip); mutex_exit(ilp->ilport_kstat_io->ks_lock); } } } static void stmf_update_kstat_lport_io(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_local_port_t *ilp; kstat_io_t *kip; ilp = (stmf_i_local_port_t *)task->task_lport->lport_stmf_private; if (ilp != NULL && ilp->ilport_kstat_io != NULL) { kip = KSTAT_IO_PTR(ilp->ilport_kstat_io); if (kip != NULL) { mutex_enter(ilp->ilport_kstat_io->ks_lock); STMF_UPDATE_KSTAT_IO(kip, dbuf); mutex_exit(ilp->ilport_kstat_io->ks_lock); } } } static void stmf_update_kstat_rport_io(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_scsi_session_t *iss; stmf_i_remote_port_t *irport; kstat_io_t *kip; iss = task->task_session->ss_stmf_private; irport = iss->iss_irport; if (irport->irport_kstat_io != NULL) { kip = KSTAT_IO_PTR(irport->irport_kstat_io); mutex_enter(irport->irport_kstat_io->ks_lock); STMF_UPDATE_KSTAT_IO(kip, dbuf); mutex_exit(irport->irport_kstat_io->ks_lock); } } static void stmf_update_kstat_rport_estat(scsi_task_t *task) { stmf_i_scsi_task_t *itask; stmf_i_scsi_session_t *iss; stmf_i_remote_port_t *irport; stmf_kstat_rport_estat_t *ks_estat; hrtime_t lat = 0; uint32_t n = 0; itask = task->task_stmf_private; iss = task->task_session->ss_stmf_private; irport = iss->iss_irport; if (irport->irport_kstat_estat == NULL) return; ks_estat = (stmf_kstat_rport_estat_t *)KSTAT_NAMED_PTR( irport->irport_kstat_estat); mutex_enter(irport->irport_kstat_estat->ks_lock); if (task->task_flags & TF_READ_DATA) n = atomic_dec_32_nv(&irport->irport_nread_tasks); else if (task->task_flags & TF_WRITE_DATA) n = atomic_dec_32_nv(&irport->irport_nwrite_tasks); if (itask->itask_read_xfer > 0) { ks_estat->i_nread_tasks.value.ui64++; lat = stmf_update_rport_timestamps( &irport->irport_rdstart_timestamp, &irport->irport_rddone_timestamp, itask); if (n == 0) ks_estat->i_rport_read_latency.value.ui64 += lat; } else if ((itask->itask_write_xfer > 0) || (task->task_flags & TF_INITIAL_BURST)) { ks_estat->i_nwrite_tasks.value.ui64++; lat = stmf_update_rport_timestamps( &irport->irport_wrstart_timestamp, &irport->irport_wrdone_timestamp, itask); if (n == 0) ks_estat->i_rport_write_latency.value.ui64 += lat; } if (n == 0) { if (task->task_flags & TF_READ_DATA) { irport->irport_rdstart_timestamp = LLONG_MAX; irport->irport_rddone_timestamp = 0; } else if (task->task_flags & TF_WRITE_DATA) { irport->irport_wrstart_timestamp = LLONG_MAX; irport->irport_wrdone_timestamp = 0; } } mutex_exit(irport->irport_kstat_estat->ks_lock); } static hrtime_t stmf_update_rport_timestamps(hrtime_t *start_tstamp, hrtime_t *done_tstamp, stmf_i_scsi_task_t *itask) { *start_tstamp = MIN(*start_tstamp, itask->itask_start_timestamp); if ((*done_tstamp == 0) && (itask->itask_xfer_done_timestamp == 0)) { *done_tstamp = *start_tstamp; } else { *done_tstamp = MAX(*done_tstamp, itask->itask_xfer_done_timestamp); } return (*done_tstamp - *start_tstamp); } static void stmf_update_kstat_lu_io(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_lu_t *ilu; kstat_io_t *kip; ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; if (ilu != NULL && ilu->ilu_kstat_io != NULL) { kip = KSTAT_IO_PTR(ilu->ilu_kstat_io); if (kip != NULL) { mutex_enter(ilu->ilu_kstat_io->ks_lock); STMF_UPDATE_KSTAT_IO(kip, dbuf); mutex_exit(ilu->ilu_kstat_io->ks_lock); } } } static void stmf_create_kstat_lu(stmf_i_lu_t *ilu) { char ks_nm[KSTAT_STRLEN]; stmf_kstat_lu_info_t *ks_lu; /* create kstat lun info */ ks_lu = (stmf_kstat_lu_info_t *)kmem_zalloc(STMF_KSTAT_LU_SZ, KM_NOSLEEP); if (ks_lu == NULL) { cmn_err(CE_WARN, "STMF: kmem_zalloc failed"); return; } bzero(ks_nm, sizeof (ks_nm)); (void) sprintf(ks_nm, "stmf_lu_%"PRIxPTR"", (uintptr_t)ilu); if ((ilu->ilu_kstat_info = kstat_create(STMF_MODULE_NAME, 0, ks_nm, "misc", KSTAT_TYPE_NAMED, sizeof (stmf_kstat_lu_info_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) == NULL) { kmem_free(ks_lu, STMF_KSTAT_LU_SZ); cmn_err(CE_WARN, "STMF: kstat_create lu failed"); return; } ilu->ilu_kstat_info->ks_data_size = STMF_KSTAT_LU_SZ; ilu->ilu_kstat_info->ks_data = ks_lu; kstat_named_init(&ks_lu->i_lun_guid, "lun-guid", KSTAT_DATA_STRING); kstat_named_init(&ks_lu->i_lun_alias, "lun-alias", KSTAT_DATA_STRING); /* convert guid to hex string */ int i; uint8_t *p = ilu->ilu_lu->lu_id->ident; bzero(ilu->ilu_ascii_hex_guid, sizeof (ilu->ilu_ascii_hex_guid)); for (i = 0; i < STMF_GUID_INPUT / 2; i++) { (void) sprintf(&ilu->ilu_ascii_hex_guid[i * 2], "%02x", p[i]); } kstat_named_setstr(&ks_lu->i_lun_guid, (const char *)ilu->ilu_ascii_hex_guid); kstat_named_setstr(&ks_lu->i_lun_alias, (const char *)ilu->ilu_lu->lu_alias); kstat_install(ilu->ilu_kstat_info); /* create kstat lun io */ bzero(ks_nm, sizeof (ks_nm)); (void) sprintf(ks_nm, "stmf_lu_io_%"PRIxPTR"", (uintptr_t)ilu); if ((ilu->ilu_kstat_io = kstat_create(STMF_MODULE_NAME, 0, ks_nm, "io", KSTAT_TYPE_IO, 1, 0)) == NULL) { cmn_err(CE_WARN, "STMF: kstat_create lu_io failed"); return; } mutex_init(&ilu->ilu_kstat_lock, NULL, MUTEX_DRIVER, 0); ilu->ilu_kstat_io->ks_lock = &ilu->ilu_kstat_lock; kstat_install(ilu->ilu_kstat_io); } static void stmf_create_kstat_lport(stmf_i_local_port_t *ilport) { char ks_nm[KSTAT_STRLEN]; stmf_kstat_tgt_info_t *ks_tgt; int id, len; /* create kstat lport info */ ks_tgt = (stmf_kstat_tgt_info_t *)kmem_zalloc(STMF_KSTAT_TGT_SZ, KM_NOSLEEP); if (ks_tgt == NULL) { cmn_err(CE_WARN, "STMF: kmem_zalloc failed"); return; } bzero(ks_nm, sizeof (ks_nm)); (void) sprintf(ks_nm, "stmf_tgt_%"PRIxPTR"", (uintptr_t)ilport); if ((ilport->ilport_kstat_info = kstat_create(STMF_MODULE_NAME, 0, ks_nm, "misc", KSTAT_TYPE_NAMED, sizeof (stmf_kstat_tgt_info_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) == NULL) { kmem_free(ks_tgt, STMF_KSTAT_TGT_SZ); cmn_err(CE_WARN, "STMF: kstat_create target failed"); return; } ilport->ilport_kstat_info->ks_data_size = STMF_KSTAT_TGT_SZ; ilport->ilport_kstat_info->ks_data = ks_tgt; kstat_named_init(&ks_tgt->i_tgt_name, "target-name", KSTAT_DATA_STRING); kstat_named_init(&ks_tgt->i_tgt_alias, "target-alias", KSTAT_DATA_STRING); kstat_named_init(&ks_tgt->i_protocol, "protocol", KSTAT_DATA_STRING); /* ident might not be null terminated */ len = ilport->ilport_lport->lport_id->ident_length; bcopy(ilport->ilport_lport->lport_id->ident, ilport->ilport_kstat_tgt_name, len); ilport->ilport_kstat_tgt_name[len + 1] = '\0'; kstat_named_setstr(&ks_tgt->i_tgt_name, (const char *)ilport->ilport_kstat_tgt_name); kstat_named_setstr(&ks_tgt->i_tgt_alias, (const char *)ilport->ilport_lport->lport_alias); /* protocol */ if ((id = ilport->ilport_lport->lport_id->protocol_id) > PROTOCOL_ANY) { cmn_err(CE_WARN, "STMF: protocol_id out of bound"); id = PROTOCOL_ANY; } kstat_named_setstr(&ks_tgt->i_protocol, protocol_ident[id]); kstat_install(ilport->ilport_kstat_info); /* create kstat lport io */ bzero(ks_nm, sizeof (ks_nm)); (void) sprintf(ks_nm, "stmf_tgt_io_%"PRIxPTR"", (uintptr_t)ilport); if ((ilport->ilport_kstat_io = kstat_create(STMF_MODULE_NAME, 0, ks_nm, "io", KSTAT_TYPE_IO, 1, 0)) == NULL) { cmn_err(CE_WARN, "STMF: kstat_create target_io failed"); return; } mutex_init(&ilport->ilport_kstat_lock, NULL, MUTEX_DRIVER, 0); ilport->ilport_kstat_io->ks_lock = &ilport->ilport_kstat_lock; kstat_install(ilport->ilport_kstat_io); } /* * set the asymmetric access state for a logical unit * caller is responsible for establishing SCSI unit attention on * state change */ stmf_status_t stmf_set_lu_access(stmf_lu_t *lu, uint8_t access_state) { stmf_i_lu_t *ilu; uint8_t *p1, *p2; if ((access_state != STMF_LU_STANDBY) && (access_state != STMF_LU_ACTIVE)) { return (STMF_INVALID_ARG); } p1 = &lu->lu_id->ident[0]; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { p2 = &ilu->ilu_lu->lu_id->ident[0]; if (bcmp(p1, p2, 16) == 0) { break; } } if (!ilu) { ilu = (stmf_i_lu_t *)lu->lu_stmf_private; } else { /* * We're changing access state on an existing logical unit * Send the proxy registration message for this logical unit * if we're in alua mode. * If the requested state is STMF_LU_ACTIVE, we want to register * this logical unit. * If the requested state is STMF_LU_STANDBY, we're going to * abort all tasks for this logical unit. */ if (stmf_state.stmf_alua_state == 1 && access_state == STMF_LU_ACTIVE) { stmf_ic_msg_status_t ic_ret = STMF_IC_MSG_SUCCESS; stmf_ic_msg_t *ic_reg_lun; if (lu->lu_lp && lu->lu_lp->lp_lpif_rev == LPIF_REV_2 && lu->lu_lp->lp_alua_support) { ilu->ilu_alua = 1; /* allocate the register message */ ic_reg_lun = ic_lun_active_msg_alloc(p1, lu->lu_lp->lp_name, lu->lu_proxy_reg_arg_len, (uint8_t *)lu->lu_proxy_reg_arg, stmf_proxy_msg_id); /* send the message */ if (ic_reg_lun) { ic_ret = ic_tx_msg(ic_reg_lun); if (ic_ret == STMF_IC_MSG_SUCCESS) { stmf_proxy_msg_id++; } } } } else if (stmf_state.stmf_alua_state == 1 && access_state == STMF_LU_STANDBY) { /* abort all tasks for this lu */ stmf_task_lu_killall(lu, NULL, STMF_ABORTED); } } ilu->ilu_access = access_state; mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } stmf_status_t stmf_register_lu(stmf_lu_t *lu) { stmf_i_lu_t *ilu; uint8_t *p1, *p2; stmf_state_change_info_t ssci; stmf_id_data_t *luid; if ((lu->lu_id->ident_type != ID_TYPE_NAA) || (lu->lu_id->ident_length != 16) || ((lu->lu_id->ident[0] & 0xf0) != 0x60)) { return (STMF_INVALID_ARG); } p1 = &lu->lu_id->ident[0]; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } for (ilu = stmf_state.stmf_ilulist; ilu != NULL; ilu = ilu->ilu_next) { p2 = &ilu->ilu_lu->lu_id->ident[0]; if (bcmp(p1, p2, 16) == 0) { mutex_exit(&stmf_state.stmf_lock); return (STMF_ALREADY); } } ilu = (stmf_i_lu_t *)lu->lu_stmf_private; luid = stmf_lookup_id(&stmf_state.stmf_luid_list, lu->lu_id->ident_length, lu->lu_id->ident); if (luid) { luid->id_pt_to_object = (void *)ilu; ilu->ilu_luid = luid; } ilu->ilu_alias = NULL; ilu->ilu_next = stmf_state.stmf_ilulist; ilu->ilu_prev = NULL; if (ilu->ilu_next) ilu->ilu_next->ilu_prev = ilu; stmf_state.stmf_ilulist = ilu; stmf_state.stmf_nlus++; if (lu->lu_lp) { ((stmf_i_lu_provider_t *) (lu->lu_lp->lp_stmf_private))->ilp_nlus++; } ilu->ilu_cur_task_cntr = &ilu->ilu_task_cntr1; STMF_EVENT_ALLOC_HANDLE(ilu->ilu_event_hdl); cv_init(&ilu->ilu_offline_pending_cv, NULL, CV_DRIVER, NULL); stmf_create_kstat_lu(ilu); /* * register with proxy module if available and logical unit * is in active state */ if (stmf_state.stmf_alua_state == 1 && ilu->ilu_access == STMF_LU_ACTIVE) { stmf_ic_msg_status_t ic_ret = STMF_IC_MSG_SUCCESS; stmf_ic_msg_t *ic_reg_lun; if (lu->lu_lp && lu->lu_lp->lp_lpif_rev == LPIF_REV_2 && lu->lu_lp->lp_alua_support) { ilu->ilu_alua = 1; /* allocate the register message */ ic_reg_lun = ic_reg_lun_msg_alloc(p1, lu->lu_lp->lp_name, lu->lu_proxy_reg_arg_len, (uint8_t *)lu->lu_proxy_reg_arg, stmf_proxy_msg_id); /* send the message */ if (ic_reg_lun) { ic_ret = ic_tx_msg(ic_reg_lun); if (ic_ret == STMF_IC_MSG_SUCCESS) { stmf_proxy_msg_id++; } } } } mutex_exit(&stmf_state.stmf_lock); /* check the default state for lu */ if (stmf_state.stmf_default_lu_state == STMF_STATE_OFFLINE) { ilu->ilu_prev_state = STMF_STATE_OFFLINE; } else { ilu->ilu_prev_state = STMF_STATE_ONLINE; if (stmf_state.stmf_service_running) { ssci.st_rflags = 0; ssci.st_additional_info = NULL; (void) stmf_ctl(STMF_CMD_LU_ONLINE, lu, &ssci); } } /* XXX: Generate event */ return (STMF_SUCCESS); } stmf_status_t stmf_deregister_lu(stmf_lu_t *lu) { stmf_i_lu_t *ilu; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } ilu = stmf_lookup_lu(lu); if (ilu == NULL) { mutex_exit(&stmf_state.stmf_lock); return (STMF_INVALID_ARG); } if (ilu->ilu_state == STMF_STATE_OFFLINE) { ASSERT(ilu->ilu_ntasks == ilu->ilu_ntasks_free); while (ilu->ilu_flags & ILU_STALL_DEREGISTER) { cv_wait(&stmf_state.stmf_cv, &stmf_state.stmf_lock); } if (ilu->ilu_ntasks) { stmf_i_scsi_task_t *itask, *nitask; nitask = ilu->ilu_tasks; do { itask = nitask; nitask = itask->itask_lu_next; lu->lu_task_free(itask->itask_task); stmf_free(itask->itask_task); } while (nitask != NULL); ilu->ilu_tasks = ilu->ilu_free_tasks = NULL; ilu->ilu_ntasks = ilu->ilu_ntasks_free = 0; } /* de-register with proxy if available */ if (ilu->ilu_access == STMF_LU_ACTIVE && stmf_state.stmf_alua_state == 1) { /* de-register with proxy module */ stmf_ic_msg_status_t ic_ret = STMF_IC_MSG_SUCCESS; stmf_ic_msg_t *ic_dereg_lun; if (lu->lu_lp && lu->lu_lp->lp_lpif_rev == LPIF_REV_2 && lu->lu_lp->lp_alua_support) { ilu->ilu_alua = 1; /* allocate the de-register message */ ic_dereg_lun = ic_dereg_lun_msg_alloc( lu->lu_id->ident, lu->lu_lp->lp_name, 0, NULL, stmf_proxy_msg_id); /* send the message */ if (ic_dereg_lun) { ic_ret = ic_tx_msg(ic_dereg_lun); if (ic_ret == STMF_IC_MSG_SUCCESS) { stmf_proxy_msg_id++; } } } } if (ilu->ilu_next) ilu->ilu_next->ilu_prev = ilu->ilu_prev; if (ilu->ilu_prev) ilu->ilu_prev->ilu_next = ilu->ilu_next; else stmf_state.stmf_ilulist = ilu->ilu_next; stmf_state.stmf_nlus--; if (ilu == stmf_state.stmf_svc_ilu_draining) { stmf_state.stmf_svc_ilu_draining = ilu->ilu_next; } if (ilu == stmf_state.stmf_svc_ilu_timing) { stmf_state.stmf_svc_ilu_timing = ilu->ilu_next; } if (lu->lu_lp) { ((stmf_i_lu_provider_t *) (lu->lu_lp->lp_stmf_private))->ilp_nlus--; } if (ilu->ilu_luid) { ((stmf_id_data_t *)ilu->ilu_luid)->id_pt_to_object = NULL; ilu->ilu_luid = NULL; } STMF_EVENT_FREE_HANDLE(ilu->ilu_event_hdl); } else { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } if (ilu->ilu_kstat_info) { kmem_free(ilu->ilu_kstat_info->ks_data, STMF_KSTAT_LU_SZ); kstat_delete(ilu->ilu_kstat_info); } if (ilu->ilu_kstat_io) { kstat_delete(ilu->ilu_kstat_io); mutex_destroy(&ilu->ilu_kstat_lock); } cv_destroy(&ilu->ilu_offline_pending_cv); mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } void stmf_set_port_standby(stmf_local_port_t *lport, uint16_t rtpid) { stmf_i_local_port_t *ilport = (stmf_i_local_port_t *)lport->lport_stmf_private; ilport->ilport_rtpid = rtpid; ilport->ilport_standby = 1; } void stmf_set_port_alua(stmf_local_port_t *lport) { stmf_i_local_port_t *ilport = (stmf_i_local_port_t *)lport->lport_stmf_private; ilport->ilport_alua = 1; } stmf_status_t stmf_register_local_port(stmf_local_port_t *lport) { stmf_i_local_port_t *ilport; stmf_state_change_info_t ssci; int start_workers = 0; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } ilport = (stmf_i_local_port_t *)lport->lport_stmf_private; rw_init(&ilport->ilport_lock, NULL, RW_DRIVER, NULL); ilport->ilport_instance = id_alloc_nosleep(stmf_state.stmf_ilport_inst_space); if (ilport->ilport_instance == -1) { mutex_exit(&stmf_state.stmf_lock); return (STMF_FAILURE); } ilport->ilport_next = stmf_state.stmf_ilportlist; ilport->ilport_prev = NULL; if (ilport->ilport_next) ilport->ilport_next->ilport_prev = ilport; stmf_state.stmf_ilportlist = ilport; stmf_state.stmf_nlports++; if (lport->lport_pp) { ((stmf_i_port_provider_t *) (lport->lport_pp->pp_stmf_private))->ipp_npps++; } ilport->ilport_tg = stmf_lookup_group_for_target(lport->lport_id->ident, lport->lport_id->ident_length); /* * rtpid will/must be set if this is a standby port * only register ports that are not standby (proxy) ports * and ports that are alua participants (ilport_alua == 1) */ if (ilport->ilport_standby == 0) { ilport->ilport_rtpid = atomic_inc_16_nv(&stmf_rtpid_counter); } if (stmf_state.stmf_alua_state == 1 && ilport->ilport_standby == 0 && ilport->ilport_alua == 1) { stmf_ic_msg_t *ic_reg_port; stmf_ic_msg_status_t ic_ret; stmf_local_port_t *lport; lport = ilport->ilport_lport; ic_reg_port = ic_reg_port_msg_alloc( lport->lport_id, ilport->ilport_rtpid, 0, NULL, stmf_proxy_msg_id); if (ic_reg_port) { ic_ret = ic_tx_msg(ic_reg_port); if (ic_ret == STMF_IC_MSG_SUCCESS) { ilport->ilport_reg_msgid = stmf_proxy_msg_id++; } else { cmn_err(CE_WARN, "error on port registration " "port - %s", ilport->ilport_kstat_tgt_name); } } } STMF_EVENT_ALLOC_HANDLE(ilport->ilport_event_hdl); stmf_create_kstat_lport(ilport); if (stmf_workers_state == STMF_WORKERS_DISABLED) { stmf_workers_state = STMF_WORKERS_ENABLING; start_workers = 1; } mutex_exit(&stmf_state.stmf_lock); if (start_workers) stmf_worker_init(); /* the default state of LPORT */ if (stmf_state.stmf_default_lport_state == STMF_STATE_OFFLINE) { ilport->ilport_prev_state = STMF_STATE_OFFLINE; } else { ilport->ilport_prev_state = STMF_STATE_ONLINE; if (stmf_state.stmf_service_running) { ssci.st_rflags = 0; ssci.st_additional_info = NULL; (void) stmf_ctl(STMF_CMD_LPORT_ONLINE, lport, &ssci); } } /* XXX: Generate event */ return (STMF_SUCCESS); } stmf_status_t stmf_deregister_local_port(stmf_local_port_t *lport) { stmf_i_local_port_t *ilport; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_inventory_locked) { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } /* dequeue all object requests from active queue */ stmf_svc_kill_obj_requests(lport); ilport = (stmf_i_local_port_t *)lport->lport_stmf_private; /* * deregister ports that are not standby (proxy) */ if (stmf_state.stmf_alua_state == 1 && ilport->ilport_standby == 0 && ilport->ilport_alua == 1) { stmf_ic_msg_t *ic_dereg_port; stmf_ic_msg_status_t ic_ret; ic_dereg_port = ic_dereg_port_msg_alloc( lport->lport_id, 0, NULL, stmf_proxy_msg_id); if (ic_dereg_port) { ic_ret = ic_tx_msg(ic_dereg_port); if (ic_ret == STMF_IC_MSG_SUCCESS) { stmf_proxy_msg_id++; } } } if (ilport->ilport_nsessions == 0) { if (ilport->ilport_next) ilport->ilport_next->ilport_prev = ilport->ilport_prev; if (ilport->ilport_prev) ilport->ilport_prev->ilport_next = ilport->ilport_next; else stmf_state.stmf_ilportlist = ilport->ilport_next; id_free(stmf_state.stmf_ilport_inst_space, ilport->ilport_instance); rw_destroy(&ilport->ilport_lock); stmf_state.stmf_nlports--; if (lport->lport_pp) { ((stmf_i_port_provider_t *) (lport->lport_pp->pp_stmf_private))->ipp_npps--; } ilport->ilport_tg = NULL; STMF_EVENT_FREE_HANDLE(ilport->ilport_event_hdl); } else { mutex_exit(&stmf_state.stmf_lock); return (STMF_BUSY); } if (ilport->ilport_kstat_info) { kmem_free(ilport->ilport_kstat_info->ks_data, STMF_KSTAT_TGT_SZ); kstat_delete(ilport->ilport_kstat_info); } if (ilport->ilport_kstat_io) { kstat_delete(ilport->ilport_kstat_io); mutex_destroy(&ilport->ilport_kstat_lock); } mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } /* * Rport id/instance mappings remain valid until STMF is unloaded */ static int stmf_irport_compare(const void *void_irport1, const void *void_irport2) { const stmf_i_remote_port_t *irport1 = void_irport1; const stmf_i_remote_port_t *irport2 = void_irport2; int result; /* Sort by code set then ident */ if (irport1->irport_id->code_set < irport2->irport_id->code_set) { return (-1); } else if (irport1->irport_id->code_set > irport2->irport_id->code_set) { return (1); } /* Next by ident length */ if (irport1->irport_id->ident_length < irport2->irport_id->ident_length) { return (-1); } else if (irport1->irport_id->ident_length > irport2->irport_id->ident_length) { return (1); } /* Code set and ident length both match, now compare idents */ result = memcmp(irport1->irport_id->ident, irport2->irport_id->ident, irport1->irport_id->ident_length); if (result < 0) { return (-1); } else if (result > 0) { return (1); } return (0); } static stmf_i_remote_port_t * stmf_irport_create(scsi_devid_desc_t *rport_devid) { int alloc_len; stmf_i_remote_port_t *irport; /* * Lookup will bump the refcnt if there's an existing rport * context for this identifier. */ ASSERT(mutex_owned(&stmf_state.stmf_lock)); alloc_len = sizeof (*irport) + sizeof (scsi_devid_desc_t) + rport_devid->ident_length - 1; irport = kmem_zalloc(alloc_len, KM_NOSLEEP); if (irport == NULL) { return (NULL); } irport->irport_instance = id_alloc_nosleep(stmf_state.stmf_irport_inst_space); if (irport->irport_instance == -1) { kmem_free(irport, alloc_len); return (NULL); } irport->irport_id = (struct scsi_devid_desc *)(irport + 1); /* Ptr. Arith. */ bcopy(rport_devid, irport->irport_id, sizeof (scsi_devid_desc_t) + rport_devid->ident_length - 1); irport->irport_refcnt = 1; mutex_init(&irport->irport_mutex, NULL, MUTEX_DEFAULT, NULL); irport->irport_rdstart_timestamp = LLONG_MAX; irport->irport_wrstart_timestamp = LLONG_MAX; return (irport); } static void stmf_irport_destroy(stmf_i_remote_port_t *irport) { stmf_destroy_kstat_rport(irport); id_free(stmf_state.stmf_irport_inst_space, irport->irport_instance); mutex_destroy(&irport->irport_mutex); kmem_free(irport, sizeof (*irport) + sizeof (scsi_devid_desc_t) + irport->irport_id->ident_length - 1); } static void stmf_create_kstat_rport(stmf_i_remote_port_t *irport) { scsi_devid_desc_t *id = irport->irport_id; char ks_nm[KSTAT_STRLEN]; stmf_kstat_rport_info_t *ks_info; stmf_kstat_rport_estat_t *ks_estat; char *ident = NULL; ks_info = kmem_zalloc(sizeof (*ks_info), KM_NOSLEEP); if (ks_info == NULL) goto err_out; (void) snprintf(ks_nm, KSTAT_STRLEN, "stmf_rport_%"PRIxPTR"", (uintptr_t)irport); irport->irport_kstat_info = kstat_create(STMF_MODULE_NAME, 0, ks_nm, "misc", KSTAT_TYPE_NAMED, STMF_KSTAT_RPORT_DATAMAX - STMF_RPORT_INFO_LIMIT, KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE); if (irport->irport_kstat_info == NULL) { kmem_free(ks_info, sizeof (*ks_info)); goto err_out; } irport->irport_kstat_info->ks_data = ks_info; irport->irport_kstat_info->ks_private = irport; irport->irport_kstat_info->ks_update = stmf_kstat_rport_update; ident = kmem_alloc(id->ident_length + 1, KM_NOSLEEP); if (ident == NULL) { kstat_delete(irport->irport_kstat_info); irport->irport_kstat_info = NULL; kmem_free(ks_info, sizeof (*ks_info)); goto err_out; } (void) memcpy(ident, id->ident, id->ident_length); ident[id->ident_length] = '\0'; kstat_named_init(&ks_info->i_rport_name, "name", KSTAT_DATA_STRING); kstat_named_init(&ks_info->i_protocol, "protocol", KSTAT_DATA_STRING); kstat_named_setstr(&ks_info->i_rport_name, ident); kstat_named_setstr(&ks_info->i_protocol, protocol_ident[irport->irport_id->protocol_id]); irport->irport_kstat_info->ks_lock = &irport->irport_mutex; irport->irport_info_dirty = B_TRUE; kstat_install(irport->irport_kstat_info); (void) snprintf(ks_nm, KSTAT_STRLEN, "stmf_rport_io_%"PRIxPTR"", (uintptr_t)irport); irport->irport_kstat_io = kstat_create(STMF_MODULE_NAME, 0, ks_nm, "io", KSTAT_TYPE_IO, 1, 0); if (irport->irport_kstat_io == NULL) goto err_out; irport->irport_kstat_io->ks_lock = &irport->irport_mutex; kstat_install(irport->irport_kstat_io); (void) snprintf(ks_nm, KSTAT_STRLEN, "stmf_rport_st_%"PRIxPTR"", (uintptr_t)irport); irport->irport_kstat_estat = kstat_create(STMF_MODULE_NAME, 0, ks_nm, "misc", KSTAT_TYPE_NAMED, sizeof (*ks_estat) / sizeof (kstat_named_t), 0); if (irport->irport_kstat_estat == NULL) goto err_out; ks_estat = (stmf_kstat_rport_estat_t *)KSTAT_NAMED_PTR( irport->irport_kstat_estat); kstat_named_init(&ks_estat->i_rport_read_latency, "rlatency", KSTAT_DATA_UINT64); kstat_named_init(&ks_estat->i_rport_write_latency, "wlatency", KSTAT_DATA_UINT64); kstat_named_init(&ks_estat->i_nread_tasks, "rntasks", KSTAT_DATA_UINT64); kstat_named_init(&ks_estat->i_nwrite_tasks, "wntasks", KSTAT_DATA_UINT64); irport->irport_kstat_estat->ks_lock = &irport->irport_mutex; kstat_install(irport->irport_kstat_estat); return; err_out: (void) memcpy(ks_nm, id->ident, MAX(KSTAT_STRLEN - 1, id->ident_length)); ks_nm[id->ident_length] = '\0'; cmn_err(CE_WARN, "STMF: remote port kstat creation failed: %s", ks_nm); } static void stmf_destroy_kstat_rport(stmf_i_remote_port_t *irport) { if (irport->irport_kstat_io != NULL) { kstat_delete(irport->irport_kstat_io); } if (irport->irport_kstat_estat != NULL) { kstat_delete(irport->irport_kstat_estat); } if (irport->irport_kstat_info != NULL) { stmf_kstat_rport_info_t *ks_info; kstat_named_t *knp; void *ptr; int i; ks_info = (stmf_kstat_rport_info_t *)KSTAT_NAMED_PTR( irport->irport_kstat_info); kstat_delete(irport->irport_kstat_info); ptr = KSTAT_NAMED_STR_PTR(&ks_info->i_rport_name); kmem_free(ptr, KSTAT_NAMED_STR_BUFLEN(&ks_info->i_rport_name)); for (i = 0, knp = ks_info->i_rport_uinfo; i < STMF_RPORT_INFO_LIMIT; i++, knp++) { ptr = KSTAT_NAMED_STR_PTR(knp); if (ptr != NULL) kmem_free(ptr, KSTAT_NAMED_STR_BUFLEN(knp)); } kmem_free(ks_info, sizeof (*ks_info)); } } static stmf_i_remote_port_t * stmf_irport_register(scsi_devid_desc_t *rport_devid) { stmf_i_remote_port_t *irport; mutex_enter(&stmf_state.stmf_lock); /* * Lookup will bump the refcnt if there's an existing rport * context for this identifier. */ if ((irport = stmf_irport_lookup_locked(rport_devid)) != NULL) { mutex_exit(&stmf_state.stmf_lock); return (irport); } irport = stmf_irport_create(rport_devid); if (irport == NULL) { mutex_exit(&stmf_state.stmf_lock); return (NULL); } stmf_create_kstat_rport(irport); avl_add(&stmf_state.stmf_irportlist, irport); mutex_exit(&stmf_state.stmf_lock); return (irport); } static stmf_i_remote_port_t * stmf_irport_lookup_locked(scsi_devid_desc_t *rport_devid) { stmf_i_remote_port_t *irport; stmf_i_remote_port_t tmp_irport; ASSERT(mutex_owned(&stmf_state.stmf_lock)); tmp_irport.irport_id = rport_devid; irport = avl_find(&stmf_state.stmf_irportlist, &tmp_irport, NULL); if (irport != NULL) { mutex_enter(&irport->irport_mutex); irport->irport_refcnt++; mutex_exit(&irport->irport_mutex); } return (irport); } static void stmf_irport_deregister(stmf_i_remote_port_t *irport) { /* * If we were actually going to remove unreferenced remote ports * we would want to acquire stmf_state.stmf_lock before getting * the irport mutex. * * Instead we're just going to leave it there even if unreferenced. */ mutex_enter(&irport->irport_mutex); irport->irport_refcnt--; mutex_exit(&irport->irport_mutex); } /* * Port provider has to make sure that register/deregister session and * port are serialized calls. */ stmf_status_t stmf_register_scsi_session(stmf_local_port_t *lport, stmf_scsi_session_t *ss) { stmf_i_scsi_session_t *iss; stmf_i_local_port_t *ilport = (stmf_i_local_port_t *) lport->lport_stmf_private; uint8_t lun[8]; /* * Port state has to be online to register a scsi session. It is * possible that we started an offline operation and a new SCSI * session started at the same time (in that case also we are going * to fail the registeration). But any other state is simply * a bad port provider implementation. */ if (ilport->ilport_state != STMF_STATE_ONLINE) { if (ilport->ilport_state != STMF_STATE_OFFLINING) { stmf_trace(lport->lport_alias, "Port is trying to " "register a session while the state is neither " "online nor offlining"); } return (STMF_FAILURE); } bzero(lun, 8); iss = (stmf_i_scsi_session_t *)ss->ss_stmf_private; if ((iss->iss_irport = stmf_irport_register(ss->ss_rport_id)) == NULL) { stmf_trace(lport->lport_alias, "Could not register " "remote port during session registration"); return (STMF_FAILURE); } iss->iss_flags |= ISS_BEING_CREATED; if (ss->ss_rport == NULL) { iss->iss_flags |= ISS_NULL_TPTID; ss->ss_rport = stmf_scsilib_devid_to_remote_port( ss->ss_rport_id); if (ss->ss_rport == NULL) { iss->iss_flags &= ~(ISS_NULL_TPTID | ISS_BEING_CREATED); stmf_trace(lport->lport_alias, "Device id to " "remote port conversion failed"); return (STMF_FAILURE); } } else { if (!stmf_scsilib_tptid_validate(ss->ss_rport->rport_tptid, ss->ss_rport->rport_tptid_sz, NULL)) { iss->iss_flags &= ~ISS_BEING_CREATED; stmf_trace(lport->lport_alias, "Remote port " "transport id validation failed"); return (STMF_FAILURE); } } /* sessions use the ilport_lock. No separate lock is required */ iss->iss_lockp = &ilport->ilport_lock; if (iss->iss_sm != NULL) cmn_err(CE_PANIC, "create lun map called with non NULL map"); iss->iss_sm = (stmf_lun_map_t *)kmem_zalloc(sizeof (stmf_lun_map_t), KM_SLEEP); mutex_enter(&stmf_state.stmf_lock); rw_enter(&ilport->ilport_lock, RW_WRITER); (void) stmf_session_create_lun_map(ilport, iss); ilport->ilport_nsessions++; iss->iss_next = ilport->ilport_ss_list; ilport->ilport_ss_list = iss; rw_exit(&ilport->ilport_lock); mutex_exit(&stmf_state.stmf_lock); iss->iss_creation_time = ddi_get_time(); ss->ss_session_id = atomic_inc_64_nv(&stmf_session_counter); iss->iss_flags &= ~ISS_BEING_CREATED; /* XXX should we remove ISS_LUN_INVENTORY_CHANGED on new session? */ iss->iss_flags &= ~ISS_LUN_INVENTORY_CHANGED; DTRACE_PROBE2(session__online, stmf_local_port_t *, lport, stmf_scsi_session_t *, ss); return (STMF_SUCCESS); } stmf_status_t stmf_add_rport_info(stmf_scsi_session_t *ss, const char *prop_name, const char *prop_value) { stmf_i_scsi_session_t *iss = ss->ss_stmf_private; stmf_i_remote_port_t *irport = iss->iss_irport; kstat_named_t *knp; char *s; int i; s = strdup(prop_value); mutex_enter(irport->irport_kstat_info->ks_lock); /* Make sure the caller doesn't try to add already existing property */ knp = KSTAT_NAMED_PTR(irport->irport_kstat_info); for (i = 0; i < STMF_KSTAT_RPORT_DATAMAX; i++, knp++) { if (KSTAT_NAMED_STR_PTR(knp) == NULL) break; ASSERT(strcmp(knp->name, prop_name) != 0); } if (i == STMF_KSTAT_RPORT_DATAMAX) { mutex_exit(irport->irport_kstat_info->ks_lock); kmem_free(s, strlen(s) + 1); return (STMF_FAILURE); } irport->irport_info_dirty = B_TRUE; kstat_named_init(knp, prop_name, KSTAT_DATA_STRING); kstat_named_setstr(knp, s); mutex_exit(irport->irport_kstat_info->ks_lock); return (STMF_SUCCESS); } void stmf_remove_rport_info(stmf_scsi_session_t *ss, const char *prop_name) { stmf_i_scsi_session_t *iss = ss->ss_stmf_private; stmf_i_remote_port_t *irport = iss->iss_irport; kstat_named_t *knp; char *s; int i; uint32_t len; mutex_enter(irport->irport_kstat_info->ks_lock); knp = KSTAT_NAMED_PTR(irport->irport_kstat_info); for (i = 0; i < STMF_KSTAT_RPORT_DATAMAX; i++, knp++) { if ((knp->name != NULL) && (strcmp(knp->name, prop_name) == 0)) break; } if (i == STMF_KSTAT_RPORT_DATAMAX) { mutex_exit(irport->irport_kstat_info->ks_lock); return; } s = KSTAT_NAMED_STR_PTR(knp); len = KSTAT_NAMED_STR_BUFLEN(knp); for (; i < STMF_KSTAT_RPORT_DATAMAX - 1; i++, knp++) { kstat_named_init(knp, knp[1].name, KSTAT_DATA_STRING); kstat_named_setstr(knp, KSTAT_NAMED_STR_PTR(&knp[1])); } kstat_named_init(knp, "", KSTAT_DATA_STRING); irport->irport_info_dirty = B_TRUE; mutex_exit(irport->irport_kstat_info->ks_lock); kmem_free(s, len); } static int stmf_kstat_rport_update(kstat_t *ksp, int rw) { stmf_i_remote_port_t *irport = ksp->ks_private; kstat_named_t *knp; uint_t ndata = 0; size_t dsize = 0; int i; if (rw == KSTAT_WRITE) return (EACCES); if (!irport->irport_info_dirty) return (0); knp = KSTAT_NAMED_PTR(ksp); for (i = 0; i < STMF_KSTAT_RPORT_DATAMAX; i++, knp++) { if (KSTAT_NAMED_STR_PTR(knp) == NULL) break; ndata++; dsize += KSTAT_NAMED_STR_BUFLEN(knp); } ksp->ks_ndata = ndata; ksp->ks_data_size = sizeof (kstat_named_t) * ndata + dsize; irport->irport_info_dirty = B_FALSE; return (0); } void stmf_deregister_scsi_session(stmf_local_port_t *lport, stmf_scsi_session_t *ss) { stmf_i_local_port_t *ilport = (stmf_i_local_port_t *) lport->lport_stmf_private; stmf_i_scsi_session_t *iss, **ppss; int found = 0; stmf_ic_msg_t *ic_session_dereg; stmf_status_t ic_ret = STMF_FAILURE; stmf_lun_map_t *sm; stmf_i_lu_t *ilu; uint16_t n; stmf_lun_map_ent_t *ent; DTRACE_PROBE2(session__offline, stmf_local_port_t *, lport, stmf_scsi_session_t *, ss); iss = (stmf_i_scsi_session_t *)ss->ss_stmf_private; if (ss->ss_rport_alias) { ss->ss_rport_alias = NULL; } try_dereg_ss_again: mutex_enter(&stmf_state.stmf_lock); atomic_and_32(&iss->iss_flags, ~(ISS_LUN_INVENTORY_CHANGED | ISS_GOT_INITIAL_LUNS)); if (iss->iss_flags & ISS_EVENT_ACTIVE) { mutex_exit(&stmf_state.stmf_lock); delay(1); goto try_dereg_ss_again; } /* dereg proxy session if not standby port */ if (stmf_state.stmf_alua_state == 1 && ilport->ilport_standby == 0 && ilport->ilport_alua == 1) { ic_session_dereg = ic_session_dereg_msg_alloc( ss, stmf_proxy_msg_id); if (ic_session_dereg) { ic_ret = ic_tx_msg(ic_session_dereg); if (ic_ret == STMF_IC_MSG_SUCCESS) { stmf_proxy_msg_id++; } } } rw_enter(&ilport->ilport_lock, RW_WRITER); for (ppss = &ilport->ilport_ss_list; *ppss != NULL; ppss = &((*ppss)->iss_next)) { if (iss == (*ppss)) { *ppss = (*ppss)->iss_next; found = 1; break; } } if (!found) { cmn_err(CE_PANIC, "Deregister session called for non existent" " session"); } ilport->ilport_nsessions--; stmf_irport_deregister(iss->iss_irport); /* * to avoid conflict with updating session's map, * which only grab stmf_lock */ sm = iss->iss_sm; iss->iss_sm = NULL; iss->iss_hg = NULL; rw_exit(&ilport->ilport_lock); if (sm->lm_nentries) { for (n = 0; n < sm->lm_nentries; n++) { if ((ent = (stmf_lun_map_ent_t *)sm->lm_plus[n]) != NULL) { if (ent->ent_itl_datap) { stmf_do_itl_dereg(ent->ent_lu, ent->ent_itl_datap, STMF_ITL_REASON_IT_NEXUS_LOSS); } ilu = (stmf_i_lu_t *) ent->ent_lu->lu_stmf_private; atomic_dec_32(&ilu->ilu_ref_cnt); kmem_free(sm->lm_plus[n], sizeof (stmf_lun_map_ent_t)); } } kmem_free(sm->lm_plus, sizeof (stmf_lun_map_ent_t *) * sm->lm_nentries); } kmem_free(sm, sizeof (*sm)); if (iss->iss_flags & ISS_NULL_TPTID) { stmf_remote_port_free(ss->ss_rport); } mutex_exit(&stmf_state.stmf_lock); } stmf_i_scsi_session_t * stmf_session_id_to_issptr(uint64_t session_id, int stay_locked) { stmf_i_local_port_t *ilport; stmf_i_scsi_session_t *iss; mutex_enter(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { rw_enter(&ilport->ilport_lock, RW_WRITER); for (iss = ilport->ilport_ss_list; iss != NULL; iss = iss->iss_next) { if (iss->iss_ss->ss_session_id == session_id) { if (!stay_locked) rw_exit(&ilport->ilport_lock); mutex_exit(&stmf_state.stmf_lock); return (iss); } } rw_exit(&ilport->ilport_lock); } mutex_exit(&stmf_state.stmf_lock); return (NULL); } void stmf_release_itl_handle(stmf_lu_t *lu, stmf_itl_data_t *itl) { stmf_itl_data_t **itlpp; stmf_i_lu_t *ilu; ASSERT(itl->itl_flags & STMF_ITL_BEING_TERMINATED); ilu = (stmf_i_lu_t *)lu->lu_stmf_private; mutex_enter(&ilu->ilu_task_lock); for (itlpp = &ilu->ilu_itl_list; (*itlpp) != NULL; itlpp = &(*itlpp)->itl_next) { if ((*itlpp) == itl) break; } ASSERT((*itlpp) != NULL); *itlpp = itl->itl_next; mutex_exit(&ilu->ilu_task_lock); lu->lu_abort(lu, STMF_LU_ITL_HANDLE_REMOVED, itl->itl_handle, (uint32_t)itl->itl_hdlrm_reason); kmem_free(itl, sizeof (*itl)); } stmf_status_t stmf_register_itl_handle(stmf_lu_t *lu, uint8_t *lun, stmf_scsi_session_t *ss, uint64_t session_id, void *itl_handle) { stmf_itl_data_t *itl; stmf_i_scsi_session_t *iss; stmf_lun_map_ent_t *lun_map_ent; stmf_i_lu_t *ilu; uint16_t n; ilu = (stmf_i_lu_t *)lu->lu_stmf_private; if (ss == NULL) { iss = stmf_session_id_to_issptr(session_id, 1); if (iss == NULL) return (STMF_NOT_FOUND); } else { iss = (stmf_i_scsi_session_t *)ss->ss_stmf_private; } mutex_enter(&stmf_state.stmf_lock); rw_enter(iss->iss_lockp, RW_WRITER); n = ((uint16_t)lun[1] | (((uint16_t)(lun[0] & 0x3F)) << 8)); lun_map_ent = (stmf_lun_map_ent_t *) stmf_get_ent_from_map(iss->iss_sm, n); if ((lun_map_ent == NULL) || (lun_map_ent->ent_lu != lu)) { rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); return (STMF_NOT_FOUND); } if (lun_map_ent->ent_itl_datap != NULL) { rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); return (STMF_ALREADY); } itl = (stmf_itl_data_t *)kmem_zalloc(sizeof (*itl), KM_NOSLEEP); if (itl == NULL) { rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); return (STMF_ALLOC_FAILURE); } itl->itl_ilu = ilu; itl->itl_session = iss; itl->itl_counter = 1; itl->itl_lun = n; itl->itl_handle = itl_handle; mutex_enter(&ilu->ilu_task_lock); itl->itl_next = ilu->ilu_itl_list; ilu->ilu_itl_list = itl; mutex_exit(&ilu->ilu_task_lock); lun_map_ent->ent_itl_datap = itl; rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); return (STMF_SUCCESS); } void stmf_do_itl_dereg(stmf_lu_t *lu, stmf_itl_data_t *itl, uint8_t hdlrm_reason) { uint8_t old, new; do { old = new = itl->itl_flags; if (old & STMF_ITL_BEING_TERMINATED) return; new |= STMF_ITL_BEING_TERMINATED; } while (atomic_cas_8(&itl->itl_flags, old, new) != old); itl->itl_hdlrm_reason = hdlrm_reason; ASSERT(itl->itl_counter); if (atomic_dec_32_nv(&itl->itl_counter)) return; stmf_release_itl_handle(lu, itl); } stmf_status_t stmf_deregister_all_lu_itl_handles(stmf_lu_t *lu) { stmf_i_lu_t *ilu; stmf_i_local_port_t *ilport; stmf_i_scsi_session_t *iss; stmf_lun_map_t *lm; stmf_lun_map_ent_t *ent; uint32_t nmaps, nu; stmf_itl_data_t **itl_list; int i; ilu = (stmf_i_lu_t *)lu->lu_stmf_private; dereg_itl_start:; nmaps = ilu->ilu_ref_cnt; if (nmaps == 0) return (STMF_NOT_FOUND); itl_list = (stmf_itl_data_t **)kmem_zalloc( nmaps * sizeof (stmf_itl_data_t *), KM_SLEEP); mutex_enter(&stmf_state.stmf_lock); if (nmaps != ilu->ilu_ref_cnt) { /* Something changed, start all over */ mutex_exit(&stmf_state.stmf_lock); kmem_free(itl_list, nmaps * sizeof (stmf_itl_data_t *)); goto dereg_itl_start; } nu = 0; for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { rw_enter(&ilport->ilport_lock, RW_WRITER); for (iss = ilport->ilport_ss_list; iss != NULL; iss = iss->iss_next) { lm = iss->iss_sm; if (!lm) continue; for (i = 0; i < lm->lm_nentries; i++) { if (lm->lm_plus[i] == NULL) continue; ent = (stmf_lun_map_ent_t *)lm->lm_plus[i]; if ((ent->ent_lu == lu) && (ent->ent_itl_datap)) { itl_list[nu++] = ent->ent_itl_datap; ent->ent_itl_datap = NULL; if (nu == nmaps) { rw_exit(&ilport->ilport_lock); goto dai_scan_done; } } } /* lun table for a session */ } /* sessions */ rw_exit(&ilport->ilport_lock); } /* ports */ dai_scan_done: mutex_exit(&stmf_state.stmf_lock); for (i = 0; i < nu; i++) { stmf_do_itl_dereg(lu, itl_list[i], STMF_ITL_REASON_DEREG_REQUEST); } kmem_free(itl_list, nmaps * sizeof (stmf_itl_data_t *)); return (STMF_SUCCESS); } stmf_data_buf_t * stmf_alloc_dbuf(scsi_task_t *task, uint32_t size, uint32_t *pminsize, uint32_t flags) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_local_port_t *lport = task->task_lport; stmf_data_buf_t *dbuf; uint8_t ndx; ndx = stmf_first_zero[itask->itask_allocated_buf_map]; if (ndx == 0xff) return (NULL); dbuf = itask->itask_dbufs[ndx] = lport->lport_ds->ds_alloc_data_buf( task, size, pminsize, flags); if (dbuf) { task->task_cur_nbufs++; itask->itask_allocated_buf_map |= (1 << ndx); dbuf->db_flags &= ~DB_LPORT_XFER_ACTIVE; dbuf->db_handle = ndx; return (dbuf); } return (NULL); } stmf_status_t stmf_setup_dbuf(scsi_task_t *task, stmf_data_buf_t *dbuf, uint32_t flags) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_local_port_t *lport = task->task_lport; uint8_t ndx; stmf_status_t ret; ASSERT(task->task_additional_flags & TASK_AF_ACCEPT_LU_DBUF); ASSERT(lport->lport_ds->ds_setup_dbuf != NULL); ASSERT(dbuf->db_flags & DB_LU_DATA_BUF); if ((task->task_additional_flags & TASK_AF_ACCEPT_LU_DBUF) == 0) return (STMF_FAILURE); if (lport->lport_ds->ds_setup_dbuf == NULL) return (STMF_FAILURE); ndx = stmf_first_zero[itask->itask_allocated_buf_map]; if (ndx == 0xff) return (STMF_FAILURE); ret = lport->lport_ds->ds_setup_dbuf(task, dbuf, flags); if (ret == STMF_FAILURE) return (STMF_FAILURE); itask->itask_dbufs[ndx] = dbuf; task->task_cur_nbufs++; itask->itask_allocated_buf_map |= (1 << ndx); dbuf->db_handle = ndx; return (STMF_SUCCESS); } void stmf_teardown_dbuf(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_local_port_t *lport = task->task_lport; ASSERT(task->task_additional_flags & TASK_AF_ACCEPT_LU_DBUF); ASSERT(lport->lport_ds->ds_teardown_dbuf != NULL); ASSERT(dbuf->db_flags & DB_LU_DATA_BUF); itask->itask_allocated_buf_map &= ~(1 << dbuf->db_handle); task->task_cur_nbufs--; lport->lport_ds->ds_teardown_dbuf(lport->lport_ds, dbuf); } void stmf_free_dbuf(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_local_port_t *lport = task->task_lport; itask->itask_allocated_buf_map &= ~(1 << dbuf->db_handle); task->task_cur_nbufs--; lport->lport_ds->ds_free_data_buf(lport->lport_ds, dbuf); } stmf_data_buf_t * stmf_handle_to_buf(scsi_task_t *task, uint8_t h) { stmf_i_scsi_task_t *itask; itask = (stmf_i_scsi_task_t *)task->task_stmf_private; if (h > 3) return (NULL); return (itask->itask_dbufs[h]); } /* ARGSUSED */ struct scsi_task * stmf_task_alloc(struct stmf_local_port *lport, stmf_scsi_session_t *ss, uint8_t *lun, uint16_t cdb_length_in, uint16_t ext_id) { stmf_lu_t *lu; stmf_i_scsi_session_t *iss; stmf_i_lu_t *ilu; stmf_i_scsi_task_t *itask; stmf_i_scsi_task_t **ppitask; scsi_task_t *task; uint8_t *l; stmf_lun_map_ent_t *lun_map_ent; uint16_t cdb_length; uint16_t luNbr; uint8_t new_task = 0; /* * We allocate 7 extra bytes for CDB to provide a cdb pointer which * is guaranteed to be 8 byte aligned. Some LU providers like OSD * depend upon this alignment. */ if (cdb_length_in >= 16) cdb_length = cdb_length_in + 7; else cdb_length = 16 + 7; iss = (stmf_i_scsi_session_t *)ss->ss_stmf_private; luNbr = ((uint16_t)lun[1] | (((uint16_t)(lun[0] & 0x3F)) << 8)); rw_enter(iss->iss_lockp, RW_READER); lun_map_ent = (stmf_lun_map_ent_t *)stmf_get_ent_from_map(iss->iss_sm, luNbr); if (!lun_map_ent) { lu = dlun0; } else { lu = lun_map_ent->ent_lu; } ilu = lu->lu_stmf_private; if (ilu->ilu_flags & ILU_RESET_ACTIVE) { rw_exit(iss->iss_lockp); return (NULL); } /* * if the LUN is being offlined or is offline then only command * that are to query the LUN are allowed. These are handled in * stmf via the dlun0 vector. It is possible that a race condition * will cause other commands to arrive while the lun is in the * process of being offlined. Check for those and just let the * protocol stack handle the error. */ if ((ilu->ilu_state == STMF_STATE_OFFLINING) || (ilu->ilu_state == STMF_STATE_OFFLINE)) { if (lu != dlun0) { rw_exit(iss->iss_lockp); return (NULL); } } do { if (ilu->ilu_free_tasks == NULL) { new_task = 1; break; } mutex_enter(&ilu->ilu_task_lock); for (ppitask = &ilu->ilu_free_tasks; (*ppitask != NULL) && ((*ppitask)->itask_cdb_buf_size < cdb_length); ppitask = &((*ppitask)->itask_lu_free_next)) ; if (*ppitask) { itask = *ppitask; *ppitask = (*ppitask)->itask_lu_free_next; ilu->ilu_ntasks_free--; if (ilu->ilu_ntasks_free < ilu->ilu_ntasks_min_free) ilu->ilu_ntasks_min_free = ilu->ilu_ntasks_free; } else { new_task = 1; } mutex_exit(&ilu->ilu_task_lock); /* CONSTCOND */ } while (0); if (!new_task) { /* * Save the task_cdb pointer and zero per cmd fields. * We know the task_cdb_length is large enough by task * selection process above. */ uint8_t *save_cdb; uintptr_t t_start, t_end; task = itask->itask_task; save_cdb = task->task_cdb; /* save */ t_start = (uintptr_t)&task->task_flags; t_end = (uintptr_t)&task->task_extended_cmd; bzero((void *)t_start, (size_t)(t_end - t_start)); task->task_cdb = save_cdb; /* restore */ itask->itask_ncmds = 0; } else { task = (scsi_task_t *)stmf_alloc(STMF_STRUCT_SCSI_TASK, cdb_length, AF_FORCE_NOSLEEP); if (task == NULL) { rw_exit(iss->iss_lockp); return (NULL); } task->task_lu = lu; task->task_cdb = (uint8_t *)task->task_port_private; if ((ulong_t)(task->task_cdb) & 7ul) { task->task_cdb = (uint8_t *)(((ulong_t) (task->task_cdb) + 7ul) & ~(7ul)); } itask = (stmf_i_scsi_task_t *)task->task_stmf_private; itask->itask_cdb_buf_size = cdb_length; mutex_init(&itask->itask_audit_mutex, NULL, MUTEX_DRIVER, NULL); mutex_init(&itask->itask_mutex, NULL, MUTEX_DRIVER, NULL); } /* * Since a LUN can be mapped as different LUN ids to different initiator * groups, we need to set LUN id for a new task and reset LUN id for * a reused task. */ l = task->task_lun_no; l[0] = lun[0]; l[1] = lun[1]; l[2] = lun[2]; l[3] = lun[3]; l[4] = lun[4]; l[5] = lun[5]; l[6] = lun[6]; l[7] = lun[7]; mutex_enter(&itask->itask_mutex); task->task_session = ss; task->task_lport = lport; task->task_cdb_length = cdb_length_in; itask->itask_flags = ITASK_IN_TRANSITION; itask->itask_waitq_time = 0; itask->itask_lu_read_time = itask->itask_lu_write_time = 0; itask->itask_lport_read_time = itask->itask_lport_write_time = 0; itask->itask_read_xfer = itask->itask_write_xfer = 0; itask->itask_audit_index = 0; bzero(&itask->itask_audit_records[0], sizeof (stmf_task_audit_rec_t) * ITASK_TASK_AUDIT_DEPTH); mutex_exit(&itask->itask_mutex); if (new_task) { if (lu->lu_task_alloc(task) != STMF_SUCCESS) { rw_exit(iss->iss_lockp); stmf_free(task); return (NULL); } mutex_enter(&ilu->ilu_task_lock); if (ilu->ilu_flags & ILU_RESET_ACTIVE) { mutex_exit(&ilu->ilu_task_lock); rw_exit(iss->iss_lockp); stmf_free(task); return (NULL); } itask->itask_lu_next = ilu->ilu_tasks; if (ilu->ilu_tasks) ilu->ilu_tasks->itask_lu_prev = itask; ilu->ilu_tasks = itask; /* kmem_zalloc automatically makes itask->itask_lu_prev NULL */ ilu->ilu_ntasks++; mutex_exit(&ilu->ilu_task_lock); } itask->itask_ilu_task_cntr = ilu->ilu_cur_task_cntr; atomic_inc_32(itask->itask_ilu_task_cntr); itask->itask_start_time = ddi_get_lbolt(); if ((lun_map_ent != NULL) && ((itask->itask_itl_datap = lun_map_ent->ent_itl_datap) != NULL)) { atomic_inc_32(&itask->itask_itl_datap->itl_counter); task->task_lu_itl_handle = itask->itask_itl_datap->itl_handle; } else { itask->itask_itl_datap = NULL; task->task_lu_itl_handle = NULL; } rw_exit(iss->iss_lockp); return (task); } /* ARGSUSED */ static void stmf_task_lu_free(scsi_task_t *task, stmf_i_scsi_session_t *iss) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_i_lu_t *ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; ASSERT(rw_lock_held(iss->iss_lockp)); ASSERT((itask->itask_flags & ITASK_IN_FREE_LIST) == 0); ASSERT((itask->itask_flags & ITASK_IN_WORKER_QUEUE) == 0); ASSERT((itask->itask_flags & ITASK_IN_TRANSITION) == 0); ASSERT((itask->itask_flags & ITASK_KNOWN_TO_LU) == 0); ASSERT(mutex_owned(&itask->itask_mutex)); itask->itask_flags = ITASK_IN_FREE_LIST; itask->itask_ncmds = 0; itask->itask_proxy_msg_id = 0; atomic_dec_32(itask->itask_ilu_task_cntr); itask->itask_worker_next = NULL; mutex_exit(&itask->itask_mutex); mutex_enter(&ilu->ilu_task_lock); itask->itask_lu_free_next = ilu->ilu_free_tasks; ilu->ilu_free_tasks = itask; ilu->ilu_ntasks_free++; if (ilu->ilu_ntasks == ilu->ilu_ntasks_free) cv_signal(&ilu->ilu_offline_pending_cv); mutex_exit(&ilu->ilu_task_lock); } void stmf_task_lu_check_freelist(stmf_i_lu_t *ilu) { uint32_t num_to_release, ndx; stmf_i_scsi_task_t *itask; stmf_lu_t *lu = ilu->ilu_lu; ASSERT(ilu->ilu_ntasks_min_free <= ilu->ilu_ntasks_free); /* free half of the minimal free of the free tasks */ num_to_release = (ilu->ilu_ntasks_min_free + 1) / 2; if (!num_to_release) { return; } for (ndx = 0; ndx < num_to_release; ndx++) { mutex_enter(&ilu->ilu_task_lock); itask = ilu->ilu_free_tasks; if (itask == NULL) { mutex_exit(&ilu->ilu_task_lock); break; } ilu->ilu_free_tasks = itask->itask_lu_free_next; ilu->ilu_ntasks_free--; mutex_exit(&ilu->ilu_task_lock); lu->lu_task_free(itask->itask_task); mutex_enter(&ilu->ilu_task_lock); if (itask->itask_lu_next) itask->itask_lu_next->itask_lu_prev = itask->itask_lu_prev; if (itask->itask_lu_prev) itask->itask_lu_prev->itask_lu_next = itask->itask_lu_next; else ilu->ilu_tasks = itask->itask_lu_next; ilu->ilu_ntasks--; mutex_exit(&ilu->ilu_task_lock); stmf_free(itask->itask_task); } } /* * Called with stmf_lock held */ void stmf_check_freetask() { stmf_i_lu_t *ilu; clock_t endtime = ddi_get_lbolt() + drv_usectohz(10000); /* stmf_svc_ilu_draining may get changed after stmf_lock is released */ while ((ilu = stmf_state.stmf_svc_ilu_draining) != NULL) { stmf_state.stmf_svc_ilu_draining = ilu->ilu_next; if (!ilu->ilu_ntasks_min_free) { ilu->ilu_ntasks_min_free = ilu->ilu_ntasks_free; continue; } ilu->ilu_flags |= ILU_STALL_DEREGISTER; mutex_exit(&stmf_state.stmf_lock); stmf_task_lu_check_freelist(ilu); /* * we do not care about the accuracy of * ilu_ntasks_min_free, so we don't lock here */ ilu->ilu_ntasks_min_free = ilu->ilu_ntasks_free; mutex_enter(&stmf_state.stmf_lock); ilu->ilu_flags &= ~ILU_STALL_DEREGISTER; cv_broadcast(&stmf_state.stmf_cv); if (ddi_get_lbolt() >= endtime) break; } } /* * Since this method is looking to find tasks that are stuck, lost, or senile * it should be more willing to give up scaning during this time period. This * is why mutex_tryenter is now used instead of the standard mutex_enter. * There has been at least one case were the following occurred. * * 1) The iscsit_deferred() method is trying to register a session and * needs the global lock which is held. * 2) Another thread which holds the global lock is trying to deregister a * session and needs the session lock. * 3) A third thread is allocating a stmf task that has grabbed the session * lock and is trying to grab the lun task lock. * 4) There's a timeout thread that has the lun task lock and is trying to grab * a specific task lock. * 5) The thread that has the task lock is waiting for the ref count to go to * zero. * 6) There's a task that would drop the count to zero, but it's in the task * queue waiting to run and is stuck because of #1 is currently block. * * This method is number 4 in the above chain of events. Had this code * originally used mutex_tryenter the chain would have been broken and the * system wouldn't have hung. So, now this method uses mutex_tryenter and * you know why it does so. */ /* ---- Only one thread calls stmf_do_ilu_timeouts so no lock required ---- */ typedef struct stmf_bailout_cnt { int no_ilu_lock; int no_task_lock; int tasks_checked; } stmf_bailout_cnt_t; stmf_bailout_cnt_t stmf_bailout; static void stmf_do_ilu_timeouts(stmf_i_lu_t *ilu) { clock_t l = ddi_get_lbolt(); clock_t ps = drv_usectohz(1000000); stmf_i_scsi_task_t *itask; scsi_task_t *task; uint32_t to; if (mutex_tryenter(&ilu->ilu_task_lock) == 0) { stmf_bailout.no_ilu_lock++; return; } for (itask = ilu->ilu_tasks; itask != NULL; itask = itask->itask_lu_next) { if (mutex_tryenter(&itask->itask_mutex) == 0) { stmf_bailout.no_task_lock++; continue; } stmf_bailout.tasks_checked++; if (itask->itask_flags & (ITASK_IN_FREE_LIST | ITASK_BEING_ABORTED)) { mutex_exit(&itask->itask_mutex); continue; } task = itask->itask_task; if (task->task_timeout == 0) to = stmf_default_task_timeout; else to = task->task_timeout; if ((itask->itask_start_time + (to * ps)) > l) { mutex_exit(&itask->itask_mutex); continue; } mutex_exit(&itask->itask_mutex); stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_TIMEOUT, NULL); } mutex_exit(&ilu->ilu_task_lock); } /* * Called with stmf_lock held */ void stmf_check_ilu_timing() { stmf_i_lu_t *ilu; clock_t endtime = ddi_get_lbolt() + drv_usectohz(10000); /* stmf_svc_ilu_timing may get changed after stmf_lock is released */ while ((ilu = stmf_state.stmf_svc_ilu_timing) != NULL) { stmf_state.stmf_svc_ilu_timing = ilu->ilu_next; if (ilu->ilu_cur_task_cntr == (&ilu->ilu_task_cntr1)) { if (ilu->ilu_task_cntr2 == 0) { ilu->ilu_cur_task_cntr = &ilu->ilu_task_cntr2; continue; } } else { if (ilu->ilu_task_cntr1 == 0) { ilu->ilu_cur_task_cntr = &ilu->ilu_task_cntr1; continue; } } /* * If we are here then it means that there is some slowdown * in tasks on this lu. We need to check. */ ilu->ilu_flags |= ILU_STALL_DEREGISTER; mutex_exit(&stmf_state.stmf_lock); stmf_do_ilu_timeouts(ilu); mutex_enter(&stmf_state.stmf_lock); ilu->ilu_flags &= ~ILU_STALL_DEREGISTER; cv_broadcast(&stmf_state.stmf_cv); if (ddi_get_lbolt() >= endtime) break; } } /* * Kills all tasks on a lu except tm_task */ void stmf_task_lu_killall(stmf_lu_t *lu, scsi_task_t *tm_task, stmf_status_t s) { stmf_i_lu_t *ilu = (stmf_i_lu_t *)lu->lu_stmf_private; stmf_i_scsi_task_t *itask; mutex_enter(&ilu->ilu_task_lock); for (itask = ilu->ilu_tasks; itask != NULL; itask = itask->itask_lu_next) { mutex_enter(&itask->itask_mutex); if (itask->itask_flags & ITASK_IN_FREE_LIST) { mutex_exit(&itask->itask_mutex); continue; } mutex_exit(&itask->itask_mutex); if (itask->itask_task == tm_task) continue; stmf_abort(STMF_QUEUE_TASK_ABORT, itask->itask_task, s, NULL); } mutex_exit(&ilu->ilu_task_lock); } void stmf_free_task_bufs(stmf_i_scsi_task_t *itask, stmf_local_port_t *lport) { int i; uint8_t map; if ((map = itask->itask_allocated_buf_map) == 0) return; for (i = 0; i < 4; i++) { if (map & 1) { stmf_data_buf_t *dbuf; dbuf = itask->itask_dbufs[i]; if (dbuf->db_xfer_start_timestamp) { stmf_lport_xfer_done(itask, dbuf); } if (dbuf->db_flags & DB_LU_DATA_BUF) { /* * LU needs to clean up buffer. * LU is required to free the buffer * in the xfer_done handler. */ scsi_task_t *task = itask->itask_task; stmf_lu_t *lu = task->task_lu; lu->lu_dbuf_free(task, dbuf); ASSERT(((itask->itask_allocated_buf_map>>i) & 1) == 0); /* must be gone */ } else { ASSERT(dbuf->db_lu_private == NULL); dbuf->db_lu_private = NULL; lport->lport_ds->ds_free_data_buf( lport->lport_ds, dbuf); } } map >>= 1; } itask->itask_allocated_buf_map = 0; } void stmf_task_free(scsi_task_t *task) { stmf_local_port_t *lport = task->task_lport; stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *) task->task_stmf_private; stmf_i_scsi_session_t *iss = (stmf_i_scsi_session_t *) task->task_session->ss_stmf_private; stmf_lu_t *lu = task->task_lu; stmf_task_audit(itask, TE_TASK_FREE, CMD_OR_IOF_NA, NULL); ASSERT(mutex_owned(&itask->itask_mutex)); if ((lu != NULL) && (lu->lu_task_done != NULL)) lu->lu_task_done(task); stmf_free_task_bufs(itask, lport); stmf_itl_task_done(itask); DTRACE_PROBE2(stmf__task__end, scsi_task_t *, task, hrtime_t, itask->itask_done_timestamp - itask->itask_start_timestamp); if (itask->itask_itl_datap) { if (atomic_dec_32_nv(&itask->itask_itl_datap->itl_counter) == 0) { stmf_release_itl_handle(task->task_lu, itask->itask_itl_datap); } } /* * To prevent a deadlock condition must release the itask_mutex, * grab a reader lock on iss_lockp and then reacquire the itask_mutex. */ mutex_exit(&itask->itask_mutex); rw_enter(iss->iss_lockp, RW_READER); mutex_enter(&itask->itask_mutex); lport->lport_task_free(task); if (itask->itask_worker) { atomic_dec_32(&stmf_cur_ntasks); atomic_dec_32(&itask->itask_worker->worker_ref_count); } /* * After calling stmf_task_lu_free, the task pointer can no longer * be trusted. */ stmf_task_lu_free(task, iss); rw_exit(iss->iss_lockp); } void stmf_post_task(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *) task->task_stmf_private; stmf_i_lu_t *ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; int nv; uint32_t new; uint32_t ct; stmf_worker_t *w; uint8_t tm; if (task->task_max_nbufs > 4) task->task_max_nbufs = 4; task->task_cur_nbufs = 0; /* Latest value of currently running tasks */ ct = atomic_inc_32_nv(&stmf_cur_ntasks); /* Select the next worker using round robin */ mutex_enter(&stmf_worker_sel_mx); stmf_worker_sel_counter++; if (stmf_worker_sel_counter >= stmf_nworkers) stmf_worker_sel_counter = 0; nv = stmf_worker_sel_counter; /* if the selected worker is not idle then bump to the next worker */ if (stmf_workers[nv].worker_queue_depth > 0) { stmf_worker_sel_counter++; if (stmf_worker_sel_counter >= stmf_nworkers) stmf_worker_sel_counter = 0; nv = stmf_worker_sel_counter; } mutex_exit(&stmf_worker_sel_mx); w = &stmf_workers[nv]; mutex_enter(&itask->itask_mutex); mutex_enter(&w->worker_lock); itask->itask_worker = w; /* * Track max system load inside the worker as we already have the * worker lock (no point implementing another lock). The service * thread will do the comparisons and figure out the max overall * system load. */ if (w->worker_max_sys_qdepth_pu < ct) w->worker_max_sys_qdepth_pu = ct; new = itask->itask_flags; new |= ITASK_KNOWN_TO_TGT_PORT; if (task->task_mgmt_function) { tm = task->task_mgmt_function; if ((tm == TM_TARGET_RESET) || (tm == TM_TARGET_COLD_RESET) || (tm == TM_TARGET_WARM_RESET)) { new |= ITASK_DEFAULT_HANDLING; } } else if (task->task_cdb[0] == SCMD_REPORT_LUNS) { new |= ITASK_DEFAULT_HANDLING; } new &= ~ITASK_IN_TRANSITION; itask->itask_flags = new; stmf_itl_task_start(itask); itask->itask_cmd_stack[0] = ITASK_CMD_NEW_TASK; itask->itask_ncmds = 1; if ((task->task_flags & TF_INITIAL_BURST) && !(curthread->t_flag & T_INTR_THREAD)) { stmf_update_kstat_lu_io(task, dbuf); stmf_update_kstat_lport_io(task, dbuf); stmf_update_kstat_rport_io(task, dbuf); } stmf_task_audit(itask, TE_TASK_START, CMD_OR_IOF_NA, dbuf); if (dbuf) { itask->itask_allocated_buf_map = 1; itask->itask_dbufs[0] = dbuf; dbuf->db_handle = 0; } else { itask->itask_allocated_buf_map = 0; itask->itask_dbufs[0] = NULL; } STMF_ENQUEUE_ITASK(w, itask); mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); /* * This can only happen if during stmf_task_alloc(), ILU_RESET_ACTIVE * was set between checking of ILU_RESET_ACTIVE and clearing of the * ITASK_IN_FREE_LIST flag. Take care of these "sneaked-in" tasks here. */ if (ilu->ilu_flags & ILU_RESET_ACTIVE) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ABORTED, NULL); } } static void stmf_task_audit(stmf_i_scsi_task_t *itask, task_audit_event_t te, uint32_t cmd_or_iof, stmf_data_buf_t *dbuf) { stmf_task_audit_rec_t *ar; mutex_enter(&itask->itask_audit_mutex); ar = &itask->itask_audit_records[itask->itask_audit_index++]; itask->itask_audit_index &= (ITASK_TASK_AUDIT_DEPTH - 1); ar->ta_event = te; ar->ta_cmd_or_iof = cmd_or_iof; ar->ta_itask_flags = itask->itask_flags; ar->ta_dbuf = dbuf; gethrestime(&ar->ta_timestamp); mutex_exit(&itask->itask_audit_mutex); } /* * ++++++++++++++ ABORT LOGIC ++++++++++++++++++++ * Once ITASK_BEING_ABORTED is set, ITASK_KNOWN_TO_LU can be reset already * i.e. before ITASK_BEING_ABORTED being set. But if it was not, it cannot * be reset until the LU explicitly calls stmf_task_lu_aborted(). Of course * the LU will make this call only if we call the LU's abort entry point. * we will only call that entry point if ITASK_KNOWN_TO_LU was set. * * Same logic applies for the port. * * Also ITASK_BEING_ABORTED will not be allowed to set if both KNOWN_TO_LU * and KNOWN_TO_TGT_PORT are reset. * * +++++++++++++++++++++++++++++++++++++++++++++++ */ stmf_status_t stmf_xfer_data(scsi_task_t *task, stmf_data_buf_t *dbuf, uint32_t ioflags) { stmf_status_t ret = STMF_SUCCESS; stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_task_audit(itask, TE_XFER_START, ioflags, dbuf); mutex_enter(&itask->itask_mutex); if (ioflags & STMF_IOF_LU_DONE) { if (itask->itask_flags & ITASK_BEING_ABORTED) { mutex_exit(&itask->itask_mutex); return (STMF_ABORTED); } itask->itask_flags &= ~ITASK_KNOWN_TO_LU; } if ((itask->itask_flags & ITASK_BEING_ABORTED) != 0) { mutex_exit(&itask->itask_mutex); return (STMF_ABORTED); } mutex_exit(&itask->itask_mutex); #ifdef DEBUG if (!(ioflags & STMF_IOF_STATS_ONLY) && stmf_drop_buf_counter > 0) { if (atomic_dec_32_nv((uint32_t *)&stmf_drop_buf_counter) == 1) return (STMF_SUCCESS); } #endif stmf_update_kstat_lu_io(task, dbuf); stmf_update_kstat_lport_io(task, dbuf); stmf_update_kstat_rport_io(task, dbuf); stmf_lport_xfer_start(itask, dbuf); if (ioflags & STMF_IOF_STATS_ONLY) { stmf_lport_xfer_done(itask, dbuf); return (STMF_SUCCESS); } dbuf->db_flags |= DB_LPORT_XFER_ACTIVE; ret = task->task_lport->lport_xfer_data(task, dbuf, ioflags); /* * Port provider may have already called the buffer callback in * which case dbuf->db_xfer_start_timestamp will be 0. */ if (ret != STMF_SUCCESS) { dbuf->db_flags &= ~DB_LPORT_XFER_ACTIVE; if (dbuf->db_xfer_start_timestamp != 0) stmf_lport_xfer_done(itask, dbuf); } return (ret); } void stmf_data_xfer_done(scsi_task_t *task, stmf_data_buf_t *dbuf, uint32_t iof) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_i_local_port_t *ilport; stmf_worker_t *w = itask->itask_worker; uint32_t new; uint8_t update_queue_flags, free_it, queue_it; stmf_lport_xfer_done(itask, dbuf); stmf_task_audit(itask, TE_XFER_DONE, iof, dbuf); /* Guard against unexpected completions from the lport */ if (dbuf->db_flags & DB_LPORT_XFER_ACTIVE) { dbuf->db_flags &= ~DB_LPORT_XFER_ACTIVE; } else { /* * This should never happen. */ ilport = task->task_lport->lport_stmf_private; ilport->ilport_unexpected_comp++; cmn_err(CE_PANIC, "Unexpected xfer completion task %p dbuf %p", (void *)task, (void *)dbuf); return; } mutex_enter(&itask->itask_mutex); mutex_enter(&w->worker_lock); new = itask->itask_flags; if (itask->itask_flags & ITASK_BEING_ABORTED) { mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return; } free_it = 0; if (iof & STMF_IOF_LPORT_DONE) { new &= ~ITASK_KNOWN_TO_TGT_PORT; task->task_completion_status = dbuf->db_xfer_status; free_it = 1; } /* * If the task is known to LU then queue it. But if * it is already queued (multiple completions) then * just update the buffer information by grabbing the * worker lock. If the task is not known to LU, * completed/aborted, then see if we need to * free this task. */ if (itask->itask_flags & ITASK_KNOWN_TO_LU) { free_it = 0; update_queue_flags = 1; if (itask->itask_flags & ITASK_IN_WORKER_QUEUE) { queue_it = 0; } else { queue_it = 1; } } else { update_queue_flags = 0; queue_it = 0; } itask->itask_flags = new; if (update_queue_flags) { uint8_t cmd = (dbuf->db_handle << 5) | ITASK_CMD_DATA_XFER_DONE; ASSERT((itask->itask_flags & ITASK_IN_FREE_LIST) == 0); ASSERT(itask->itask_ncmds < ITASK_MAX_NCMDS); itask->itask_cmd_stack[itask->itask_ncmds++] = cmd; if (queue_it) { STMF_ENQUEUE_ITASK(w, itask); } mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return; } mutex_exit(&w->worker_lock); if (free_it) { if ((itask->itask_flags & (ITASK_KNOWN_TO_LU | ITASK_KNOWN_TO_TGT_PORT | ITASK_IN_WORKER_QUEUE | ITASK_BEING_ABORTED)) == 0) { stmf_task_free(task); return; } } mutex_exit(&itask->itask_mutex); } stmf_status_t stmf_send_scsi_status(scsi_task_t *task, uint32_t ioflags) { DTRACE_PROBE1(scsi__send__status, scsi_task_t *, task); stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_task_audit(itask, TE_SEND_STATUS, ioflags, NULL); mutex_enter(&itask->itask_mutex); if (ioflags & STMF_IOF_LU_DONE) { if (itask->itask_flags & ITASK_BEING_ABORTED) { mutex_exit(&itask->itask_mutex); return (STMF_ABORTED); } itask->itask_flags &= ~ITASK_KNOWN_TO_LU; } if (!(itask->itask_flags & ITASK_KNOWN_TO_TGT_PORT)) { mutex_exit(&itask->itask_mutex); return (STMF_SUCCESS); } if (itask->itask_flags & ITASK_BEING_ABORTED) { mutex_exit(&itask->itask_mutex); return (STMF_ABORTED); } mutex_exit(&itask->itask_mutex); if (task->task_additional_flags & TASK_AF_NO_EXPECTED_XFER_LENGTH) { task->task_status_ctrl = 0; task->task_resid = 0; } else if (task->task_cmd_xfer_length > task->task_expected_xfer_length) { task->task_status_ctrl = TASK_SCTRL_OVER; task->task_resid = task->task_cmd_xfer_length - task->task_expected_xfer_length; } else if (task->task_nbytes_transferred < task->task_expected_xfer_length) { task->task_status_ctrl = TASK_SCTRL_UNDER; task->task_resid = task->task_expected_xfer_length - task->task_nbytes_transferred; } else { task->task_status_ctrl = 0; task->task_resid = 0; } return (task->task_lport->lport_send_status(task, ioflags)); } void stmf_send_status_done(scsi_task_t *task, stmf_status_t s, uint32_t iof) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_worker_t *w = itask->itask_worker; uint32_t new; uint8_t free_it, queue_it; stmf_task_audit(itask, TE_SEND_STATUS_DONE, iof, NULL); mutex_enter(&itask->itask_mutex); mutex_enter(&w->worker_lock); new = itask->itask_flags; if (itask->itask_flags & ITASK_BEING_ABORTED) { mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return; } free_it = 0; if (iof & STMF_IOF_LPORT_DONE) { new &= ~ITASK_KNOWN_TO_TGT_PORT; free_it = 1; } /* * If the task is known to LU then queue it. But if * it is already queued (multiple completions) then * just update the buffer information by grabbing the * worker lock. If the task is not known to LU, * completed/aborted, then see if we need to * free this task. */ if (itask->itask_flags & ITASK_KNOWN_TO_LU) { free_it = 0; queue_it = 1; if (itask->itask_flags & ITASK_IN_WORKER_QUEUE) { cmn_err(CE_PANIC, "status completion received" " when task is already in worker queue " " task = %p", (void *)task); } } else { queue_it = 0; } itask->itask_flags = new; task->task_completion_status = s; if (queue_it) { ASSERT(itask->itask_ncmds < ITASK_MAX_NCMDS); itask->itask_cmd_stack[itask->itask_ncmds++] = ITASK_CMD_STATUS_DONE; STMF_ENQUEUE_ITASK(w, itask); mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return; } mutex_exit(&w->worker_lock); if (free_it) { if ((itask->itask_flags & (ITASK_KNOWN_TO_LU | ITASK_KNOWN_TO_TGT_PORT | ITASK_IN_WORKER_QUEUE | ITASK_BEING_ABORTED)) == 0) { stmf_task_free(task); return; } else { cmn_err(CE_PANIC, "LU is done with the task but LPORT " " is not done, itask %p itask_flags %x", (void *)itask, itask->itask_flags); } } mutex_exit(&itask->itask_mutex); } void stmf_task_lu_done(scsi_task_t *task) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_worker_t *w = itask->itask_worker; mutex_enter(&itask->itask_mutex); mutex_enter(&w->worker_lock); if (itask->itask_flags & ITASK_BEING_ABORTED) { mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return; } if (itask->itask_flags & ITASK_IN_WORKER_QUEUE) { cmn_err(CE_PANIC, "task_lu_done received" " when task is in worker queue " " task = %p", (void *)task); } itask->itask_flags &= ~ITASK_KNOWN_TO_LU; mutex_exit(&w->worker_lock); if ((itask->itask_flags & (ITASK_KNOWN_TO_LU | ITASK_KNOWN_TO_TGT_PORT | ITASK_IN_WORKER_QUEUE | ITASK_BEING_ABORTED)) == 0) { stmf_task_free(task); return; } else { cmn_err(CE_PANIC, "stmf_lu_done should be the last stage but " " the task is still not done, task = %p", (void *)task); } mutex_exit(&itask->itask_mutex); } void stmf_queue_task_for_abort(scsi_task_t *task, stmf_status_t s) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_worker_t *w; stmf_task_audit(itask, TE_TASK_ABORT, CMD_OR_IOF_NA, NULL); mutex_enter(&itask->itask_mutex); if ((itask->itask_flags & ITASK_BEING_ABORTED) || ((itask->itask_flags & (ITASK_KNOWN_TO_TGT_PORT | ITASK_KNOWN_TO_LU)) == 0)) { mutex_exit(&itask->itask_mutex); return; } itask->itask_flags |= ITASK_BEING_ABORTED; task->task_completion_status = s; if (((w = itask->itask_worker) == NULL) || (itask->itask_flags & ITASK_IN_TRANSITION)) { mutex_exit(&itask->itask_mutex); return; } /* Queue it and get out */ if (itask->itask_flags & ITASK_IN_WORKER_QUEUE) { mutex_exit(&itask->itask_mutex); return; } mutex_enter(&w->worker_lock); STMF_ENQUEUE_ITASK(w, itask); mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); } void stmf_abort(int abort_cmd, scsi_task_t *task, stmf_status_t s, void *arg) { stmf_i_scsi_task_t *itask = NULL; uint32_t f, rf; DTRACE_PROBE2(scsi__task__abort, scsi_task_t *, task, stmf_status_t, s); switch (abort_cmd) { case STMF_QUEUE_ABORT_LU: stmf_task_lu_killall((stmf_lu_t *)arg, task, s); return; case STMF_QUEUE_TASK_ABORT: stmf_queue_task_for_abort(task, s); return; case STMF_REQUEUE_TASK_ABORT_LPORT: rf = ITASK_TGT_PORT_ABORT_CALLED; f = ITASK_KNOWN_TO_TGT_PORT; break; case STMF_REQUEUE_TASK_ABORT_LU: rf = ITASK_LU_ABORT_CALLED; f = ITASK_KNOWN_TO_LU; break; default: return; } itask = (stmf_i_scsi_task_t *)task->task_stmf_private; mutex_enter(&itask->itask_mutex); f |= ITASK_BEING_ABORTED | rf; if ((itask->itask_flags & f) != f) { mutex_exit(&itask->itask_mutex); return; } itask->itask_flags &= ~rf; mutex_exit(&itask->itask_mutex); } /* * NOTE: stmf_abort_task_offline will release and then reacquire the * itask_mutex. This is required to prevent a lock order violation. */ void stmf_task_lu_aborted(scsi_task_t *task, stmf_status_t s, uint32_t iof) { char info[STMF_CHANGE_INFO_LEN]; stmf_i_scsi_task_t *itask = TASK_TO_ITASK(task); unsigned long long st; stmf_task_audit(itask, TE_TASK_LU_ABORTED, iof, NULL); ASSERT(mutex_owned(&itask->itask_mutex)); st = s; /* gcc fix */ if ((s != STMF_ABORT_SUCCESS) && (s != STMF_NOT_FOUND)) { (void) snprintf(info, sizeof (info), "task %p, lu failed to abort ret=%llx", (void *)task, st); } else if ((iof & STMF_IOF_LU_DONE) == 0) { (void) snprintf(info, sizeof (info), "Task aborted but LU is not finished, task =" "%p, s=%llx, iof=%x", (void *)task, st, iof); } else { /* * LU abort successfully */ atomic_and_32(&itask->itask_flags, ~ITASK_KNOWN_TO_LU); return; } stmf_abort_task_offline(task, 1, info); } /* * NOTE: stmf_abort_task_offline will release and then reacquire the * itask_mutex. This is required to prevent a lock order violation. */ void stmf_task_lport_aborted(scsi_task_t *task, stmf_status_t s, uint32_t iof) { char info[STMF_CHANGE_INFO_LEN]; stmf_i_scsi_task_t *itask = TASK_TO_ITASK(task); unsigned long long st; ASSERT(mutex_owned(&itask->itask_mutex)); stmf_task_audit(itask, TE_TASK_LPORT_ABORTED, iof, NULL); st = s; if ((s != STMF_ABORT_SUCCESS) && (s != STMF_NOT_FOUND)) { (void) snprintf(info, sizeof (info), "task %p, tgt port failed to abort ret=%llx", (void *)task, st); } else if ((iof & STMF_IOF_LPORT_DONE) == 0) { (void) snprintf(info, sizeof (info), "Task aborted but tgt port is not finished, " "task=%p, s=%llx, iof=%x", (void *)task, st, iof); } else { /* * LPORT abort successfully */ atomic_and_32(&itask->itask_flags, ~ITASK_KNOWN_TO_TGT_PORT); return; } stmf_abort_task_offline(task, 0, info); } void stmf_task_lport_aborted_unlocked(scsi_task_t *task, stmf_status_t s, uint32_t iof) { stmf_i_scsi_task_t *itask = TASK_TO_ITASK(task); mutex_enter(&itask->itask_mutex); stmf_task_lport_aborted(task, s, iof); mutex_exit(&itask->itask_mutex); } stmf_status_t stmf_task_poll_lu(scsi_task_t *task, uint32_t timeout) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *) task->task_stmf_private; stmf_worker_t *w = itask->itask_worker; int i; mutex_enter(&itask->itask_mutex); ASSERT(itask->itask_flags & ITASK_KNOWN_TO_LU); mutex_enter(&w->worker_lock); if (itask->itask_ncmds >= ITASK_MAX_NCMDS) { mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return (STMF_BUSY); } for (i = 0; i < itask->itask_ncmds; i++) { if (itask->itask_cmd_stack[i] == ITASK_CMD_POLL_LU) { mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return (STMF_SUCCESS); } } itask->itask_cmd_stack[itask->itask_ncmds++] = ITASK_CMD_POLL_LU; if (timeout == ITASK_DEFAULT_POLL_TIMEOUT) { itask->itask_poll_timeout = ddi_get_lbolt() + 1; } else { clock_t t = drv_usectohz(timeout * 1000); if (t == 0) t = 1; itask->itask_poll_timeout = ddi_get_lbolt() + t; } if ((itask->itask_flags & ITASK_IN_WORKER_QUEUE) == 0) { STMF_ENQUEUE_ITASK(w, itask); } mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return (STMF_SUCCESS); } stmf_status_t stmf_task_poll_lport(scsi_task_t *task, uint32_t timeout) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *) task->task_stmf_private; stmf_worker_t *w = itask->itask_worker; int i; mutex_enter(&itask->itask_mutex); ASSERT(itask->itask_flags & ITASK_KNOWN_TO_TGT_PORT); mutex_enter(&w->worker_lock); if (itask->itask_ncmds >= ITASK_MAX_NCMDS) { mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return (STMF_BUSY); } for (i = 0; i < itask->itask_ncmds; i++) { if (itask->itask_cmd_stack[i] == ITASK_CMD_POLL_LPORT) { mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return (STMF_SUCCESS); } } itask->itask_cmd_stack[itask->itask_ncmds++] = ITASK_CMD_POLL_LPORT; if (timeout == ITASK_DEFAULT_POLL_TIMEOUT) { itask->itask_poll_timeout = ddi_get_lbolt() + 1; } else { clock_t t = drv_usectohz(timeout * 1000); if (t == 0) t = 1; itask->itask_poll_timeout = ddi_get_lbolt() + t; } if ((itask->itask_flags & ITASK_IN_WORKER_QUEUE) == 0) { STMF_ENQUEUE_ITASK(w, itask); } mutex_exit(&w->worker_lock); mutex_exit(&itask->itask_mutex); return (STMF_SUCCESS); } void stmf_do_task_abort(scsi_task_t *task) { stmf_i_scsi_task_t *itask = TASK_TO_ITASK(task); stmf_lu_t *lu; stmf_local_port_t *lport; unsigned long long ret; uint32_t new = 0; uint8_t call_lu_abort, call_port_abort; char info[STMF_CHANGE_INFO_LEN]; lu = task->task_lu; lport = task->task_lport; mutex_enter(&itask->itask_mutex); new = itask->itask_flags; if ((itask->itask_flags & (ITASK_KNOWN_TO_LU | ITASK_LU_ABORT_CALLED)) == ITASK_KNOWN_TO_LU) { new |= ITASK_LU_ABORT_CALLED; call_lu_abort = 1; } else { call_lu_abort = 0; } itask->itask_flags = new; if (call_lu_abort) { if ((itask->itask_flags & ITASK_DEFAULT_HANDLING) == 0) { ret = lu->lu_abort(lu, STMF_LU_ABORT_TASK, task, 0); } else { ret = dlun0->lu_abort(lu, STMF_LU_ABORT_TASK, task, 0); } if ((ret == STMF_ABORT_SUCCESS) || (ret == STMF_NOT_FOUND)) { stmf_task_lu_aborted(task, ret, STMF_IOF_LU_DONE); } else if (ret == STMF_BUSY) { atomic_and_32(&itask->itask_flags, ~ITASK_LU_ABORT_CALLED); } else if (ret != STMF_SUCCESS) { (void) snprintf(info, sizeof (info), "Abort failed by LU %p, ret %llx", (void *)lu, ret); stmf_abort_task_offline(task, 1, info); } } else if (itask->itask_flags & ITASK_KNOWN_TO_LU) { if (ddi_get_lbolt() > (itask->itask_start_time + STMF_SEC2TICK(lu->lu_abort_timeout? lu->lu_abort_timeout : ITASK_DEFAULT_ABORT_TIMEOUT))) { (void) snprintf(info, sizeof (info), "lu abort timed out"); stmf_abort_task_offline(itask->itask_task, 1, info); } } /* * NOTE: After the call to either stmf_abort_task_offline() or * stmf_task_lu_abort() the itask_mutex was dropped and reacquired * to avoid a deadlock situation with stmf_state.stmf_lock. */ new = itask->itask_flags; if ((itask->itask_flags & (ITASK_KNOWN_TO_TGT_PORT | ITASK_TGT_PORT_ABORT_CALLED)) == ITASK_KNOWN_TO_TGT_PORT) { new |= ITASK_TGT_PORT_ABORT_CALLED; call_port_abort = 1; } else { call_port_abort = 0; } itask->itask_flags = new; if (call_port_abort) { ret = lport->lport_abort(lport, STMF_LPORT_ABORT_TASK, task, 0); if ((ret == STMF_ABORT_SUCCESS) || (ret == STMF_NOT_FOUND)) { stmf_task_lport_aborted(task, ret, STMF_IOF_LPORT_DONE); } else if (ret == STMF_BUSY) { atomic_and_32(&itask->itask_flags, ~ITASK_TGT_PORT_ABORT_CALLED); } else if (ret != STMF_SUCCESS) { (void) snprintf(info, sizeof (info), "Abort failed by tgt port %p ret %llx", (void *)lport, ret); stmf_abort_task_offline(task, 0, info); } } else if (itask->itask_flags & ITASK_KNOWN_TO_TGT_PORT) { if (ddi_get_lbolt() > (itask->itask_start_time + STMF_SEC2TICK(lport->lport_abort_timeout? lport->lport_abort_timeout : ITASK_DEFAULT_ABORT_TIMEOUT))) { (void) snprintf(info, sizeof (info), "lport abort timed out"); stmf_abort_task_offline(itask->itask_task, 0, info); } } mutex_exit(&itask->itask_mutex); } stmf_status_t stmf_ctl(int cmd, void *obj, void *arg) { stmf_status_t ret; stmf_i_lu_t *ilu; stmf_i_local_port_t *ilport; stmf_state_change_info_t *ssci = (stmf_state_change_info_t *)arg; mutex_enter(&stmf_state.stmf_lock); ret = STMF_INVALID_ARG; if (cmd & STMF_CMD_LU_OP) { ilu = stmf_lookup_lu((stmf_lu_t *)obj); if (ilu == NULL) { goto stmf_ctl_lock_exit; } DTRACE_PROBE3(lu__state__change, stmf_lu_t *, ilu->ilu_lu, int, cmd, stmf_state_change_info_t *, ssci); } else if (cmd & STMF_CMD_LPORT_OP) { ilport = stmf_lookup_lport((stmf_local_port_t *)obj); if (ilport == NULL) { goto stmf_ctl_lock_exit; } DTRACE_PROBE3(lport__state__change, stmf_local_port_t *, ilport->ilport_lport, int, cmd, stmf_state_change_info_t *, ssci); } else { goto stmf_ctl_lock_exit; } switch (cmd) { case STMF_CMD_LU_ONLINE: switch (ilu->ilu_state) { case STMF_STATE_OFFLINE: ret = STMF_SUCCESS; break; case STMF_STATE_ONLINE: case STMF_STATE_ONLINING: ret = STMF_ALREADY; break; case STMF_STATE_OFFLINING: ret = STMF_BUSY; break; default: ret = STMF_BADSTATE; break; } if (ret != STMF_SUCCESS) goto stmf_ctl_lock_exit; ilu->ilu_state = STMF_STATE_ONLINING; mutex_exit(&stmf_state.stmf_lock); stmf_svc_queue(cmd, obj, (stmf_state_change_info_t *)arg); break; case STMF_CMD_LU_ONLINE_COMPLETE: if (ilu->ilu_state != STMF_STATE_ONLINING) { ret = STMF_BADSTATE; goto stmf_ctl_lock_exit; } if (((stmf_change_status_t *)arg)->st_completion_status == STMF_SUCCESS) { ilu->ilu_state = STMF_STATE_ONLINE; mutex_exit(&stmf_state.stmf_lock); ((stmf_lu_t *)obj)->lu_ctl((stmf_lu_t *)obj, STMF_ACK_LU_ONLINE_COMPLETE, arg); mutex_enter(&stmf_state.stmf_lock); stmf_add_lu_to_active_sessions((stmf_lu_t *)obj); } else { /* XXX: should throw a meesage an record more data */ ilu->ilu_state = STMF_STATE_OFFLINE; } ret = STMF_SUCCESS; goto stmf_ctl_lock_exit; case STMF_CMD_LU_OFFLINE: switch (ilu->ilu_state) { case STMF_STATE_ONLINE: ret = STMF_SUCCESS; break; case STMF_STATE_OFFLINE: case STMF_STATE_OFFLINING: ret = STMF_ALREADY; break; case STMF_STATE_ONLINING: ret = STMF_BUSY; break; default: ret = STMF_BADSTATE; break; } if (ret != STMF_SUCCESS) goto stmf_ctl_lock_exit; ilu->ilu_state = STMF_STATE_OFFLINING; mutex_exit(&stmf_state.stmf_lock); stmf_svc_queue(cmd, obj, (stmf_state_change_info_t *)arg); break; case STMF_CMD_LU_OFFLINE_COMPLETE: if (ilu->ilu_state != STMF_STATE_OFFLINING) { ret = STMF_BADSTATE; goto stmf_ctl_lock_exit; } if (((stmf_change_status_t *)arg)->st_completion_status == STMF_SUCCESS) { ilu->ilu_state = STMF_STATE_OFFLINE; mutex_exit(&stmf_state.stmf_lock); ((stmf_lu_t *)obj)->lu_ctl((stmf_lu_t *)obj, STMF_ACK_LU_OFFLINE_COMPLETE, arg); mutex_enter(&stmf_state.stmf_lock); } else { ilu->ilu_state = STMF_STATE_ONLINE; stmf_add_lu_to_active_sessions((stmf_lu_t *)obj); } mutex_exit(&stmf_state.stmf_lock); break; /* * LPORT_ONLINE/OFFLINE has nothing to do with link offline/online. * It's related with hardware disable/enable. */ case STMF_CMD_LPORT_ONLINE: switch (ilport->ilport_state) { case STMF_STATE_OFFLINE: ret = STMF_SUCCESS; break; case STMF_STATE_ONLINE: case STMF_STATE_ONLINING: ret = STMF_ALREADY; break; case STMF_STATE_OFFLINING: ret = STMF_BUSY; break; default: ret = STMF_BADSTATE; break; } if (ret != STMF_SUCCESS) goto stmf_ctl_lock_exit; /* * Only user request can recover the port from the * FORCED_OFFLINE state */ if (ilport->ilport_flags & ILPORT_FORCED_OFFLINE) { if (!(ssci->st_rflags & STMF_RFLAG_USER_REQUEST)) { ret = STMF_FAILURE; goto stmf_ctl_lock_exit; } } /* * Avoid too frequent request to online */ if (ssci->st_rflags & STMF_RFLAG_USER_REQUEST) { ilport->ilport_online_times = 0; ilport->ilport_avg_interval = 0; } if ((ilport->ilport_avg_interval < STMF_AVG_ONLINE_INTERVAL) && (ilport->ilport_online_times >= 4)) { ret = STMF_FAILURE; ilport->ilport_flags |= ILPORT_FORCED_OFFLINE; stmf_trace(NULL, "stmf_ctl: too frequent request to " "online the port"); cmn_err(CE_WARN, "stmf_ctl: too frequent request to " "online the port, set FORCED_OFFLINE now"); goto stmf_ctl_lock_exit; } if (ilport->ilport_online_times > 0) { if (ilport->ilport_online_times == 1) { ilport->ilport_avg_interval = ddi_get_lbolt() - ilport->ilport_last_online_clock; } else { ilport->ilport_avg_interval = (ilport->ilport_avg_interval + ddi_get_lbolt() - ilport->ilport_last_online_clock) >> 1; } } ilport->ilport_last_online_clock = ddi_get_lbolt(); ilport->ilport_online_times++; /* * Submit online service request */ ilport->ilport_flags &= ~ILPORT_FORCED_OFFLINE; ilport->ilport_state = STMF_STATE_ONLINING; mutex_exit(&stmf_state.stmf_lock); stmf_svc_queue(cmd, obj, (stmf_state_change_info_t *)arg); break; case STMF_CMD_LPORT_ONLINE_COMPLETE: if (ilport->ilport_state != STMF_STATE_ONLINING) { ret = STMF_BADSTATE; goto stmf_ctl_lock_exit; } if (((stmf_change_status_t *)arg)->st_completion_status == STMF_SUCCESS) { ilport->ilport_state = STMF_STATE_ONLINE; mutex_exit(&stmf_state.stmf_lock); ((stmf_local_port_t *)obj)->lport_ctl( (stmf_local_port_t *)obj, STMF_ACK_LPORT_ONLINE_COMPLETE, arg); mutex_enter(&stmf_state.stmf_lock); } else { ilport->ilport_state = STMF_STATE_OFFLINE; } ret = STMF_SUCCESS; goto stmf_ctl_lock_exit; case STMF_CMD_LPORT_OFFLINE: switch (ilport->ilport_state) { case STMF_STATE_ONLINE: ret = STMF_SUCCESS; break; case STMF_STATE_OFFLINE: case STMF_STATE_OFFLINING: ret = STMF_ALREADY; break; case STMF_STATE_ONLINING: ret = STMF_BUSY; break; default: ret = STMF_BADSTATE; break; } if (ret != STMF_SUCCESS) goto stmf_ctl_lock_exit; ilport->ilport_state = STMF_STATE_OFFLINING; mutex_exit(&stmf_state.stmf_lock); stmf_svc_queue(cmd, obj, (stmf_state_change_info_t *)arg); break; case STMF_CMD_LPORT_OFFLINE_COMPLETE: if (ilport->ilport_state != STMF_STATE_OFFLINING) { ret = STMF_BADSTATE; goto stmf_ctl_lock_exit; } if (((stmf_change_status_t *)arg)->st_completion_status == STMF_SUCCESS) { ilport->ilport_state = STMF_STATE_OFFLINE; mutex_exit(&stmf_state.stmf_lock); ((stmf_local_port_t *)obj)->lport_ctl( (stmf_local_port_t *)obj, STMF_ACK_LPORT_OFFLINE_COMPLETE, arg); mutex_enter(&stmf_state.stmf_lock); } else { ilport->ilport_state = STMF_STATE_ONLINE; } mutex_exit(&stmf_state.stmf_lock); break; default: cmn_err(CE_WARN, "Invalid ctl cmd received %x", cmd); ret = STMF_INVALID_ARG; goto stmf_ctl_lock_exit; } return (STMF_SUCCESS); stmf_ctl_lock_exit:; mutex_exit(&stmf_state.stmf_lock); return (ret); } /* ARGSUSED */ stmf_status_t stmf_info_impl(uint32_t cmd, void *arg1, void *arg2, uint8_t *buf, uint32_t *bufsizep) { return (STMF_NOT_SUPPORTED); } /* ARGSUSED */ stmf_status_t stmf_info(uint32_t cmd, void *arg1, void *arg2, uint8_t *buf, uint32_t *bufsizep) { uint32_t cl = SI_GET_CLASS(cmd); if (cl == SI_STMF) { return (stmf_info_impl(cmd, arg1, arg2, buf, bufsizep)); } if (cl == SI_LPORT) { return (((stmf_local_port_t *)arg1)->lport_info(cmd, arg1, arg2, buf, bufsizep)); } else if (cl == SI_LU) { return (((stmf_lu_t *)arg1)->lu_info(cmd, arg1, arg2, buf, bufsizep)); } return (STMF_NOT_SUPPORTED); } /* * Used by port providers. pwwn is 8 byte wwn, sdid is the devid used by * stmf to register local ports. The ident should have 20 bytes in buffer * space to convert the wwn to "wwn.xxxxxxxxxxxxxxxx" string. */ void stmf_wwn_to_devid_desc(scsi_devid_desc_t *sdid, uint8_t *wwn, uint8_t protocol_id) { char wwn_str[20+1]; sdid->protocol_id = protocol_id; sdid->piv = 1; sdid->code_set = CODE_SET_ASCII; sdid->association = ID_IS_TARGET_PORT; sdid->ident_length = 20; /* Convert wwn value to "wwn.XXXXXXXXXXXXXXXX" format */ (void) snprintf(wwn_str, sizeof (wwn_str), "wwn.%02X%02X%02X%02X%02X%02X%02X%02X", wwn[0], wwn[1], wwn[2], wwn[3], wwn[4], wwn[5], wwn[6], wwn[7]); bcopy(wwn_str, (char *)sdid->ident, 20); } stmf_xfer_data_t * stmf_prepare_tpgs_data(uint8_t ilu_alua) { stmf_xfer_data_t *xd; stmf_i_local_port_t *ilport; uint8_t *p; uint32_t sz, asz, nports = 0, nports_standby = 0; mutex_enter(&stmf_state.stmf_lock); /* check if any ports are standby and create second group */ for (ilport = stmf_state.stmf_ilportlist; ilport != NULL; ilport = ilport->ilport_next) { if (ilport->ilport_standby == 1) { nports_standby++; } else { nports++; } } /* * Section 6.25 REPORT TARGET PORT GROUPS * The reply can contain many group replies. Each group is limited * to 255 port identifiers so we'll need to limit the amount of * data returned. For FC ports there's a physical limitation in * machines that make reaching 255 ports very, very unlikely. For * iSCSI on the other hand recent changes mean the port count could * be as high as 4096 (current limit). Limiting the data returned * for iSCSI isn't as bad as it sounds. This information is only * important for ALUA, which isn't supported for iSCSI. iSCSI uses * virtual IP addresses to deal with node fail over in a cluster. */ nports = min(nports, 255); nports_standby = min(nports_standby, 255); /* * The first 4 bytes of the returned data is the length. The * size of the Target Port Group header is 8 bytes. So, that's where * the 12 comes from. Each port entry is 4 bytes in size. */ sz = (nports * 4) + 12; if (nports_standby != 0 && ilu_alua != 0) { /* --- Only add 8 bytes since it's just the Group header ---- */ sz += (nports_standby * 4) + 8; } /* * The stmf_xfer_data structure contains 4 bytes that will be * part of the data buffer. So, subtract the 4 bytes from the space * needed. */ asz = sizeof (*xd) + sz - 4; xd = (stmf_xfer_data_t *)kmem_zalloc(asz, KM_NOSLEEP); if (xd == NULL) { mutex_exit(&stmf_state.stmf_lock); return (NULL); } xd->alloc_size = asz; xd->size_left = sz; p = xd->buf; /* ---- length values never include the field that holds the size --- */ *((uint32_t *)p) = BE_32(sz - 4); p += 4; /* ---- Now fill out the first Target Group header ---- */ p[0] = 0x80; /* PREF */ p[1] = 5; /* AO_SUP, S_SUP */ if (stmf_state.stmf_alua_node == 1) { p[3] = 1; /* Group 1 */ } else { p[3] = 0; /* Group 0 */ } p[7] = nports & 0xff; p += 8; for (ilport = stmf_state.stmf_ilportlist; ilport != NULL && nports != 0; ilport = ilport->ilport_next) { if (ilport->ilport_standby == 1) { continue; } ((uint16_t *)p)[1] = BE_16(ilport->ilport_rtpid); p += 4; nports--; } if (nports_standby != 0 && ilu_alua != 0) { p[0] = 0x02; /* Non PREF, Standby */ p[1] = 5; /* AO_SUP, S_SUP */ if (stmf_state.stmf_alua_node == 1) { p[3] = 0; /* Group 0 */ } else { p[3] = 1; /* Group 1 */ } p[7] = nports_standby & 0xff; p += 8; for (ilport = stmf_state.stmf_ilportlist; ilport != NULL && nports_standby != 0; ilport = ilport->ilport_next) { if (ilport->ilport_standby == 0) { continue; } ((uint16_t *)p)[1] = BE_16(ilport->ilport_rtpid); p += 4; nports_standby--; } } mutex_exit(&stmf_state.stmf_lock); return (xd); } struct scsi_devid_desc * stmf_scsilib_get_devid_desc(uint16_t rtpid) { scsi_devid_desc_t *devid = NULL; stmf_i_local_port_t *ilport; mutex_enter(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport; ilport = ilport->ilport_next) { if (ilport->ilport_rtpid == rtpid) { scsi_devid_desc_t *id = ilport->ilport_lport->lport_id; uint32_t id_sz = sizeof (scsi_devid_desc_t) + id->ident_length; devid = (scsi_devid_desc_t *)kmem_zalloc(id_sz, KM_NOSLEEP); if (devid != NULL) { bcopy(id, devid, id_sz); } break; } } mutex_exit(&stmf_state.stmf_lock); return (devid); } uint16_t stmf_scsilib_get_lport_rtid(struct scsi_devid_desc *devid) { stmf_i_local_port_t *ilport; scsi_devid_desc_t *id; uint16_t rtpid = 0; mutex_enter(&stmf_state.stmf_lock); for (ilport = stmf_state.stmf_ilportlist; ilport; ilport = ilport->ilport_next) { id = ilport->ilport_lport->lport_id; if ((devid->ident_length == id->ident_length) && (memcmp(devid->ident, id->ident, id->ident_length) == 0)) { rtpid = ilport->ilport_rtpid; break; } } mutex_exit(&stmf_state.stmf_lock); return (rtpid); } static uint16_t stmf_lu_id_gen_number = 0; stmf_status_t stmf_scsilib_uniq_lu_id(uint32_t company_id, scsi_devid_desc_t *lu_id) { return (stmf_scsilib_uniq_lu_id2(company_id, 0, lu_id)); } stmf_status_t stmf_scsilib_uniq_lu_id2(uint32_t company_id, uint32_t host_id, scsi_devid_desc_t *lu_id) { uint8_t *p; struct timeval32 timestamp32; uint32_t *t = (uint32_t *)×tamp32; struct ether_addr mac; uint8_t *e = (uint8_t *)&mac; int hid = (int)host_id; uint16_t gen_number; if (company_id == COMPANY_ID_NONE) company_id = COMPANY_ID_SUN; if (lu_id->ident_length != 0x10) return (STMF_INVALID_ARG); p = (uint8_t *)lu_id; gen_number = atomic_inc_16_nv(&stmf_lu_id_gen_number); p[0] = 0xf1; p[1] = 3; p[2] = 0; p[3] = 0x10; p[4] = ((company_id >> 20) & 0xf) | 0x60; p[5] = (company_id >> 12) & 0xff; p[6] = (company_id >> 4) & 0xff; p[7] = (company_id << 4) & 0xf0; if (hid == 0 && !localetheraddr((struct ether_addr *)NULL, &mac)) { hid = BE_32((int)zone_get_hostid(NULL)); } if (hid != 0) { e[0] = (hid >> 24) & 0xff; e[1] = (hid >> 16) & 0xff; e[2] = (hid >> 8) & 0xff; e[3] = hid & 0xff; e[4] = e[5] = 0; } bcopy(e, p+8, 6); uniqtime32(×tamp32); *t = BE_32(*t); bcopy(t, p+14, 4); p[18] = (gen_number >> 8) & 0xff; p[19] = gen_number & 0xff; return (STMF_SUCCESS); } /* * saa is sense key, ASC, ASCQ */ void stmf_scsilib_send_status(scsi_task_t *task, uint8_t st, uint32_t saa) { uint8_t sd[18]; task->task_scsi_status = st; if (st == 2) { bzero(sd, 18); sd[0] = 0x70; sd[2] = (saa >> 16) & 0xf; sd[7] = 10; sd[12] = (saa >> 8) & 0xff; sd[13] = saa & 0xff; task->task_sense_data = sd; task->task_sense_length = 18; } else { task->task_sense_data = NULL; task->task_sense_length = 0; } (void) stmf_send_scsi_status(task, STMF_IOF_LU_DONE); } uint32_t stmf_scsilib_prepare_vpd_page83(scsi_task_t *task, uint8_t *page, uint32_t page_len, uint8_t byte0, uint32_t vpd_mask) { uint8_t *p = NULL; uint8_t small_buf[32]; uint32_t sz = 0; uint32_t n = 4; uint32_t m = 0; uint32_t last_bit = 0; if (page_len < 4) return (0); if (page_len > 65535) page_len = 65535; page[0] = byte0; page[1] = 0x83; /* CONSTCOND */ while (1) { m += sz; if (sz && (page_len > n)) { uint32_t copysz; copysz = page_len > (n + sz) ? sz : page_len - n; bcopy(p, page + n, copysz); n += copysz; } vpd_mask &= ~last_bit; if (vpd_mask == 0) break; if (vpd_mask & STMF_VPD_LU_ID) { last_bit = STMF_VPD_LU_ID; sz = task->task_lu->lu_id->ident_length + 4; p = (uint8_t *)task->task_lu->lu_id; continue; } else if (vpd_mask & STMF_VPD_TARGET_ID) { last_bit = STMF_VPD_TARGET_ID; sz = task->task_lport->lport_id->ident_length + 4; p = (uint8_t *)task->task_lport->lport_id; continue; } else if (vpd_mask & STMF_VPD_TP_GROUP) { stmf_i_local_port_t *ilport; last_bit = STMF_VPD_TP_GROUP; p = small_buf; bzero(p, 8); p[0] = 1; p[1] = 0x15; p[3] = 4; ilport = (stmf_i_local_port_t *) task->task_lport->lport_stmf_private; /* * If we're in alua mode, group 1 contains all alua * participating ports and all standby ports * > 255. Otherwise, if we're in alua mode, any local * ports (non standby/pppt) are also in group 1 if the * alua node is 1. Otherwise the group is 0. */ if ((stmf_state.stmf_alua_state && (ilport->ilport_alua || ilport->ilport_standby) && ilport->ilport_rtpid > 255) || (stmf_state.stmf_alua_node == 1 && ilport->ilport_standby != 1)) { p[7] = 1; /* Group 1 */ } sz = 8; continue; } else if (vpd_mask & STMF_VPD_RELATIVE_TP_ID) { stmf_i_local_port_t *ilport; last_bit = STMF_VPD_RELATIVE_TP_ID; p = small_buf; bzero(p, 8); p[0] = 1; p[1] = 0x14; p[3] = 4; ilport = (stmf_i_local_port_t *) task->task_lport->lport_stmf_private; p[6] = (ilport->ilport_rtpid >> 8) & 0xff; p[7] = ilport->ilport_rtpid & 0xff; sz = 8; continue; } else { cmn_err(CE_WARN, "Invalid vpd_mask"); break; } } page[2] = (m >> 8) & 0xff; page[3] = m & 0xff; return (n); } void stmf_scsilib_handle_report_tpgs(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_i_lu_t *ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; stmf_xfer_data_t *xd; uint32_t sz, minsz; mutex_enter(&itask->itask_mutex); itask->itask_flags |= ITASK_DEFAULT_HANDLING; task->task_cmd_xfer_length = ((((uint32_t)task->task_cdb[6]) << 24) | (((uint32_t)task->task_cdb[7]) << 16) | (((uint32_t)task->task_cdb[8]) << 8) | ((uint32_t)task->task_cdb[9])); if (task->task_additional_flags & TASK_AF_NO_EXPECTED_XFER_LENGTH) { task->task_expected_xfer_length = task->task_cmd_xfer_length; } mutex_exit(&itask->itask_mutex); if (task->task_cmd_xfer_length == 0) { stmf_scsilib_send_status(task, STATUS_GOOD, 0); return; } if (task->task_cmd_xfer_length < 4) { stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_INVALID_FIELD_IN_CDB); return; } sz = min(task->task_expected_xfer_length, task->task_cmd_xfer_length); xd = stmf_prepare_tpgs_data(ilu->ilu_alua); if (xd == NULL) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } sz = min(sz, xd->size_left); xd->size_left = sz; minsz = min(512, sz); if (dbuf == NULL) dbuf = stmf_alloc_dbuf(task, sz, &minsz, 0); if (dbuf == NULL) { kmem_free(xd, xd->alloc_size); stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } dbuf->db_lu_private = xd; stmf_xd_to_dbuf(dbuf, 1); dbuf->db_flags = DB_DIRECTION_TO_RPORT; (void) stmf_xfer_data(task, dbuf, 0); } void stmf_scsilib_handle_task_mgmt(scsi_task_t *task) { switch (task->task_mgmt_function) { /* * For now we will abort all I/Os on the LU in case of ABORT_TASK_SET * and ABORT_TASK. But unlike LUN_RESET we will not reset LU state * in these cases. This needs to be changed to abort only the required * set. */ case TM_ABORT_TASK: case TM_ABORT_TASK_SET: case TM_CLEAR_TASK_SET: case TM_LUN_RESET: stmf_handle_lun_reset(task); /* issue the reset to the proxy node as well */ if (stmf_state.stmf_alua_state == 1) { (void) stmf_proxy_scsi_cmd(task, NULL); } return; case TM_TARGET_RESET: case TM_TARGET_COLD_RESET: case TM_TARGET_WARM_RESET: stmf_handle_target_reset(task); return; default: /* We dont support this task mgmt function */ stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_INVALID_FIELD_IN_CMD_IU); return; } } void stmf_handle_lun_reset(scsi_task_t *task) { stmf_i_scsi_task_t *itask; stmf_i_lu_t *ilu; itask = (stmf_i_scsi_task_t *)task->task_stmf_private; ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; /* * To sync with target reset, grab this lock. The LU is not going * anywhere as there is atleast one task pending (this task). */ mutex_enter(&stmf_state.stmf_lock); if (ilu->ilu_flags & ILU_RESET_ACTIVE) { mutex_exit(&stmf_state.stmf_lock); stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_OPERATION_IN_PROGRESS); return; } atomic_or_32(&ilu->ilu_flags, ILU_RESET_ACTIVE); mutex_exit(&stmf_state.stmf_lock); /* * Mark this task as the one causing LU reset so that we know who * was responsible for setting the ILU_RESET_ACTIVE. In case this * task itself gets aborted, we will clear ILU_RESET_ACTIVE. */ mutex_enter(&itask->itask_mutex); itask->itask_flags |= ITASK_DEFAULT_HANDLING | ITASK_CAUSING_LU_RESET; mutex_exit(&itask->itask_mutex); /* Initiatiate abort on all commands on this LU except this one */ stmf_abort(STMF_QUEUE_ABORT_LU, task, STMF_ABORTED, task->task_lu); /* Start polling on this task */ if (stmf_task_poll_lu(task, ITASK_DEFAULT_POLL_TIMEOUT) != STMF_SUCCESS) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } } void stmf_handle_target_reset(scsi_task_t *task) { stmf_i_scsi_task_t *itask; stmf_i_lu_t *ilu; stmf_i_scsi_session_t *iss; stmf_lun_map_t *lm; stmf_lun_map_ent_t *lm_ent; int i, lf; itask = (stmf_i_scsi_task_t *)task->task_stmf_private; iss = (stmf_i_scsi_session_t *)task->task_session->ss_stmf_private; ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; /* * To sync with LUN reset, grab this lock. The session is not going * anywhere as there is atleast one task pending (this task). */ mutex_enter(&stmf_state.stmf_lock); /* Grab the session lock as a writer to prevent any changes in it */ rw_enter(iss->iss_lockp, RW_WRITER); if (iss->iss_flags & ISS_RESET_ACTIVE) { rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_OPERATION_IN_PROGRESS); return; } atomic_or_32(&iss->iss_flags, ISS_RESET_ACTIVE); /* * Now go through each LUN in this session and make sure all of them * can be reset. */ lm = iss->iss_sm; for (i = 0, lf = 0; i < lm->lm_nentries; i++) { if (lm->lm_plus[i] == NULL) continue; lf++; lm_ent = (stmf_lun_map_ent_t *)lm->lm_plus[i]; ilu = (stmf_i_lu_t *)(lm_ent->ent_lu->lu_stmf_private); if (ilu->ilu_flags & ILU_RESET_ACTIVE) { atomic_and_32(&iss->iss_flags, ~ISS_RESET_ACTIVE); rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_OPERATION_IN_PROGRESS); return; } } if (lf == 0) { /* No luns in this session */ atomic_and_32(&iss->iss_flags, ~ISS_RESET_ACTIVE); rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); stmf_scsilib_send_status(task, STATUS_GOOD, 0); return; } /* ok, start the damage */ mutex_enter(&itask->itask_mutex); itask->itask_flags |= ITASK_DEFAULT_HANDLING | ITASK_CAUSING_TARGET_RESET; mutex_exit(&itask->itask_mutex); for (i = 0; i < lm->lm_nentries; i++) { if (lm->lm_plus[i] == NULL) continue; lm_ent = (stmf_lun_map_ent_t *)lm->lm_plus[i]; ilu = (stmf_i_lu_t *)(lm_ent->ent_lu->lu_stmf_private); atomic_or_32(&ilu->ilu_flags, ILU_RESET_ACTIVE); } for (i = 0; i < lm->lm_nentries; i++) { if (lm->lm_plus[i] == NULL) continue; lm_ent = (stmf_lun_map_ent_t *)lm->lm_plus[i]; stmf_abort(STMF_QUEUE_ABORT_LU, task, STMF_ABORTED, lm_ent->ent_lu); } rw_exit(iss->iss_lockp); mutex_exit(&stmf_state.stmf_lock); /* Start polling on this task */ if (stmf_task_poll_lu(task, ITASK_DEFAULT_POLL_TIMEOUT) != STMF_SUCCESS) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } } int stmf_handle_cmd_during_ic(stmf_i_scsi_task_t *itask) { scsi_task_t *task = itask->itask_task; stmf_i_scsi_session_t *iss = (stmf_i_scsi_session_t *) task->task_session->ss_stmf_private; rw_enter(iss->iss_lockp, RW_WRITER); if (((iss->iss_flags & ISS_LUN_INVENTORY_CHANGED) == 0) || (task->task_cdb[0] == SCMD_INQUIRY)) { rw_exit(iss->iss_lockp); return (0); } atomic_and_32(&iss->iss_flags, ~(ISS_LUN_INVENTORY_CHANGED | ISS_GOT_INITIAL_LUNS)); rw_exit(iss->iss_lockp); if (task->task_cdb[0] == SCMD_REPORT_LUNS) { return (0); } stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_REPORT_LUN_DATA_HAS_CHANGED); return (1); } void stmf_worker_init() { uint32_t i; stmf_worker_t *w; /* Make local copy of global tunables */ /* * Allow workers to be scaled down to a very low number for cases * where the load is light. If the number of threads gets below * 4 assume it is a mistake and force the threads back to a * reasonable number. The low limit of 4 is simply legacy and * may be too low. */ ASSERT(stmf_workers == NULL); if (stmf_nworkers < 4) { stmf_nworkers = 64; } stmf_workers = (stmf_worker_t *)kmem_zalloc( sizeof (stmf_worker_t) * stmf_nworkers, KM_SLEEP); for (i = 0; i < stmf_nworkers; i++) { stmf_worker_t *w = &stmf_workers[i]; mutex_init(&w->worker_lock, NULL, MUTEX_DRIVER, NULL); cv_init(&w->worker_cv, NULL, CV_DRIVER, NULL); } stmf_workers_state = STMF_WORKERS_ENABLED; /* Check if we are starting */ if (stmf_nworkers_cur < stmf_nworkers - 1) { for (i = stmf_nworkers_cur; i < stmf_nworkers; i++) { w = &stmf_workers[i]; w->worker_tid = thread_create(NULL, 0, stmf_worker_task, (void *)&stmf_workers[i], 0, &p0, TS_RUN, minclsyspri); stmf_nworkers_accepting_cmds++; } return; } /* Lets wait for atleast one worker to start */ while (stmf_nworkers_cur == 0) delay(drv_usectohz(20 * 1000)); } stmf_status_t stmf_worker_fini() { int i; clock_t sb; if (stmf_workers_state == STMF_WORKERS_DISABLED) return (STMF_SUCCESS); ASSERT(stmf_workers); stmf_workers_state = STMF_WORKERS_DISABLED; cv_signal(&stmf_state.stmf_cv); sb = ddi_get_lbolt() + drv_usectohz(10 * 1000 * 1000); /* Wait for all the threads to die */ while (stmf_nworkers_cur != 0) { if (ddi_get_lbolt() > sb) { stmf_workers_state = STMF_WORKERS_ENABLED; return (STMF_BUSY); } delay(drv_usectohz(100 * 1000)); } for (i = 0; i < stmf_nworkers; i++) { stmf_worker_t *w = &stmf_workers[i]; mutex_destroy(&w->worker_lock); cv_destroy(&w->worker_cv); } kmem_free(stmf_workers, sizeof (stmf_worker_t) * stmf_nworkers); stmf_workers = NULL; return (STMF_SUCCESS); } void stmf_worker_task(void *arg) { stmf_worker_t *w; stmf_i_scsi_session_t *iss; scsi_task_t *task; stmf_i_scsi_task_t *itask; stmf_data_buf_t *dbuf; stmf_lu_t *lu; clock_t wait_timer = 0; clock_t wait_ticks, wait_delta = 0; uint8_t curcmd; uint8_t abort_free; uint8_t wait_queue; uint8_t dec_qdepth; w = (stmf_worker_t *)arg; wait_ticks = drv_usectohz(10000); DTRACE_PROBE1(worker__create, stmf_worker_t, w); mutex_enter(&w->worker_lock); w->worker_flags |= STMF_WORKER_STARTED | STMF_WORKER_ACTIVE; atomic_inc_32(&stmf_nworkers_cur); stmf_worker_loop: if ((w->worker_ref_count == 0) && (w->worker_flags & STMF_WORKER_TERMINATE)) { w->worker_flags &= ~(STMF_WORKER_STARTED | STMF_WORKER_ACTIVE | STMF_WORKER_TERMINATE); w->worker_tid = NULL; mutex_exit(&w->worker_lock); DTRACE_PROBE1(worker__destroy, stmf_worker_t, w); atomic_dec_32(&stmf_nworkers_cur); thread_exit(); } /* CONSTCOND */ while (1) { /* worker lock is held at this point */ dec_qdepth = 0; if (wait_timer && (ddi_get_lbolt() >= wait_timer)) { wait_timer = 0; wait_delta = 0; if (w->worker_wait_head) { ASSERT(w->worker_wait_tail); if (w->worker_task_head == NULL) w->worker_task_head = w->worker_wait_head; else w->worker_task_tail->itask_worker_next = w->worker_wait_head; w->worker_task_tail = w->worker_wait_tail; w->worker_wait_head = w->worker_wait_tail = NULL; } } STMF_DEQUEUE_ITASK(w, itask); if (itask == NULL) break; ASSERT((itask->itask_flags & ITASK_IN_FREE_LIST) == 0); task = itask->itask_task; DTRACE_PROBE2(worker__active, stmf_worker_t, w, scsi_task_t *, task); wait_queue = 0; abort_free = 0; mutex_exit(&w->worker_lock); mutex_enter(&itask->itask_mutex); mutex_enter(&w->worker_lock); if (itask->itask_ncmds > 0) { curcmd = itask->itask_cmd_stack[itask->itask_ncmds - 1]; } else { ASSERT(itask->itask_flags & ITASK_BEING_ABORTED); } if (itask->itask_flags & ITASK_BEING_ABORTED) { itask->itask_ncmds = 1; curcmd = itask->itask_cmd_stack[0] = ITASK_CMD_ABORT; goto out_itask_flag_loop; } else if ((curcmd & ITASK_CMD_MASK) == ITASK_CMD_NEW_TASK) { /* * set ITASK_KSTAT_IN_RUNQ, this flag * will not reset until task completed */ itask->itask_flags |= ITASK_KNOWN_TO_LU | ITASK_KSTAT_IN_RUNQ; } else { goto out_itask_flag_loop; } out_itask_flag_loop: /* * Decide if this task needs to go to a queue and/or if * we can decrement the itask_cmd_stack. */ if (curcmd == ITASK_CMD_ABORT) { if (itask->itask_flags & (ITASK_KNOWN_TO_LU | ITASK_KNOWN_TO_TGT_PORT)) { wait_queue = 1; } else { abort_free = 1; } } else if ((curcmd & ITASK_CMD_POLL) && (itask->itask_poll_timeout > ddi_get_lbolt())) { wait_queue = 1; } if (wait_queue) { itask->itask_worker_next = NULL; if (w->worker_wait_tail) { w->worker_wait_tail->itask_worker_next = itask; } else { w->worker_wait_head = itask; } w->worker_wait_tail = itask; if (wait_timer == 0) { wait_timer = ddi_get_lbolt() + wait_ticks; wait_delta = wait_ticks; } } else if ((--(itask->itask_ncmds)) != 0) { itask->itask_worker_next = NULL; if (w->worker_task_tail) { w->worker_task_tail->itask_worker_next = itask; } else { w->worker_task_head = itask; } w->worker_task_tail = itask; } else { atomic_and_32(&itask->itask_flags, ~ITASK_IN_WORKER_QUEUE); /* * This is where the queue depth should go down by * one but we delay that on purpose to account for * the call into the provider. The actual decrement * happens after the worker has done its job. */ dec_qdepth = 1; itask->itask_waitq_time += gethrtime() - itask->itask_waitq_enter_timestamp; } /* We made it here means we are going to call LU */ if ((itask->itask_flags & ITASK_DEFAULT_HANDLING) == 0) lu = task->task_lu; else lu = dlun0; dbuf = itask->itask_dbufs[ITASK_CMD_BUF_NDX(curcmd)]; mutex_exit(&w->worker_lock); curcmd &= ITASK_CMD_MASK; stmf_task_audit(itask, TE_PROCESS_CMD, curcmd, dbuf); mutex_exit(&itask->itask_mutex); switch (curcmd) { case ITASK_CMD_NEW_TASK: iss = (stmf_i_scsi_session_t *) task->task_session->ss_stmf_private; stmf_itl_lu_new_task(itask); if (iss->iss_flags & ISS_LUN_INVENTORY_CHANGED) { if (stmf_handle_cmd_during_ic(itask)) { break; } } #ifdef DEBUG if (stmf_drop_task_counter > 0) { if (atomic_dec_32_nv( (uint32_t *)&stmf_drop_task_counter) == 1) { break; } } #endif DTRACE_PROBE1(scsi__task__start, scsi_task_t *, task); lu->lu_new_task(task, dbuf); break; case ITASK_CMD_DATA_XFER_DONE: lu->lu_dbuf_xfer_done(task, dbuf); break; case ITASK_CMD_STATUS_DONE: lu->lu_send_status_done(task); break; case ITASK_CMD_ABORT: if (abort_free) { mutex_enter(&itask->itask_mutex); stmf_task_free(task); } else { stmf_do_task_abort(task); } break; case ITASK_CMD_POLL_LU: if (!wait_queue) { lu->lu_task_poll(task); } break; case ITASK_CMD_POLL_LPORT: if (!wait_queue) task->task_lport->lport_task_poll(task); break; case ITASK_CMD_SEND_STATUS: /* case ITASK_CMD_XFER_DATA: */ break; } mutex_enter(&w->worker_lock); if (dec_qdepth) { w->worker_queue_depth--; } } if ((w->worker_flags & STMF_WORKER_TERMINATE) && (wait_timer == 0)) { if (w->worker_ref_count == 0) goto stmf_worker_loop; else { wait_timer = ddi_get_lbolt() + 1; wait_delta = 1; } } w->worker_flags &= ~STMF_WORKER_ACTIVE; if (wait_timer) { DTRACE_PROBE1(worker__timed__sleep, stmf_worker_t, w); (void) cv_reltimedwait(&w->worker_cv, &w->worker_lock, wait_delta, TR_CLOCK_TICK); } else { DTRACE_PROBE1(worker__sleep, stmf_worker_t, w); cv_wait(&w->worker_cv, &w->worker_lock); } DTRACE_PROBE1(worker__wakeup, stmf_worker_t, w); w->worker_flags |= STMF_WORKER_ACTIVE; goto stmf_worker_loop; } /* * Fills out a dbuf from stmf_xfer_data_t (contained in the db_lu_private). * If all the data has been filled out, frees the xd and makes * db_lu_private NULL. */ void stmf_xd_to_dbuf(stmf_data_buf_t *dbuf, int set_rel_off) { stmf_xfer_data_t *xd; uint8_t *p; int i; uint32_t s; xd = (stmf_xfer_data_t *)dbuf->db_lu_private; dbuf->db_data_size = 0; if (set_rel_off) dbuf->db_relative_offset = xd->size_done; for (i = 0; i < dbuf->db_sglist_length; i++) { s = min(xd->size_left, dbuf->db_sglist[i].seg_length); p = &xd->buf[xd->size_done]; bcopy(p, dbuf->db_sglist[i].seg_addr, s); xd->size_left -= s; xd->size_done += s; dbuf->db_data_size += s; if (xd->size_left == 0) { kmem_free(xd, xd->alloc_size); dbuf->db_lu_private = NULL; return; } } } /* ARGSUSED */ stmf_status_t stmf_dlun0_task_alloc(scsi_task_t *task) { return (STMF_SUCCESS); } void stmf_dlun0_new_task(scsi_task_t *task, stmf_data_buf_t *dbuf) { uint8_t *cdbp = (uint8_t *)&task->task_cdb[0]; stmf_i_scsi_session_t *iss; uint32_t sz, minsz; uint8_t *p; stmf_xfer_data_t *xd; uint8_t inq_page_length = 31; if (task->task_mgmt_function) { stmf_scsilib_handle_task_mgmt(task); return; } switch (cdbp[0]) { case SCMD_INQUIRY: /* * Basic protocol checks. In addition, only reply to * standard inquiry. Otherwise, the LU provider needs * to respond. */ if (cdbp[2] || (cdbp[1] & 1) || cdbp[5]) { stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_INVALID_FIELD_IN_CDB); return; } task->task_cmd_xfer_length = (((uint32_t)cdbp[3]) << 8) | cdbp[4]; if (task->task_additional_flags & TASK_AF_NO_EXPECTED_XFER_LENGTH) { task->task_expected_xfer_length = task->task_cmd_xfer_length; } sz = min(task->task_expected_xfer_length, min(36, task->task_cmd_xfer_length)); minsz = 36; if (sz == 0) { stmf_scsilib_send_status(task, STATUS_GOOD, 0); return; } if (dbuf && (dbuf->db_sglist[0].seg_length < 36)) { /* * Ignore any preallocated dbuf if the size is less * than 36. It will be freed during the task_free. */ dbuf = NULL; } if (dbuf == NULL) dbuf = stmf_alloc_dbuf(task, minsz, &minsz, 0); if ((dbuf == NULL) || (dbuf->db_sglist[0].seg_length < sz)) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } dbuf->db_lu_private = NULL; p = dbuf->db_sglist[0].seg_addr; /* * Standard inquiry handling only. */ bzero(p, inq_page_length + 5); p[0] = DPQ_SUPPORTED | DTYPE_UNKNOWN; p[2] = 5; p[3] = 0x12; p[4] = inq_page_length; p[6] = 0x80; (void) strncpy((char *)p+8, "SUN ", 8); (void) strncpy((char *)p+16, "COMSTAR ", 16); (void) strncpy((char *)p+32, "1.0 ", 4); dbuf->db_data_size = sz; dbuf->db_relative_offset = 0; dbuf->db_flags = DB_DIRECTION_TO_RPORT; (void) stmf_xfer_data(task, dbuf, 0); return; case SCMD_REPORT_LUNS: task->task_cmd_xfer_length = ((((uint32_t)task->task_cdb[6]) << 24) | (((uint32_t)task->task_cdb[7]) << 16) | (((uint32_t)task->task_cdb[8]) << 8) | ((uint32_t)task->task_cdb[9])); if (task->task_additional_flags & TASK_AF_NO_EXPECTED_XFER_LENGTH) { task->task_expected_xfer_length = task->task_cmd_xfer_length; } sz = min(task->task_expected_xfer_length, task->task_cmd_xfer_length); if (sz < 16) { stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_INVALID_FIELD_IN_CDB); return; } iss = (stmf_i_scsi_session_t *) task->task_session->ss_stmf_private; rw_enter(iss->iss_lockp, RW_WRITER); xd = stmf_session_prepare_report_lun_data(iss->iss_sm); rw_exit(iss->iss_lockp); if (xd == NULL) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } sz = min(sz, xd->size_left); xd->size_left = sz; minsz = min(512, sz); if (dbuf == NULL) dbuf = stmf_alloc_dbuf(task, sz, &minsz, 0); if (dbuf == NULL) { kmem_free(xd, xd->alloc_size); stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } dbuf->db_lu_private = xd; stmf_xd_to_dbuf(dbuf, 1); atomic_and_32(&iss->iss_flags, ~(ISS_LUN_INVENTORY_CHANGED | ISS_GOT_INITIAL_LUNS)); dbuf->db_flags = DB_DIRECTION_TO_RPORT; (void) stmf_xfer_data(task, dbuf, 0); return; } stmf_scsilib_send_status(task, STATUS_CHECK, STMF_SAA_INVALID_OPCODE); } void stmf_dlun0_dbuf_done(scsi_task_t *task, stmf_data_buf_t *dbuf) { stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; if (dbuf->db_xfer_status != STMF_SUCCESS) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, dbuf->db_xfer_status, NULL); return; } task->task_nbytes_transferred += dbuf->db_data_size; if (dbuf->db_lu_private) { /* There is more */ stmf_xd_to_dbuf(dbuf, 1); (void) stmf_xfer_data(task, dbuf, 0); return; } stmf_free_dbuf(task, dbuf); /* * If this is a proxy task, it will need to be completed from the * proxy port provider. This message lets pppt know that the xfer * is complete. When we receive the status from pppt, we will * then relay that status back to the lport. */ if (itask->itask_flags & ITASK_PROXY_TASK) { stmf_ic_msg_t *ic_xfer_done_msg = NULL; stmf_status_t ic_ret = STMF_FAILURE; uint64_t session_msg_id; mutex_enter(&stmf_state.stmf_lock); session_msg_id = stmf_proxy_msg_id++; mutex_exit(&stmf_state.stmf_lock); /* send xfer done status to pppt */ ic_xfer_done_msg = ic_scsi_data_xfer_done_msg_alloc( itask->itask_proxy_msg_id, task->task_session->ss_session_id, STMF_SUCCESS, session_msg_id); if (ic_xfer_done_msg) { ic_ret = ic_tx_msg(ic_xfer_done_msg); if (ic_ret != STMF_IC_MSG_SUCCESS) { cmn_err(CE_WARN, "unable to xmit session msg"); } } /* task will be completed from pppt */ return; } stmf_scsilib_send_status(task, STATUS_GOOD, 0); } /* ARGSUSED */ void stmf_dlun0_status_done(scsi_task_t *task) { } /* ARGSUSED */ void stmf_dlun0_task_free(scsi_task_t *task) { } /* ARGSUSED */ stmf_status_t stmf_dlun0_abort(struct stmf_lu *lu, int abort_cmd, void *arg, uint32_t flags) { scsi_task_t *task = (scsi_task_t *)arg; stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_i_lu_t *ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; int i; uint8_t map; if ((task->task_mgmt_function) && (itask->itask_flags & (ITASK_CAUSING_LU_RESET | ITASK_CAUSING_TARGET_RESET))) { switch (task->task_mgmt_function) { case TM_ABORT_TASK: case TM_ABORT_TASK_SET: case TM_CLEAR_TASK_SET: case TM_LUN_RESET: atomic_and_32(&ilu->ilu_flags, ~ILU_RESET_ACTIVE); break; case TM_TARGET_RESET: case TM_TARGET_COLD_RESET: case TM_TARGET_WARM_RESET: stmf_abort_target_reset(task); break; } return (STMF_ABORT_SUCCESS); } /* * OK so its not a task mgmt. Make sure we free any xd sitting * inside any dbuf. */ if ((map = itask->itask_allocated_buf_map) != 0) { for (i = 0; i < 4; i++) { if ((map & 1) && ((itask->itask_dbufs[i])->db_lu_private)) { stmf_xfer_data_t *xd; stmf_data_buf_t *dbuf; dbuf = itask->itask_dbufs[i]; xd = (stmf_xfer_data_t *)dbuf->db_lu_private; dbuf->db_lu_private = NULL; kmem_free(xd, xd->alloc_size); } map >>= 1; } } return (STMF_ABORT_SUCCESS); } void stmf_dlun0_task_poll(struct scsi_task *task) { /* Right now we only do this for handling task management functions */ ASSERT(task->task_mgmt_function); switch (task->task_mgmt_function) { case TM_ABORT_TASK: case TM_ABORT_TASK_SET: case TM_CLEAR_TASK_SET: case TM_LUN_RESET: (void) stmf_lun_reset_poll(task->task_lu, task, 0); return; case TM_TARGET_RESET: case TM_TARGET_COLD_RESET: case TM_TARGET_WARM_RESET: stmf_target_reset_poll(task); return; } } /* ARGSUSED */ void stmf_dlun0_ctl(struct stmf_lu *lu, int cmd, void *arg) { /* This function will never be called */ cmn_err(CE_WARN, "stmf_dlun0_ctl called with cmd %x", cmd); } /* ARGSUSED */ void stmf_dlun0_task_done(struct scsi_task *task) { } void stmf_dlun_init() { stmf_i_lu_t *ilu; dlun0 = stmf_alloc(STMF_STRUCT_STMF_LU, 0, 0); dlun0->lu_task_alloc = stmf_dlun0_task_alloc; dlun0->lu_new_task = stmf_dlun0_new_task; dlun0->lu_dbuf_xfer_done = stmf_dlun0_dbuf_done; dlun0->lu_send_status_done = stmf_dlun0_status_done; dlun0->lu_task_free = stmf_dlun0_task_free; dlun0->lu_abort = stmf_dlun0_abort; dlun0->lu_task_poll = stmf_dlun0_task_poll; dlun0->lu_ctl = stmf_dlun0_ctl; dlun0->lu_task_done = stmf_dlun0_task_done; ilu = (stmf_i_lu_t *)dlun0->lu_stmf_private; ilu->ilu_cur_task_cntr = &ilu->ilu_task_cntr1; } stmf_status_t stmf_dlun_fini() { stmf_i_lu_t *ilu; ilu = (stmf_i_lu_t *)dlun0->lu_stmf_private; ASSERT(ilu->ilu_ntasks == ilu->ilu_ntasks_free); if (ilu->ilu_ntasks) { stmf_i_scsi_task_t *itask, *nitask; nitask = ilu->ilu_tasks; do { itask = nitask; nitask = itask->itask_lu_next; dlun0->lu_task_free(itask->itask_task); stmf_free(itask->itask_task); } while (nitask != NULL); } stmf_free(dlun0); return (STMF_SUCCESS); } void stmf_abort_target_reset(scsi_task_t *task) { stmf_i_scsi_session_t *iss = (stmf_i_scsi_session_t *) task->task_session->ss_stmf_private; stmf_lun_map_t *lm; stmf_lun_map_ent_t *lm_ent; stmf_i_lu_t *ilu; int i; rw_enter(iss->iss_lockp, RW_READER); lm = iss->iss_sm; for (i = 0; i < lm->lm_nentries; i++) { if (lm->lm_plus[i] == NULL) continue; lm_ent = (stmf_lun_map_ent_t *)lm->lm_plus[i]; ilu = (stmf_i_lu_t *)lm_ent->ent_lu->lu_stmf_private; if (ilu->ilu_flags & ILU_RESET_ACTIVE) { atomic_and_32(&ilu->ilu_flags, ~ILU_RESET_ACTIVE); } } atomic_and_32(&iss->iss_flags, ~ISS_RESET_ACTIVE); rw_exit(iss->iss_lockp); } /* * The return value is only used by function managing target reset. */ stmf_status_t stmf_lun_reset_poll(stmf_lu_t *lu, struct scsi_task *task, int target_reset) { stmf_i_lu_t *ilu = (stmf_i_lu_t *)lu->lu_stmf_private; int ntasks_pending; ntasks_pending = ilu->ilu_ntasks - ilu->ilu_ntasks_free; /* * This function is also used during Target reset. The idea is that * once all the commands are aborted, call the LU's reset entry * point (abort entry point with a reset flag). But if this Task * mgmt is running on this LU then all the tasks cannot be aborted. * one task (this task) will still be running which is OK. */ if ((ntasks_pending == 0) || ((task->task_lu == lu) && (ntasks_pending == 1))) { stmf_status_t ret; if ((task->task_mgmt_function == TM_LUN_RESET) || (task->task_mgmt_function == TM_TARGET_RESET) || (task->task_mgmt_function == TM_TARGET_WARM_RESET) || (task->task_mgmt_function == TM_TARGET_COLD_RESET)) { ret = lu->lu_abort(lu, STMF_LU_RESET_STATE, task, 0); } else { ret = STMF_SUCCESS; } if (ret == STMF_SUCCESS) { atomic_and_32(&ilu->ilu_flags, ~ILU_RESET_ACTIVE); } if (target_reset) { return (ret); } if (ret == STMF_SUCCESS) { stmf_scsilib_send_status(task, STATUS_GOOD, 0); return (ret); } if (ret != STMF_BUSY) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, ret, NULL); return (ret); } } if (target_reset) { /* Tell target reset polling code that we are not done */ return (STMF_BUSY); } if (stmf_task_poll_lu(task, ITASK_DEFAULT_POLL_TIMEOUT) != STMF_SUCCESS) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return (STMF_SUCCESS); } return (STMF_SUCCESS); } void stmf_target_reset_poll(struct scsi_task *task) { stmf_i_scsi_session_t *iss = (stmf_i_scsi_session_t *) task->task_session->ss_stmf_private; stmf_lun_map_t *lm; stmf_lun_map_ent_t *lm_ent; stmf_i_lu_t *ilu; stmf_status_t ret; int i; int not_done = 0; ASSERT(iss->iss_flags & ISS_RESET_ACTIVE); rw_enter(iss->iss_lockp, RW_READER); lm = iss->iss_sm; for (i = 0; i < lm->lm_nentries; i++) { if (lm->lm_plus[i] == NULL) continue; lm_ent = (stmf_lun_map_ent_t *)lm->lm_plus[i]; ilu = (stmf_i_lu_t *)lm_ent->ent_lu->lu_stmf_private; if (ilu->ilu_flags & ILU_RESET_ACTIVE) { rw_exit(iss->iss_lockp); ret = stmf_lun_reset_poll(lm_ent->ent_lu, task, 1); rw_enter(iss->iss_lockp, RW_READER); if (ret == STMF_SUCCESS) continue; not_done = 1; if (ret != STMF_BUSY) { rw_exit(iss->iss_lockp); stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ABORTED, NULL); return; } } } rw_exit(iss->iss_lockp); if (not_done) { if (stmf_task_poll_lu(task, ITASK_DEFAULT_POLL_TIMEOUT) != STMF_SUCCESS) { stmf_abort(STMF_QUEUE_TASK_ABORT, task, STMF_ALLOC_FAILURE, NULL); return; } return; } atomic_and_32(&iss->iss_flags, ~ISS_RESET_ACTIVE); stmf_scsilib_send_status(task, STATUS_GOOD, 0); } stmf_status_t stmf_lu_add_event(stmf_lu_t *lu, int eventid) { stmf_i_lu_t *ilu = (stmf_i_lu_t *)lu->lu_stmf_private; if ((eventid < 0) || (eventid >= STMF_MAX_NUM_EVENTS)) { return (STMF_INVALID_ARG); } STMF_EVENT_ADD(ilu->ilu_event_hdl, eventid); return (STMF_SUCCESS); } stmf_status_t stmf_lu_remove_event(stmf_lu_t *lu, int eventid) { stmf_i_lu_t *ilu = (stmf_i_lu_t *)lu->lu_stmf_private; if (eventid == STMF_EVENT_ALL) { STMF_EVENT_CLEAR_ALL(ilu->ilu_event_hdl); return (STMF_SUCCESS); } if ((eventid < 0) || (eventid >= STMF_MAX_NUM_EVENTS)) { return (STMF_INVALID_ARG); } STMF_EVENT_REMOVE(ilu->ilu_event_hdl, eventid); return (STMF_SUCCESS); } stmf_status_t stmf_lport_add_event(stmf_local_port_t *lport, int eventid) { stmf_i_local_port_t *ilport = (stmf_i_local_port_t *)lport->lport_stmf_private; if ((eventid < 0) || (eventid >= STMF_MAX_NUM_EVENTS)) { return (STMF_INVALID_ARG); } STMF_EVENT_ADD(ilport->ilport_event_hdl, eventid); return (STMF_SUCCESS); } stmf_status_t stmf_lport_remove_event(stmf_local_port_t *lport, int eventid) { stmf_i_local_port_t *ilport = (stmf_i_local_port_t *)lport->lport_stmf_private; if (eventid == STMF_EVENT_ALL) { STMF_EVENT_CLEAR_ALL(ilport->ilport_event_hdl); return (STMF_SUCCESS); } if ((eventid < 0) || (eventid >= STMF_MAX_NUM_EVENTS)) { return (STMF_INVALID_ARG); } STMF_EVENT_REMOVE(ilport->ilport_event_hdl, eventid); return (STMF_SUCCESS); } void stmf_generate_lu_event(stmf_i_lu_t *ilu, int eventid, void *arg, uint32_t flags) { if (STMF_EVENT_ENABLED(ilu->ilu_event_hdl, eventid) && (ilu->ilu_lu->lu_event_handler != NULL)) { ilu->ilu_lu->lu_event_handler(ilu->ilu_lu, eventid, arg, flags); } } void stmf_generate_lport_event(stmf_i_local_port_t *ilport, int eventid, void *arg, uint32_t flags) { if (STMF_EVENT_ENABLED(ilport->ilport_event_hdl, eventid) && (ilport->ilport_lport->lport_event_handler != NULL)) { ilport->ilport_lport->lport_event_handler( ilport->ilport_lport, eventid, arg, flags); } } /* * With the possibility of having multiple itl sessions pointing to the * same itl_kstat_info, the ilu_kstat_lock mutex is used to synchronize * the kstat update of the ilu_kstat_io, itl_kstat_taskq and itl_kstat_lu_xfer * statistics. */ void stmf_itl_task_start(stmf_i_scsi_task_t *itask) { stmf_itl_data_t *itl = itask->itask_itl_datap; scsi_task_t *task = itask->itask_task; stmf_i_lu_t *ilu; stmf_i_scsi_session_t *iss = itask->itask_task->task_session->ss_stmf_private; stmf_i_remote_port_t *irport = iss->iss_irport; if (itl == NULL || task->task_lu == dlun0) return; ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; itask->itask_start_timestamp = gethrtime(); itask->itask_xfer_done_timestamp = 0; if (ilu->ilu_kstat_io != NULL) { mutex_enter(ilu->ilu_kstat_io->ks_lock); stmf_update_kstat_lu_q(itask->itask_task, kstat_waitq_enter); mutex_exit(ilu->ilu_kstat_io->ks_lock); } if (irport->irport_kstat_estat != NULL) { if (task->task_flags & TF_READ_DATA) atomic_inc_32(&irport->irport_nread_tasks); else if (task->task_flags & TF_WRITE_DATA) atomic_inc_32(&irport->irport_nwrite_tasks); } stmf_update_kstat_lport_q(itask->itask_task, kstat_waitq_enter); } void stmf_itl_lu_new_task(stmf_i_scsi_task_t *itask) { stmf_itl_data_t *itl = itask->itask_itl_datap; scsi_task_t *task = itask->itask_task; stmf_i_lu_t *ilu; if (itl == NULL || task->task_lu == dlun0) return; ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; if (ilu->ilu_kstat_io != NULL) { mutex_enter(ilu->ilu_kstat_io->ks_lock); stmf_update_kstat_lu_q(itask->itask_task, kstat_waitq_to_runq); mutex_exit(ilu->ilu_kstat_io->ks_lock); } stmf_update_kstat_lport_q(itask->itask_task, kstat_waitq_to_runq); } void stmf_itl_task_done(stmf_i_scsi_task_t *itask) { stmf_itl_data_t *itl = itask->itask_itl_datap; scsi_task_t *task = itask->itask_task; stmf_i_lu_t *ilu; itask->itask_done_timestamp = gethrtime(); if (itl == NULL || task->task_lu == dlun0) return; ilu = (stmf_i_lu_t *)task->task_lu->lu_stmf_private; if (ilu->ilu_kstat_io == NULL) return; stmf_update_kstat_rport_estat(task); mutex_enter(ilu->ilu_kstat_io->ks_lock); if (itask->itask_flags & ITASK_KSTAT_IN_RUNQ) { stmf_update_kstat_lu_q(task, kstat_runq_exit); mutex_exit(ilu->ilu_kstat_io->ks_lock); stmf_update_kstat_lport_q(task, kstat_runq_exit); } else { stmf_update_kstat_lu_q(task, kstat_waitq_exit); mutex_exit(ilu->ilu_kstat_io->ks_lock); stmf_update_kstat_lport_q(task, kstat_waitq_exit); } } void stmf_lu_xfer_done(scsi_task_t *task, boolean_t read, hrtime_t elapsed_time) { stmf_i_scsi_task_t *itask = task->task_stmf_private; if (task->task_lu == dlun0) return; if (read) { atomic_add_64((uint64_t *)&itask->itask_lu_read_time, elapsed_time); } else { atomic_add_64((uint64_t *)&itask->itask_lu_write_time, elapsed_time); } } static void stmf_lport_xfer_start(stmf_i_scsi_task_t *itask, stmf_data_buf_t *dbuf) { stmf_itl_data_t *itl = itask->itask_itl_datap; if (itl == NULL) return; DTRACE_PROBE2(scsi__xfer__start, scsi_task_t *, itask->itask_task, stmf_data_buf_t *, dbuf); dbuf->db_xfer_start_timestamp = gethrtime(); } static void stmf_lport_xfer_done(stmf_i_scsi_task_t *itask, stmf_data_buf_t *dbuf) { stmf_itl_data_t *itl = itask->itask_itl_datap; hrtime_t elapsed_time; uint64_t xfer_size; if (itl == NULL) return; xfer_size = (dbuf->db_xfer_status == STMF_SUCCESS) ? dbuf->db_data_size : 0; itask->itask_xfer_done_timestamp = gethrtime(); elapsed_time = itask->itask_xfer_done_timestamp - dbuf->db_xfer_start_timestamp; if (dbuf->db_flags & DB_DIRECTION_TO_RPORT) { atomic_add_64((uint64_t *)&itask->itask_lport_read_time, elapsed_time); atomic_add_64((uint64_t *)&itask->itask_read_xfer, xfer_size); } else { atomic_add_64((uint64_t *)&itask->itask_lport_write_time, elapsed_time); atomic_add_64((uint64_t *)&itask->itask_write_xfer, xfer_size); } DTRACE_PROBE3(scsi__xfer__end, scsi_task_t *, itask->itask_task, stmf_data_buf_t *, dbuf, hrtime_t, elapsed_time); dbuf->db_xfer_start_timestamp = 0; } void stmf_svc_init() { if (stmf_state.stmf_svc_flags & STMF_SVC_STARTED) return; list_create(&stmf_state.stmf_svc_list, sizeof (stmf_svc_req_t), offsetof(stmf_svc_req_t, svc_list_entry)); stmf_state.stmf_svc_taskq = ddi_taskq_create(0, "STMF_SVC_TASKQ", 1, TASKQ_DEFAULTPRI, 0); (void) ddi_taskq_dispatch(stmf_state.stmf_svc_taskq, stmf_svc, 0, DDI_SLEEP); } stmf_status_t stmf_svc_fini() { uint32_t i; mutex_enter(&stmf_state.stmf_lock); if (stmf_state.stmf_svc_flags & STMF_SVC_STARTED) { stmf_state.stmf_svc_flags |= STMF_SVC_TERMINATE; cv_signal(&stmf_state.stmf_cv); } mutex_exit(&stmf_state.stmf_lock); /* Wait for 5 seconds */ for (i = 0; i < 500; i++) { if (stmf_state.stmf_svc_flags & STMF_SVC_STARTED) delay(drv_usectohz(10000)); else break; } if (i == 500) return (STMF_BUSY); list_destroy(&stmf_state.stmf_svc_list); ddi_taskq_destroy(stmf_state.stmf_svc_taskq); return (STMF_SUCCESS); } struct stmf_svc_clocks { clock_t drain_start, drain_next; clock_t timing_start, timing_next; clock_t worker_delay; }; /* ARGSUSED */ void stmf_svc(void *arg) { stmf_svc_req_t *req; stmf_lu_t *lu; stmf_i_lu_t *ilu; stmf_local_port_t *lport; struct stmf_svc_clocks clks = { 0 }; mutex_enter(&stmf_state.stmf_lock); stmf_state.stmf_svc_flags |= STMF_SVC_STARTED | STMF_SVC_ACTIVE; while (!(stmf_state.stmf_svc_flags & STMF_SVC_TERMINATE)) { if (list_is_empty(&stmf_state.stmf_svc_list)) { stmf_svc_timeout(&clks); continue; } /* * Pop the front request from the active list. After this, * the request will no longer be referenced by global state, * so it should be safe to access it without holding the * stmf state lock. */ req = list_remove_head(&stmf_state.stmf_svc_list); if (req == NULL) continue; switch (req->svc_cmd) { case STMF_CMD_LPORT_ONLINE: /* Fallthrough */ case STMF_CMD_LPORT_OFFLINE: mutex_exit(&stmf_state.stmf_lock); lport = (stmf_local_port_t *)req->svc_obj; lport->lport_ctl(lport, req->svc_cmd, &req->svc_info); break; case STMF_CMD_LU_ONLINE: mutex_exit(&stmf_state.stmf_lock); lu = (stmf_lu_t *)req->svc_obj; lu->lu_ctl(lu, req->svc_cmd, &req->svc_info); break; case STMF_CMD_LU_OFFLINE: /* Remove all mappings of this LU */ stmf_session_lu_unmapall((stmf_lu_t *)req->svc_obj); /* Kill all the pending I/Os for this LU */ mutex_exit(&stmf_state.stmf_lock); stmf_task_lu_killall((stmf_lu_t *)req->svc_obj, NULL, STMF_ABORTED); lu = (stmf_lu_t *)req->svc_obj; ilu = (stmf_i_lu_t *)lu->lu_stmf_private; stmf_wait_ilu_tasks_finish(ilu); lu->lu_ctl(lu, req->svc_cmd, &req->svc_info); break; default: cmn_err(CE_PANIC, "stmf_svc: unknown cmd %d", req->svc_cmd); } kmem_free(req, req->svc_req_alloc_size); mutex_enter(&stmf_state.stmf_lock); } stmf_state.stmf_svc_flags &= ~(STMF_SVC_STARTED | STMF_SVC_ACTIVE); mutex_exit(&stmf_state.stmf_lock); } static void stmf_svc_timeout(struct stmf_svc_clocks *clks) { clock_t td; stmf_i_local_port_t *ilport, *next_ilport; stmf_i_scsi_session_t *iss; ASSERT(mutex_owned(&stmf_state.stmf_lock)); td = drv_usectohz(20000); /* Do timeouts */ if (stmf_state.stmf_nlus && ((!clks->timing_next) || (ddi_get_lbolt() >= clks->timing_next))) { if (!stmf_state.stmf_svc_ilu_timing) { /* we are starting a new round */ stmf_state.stmf_svc_ilu_timing = stmf_state.stmf_ilulist; clks->timing_start = ddi_get_lbolt(); } stmf_check_ilu_timing(); if (!stmf_state.stmf_svc_ilu_timing) { /* we finished a complete round */ clks->timing_next = clks->timing_start + drv_usectohz(5*1000*1000); } else { /* we still have some ilu items to check */ clks->timing_next = ddi_get_lbolt() + drv_usectohz(1*1000*1000); } if (!list_is_empty(&stmf_state.stmf_svc_list)) return; } /* Check if there are free tasks to clear */ if (stmf_state.stmf_nlus && ((!clks->drain_next) || (ddi_get_lbolt() >= clks->drain_next))) { if (!stmf_state.stmf_svc_ilu_draining) { /* we are starting a new round */ stmf_state.stmf_svc_ilu_draining = stmf_state.stmf_ilulist; clks->drain_start = ddi_get_lbolt(); } stmf_check_freetask(); if (!stmf_state.stmf_svc_ilu_draining) { /* we finished a complete round */ clks->drain_next = clks->drain_start + drv_usectohz(10*1000*1000); } else { /* we still have some ilu items to check */ clks->drain_next = ddi_get_lbolt() + drv_usectohz(1*1000*1000); } if (!list_is_empty(&stmf_state.stmf_svc_list)) return; } /* Check if any active session got its 1st LUN */ if (stmf_state.stmf_process_initial_luns) { int stmf_level = 0; int port_level; for (ilport = stmf_state.stmf_ilportlist; ilport; ilport = next_ilport) { int ilport_lock_held; next_ilport = ilport->ilport_next; if ((ilport->ilport_flags & ILPORT_SS_GOT_INITIAL_LUNS) == 0) continue; port_level = 0; rw_enter(&ilport->ilport_lock, RW_READER); ilport_lock_held = 1; for (iss = ilport->ilport_ss_list; iss; iss = iss->iss_next) { if ((iss->iss_flags & ISS_GOT_INITIAL_LUNS) == 0) continue; port_level++; stmf_level++; atomic_and_32(&iss->iss_flags, ~ISS_GOT_INITIAL_LUNS); atomic_or_32(&iss->iss_flags, ISS_EVENT_ACTIVE); rw_exit(&ilport->ilport_lock); ilport_lock_held = 0; mutex_exit(&stmf_state.stmf_lock); stmf_generate_lport_event(ilport, LPORT_EVENT_INITIAL_LUN_MAPPED, iss->iss_ss, 0); atomic_and_32(&iss->iss_flags, ~ISS_EVENT_ACTIVE); mutex_enter(&stmf_state.stmf_lock); /* * scan all the ilports again as the * ilport list might have changed. */ next_ilport = stmf_state.stmf_ilportlist; break; } if (port_level == 0) atomic_and_32(&ilport->ilport_flags, ~ILPORT_SS_GOT_INITIAL_LUNS); /* drop the lock if we are holding it. */ if (ilport_lock_held == 1) rw_exit(&ilport->ilport_lock); /* Max 4 session at a time */ if (stmf_level >= 4) break; } if (stmf_level == 0) stmf_state.stmf_process_initial_luns = 0; } stmf_state.stmf_svc_flags &= ~STMF_SVC_ACTIVE; (void) cv_reltimedwait(&stmf_state.stmf_cv, &stmf_state.stmf_lock, td, TR_CLOCK_TICK); stmf_state.stmf_svc_flags |= STMF_SVC_ACTIVE; } /* * Waits for ongoing I/O tasks to finish on an LU in preparation for * the LU's offlining. The LU should already be in an Offlining state * (otherwise I/O to the LU might never end). There is an additional * enforcement of this via a deadman timer check. */ static void stmf_wait_ilu_tasks_finish(stmf_i_lu_t *ilu) { clock_t start, now, deadline; start = now = ddi_get_lbolt(); deadline = start + drv_usectohz(stmf_io_deadman * 1000000llu); mutex_enter(&ilu->ilu_task_lock); while (ilu->ilu_ntasks != ilu->ilu_ntasks_free) { (void) cv_timedwait(&ilu->ilu_offline_pending_cv, &ilu->ilu_task_lock, deadline); now = ddi_get_lbolt(); if (now > deadline) { if (stmf_io_deadman_enabled) { cmn_err(CE_PANIC, "stmf_svc: I/O deadman hit " "on STMF_CMD_LU_OFFLINE after %d seconds", stmf_io_deadman); } else { /* keep on spinning */ deadline = now + drv_usectohz(stmf_io_deadman * 1000000llu); } } } mutex_exit(&ilu->ilu_task_lock); DTRACE_PROBE1(deadman__timeout__wait, clock_t, now - start); } void stmf_svc_queue(int cmd, void *obj, stmf_state_change_info_t *info) { stmf_svc_req_t *req; int s; ASSERT(!mutex_owned(&stmf_state.stmf_lock)); s = sizeof (stmf_svc_req_t); if (info->st_additional_info) { s += strlen(info->st_additional_info) + 1; } req = kmem_zalloc(s, KM_SLEEP); req->svc_cmd = cmd; req->svc_obj = obj; req->svc_info.st_rflags = info->st_rflags; if (info->st_additional_info) { req->svc_info.st_additional_info = (char *)(GET_BYTE_OFFSET(req, sizeof (stmf_svc_req_t))); (void) strcpy(req->svc_info.st_additional_info, info->st_additional_info); } req->svc_req_alloc_size = s; mutex_enter(&stmf_state.stmf_lock); list_insert_tail(&stmf_state.stmf_svc_list, req); if ((stmf_state.stmf_svc_flags & STMF_SVC_ACTIVE) == 0) { cv_signal(&stmf_state.stmf_cv); } mutex_exit(&stmf_state.stmf_lock); } static void stmf_svc_kill_obj_requests(void *obj) { stmf_svc_req_t *req; ASSERT(mutex_owned(&stmf_state.stmf_lock)); for (req = list_head(&stmf_state.stmf_svc_list); req != NULL; req = list_next(&stmf_state.stmf_svc_list, req)) { if (req->svc_obj == obj) { list_remove(&stmf_state.stmf_svc_list, req); kmem_free(req, req->svc_req_alloc_size); } } } void stmf_trace(caddr_t ident, const char *fmt, ...) { va_list args; char tbuf[160]; int len; if (!stmf_trace_on) return; len = snprintf(tbuf, 158, "%s:%07lu: ", ident ? ident : "", ddi_get_lbolt()); va_start(args, fmt); len += vsnprintf(tbuf + len, 158 - len, fmt, args); va_end(args); if (len > 158) { len = 158; } tbuf[len++] = '\n'; tbuf[len] = '\0'; mutex_enter(&trace_buf_lock); bcopy(tbuf, &stmf_trace_buf[trace_buf_curndx], len+1); trace_buf_curndx += len; if (trace_buf_curndx > (trace_buf_size - 320)) trace_buf_curndx = 0; mutex_exit(&trace_buf_lock); } void stmf_trace_clear() { if (!stmf_trace_on) return; mutex_enter(&trace_buf_lock); trace_buf_curndx = 0; if (trace_buf_size > 0) stmf_trace_buf[0] = '\0'; mutex_exit(&trace_buf_lock); } /* * NOTE: Due to lock order problems that are not possible to fix this * method drops and reacquires the itask_mutex around the call to stmf_ctl. * Another possible work around would be to use a dispatch queue and have * the call to stmf_ctl run on another thread that's not holding the * itask_mutex. The problem with that approach is that it's difficult to * determine what impact an asynchronous change would have on the system state. */ static void stmf_abort_task_offline(scsi_task_t *task, int offline_lu, char *info) { stmf_state_change_info_t change_info; void *ctl_private; uint32_t ctl_cmd; int msg = 0; stmf_i_scsi_task_t *itask = (stmf_i_scsi_task_t *)task->task_stmf_private; stmf_trace("FROM STMF", "abort_task_offline called for %s: %s", offline_lu ? "LU" : "LPORT", info ? info : "no additional info"); change_info.st_additional_info = info; ASSERT(mutex_owned(&itask->itask_mutex)); if (offline_lu) { change_info.st_rflags = STMF_RFLAG_RESET | STMF_RFLAG_LU_ABORT; ctl_private = task->task_lu; if (((stmf_i_lu_t *) task->task_lu->lu_stmf_private)->ilu_state == STMF_STATE_ONLINE) { msg = 1; } ctl_cmd = STMF_CMD_LU_OFFLINE; } else { change_info.st_rflags = STMF_RFLAG_RESET | STMF_RFLAG_LPORT_ABORT; ctl_private = task->task_lport; if (((stmf_i_local_port_t *) task->task_lport->lport_stmf_private)->ilport_state == STMF_STATE_ONLINE) { msg = 1; } ctl_cmd = STMF_CMD_LPORT_OFFLINE; } if (msg) { stmf_trace(0, "Calling stmf_ctl to offline %s : %s", offline_lu ? "LU" : "LPORT", info ? info : ""); } mutex_exit(&itask->itask_mutex); (void) stmf_ctl(ctl_cmd, ctl_private, &change_info); mutex_enter(&itask->itask_mutex); } static char stmf_ctoi(char c) { if ((c >= '0') && (c <= '9')) c -= '0'; else if ((c >= 'A') && (c <= 'F')) c = c - 'A' + 10; else if ((c >= 'a') && (c <= 'f')) c = c - 'a' + 10; else c = -1; return (c); } /* Convert from Hex value in ASCII format to the equivalent bytes */ static boolean_t stmf_base16_str_to_binary(char *c, int dplen, uint8_t *dp) { int ii; for (ii = 0; ii < dplen; ii++) { char nibble1, nibble2; char enc_char = *c++; nibble1 = stmf_ctoi(enc_char); enc_char = *c++; nibble2 = stmf_ctoi(enc_char); if (nibble1 == -1 || nibble2 == -1) return (B_FALSE); dp[ii] = (nibble1 << 4) | nibble2; } return (B_TRUE); } boolean_t stmf_scsilib_tptid_validate(scsi_transport_id_t *tptid, uint32_t total_sz, uint16_t *tptid_sz) { uint16_t tpd_len = SCSI_TPTID_SIZE; if (tptid_sz) *tptid_sz = 0; if (total_sz < sizeof (scsi_transport_id_t)) return (B_FALSE); switch (tptid->protocol_id) { case PROTOCOL_FIBRE_CHANNEL: /* FC Transport ID validation checks. SPC3 rev23, Table 284 */ if (total_sz < tpd_len || tptid->format_code != 0) return (B_FALSE); break; case PROTOCOL_iSCSI: /* CSTYLED */ { iscsi_transport_id_t *iscsiid; uint16_t adn_len, name_len; /* Check for valid format code, SPC3 rev 23 Table 288 */ if ((total_sz < tpd_len) || (tptid->format_code != 0 && tptid->format_code != 1)) return (B_FALSE); iscsiid = (iscsi_transport_id_t *)tptid; adn_len = READ_SCSI16(iscsiid->add_len, uint16_t); tpd_len = sizeof (iscsi_transport_id_t) + adn_len - 1; /* * iSCSI Transport ID validation checks. * As per SPC3 rev 23 Section 7.5.4.6 and Table 289 & Table 290 */ if (adn_len < 20 || (adn_len % 4 != 0)) return (B_FALSE); name_len = strnlen(iscsiid->iscsi_name, adn_len); if (name_len == 0 || name_len >= adn_len) return (B_FALSE); /* If the format_code is 1 check for ISID seperator */ if ((tptid->format_code == 1) && (strstr(iscsiid->iscsi_name, SCSI_TPTID_ISCSI_ISID_SEPERATOR) == NULL)) return (B_FALSE); } break; case PROTOCOL_SRP: /* SRP Transport ID validation checks. SPC3 rev23, Table 287 */ if (total_sz < tpd_len || tptid->format_code != 0) return (B_FALSE); break; case PROTOCOL_PARALLEL_SCSI: case PROTOCOL_SSA: case PROTOCOL_IEEE_1394: case PROTOCOL_SAS: case PROTOCOL_ADT: case PROTOCOL_ATAPI: default: /* CSTYLED */ { stmf_dflt_scsi_tptid_t *dflttpd; tpd_len = sizeof (stmf_dflt_scsi_tptid_t); if (total_sz < tpd_len) return (B_FALSE); dflttpd = (stmf_dflt_scsi_tptid_t *)tptid; tpd_len = tpd_len + SCSI_READ16(&dflttpd->ident_len) - 1; if (total_sz < tpd_len) return (B_FALSE); } break; } if (tptid_sz) *tptid_sz = tpd_len; return (B_TRUE); } boolean_t stmf_scsilib_tptid_compare(scsi_transport_id_t *tpd1, scsi_transport_id_t *tpd2) { if ((tpd1->protocol_id != tpd2->protocol_id) || (tpd1->format_code != tpd2->format_code)) return (B_FALSE); switch (tpd1->protocol_id) { case PROTOCOL_iSCSI: /* CSTYLED */ { iscsi_transport_id_t *iscsitpd1, *iscsitpd2; uint16_t len; iscsitpd1 = (iscsi_transport_id_t *)tpd1; iscsitpd2 = (iscsi_transport_id_t *)tpd2; len = SCSI_READ16(&iscsitpd1->add_len); if ((memcmp(iscsitpd1->add_len, iscsitpd2->add_len, 2) != 0) || (memcmp(iscsitpd1->iscsi_name, iscsitpd2->iscsi_name, len) != 0)) return (B_FALSE); } break; case PROTOCOL_SRP: /* CSTYLED */ { scsi_srp_transport_id_t *srptpd1, *srptpd2; srptpd1 = (scsi_srp_transport_id_t *)tpd1; srptpd2 = (scsi_srp_transport_id_t *)tpd2; if (memcmp(srptpd1->srp_name, srptpd2->srp_name, sizeof (srptpd1->srp_name)) != 0) return (B_FALSE); } break; case PROTOCOL_FIBRE_CHANNEL: /* CSTYLED */ { scsi_fc_transport_id_t *fctpd1, *fctpd2; fctpd1 = (scsi_fc_transport_id_t *)tpd1; fctpd2 = (scsi_fc_transport_id_t *)tpd2; if (memcmp(fctpd1->port_name, fctpd2->port_name, sizeof (fctpd1->port_name)) != 0) return (B_FALSE); } break; case PROTOCOL_PARALLEL_SCSI: case PROTOCOL_SSA: case PROTOCOL_IEEE_1394: case PROTOCOL_SAS: case PROTOCOL_ADT: case PROTOCOL_ATAPI: default: /* CSTYLED */ { stmf_dflt_scsi_tptid_t *dflt1, *dflt2; uint16_t len; dflt1 = (stmf_dflt_scsi_tptid_t *)tpd1; dflt2 = (stmf_dflt_scsi_tptid_t *)tpd2; len = SCSI_READ16(&dflt1->ident_len); if ((memcmp(dflt1->ident_len, dflt2->ident_len, 2) != 0) || (memcmp(dflt1->ident, dflt2->ident, len) != 0)) return (B_FALSE); } break; } return (B_TRUE); } /* * Changes devid_desc to corresponding TransportID format * Returns :- pointer to stmf_remote_port_t * Note :- Allocates continous memory for stmf_remote_port_t and TransportID, * This memory need to be freed when this remote_port is no longer * used. */ stmf_remote_port_t * stmf_scsilib_devid_to_remote_port(scsi_devid_desc_t *devid) { struct scsi_fc_transport_id *fc_tpd; struct iscsi_transport_id *iscsi_tpd; struct scsi_srp_transport_id *srp_tpd; struct stmf_dflt_scsi_tptid *dflt_tpd; uint16_t ident_len, sz = 0; stmf_remote_port_t *rpt = NULL; ident_len = devid->ident_length; ASSERT(ident_len); switch (devid->protocol_id) { case PROTOCOL_FIBRE_CHANNEL: sz = sizeof (scsi_fc_transport_id_t); rpt = stmf_remote_port_alloc(sz); rpt->rport_tptid->format_code = 0; rpt->rport_tptid->protocol_id = devid->protocol_id; fc_tpd = (scsi_fc_transport_id_t *)rpt->rport_tptid; /* * convert from "wwn.xxxxxxxxxxxxxxxx" to 8-byte binary * skip first 4 byte for "wwn." */ ASSERT(strncmp("wwn.", (char *)devid->ident, 4) == 0); if ((ident_len < SCSI_TPTID_FC_PORT_NAME_SIZE * 2 + 4) || !stmf_base16_str_to_binary((char *)devid->ident + 4, SCSI_TPTID_FC_PORT_NAME_SIZE, fc_tpd->port_name)) goto devid_to_remote_port_fail; break; case PROTOCOL_iSCSI: sz = ALIGNED_TO_8BYTE_BOUNDARY(sizeof (iscsi_transport_id_t) + ident_len - 1); rpt = stmf_remote_port_alloc(sz); rpt->rport_tptid->format_code = 0; rpt->rport_tptid->protocol_id = devid->protocol_id; iscsi_tpd = (iscsi_transport_id_t *)rpt->rport_tptid; SCSI_WRITE16(iscsi_tpd->add_len, ident_len); (void) memcpy(iscsi_tpd->iscsi_name, devid->ident, ident_len); break; case PROTOCOL_SRP: sz = sizeof (scsi_srp_transport_id_t); rpt = stmf_remote_port_alloc(sz); rpt->rport_tptid->format_code = 0; rpt->rport_tptid->protocol_id = devid->protocol_id; srp_tpd = (scsi_srp_transport_id_t *)rpt->rport_tptid; /* * convert from "eui.xxxxxxxxxxxxxxx" to 8-byte binary * skip first 4 byte for "eui." * Assume 8-byte initiator-extension part of srp_name is NOT * stored in devid and hence will be set as zero */ ASSERT(strncmp("eui.", (char *)devid->ident, 4) == 0); if ((ident_len < (SCSI_TPTID_SRP_PORT_NAME_LEN - 8) * 2 + 4) || !stmf_base16_str_to_binary((char *)devid->ident+4, SCSI_TPTID_SRP_PORT_NAME_LEN, srp_tpd->srp_name)) goto devid_to_remote_port_fail; break; case PROTOCOL_PARALLEL_SCSI: case PROTOCOL_SSA: case PROTOCOL_IEEE_1394: case PROTOCOL_SAS: case PROTOCOL_ADT: case PROTOCOL_ATAPI: default : ident_len = devid->ident_length; sz = ALIGNED_TO_8BYTE_BOUNDARY(sizeof (stmf_dflt_scsi_tptid_t) + ident_len - 1); rpt = stmf_remote_port_alloc(sz); rpt->rport_tptid->format_code = 0; rpt->rport_tptid->protocol_id = devid->protocol_id; dflt_tpd = (stmf_dflt_scsi_tptid_t *)rpt->rport_tptid; SCSI_WRITE16(dflt_tpd->ident_len, ident_len); (void) memcpy(dflt_tpd->ident, devid->ident, ident_len); break; } return (rpt); devid_to_remote_port_fail: stmf_remote_port_free(rpt); return (NULL); } stmf_remote_port_t * stmf_remote_port_alloc(uint16_t tptid_sz) { stmf_remote_port_t *rpt; rpt = (stmf_remote_port_t *)kmem_zalloc( sizeof (stmf_remote_port_t) + tptid_sz, KM_SLEEP); rpt->rport_tptid_sz = tptid_sz; rpt->rport_tptid = (scsi_transport_id_t *)(rpt + 1); return (rpt); } void stmf_remote_port_free(stmf_remote_port_t *rpt) { /* * Note: stmf_scsilib_devid_to_remote_port() function allocates * remote port structures for all transports in the same way, So * it is safe to deallocate it in a protocol independent manner. * If any of the allocation method changes, corresponding changes * need to be made here too. */ kmem_free(rpt, sizeof (stmf_remote_port_t) + rpt->rport_tptid_sz); } stmf_lu_t * stmf_check_and_hold_lu(scsi_task_t *task, uint8_t *guid) { stmf_i_scsi_session_t *iss; stmf_lu_t *lu; stmf_i_lu_t *ilu = NULL; stmf_lun_map_t *sm; stmf_lun_map_ent_t *lme; int i; iss = (stmf_i_scsi_session_t *)task->task_session->ss_stmf_private; rw_enter(iss->iss_lockp, RW_READER); sm = iss->iss_sm; for (i = 0; i < sm->lm_nentries; i++) { if (sm->lm_plus[i] == NULL) continue; lme = (stmf_lun_map_ent_t *)sm->lm_plus[i]; lu = lme->ent_lu; if (bcmp(lu->lu_id->ident, guid, 16) == 0) { break; } lu = NULL; } if (!lu) { goto hold_lu_done; } ilu = lu->lu_stmf_private; mutex_enter(&ilu->ilu_task_lock); ilu->ilu_additional_ref++; mutex_exit(&ilu->ilu_task_lock); hold_lu_done: rw_exit(iss->iss_lockp); return (lu); } void stmf_release_lu(stmf_lu_t *lu) { stmf_i_lu_t *ilu; ilu = lu->lu_stmf_private; ASSERT(ilu->ilu_additional_ref != 0); mutex_enter(&ilu->ilu_task_lock); ilu->ilu_additional_ref--; mutex_exit(&ilu->ilu_task_lock); } int stmf_is_task_being_aborted(scsi_task_t *task) { stmf_i_scsi_task_t *itask; itask = (stmf_i_scsi_task_t *)task->task_stmf_private; if (itask->itask_flags & ITASK_BEING_ABORTED) return (1); return (0); } volatile boolean_t stmf_pgr_aptpl_always = B_FALSE; boolean_t stmf_is_pgr_aptpl_always() { return (stmf_pgr_aptpl_always); }