/* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2004 Video54 Technologies, Inc. * Copyright (c) 2004-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "arn_core.h" #include "arn_hw.h" #include "arn_reg.h" static struct ath_rate_table ar5416_11na_ratetable = { 42, {0}, { { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 0, 2, 1, 0, 0, 0, 0, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 0, 3, 1, 1, 1, 1, 1, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, 24, 2, 4, 2, 2, 2, 2, 2, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 2, 6, 2, 3, 3, 3, 3, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, 48, 4, 10, 3, 4, 4, 4, 4, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 4, 14, 3, 5, 5, 5, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 4, 20, 3, 6, 6, 6, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 4, 23, 3, 7, 7, 7, 7, 0 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ 6400, 0x80, 0x00, 0, 0, 2, 3, 8, 24, 8, 24, 3216 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ 12700, 0x81, 0x00, 1, 2, 4, 3, 9, 25, 9, 25, 6434 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ 18800, 0x82, 0x00, 2, 2, 6, 3, 10, 26, 10, 26, 9650 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ 25000, 0x83, 0x00, 3, 4, 10, 3, 11, 27, 11, 27, 12868 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ 36700, 0x84, 0x00, 4, 4, 14, 3, 12, 28, 12, 28, 19304 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ 48100, 0x85, 0x00, 5, 4, 20, 3, 13, 29, 13, 29, 25740 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ 53500, 0x86, 0x00, 6, 4, 23, 3, 14, 30, 14, 30, 28956 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ 59000, 0x87, 0x00, 7, 4, 25, 3, 15, 31, 15, 32, 32180 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ 12700, 0x88, 0x00, 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ 24800, 0x89, 0x00, 9, 2, 4, 3, 17, 34, 17, 34, 12860 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ 36600, 0x8a, 0x00, 10, 2, 6, 3, 18, 35, 18, 35, 19300 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ 48100, 0x8b, 0x00, 11, 4, 10, 3, 19, 36, 19, 36, 25736 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ 69500, 0x8c, 0x00, 12, 4, 14, 3, 20, 37, 20, 37, 38600 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ 89500, 0x8d, 0x00, 13, 4, 20, 3, 21, 38, 21, 38, 51472 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ 98900, 0x8e, 0x00, 14, 4, 23, 3, 22, 39, 22, 39, 57890 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ 108300, 0x8f, 0x00, 15, 4, 25, 3, 23, 40, 23, 41, 64320 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ 13200, 0x80, 0x00, 0, 0, 2, 3, 8, 24, 24, 24, 6684 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ 25900, 0x81, 0x00, 1, 2, 4, 3, 9, 25, 25, 25, 13368 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ 38600, 0x82, 0x00, 2, 2, 6, 3, 10, 26, 26, 26, 20052 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ 49800, 0x83, 0x00, 3, 4, 10, 3, 11, 27, 27, 27, 26738 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ 72200, 0x84, 0x00, 4, 4, 14, 3, 12, 28, 28, 28, 40104 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ 92900, 0x85, 0x00, 5, 4, 20, 3, 13, 29, 29, 29, 53476 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5Mb */ 102700, 0x86, 0x00, 6, 4, 23, 3, 14, 30, 30, 30, 60156 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ 112000, 0x87, 0x00, 7, 4, 25, 3, 15, 31, 32, 32, 66840 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150Mb */ 122000, 0x87, 0x00, 7, 4, 25, 3, 15, 31, 32, 32, 74200 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ 25800, 0x88, 0x00, 8, 0, 2, 3, 16, 33, 33, 33, 13360 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ 49800, 0x89, 0x00, 9, 2, 4, 3, 17, 34, 34, 34, 26720 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ 71900, 0x8a, 0x00, 10, 2, 6, 3, 18, 35, 35, 35, 40080 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ 92500, 0x8b, 0x00, 11, 4, 10, 3, 19, 36, 36, 36, 53440 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ 130300, 0x8c, 0x00, 12, 4, 14, 3, 20, 37, 37, 37, 80160 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ 162800, 0x8d, 0x00, 13, 4, 20, 3, 21, 38, 38, 38, 106880 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ 178200, 0x8e, 0x00, 14, 4, 23, 3, 22, 39, 39, 39, 120240 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ 192100, 0x8f, 0x00, 15, 4, 25, 3, 23, 40, 41, 41, 133600 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ 207000, 0x8f, 0x00, 15, 4, 25, 3, 23, 40, 41, 41, 148400 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ }; /* * 4ms frame limit not used for NG mode. The values filled * for HT are the 64K max aggregate limit */ static struct ath_rate_table ar5416_11ng_ratetable = { 46, {0}, { { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, 2, 0, 0, 1, 0, 0, 0, 0, 0 }, { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ 1900, 0x1a, 0x04, 4, 1, 1, 1, 1, 1, 1, 1, 0 }, { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ 4900, 0x19, 0x04, 11, 2, 2, 2, 2, 2, 2, 2, 0 }, { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ 8100, 0x18, 0x04, 22, 3, 3, 2, 3, 3, 3, 3, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 4, 2, 1, 4, 4, 4, 4, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 4, 3, 1, 5, 5, 5, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10100, 0x0a, 0x00, 24, 6, 4, 1, 6, 6, 6, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 14100, 0x0e, 0x00, 36, 6, 6, 2, 7, 7, 7, 7, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17700, 0x09, 0x00, 48, 8, 10, 3, 8, 8, 8, 8, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23700, 0x0d, 0x00, 72, 8, 14, 3, 9, 9, 9, 9, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 8, 20, 3, 10, 10, 10, 10, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 30900, 0x0c, 0x00, 108, 8, 23, 3, 11, 11, 11, 11, 0 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */ 6400, 0x80, 0x00, 0, 4, 2, 3, 12, 28, 12, 28, 3216 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */ 12700, 0x81, 0x00, 1, 6, 4, 3, 13, 29, 13, 29, 6434 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */ 18800, 0x82, 0x00, 2, 6, 6, 3, 14, 30, 14, 30, 9650 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */ 25000, 0x83, 0x00, 3, 8, 10, 3, 15, 31, 15, 31, 12868 }, { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */ 36700, 0x84, 0x00, 4, 8, 14, 3, 16, 32, 16, 32, 19304 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */ 48100, 0x85, 0x00, 5, 8, 20, 3, 17, 33, 17, 33, 25740 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */ 53500, 0x86, 0x00, 6, 8, 23, 3, 18, 34, 18, 34, 28956 }, { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */ 59000, 0x87, 0x00, 7, 8, 25, 3, 19, 35, 19, 36, 32180 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */ 12700, 0x88, 0x00, 8, 4, 2, 3, 20, 37, 20, 37, 6430 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */ 24800, 0x89, 0x00, 9, 6, 4, 3, 21, 38, 21, 38, 12860 }, { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */ 36600, 0x8a, 0x00, 10, 6, 6, 3, 22, 39, 22, 39, 19300 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */ 48100, 0x8b, 0x00, 11, 8, 10, 3, 23, 40, 23, 40, 25736 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */ 69500, 0x8c, 0x00, 12, 8, 14, 3, 24, 41, 24, 41, 38600 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */ 89500, 0x8d, 0x00, 13, 8, 20, 3, 25, 42, 25, 42, 51472 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */ 98900, 0x8e, 0x00, 14, 8, 23, 3, 26, 43, 26, 44, 57890 }, { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */ 108300, 0x8f, 0x00, 15, 8, 25, 3, 27, 44, 27, 45, 64320 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */ 13200, 0x80, 0x00, 0, 8, 2, 3, 12, 28, 28, 28, 6684 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */ 25900, 0x81, 0x00, 1, 8, 4, 3, 13, 29, 29, 29, 13368 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */ 38600, 0x82, 0x00, 2, 8, 6, 3, 14, 30, 30, 30, 20052 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */ 49800, 0x83, 0x00, 3, 8, 10, 3, 15, 31, 31, 31, 26738 }, { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */ 72200, 0x84, 0x00, 4, 8, 14, 3, 16, 32, 32, 32, 40104 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */ 92900, 0x85, 0x00, 5, 8, 20, 3, 17, 33, 33, 33, 53476 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */ 102700, 0x86, 0x00, 6, 8, 23, 3, 18, 34, 34, 34, 60156 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */ 112000, 0x87, 0x00, 7, 8, 23, 3, 19, 35, 36, 36, 66840 }, { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ 122000, 0x87, 0x00, 7, 8, 25, 3, 19, 35, 36, 36, 74200 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */ 25800, 0x88, 0x00, 8, 8, 2, 3, 20, 37, 37, 37, 13360 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */ 49800, 0x89, 0x00, 9, 8, 4, 3, 21, 38, 38, 38, 26720 }, { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */ 71900, 0x8a, 0x00, 10, 8, 6, 3, 22, 39, 39, 39, 40080 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */ 92500, 0x8b, 0x00, 11, 8, 10, 3, 23, 40, 40, 40, 53440 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */ 130300, 0x8c, 0x00, 12, 8, 14, 3, 24, 41, 41, 41, 80160 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */ 162800, 0x8d, 0x00, 13, 8, 20, 3, 25, 42, 42, 42, 106880 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */ 178200, 0x8e, 0x00, 14, 8, 23, 3, 26, 43, 43, 43, 120240 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */ 192100, 0x8f, 0x00, 15, 8, 23, 3, 27, 44, 45, 45, 133600 }, { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ 207000, 0x8f, 0x00, 15, 8, 25, 3, 27, 44, 45, 45, 148400 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11a_ratetable = { 8, {0}, { { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, (0x80|12), 0, 2, 1, 0, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 0, 3, 1, 1, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, (0x80|24), 2, 4, 2, 2, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 2, 6, 2, 3, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, (0x80|48), 4, 10, 3, 4, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 4, 14, 3, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 4, 19, 3, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 4, 23, 3, 7, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11g_ratetable = { 12, {0}, { { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, 2, 0, 0, 1, 0, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ 1900, 0x1a, 0x04, 4, 1, 1, 1, 1, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ 4900, 0x19, 0x04, 11, 2, 2, 2, 2, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ 8100, 0x18, 0x04, 22, 3, 3, 2, 3, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */ 5400, 0x0b, 0x00, 12, 4, 2, 1, 4, 0 }, { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */ 7800, 0x0f, 0x00, 18, 4, 3, 1, 5, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */ 10000, 0x0a, 0x00, 24, 6, 4, 1, 6, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */ 13900, 0x0e, 0x00, 36, 6, 6, 2, 7, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */ 17300, 0x09, 0x00, 48, 8, 10, 3, 8, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */ 23000, 0x0d, 0x00, 72, 8, 14, 3, 9, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */ 27400, 0x08, 0x00, 96, 8, 19, 3, 10, 0 }, { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */ 29300, 0x0c, 0x00, 108, 8, 23, 3, 11, 0 }, }, 50, /* probe interval */ 50, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static struct ath_rate_table ar5416_11b_ratetable = { 4, {0}, { { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */ 900, 0x1b, 0x00, (0x80|2), 0, 0, 1, 0, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */ 1800, 0x1a, 0x04, (0x80|4), 1, 1, 1, 1, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */ 4300, 0x19, 0x04, (0x80|11), 1, 2, 2, 2, 0 }, { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */ 7100, 0x18, 0x04, (0x80|22), 1, 4, 100, 3, 0 }, }, 100, /* probe interval */ 100, /* rssi reduce interval */ 0, /* Phy rates allowed initially */ }; static inline int8_t median(int8_t a, int8_t b, int8_t c) { if (a >= b) { if (b >= c) return (b); else if (a > c) return (c); else return (a); } else { if (a >= c) return (a); else if (b >= c) return (c); else return (b); } } static void arn_rc_sort_validrates(struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv) { uint8_t i, j, idx, idx_next; for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) { for (j = 0; j <= i-1; j++) { idx = ath_rc_priv->valid_rate_index[j]; idx_next = ath_rc_priv->valid_rate_index[j+1]; if (rate_table->info[idx].ratekbps > rate_table->info[idx_next].ratekbps) { ath_rc_priv->valid_rate_index[j] = idx_next; ath_rc_priv->valid_rate_index[j+1] = idx; } } } } static void arn_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv) { uint8_t i; for (i = 0; i < ath_rc_priv->rate_table_size; i++) ath_rc_priv->valid_rate_index[i] = 0; } static inline void arn_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv, uint8_t index, int valid_tx_rate) { ASSERT(index <= ath_rc_priv->rate_table_size); ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0; } static inline int /* LINTED E_STATIC_UNUSED */ arn_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv, uint8_t index) { ASSERT(index <= ath_rc_priv->rate_table_size); return (ath_rc_priv->valid_rate_index[index]); } /* ARGSUSED */ static inline int arn_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv, uint8_t cur_valid_txrate, uint8_t *next_idx) { uint8_t i; for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) { if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { *next_idx = ath_rc_priv->valid_rate_index[i+1]; return (1); } } /* No more valid rates */ *next_idx = 0; return (0); } /* Return true only for single stream */ static int arn_rc_valid_phyrate(uint32_t phy, uint32_t capflag, int ignore_cw) { if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG)) return (0); if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) return (0); if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) return (0); if (!ignore_cw && WLAN_RC_PHY_HT(phy)) if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) return (0); if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) return (0); return (1); } /* ARGSUSED */ static inline int arn_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv, uint8_t cur_valid_txrate, uint8_t *next_idx) { int8_t i; for (i = 1; i < ath_rc_priv->max_valid_rate; i++) { if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) { *next_idx = ath_rc_priv->valid_rate_index[i-1]; return (1); } } return (0); } static uint8_t arn_rc_init_validrates(struct ath_rate_priv *ath_rc_priv, struct ath_rate_table *rate_table, uint32_t capflag) { uint8_t i, hi = 0; uint32_t valid; for (i = 0; i < rate_table->rate_cnt; i++) { valid = (ath_rc_priv->single_stream ? rate_table->info[i].valid_single_stream : rate_table->info[i].valid); if (valid == 1) { uint32_t phy = rate_table->info[i].phy; uint8_t valid_rate_count = 0; if (!arn_rc_valid_phyrate(phy, capflag, 0)) continue; valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy]; ath_rc_priv-> valid_phy_rateidx[phy][valid_rate_count] = i; ath_rc_priv->valid_phy_ratecnt[phy] += 1; arn_rc_set_valid_txmask(ath_rc_priv, i, 1); hi = A_MAX(hi, i); } } return (hi); } static uint8_t arn_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv, struct ath_rate_table *rate_table, struct ath_rateset *rateset, uint32_t capflag) { uint8_t i, j, hi = 0; /* Use intersection of working rates and valid rates */ for (i = 0; i < rateset->rs_nrates; i++) { for (j = 0; j < rate_table->rate_cnt; j++) { uint32_t phy = rate_table->info[j].phy; uint32_t valid = (ath_rc_priv->single_stream ? rate_table->info[j].valid_single_stream : rate_table->info[j].valid); uint8_t rate = rateset->rs_rates[i]; uint8_t dot11rate = rate_table->info[j].dot11rate; /* * We allow a rate only if its valid and the * capflag matches one of the validity * (VALID/VALID_20/VALID_40) flags */ if (((rate & 0x7F) == (dot11rate & 0x7F)) && ((valid & WLAN_RC_CAP_MODE(capflag)) == WLAN_RC_CAP_MODE(capflag)) && !WLAN_RC_PHY_HT(phy)) { uint8_t valid_rate_count = 0; if (!arn_rc_valid_phyrate(phy, capflag, 0)) continue; valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy]; ath_rc_priv->valid_phy_rateidx[phy] [valid_rate_count] = j; ath_rc_priv->valid_phy_ratecnt[phy] += 1; arn_rc_set_valid_txmask(ath_rc_priv, j, 1); hi = A_MAX(hi, j); } } } return (hi); } static uint8_t arn_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv, struct ath_rate_table *rate_table, uint8_t *mcs_set, uint32_t capflag) { struct ath_rateset *rateset = (struct ath_rateset *)mcs_set; uint8_t i, j, hi = 0; /* Use intersection of working rates and valid rates */ for (i = 0; i < rateset->rs_nrates; i++) { for (j = 0; j < rate_table->rate_cnt; j++) { uint32_t phy = rate_table->info[j].phy; uint32_t valid = (ath_rc_priv->single_stream ? rate_table->info[j].valid_single_stream : rate_table->info[j].valid); uint8_t rate = rateset->rs_rates[i]; uint8_t dot11rate = rate_table->info[j].dot11rate; if (((rate & 0x7F) != (dot11rate & 0x7F)) || !WLAN_RC_PHY_HT(phy) || !WLAN_RC_PHY_HT_VALID(valid, capflag)) continue; if (!arn_rc_valid_phyrate(phy, capflag, 0)) continue; ath_rc_priv->valid_phy_rateidx[phy] [ath_rc_priv->valid_phy_ratecnt[phy]] = j; ath_rc_priv->valid_phy_ratecnt[phy] += 1; arn_rc_set_valid_txmask(ath_rc_priv, j, 1); hi = A_MAX(hi, j); } } return (hi); } /* ARGSUSED */ static uint8_t arn_rc_ratefind_ht(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ath_rate_table *rate_table, int probe_allowed, int *is_probing, int is_retry) { uint32_t dt, best_thruput, this_thruput, now_msec; uint8_t rate, next_rate, best_rate, maxindex, minindex; int8_t rssi_last, rssi_reduce = 0, index = 0; *is_probing = 0; rssi_last = median(ath_rc_priv->rssi_last, ath_rc_priv->rssi_last_prev, ath_rc_priv->rssi_last_prev2); /* * Age (reduce) last ack rssi based on how old it is. * The bizarre numbers are so the delta is 160msec, * meaning we divide by 16. * 0msec <= dt <= 25msec: don't derate * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB * 185msec <= dt: derate by 10dB */ /* now_msec = jiffies_to_msecs(jiffies); */ now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */ dt = now_msec - ath_rc_priv->rssi_time; if (dt >= 185) rssi_reduce = 10; else if (dt >= 25) rssi_reduce = (uint8_t)((dt - 25) >> 4); /* Now reduce rssi_last by rssi_reduce */ if (rssi_last < rssi_reduce) rssi_last = 0; else rssi_last -= rssi_reduce; /* * Now look up the rate in the rssi table and return it. * If no rates match then we return 0 (lowest rate) */ best_thruput = 0; maxindex = ath_rc_priv->max_valid_rate-1; minindex = 0; best_rate = minindex; /* * Try the higher rate first. It will reduce memory moving time * if we have very good channel characteristics. */ for (index = maxindex; index >= minindex; index--) { uint8_t per_thres; rate = ath_rc_priv->valid_rate_index[index]; if (rate > ath_rc_priv->rate_max_phy) continue; /* * For TCP the average collision rate is around 11%, * so we ignore PERs less than this. This is to * prevent the rate we are currently using (whose * PER might be in the 10-15 range because of TCP * collisions) looking worse than the next lower * rate whose PER has decayed close to 0. If we * used to next lower rate, its PER would grow to * 10-15 and we would be worse off then staying * at the current rate. */ per_thres = ath_rc_priv->state[rate].per; if (per_thres < 12) per_thres = 12; this_thruput = rate_table->info[rate].user_ratekbps * (100 - per_thres); if (best_thruput <= this_thruput) { best_thruput = this_thruput; best_rate = rate; } } rate = best_rate; /* * if we are retrying for more than half the number * of max retries, use the min rate for the next retry */ if (is_retry) rate = ath_rc_priv->valid_rate_index[minindex]; ath_rc_priv->rssi_last_lookup = rssi_last; /* * Must check the actual rate (ratekbps) to account for * non-monoticity of 11g's rate table */ if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) { rate = ath_rc_priv->rate_max_phy; /* Probe the next allowed phy state */ /* FIXME:XXXX Check to make sure ratMax is checked properly */ if (arn_rc_get_nextvalid_txrate(rate_table, ath_rc_priv, rate, &next_rate) && (now_msec - ath_rc_priv->probe_time > rate_table->probe_interval) && (ath_rc_priv->hw_maxretry_pktcnt >= 1)) { rate = next_rate; ath_rc_priv->probe_rate = rate; ath_rc_priv->probe_time = now_msec; ath_rc_priv->hw_maxretry_pktcnt = 0; *is_probing = 1; } } if (rate > (ath_rc_priv->rate_table_size - 1)) rate = ath_rc_priv->rate_table_size - 1; ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || (rate_table->info[rate].valid_single_stream && ath_rc_priv->single_stream)); return (rate); } static void arn_rc_rate_set_series(struct ath_rate_table *rate_table, struct ath9k_tx_rate *rate, uint8_t tries, uint8_t rix, int rtsctsenable) { #if 0 struct ieee80211_node *in; ieee80211com_t *ic = (ieee80211com_t *)sc; #endif rate->count = tries; rate->idx = rix; if (rtsctsenable) rate->flags |= ATH9K_TX_RC_USE_RTS_CTS; #if 0 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && (in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { rate->flags |= ATH9K_TX_RC_USE_SHORT_PREAMBLE; } #endif if (WLAN_RC_PHY_40(rate_table->info[rix].phy)) rate->flags |= ATH9K_TX_RC_40_MHZ_WIDTH; if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy)) rate->flags |= ATH9K_TX_RC_SHORT_GI; if (WLAN_RC_PHY_HT(rate_table->info[rix].phy)) rate->flags |= ATH9K_TX_RC_MCS; } /* ARGSUSED */ static uint8_t arn_rc_rate_getidx(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ath_rate_table *rate_table, uint8_t rix, uint16_t stepdown, uint16_t min_rate) { uint32_t j; uint8_t nextindex; if (min_rate) { for (j = RATE_TABLE_SIZE; j > 0; j--) { if (arn_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv, rix, &nextindex)) rix = nextindex; else break; } } else { for (j = stepdown; j > 0; j--) { if (arn_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv, rix, &nextindex)) rix = nextindex; else break; } } return (rix); } static void arn_rc_ratefind(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ath_buf *bf, int num_tries, int num_rates, int *is_probe, boolean_t is_retry) { uint8_t try_per_rate = 0, i = 0, rix, nrix; struct ath_rate_table *rate_table; struct ath9k_tx_rate *rates = bf->rates; ieee80211com_t *ic = (ieee80211com_t *)sc; rate_table = sc->sc_currates; rix = arn_rc_ratefind_ht(sc, ath_rc_priv, rate_table, 1, is_probe, is_retry); nrix = rix; if (*is_probe) { /* * set one try for probe rates. For the * probes don't enable rts */ arn_rc_rate_set_series(rate_table, &rates[i++], 1, nrix, 0); try_per_rate = (num_tries/num_rates); /* * Get the next tried/allowed rate. No RTS for the next series * after the probe rate */ nrix = arn_rc_rate_getidx(sc, ath_rc_priv, rate_table, nrix, 1, 0); arn_rc_rate_set_series(rate_table, &rates[i++], try_per_rate, nrix, 0); } else { try_per_rate = (num_tries/num_rates); /* Set the choosen rate. No RTS for first series entry. */ arn_rc_rate_set_series(rate_table, &rates[i++], try_per_rate, nrix, 0); } /* Fill in the other rates for multirate retry */ for (; i < num_rates; i++) { uint8_t try_num; uint8_t min_rate; try_num = ((i + 1) == num_rates) ? num_tries - (try_per_rate * i) : try_per_rate; /* LINTED E_FALSE_LOGICAL_EXPR */ min_rate = (((i + 1) == num_rates) && 0); nrix = arn_rc_rate_getidx(sc, ath_rc_priv, rate_table, nrix, 1, min_rate); /* All other rates in the series have RTS enabled */ arn_rc_rate_set_series(rate_table, &rates[i], try_num, nrix, 1); } /* * NB:Change rate series to enable aggregation when operating * at lower MCS rates. When first rate in series is MCS2 * in HT40 @ 2.4GHz, series should look like: * * {MCS2, MCS1, MCS0, MCS0}. * * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should * look like: * * {MCS3, MCS2, MCS1, MCS1} * * So, set fourth rate in series to be same as third one for * above conditions. */ if (IEEE80211_IS_CHAN_HTG(ic->ic_curchan)) { uint8_t dot11rate = rate_table->info[rix].dot11rate; uint8_t phy = rate_table->info[rix].phy; if (i == 4 && ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { rates[3].idx = rates[2].idx; rates[3].flags = rates[2].flags; } } } /* ARGSUSED */ static boolean_t arn_rc_update_per(struct arn_softc *sc, struct ath_rate_table *rate_table, struct ath_rate_priv *ath_rc_priv, struct ath_tx_info_priv *tx_info_priv, int tx_rate, int xretries, int retries, uint32_t now_msec) { boolean_t state_change = B_FALSE; int count; uint8_t last_per; static uint32_t nretry_to_per_lookup[10] = { 100 * 0 / 1, 100 * 1 / 4, 100 * 1 / 2, 100 * 3 / 4, 100 * 4 / 5, 100 * 5 / 6, 100 * 6 / 7, 100 * 7 / 8, 100 * 8 / 9, 100 * 9 / 10 }; last_per = ath_rc_priv->state[tx_rate].per; if (xretries) { if (xretries == 1) { ath_rc_priv->state[tx_rate].per += 30; if (ath_rc_priv->state[tx_rate].per > 100) ath_rc_priv->state[tx_rate].per = 100; } else { /* xretries == 2 */ count = ARRAY_SIZE(nretry_to_per_lookup); if (retries >= count) retries = count - 1; /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ ath_rc_priv->state[tx_rate].per = (uint8_t)(last_per - (last_per >> 3) + (100 >> 3)); } /* xretries == 1 or 2 */ if (ath_rc_priv->probe_rate == tx_rate) ath_rc_priv->probe_rate = 0; } else { /* xretries == 0 */ count = ARRAY_SIZE(nretry_to_per_lookup); if (retries >= count) retries = count - 1; if (tx_info_priv->n_bad_frames) { /* * new_PER = 7/8*old_PER + 1/8*(currentPER) * Assuming that n_frames is not 0. The current PER * from the retries is 100 * retries / (retries+1), * since the first retries attempts failed, and the * next one worked. For the one that worked, * n_bad_frames subframes out of n_frames wored, * so the PER for that part is * 100 * n_bad_frames / n_frames, and it contributes * 100 * n_bad_frames / (n_frames * (retries+1)) to * the above PER. The expression below is a * simplified version of the sum of these two terms. */ if (tx_info_priv->n_frames > 0) { int n_frames, n_bad_frames; uint8_t cur_per, new_per; n_bad_frames = retries * tx_info_priv->n_frames + tx_info_priv->n_bad_frames; n_frames = tx_info_priv->n_frames * (retries + 1); cur_per = (100 * n_bad_frames / n_frames) >> 3; new_per = (uint8_t) (last_per - (last_per >> 3) + cur_per); ath_rc_priv->state[tx_rate].per = new_per; } } else { ath_rc_priv->state[tx_rate].per = (uint8_t)(last_per - (last_per >> 3) + (nretry_to_per_lookup[retries] >> 3)); } ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev; ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last; ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi; ath_rc_priv->rssi_time = now_msec; /* * If we got at most one retry then increase the max rate if * this was a probe. Otherwise, ignore the probe. */ if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) { if (retries > 0 || 2 * tx_info_priv->n_bad_frames > tx_info_priv->n_frames) { /* * Since we probed with just a single attempt, * any retries means the probe failed. Also, * if the attempt worked, but more than half * the subframes were bad then also consider * the probe a failure. */ ath_rc_priv->probe_rate = 0; } else { uint8_t probe_rate = 0; ath_rc_priv->rate_max_phy = ath_rc_priv->probe_rate; probe_rate = ath_rc_priv->probe_rate; if (ath_rc_priv->state[probe_rate].per > 30) ath_rc_priv->state[probe_rate].per = 20; ath_rc_priv->probe_rate = 0; /* * Since this probe succeeded, we allow the next * probe twice as soon. This allows the maxRate * to move up faster if the probes are * succesful. */ ath_rc_priv->probe_time = now_msec - rate_table->probe_interval / 2; } } if (retries > 0) { /* * Don't update anything. We don't know if * this was because of collisions or poor signal. * * Later: if rssi_ack is close to * ath_rc_priv->state[txRate].rssi_thres and we see lots * of retries, then we could increase * ath_rc_priv->state[txRate].rssi_thres. */ ath_rc_priv->hw_maxretry_pktcnt = 0; } else { int32_t rssi_ackAvg; int8_t rssi_thres; int8_t rssi_ack_vmin; /* * It worked with no retries. First ignore bogus (small) * rssi_ack values. */ if (tx_rate == ath_rc_priv->rate_max_phy && ath_rc_priv->hw_maxretry_pktcnt < 255) { ath_rc_priv->hw_maxretry_pktcnt++; } if (tx_info_priv->tx.ts_rssi < rate_table->info[tx_rate].rssi_ack_validmin) goto exit; /* Average the rssi */ if (tx_rate != ath_rc_priv->rssi_sum_rate) { ath_rc_priv->rssi_sum_rate = tx_rate; ath_rc_priv->rssi_sum = ath_rc_priv->rssi_sum_cnt = 0; } ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi; ath_rc_priv->rssi_sum_cnt++; if (ath_rc_priv->rssi_sum_cnt < 4) goto exit; rssi_ackAvg = (ath_rc_priv->rssi_sum + 2) / 4; rssi_thres = ath_rc_priv->state[tx_rate].rssi_thres; rssi_ack_vmin = rate_table->info[tx_rate].rssi_ack_validmin; ath_rc_priv->rssi_sum = ath_rc_priv->rssi_sum_cnt = 0; /* Now reduce the current rssi threshold */ if ((rssi_ackAvg < rssi_thres + 2) && (rssi_thres > rssi_ack_vmin)) { ath_rc_priv->state[tx_rate].rssi_thres--; } state_change = B_TRUE; } } exit: return (state_change); } /* * Update PER, RSSI and whatever else that the code thinks * it is doing. If you can make sense of all this, you really * need to go out more. */ static void arn_rc_update_ht(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ath_tx_info_priv *tx_info_priv, int tx_rate, int xretries, int retries) { #define CHK_RSSI(rate) \ ((ath_rc_priv->state[(rate)].rssi_thres + \ rate_table->info[(rate)].rssi_ack_deltamin) > \ ath_rc_priv->state[(rate)+1].rssi_thres) /* u32 now_msec = jiffies_to_msecs(jiffies); */ uint32_t now_msec = drv_hztousec(ddi_get_lbolt())/1000; /* mescs ? */ int rate; uint8_t last_per; boolean_t state_change = B_FALSE; struct ath_rate_table *rate_table = sc->sc_currates; int size = ath_rc_priv->rate_table_size; if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt)) return; /* To compensate for some imbalance between ctrl and ext. channel */ if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) tx_info_priv->tx.ts_rssi = tx_info_priv->tx.ts_rssi < 3 ? 0 : tx_info_priv->tx.ts_rssi - 3; last_per = ath_rc_priv->state[tx_rate].per; /* Update PER first */ state_change = arn_rc_update_per(sc, rate_table, ath_rc_priv, tx_info_priv, tx_rate, xretries, retries, now_msec); /* * If this rate looks bad (high PER) then stop using it for * a while (except if we are probing). */ if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 && rate_table->info[tx_rate].ratekbps <= rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) { (void) arn_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv, (uint8_t)tx_rate, &ath_rc_priv->rate_max_phy); /* Don't probe for a little while. */ ath_rc_priv->probe_time = now_msec; } if (state_change) { /* * Make sure the rates above this have higher rssi thresholds. * (Note: Monotonicity is kept within the OFDM rates and * within the CCK rates. However, no adjustment is * made to keep the rssi thresholds monotonically * increasing between the CCK and OFDM rates.) */ for (rate = tx_rate; rate < size - 1; rate++) { if (rate_table->info[rate+1].phy != rate_table->info[tx_rate].phy) break; if (CHK_RSSI(rate)) { ath_rc_priv->state[rate+1].rssi_thres = ath_rc_priv->state[rate].rssi_thres + rate_table->info[rate].rssi_ack_deltamin; } } /* Make sure the rates below this have lower rssi thresholds. */ for (rate = tx_rate - 1; rate >= 0; rate--) { if (rate_table->info[rate].phy != rate_table->info[tx_rate].phy) break; if (CHK_RSSI(rate)) { if (ath_rc_priv->state[rate+1].rssi_thres < rate_table->info[rate].rssi_ack_deltamin) ath_rc_priv->state[rate].rssi_thres = 0; else { ath_rc_priv->state[rate].rssi_thres = ath_rc_priv->state[rate+1]. rssi_thres - rate_table->info[rate]. rssi_ack_deltamin; } if (ath_rc_priv->state[rate].rssi_thres < rate_table->info[rate].rssi_ack_validmin) { ath_rc_priv->state[rate].rssi_thres = rate_table->info[rate]. rssi_ack_validmin; } } } } /* Make sure the rates below this have lower PER */ /* Monotonicity is kept only for rates below the current rate. */ if (ath_rc_priv->state[tx_rate].per < last_per) { for (rate = tx_rate - 1; rate >= 0; rate--) { if (rate_table->info[rate].phy != rate_table->info[tx_rate].phy) break; if (ath_rc_priv->state[rate].per > ath_rc_priv->state[rate+1].per) { ath_rc_priv->state[rate].per = ath_rc_priv->state[rate+1].per; } } } /* Maintain monotonicity for rates above the current rate */ for (rate = tx_rate; rate < size - 1; rate++) { if (ath_rc_priv->state[rate+1].per < ath_rc_priv->state[rate].per) ath_rc_priv->state[rate+1].per = ath_rc_priv->state[rate].per; } /* * Every so often, we reduce the thresholds and * PER (different for CCK and OFDM). */ if (now_msec - ath_rc_priv->rssi_down_time >= rate_table->rssi_reduce_interval) { for (rate = 0; rate < size; rate++) { if (ath_rc_priv->state[rate].rssi_thres > rate_table->info[rate].rssi_ack_validmin) ath_rc_priv->state[rate].rssi_thres -= 1; } ath_rc_priv->rssi_down_time = now_msec; } /* * Every so often, we reduce the thresholds * and PER (different for CCK and OFDM). */ if (now_msec - ath_rc_priv->per_down_time >= rate_table->rssi_reduce_interval) { for (rate = 0; rate < size; rate++) { ath_rc_priv->state[rate].per = 7 * ath_rc_priv->state[rate].per / 8; } ath_rc_priv->per_down_time = now_msec; } #undef CHK_RSSI } static int ath_rc_get_rateindex(struct ath_rate_table *rate_table, struct ath9k_tx_rate *rate) { int rix; if ((rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH) && (rate->flags & ATH9K_TX_RC_SHORT_GI)) rix = rate_table->info[rate->idx].ht_index; else if (rate->flags & ATH9K_TX_RC_SHORT_GI) rix = rate_table->info[rate->idx].sgi_index; else if (rate->flags & ATH9K_TX_RC_40_MHZ_WIDTH) rix = rate_table->info[rate->idx].cw40index; else rix = rate_table->info[rate->idx].base_index; return (rix); } static void ath_rc_tx_status(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ath_buf *bf, int final_ts_idx, int xretries, int long_retry) { struct ath_tx_info_priv *tx_info_priv = (struct ath_tx_info_priv *)&bf->tx_info_priv; struct ath9k_tx_rate *rates = bf->rates; struct ath_rate_table *rate_table; uint32_t i = 0, rix; uint8_t flags; rate_table = sc->sc_currates; /* * If the first rate is not the final index, there * are intermediate rate failures to be processed. */ if (final_ts_idx != 0) { /* Process intermediate rates that failed. */ for (i = 0; i < final_ts_idx; i++) { if (rates[i].count != 0 && (rates[i].idx >= 0)) { flags = rates[i].flags; /* * If HT40 and we have switched mode from * 40 to 20 => don't update */ if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) && (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) return; rix = ath_rc_get_rateindex(rate_table, &rates[i]); arn_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix, xretries ? 1 : 2, rates[i].count); } } } else { /* * Handle the special case of MIMO PS burst, where the second * aggregate is sent out with only one rate and one try. * Treating it as an excessive retry penalizes the rate * inordinately. */ if (rates[0].count == 1 && xretries == 1) xretries = 2; } flags = rates[i].flags; /* If HT40 and we have switched mode from 40 to 20 => don't update */ if ((flags & ATH9K_TX_RC_40_MHZ_WIDTH) && (ath_rc_priv->rc_phy_mode != WLAN_RC_40_FLAG)) { return; } rix = ath_rc_get_rateindex(rate_table, &rates[i]); arn_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix, xretries, long_retry); } static struct ath_rate_table * arn_choose_rate_table(struct arn_softc *sc, uint32_t cur_mode, boolean_t is_ht, boolean_t is_cw_40) { int ath9k_mode; switch (cur_mode) { case IEEE80211_MODE_11A: case IEEE80211_MODE_11NA: ath9k_mode = ATH9K_MODE_11A; if (is_ht) ath9k_mode = ATH9K_MODE_11NA_HT20; if (is_cw_40) ath9k_mode = ATH9K_MODE_11NA_HT40PLUS; break; case IEEE80211_MODE_11B: ath9k_mode = ATH9K_MODE_11B; break; case IEEE80211_MODE_11G: case IEEE80211_MODE_11NG: ath9k_mode = ATH9K_MODE_11G; if (is_ht) ath9k_mode = ATH9K_MODE_11NG_HT20; if (is_cw_40) ath9k_mode = ATH9K_MODE_11NG_HT40PLUS; break; default: ARN_DBG((ARN_DBG_RATE, "Invalid band\n")); return (NULL); } switch (ath9k_mode) { case ATH9K_MODE_11A: ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11A\n")); break; case ATH9K_MODE_11B: ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11B\n")); break; case ATH9K_MODE_11G: ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11G\n")); break; case ATH9K_MODE_11NA_HT20: ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11NA_HT20\n")); break; case ATH9K_MODE_11NA_HT40PLUS: ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11NA_HT40PLUS\n")); break; case ATH9K_MODE_11NG_HT20: ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11NG_HT20\n")); break; case ATH9K_MODE_11NG_HT40PLUS: ARN_DBG((ARN_DBG_RATE, "choose rate table:ATH9K_MODE_11NG_HT40PLUS\n")); break; default: arn_problem("Invalid band\n"); break; } ARN_DBG((ARN_DBG_RATE, "Choosing rate table for mode: %d\n", ath9k_mode)); return (sc->hw_rate_table[ath9k_mode]); } /* Private rate contral initialization */ static void arn_rc_init(struct arn_softc *sc, struct ath_rate_priv *ath_rc_priv, struct ieee80211_node *in) { struct ath_rate_table *rate_table = NULL; struct ath_rateset *rateset = &ath_rc_priv->neg_rates; ieee80211com_t *ic = (ieee80211com_t *)sc; uint32_t cur_mode = ic->ic_curmode; uint8_t *ht_mcs = (uint8_t *)&ath_rc_priv->neg_ht_rates; uint8_t i, j, k, hi = 0, hthi = 0; boolean_t is_rc_ds; /* FIXME: Adhoc */ if ((sc->sc_ah->ah_opmode == ATH9K_M_STA) || (sc->sc_ah->ah_opmode == ATH9K_M_IBSS)) { boolean_t is_ht = in->in_flags & IEEE80211_NODE_HT; /* 20/40 support */ boolean_t is_cw_40 = in->in_htcap & IEEE80211_HTCAP_CHWIDTH40; rate_table = arn_choose_rate_table(sc, cur_mode, is_ht, is_cw_40); } else if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) { /* cur_rate_table would be set on init */ rate_table = sc->sc_currates; } if (!rate_table) { ARN_DBG((ARN_DBG_FATAL, "Rate table not initialized\n")); return; } if (in->in_flags & IEEE80211_NODE_HT) { /* 2.6.30 */ ath_rc_priv->ht_cap = WLAN_RC_HT_FLAG; is_rc_ds = (AR_SREV_9280_20_OR_LATER(sc->sc_ah) && (ath9k_hw_get_eeprom(sc->sc_ah, EEP_RC_CHAIN_MASK) == 1)) ? B_FALSE: B_TRUE; if (sc->sc_ah->ah_caps.tx_chainmask != 1 && is_rc_ds) { if (sc->sc_ht_conf.rx_mcs_mask[1]) { ath_rc_priv->ht_cap |= WLAN_RC_DS_FLAG; } } if (in->in_htcap & IEEE80211_HTCAP_CHWIDTH40) ath_rc_priv->ht_cap |= WLAN_RC_40_FLAG; if (in->in_htcap & IEEE80211_HTCAP_SHORTGI40) ath_rc_priv->ht_cap |= WLAN_RC_SGI_FLAG; } /* * Initial rate table size. Will change depending * on the working rate set */ ath_rc_priv->rate_table_size = RATE_TABLE_SIZE; /* Initialize thresholds according to the global rate table */ for (i = 0; i < ath_rc_priv->rate_table_size; i++) { ath_rc_priv->state[i].rssi_thres = rate_table->info[i].rssi_ack_validmin; ath_rc_priv->state[i].per = 0; } /* Determine the valid rates */ arn_rc_init_valid_txmask(ath_rc_priv); for (i = 0; i < WLAN_RC_PHY_MAX; i++) { for (j = 0; j < MAX_TX_RATE_PHY; j++) ath_rc_priv->valid_phy_rateidx[i][j] = 0; ath_rc_priv->valid_phy_ratecnt[i] = 0; } ath_rc_priv->rc_phy_mode = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG); /* Set stream capability */ ath_rc_priv->single_stream = (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ? 0 : 1; if (!rateset->rs_nrates) { /* No working rate, just initialize valid rates */ hi = arn_rc_init_validrates(ath_rc_priv, rate_table, ath_rc_priv->ht_cap); } else { /* Use intersection of working rates and valid rates */ hi = arn_rc_setvalid_rates(ath_rc_priv, rate_table, rateset, ath_rc_priv->ht_cap); if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) { hthi = arn_rc_setvalid_htrates(ath_rc_priv, rate_table, ht_mcs, ath_rc_priv->ht_cap); } hi = A_MAX(hi, hthi); } ath_rc_priv->rate_table_size = hi + 1; ath_rc_priv->rate_max_phy = 0; ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE); for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) { ath_rc_priv->valid_rate_index[k++] = ath_rc_priv->valid_phy_rateidx[i][j]; } if (!arn_rc_valid_phyrate(i, rate_table->initial_ratemax, 1) || !ath_rc_priv->valid_phy_ratecnt[i]) continue; ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1]; } ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE); ASSERT(k <= RATE_TABLE_SIZE); ath_rc_priv->max_valid_rate = k; arn_rc_sort_validrates(rate_table, ath_rc_priv); ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4]; sc->sc_currates = rate_table; } void arn_tx_status(struct arn_softc *sc, struct ath_buf *bf, boolean_t is_data) { struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in); struct ath_node *an = ATH_NODE(in); struct ath_rate_priv *ath_rc_priv = (struct ath_rate_priv *)&an->rate_priv; struct ath_tx_info_priv *tx_info_priv = (struct ath_tx_info_priv *)&bf->tx_info_priv; int final_ts_idx, tx_status = 0, is_underrun = 0; final_ts_idx = tx_info_priv->tx.ts_rateindex; if (!is_data || !tx_info_priv->update_rc) return; if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT) return; /* * If underrun error is seen assume it as an excessive retry only * if prefetch trigger level have reached the max (0x3f for 5416) * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY * times. This affects how ratectrl updates PER for the failed rate. */ if (tx_info_priv->tx.ts_flags & (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && ((sc->sc_ah->ah_txTrigLevel) >= ath_rc_priv->tx_triglevel_max)) { tx_status = 1; is_underrun = 1; } if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) tx_status = 1; ath_rc_tx_status(sc, ath_rc_priv, bf, final_ts_idx, tx_status, (is_underrun) ? ATH_11N_TXMAXTRY : tx_info_priv->tx.ts_longretry); } void arn_get_rate(struct arn_softc *sc, struct ath_buf *bf, struct ieee80211_frame *wh) { struct ieee80211_node *in = (struct ieee80211_node *)(bf->bf_in); struct ath_node *an = ATH_NODE(in); struct ath_rate_priv *ath_rc_priv = (struct ath_rate_priv *)&an->rate_priv; struct ath_rate_table *rt = sc->sc_currates; ieee80211com_t *ic = (ieee80211com_t *)sc; int is_probe = 0; uint8_t i; /* lowest rate for management and multicast/broadcast frames */ if (!IEEE80211_IS_DATA(wh) || IEEE80211_IS_MULTICAST(wh->i_addr1)) { bf->rates[0].idx = 0; /* xxx Fix me */ bf->rates[0].count = IEEE80211_IS_MULTICAST(wh->i_addr1) ? 1 : ATH_MGT_TXMAXTRY; return; } /* Find tx rate for unicast frames */ arn_rc_ratefind(sc, ath_rc_priv, bf, ATH_11N_TXMAXTRY, 4, &is_probe, B_FALSE); /* Temporary workaround for 'dladm show-wifi' */ for (i = 0; i < in->in_rates.ir_nrates; i++) { ARN_DBG((ARN_DBG_RATE, "arn: arn_get_rate(): " "in->in_rates.ir_rates[%d] = %d," "bf->rates[0].idx = %d," "rt->info[bf->rates[0].idx].dot11rate = %d\n", i, in->in_rates.ir_rates[i], bf->rates[0].idx, rt->info[bf->rates[0].idx].dot11rate)); if (rt->info[bf->rates[0].idx].dot11rate == in->in_rates.ir_rates[i]) break; } in->in_txrate = i; if (ic->ic_curmode == IEEE80211_MODE_11NA || ic->ic_curmode == IEEE80211_MODE_11NG) in->in_txrate = in->in_rates.ir_nrates - 1; /* Check if aggregation has to be enabled for this tid */ #ifdef ARN_TX_AGGREGATION /* should check if enabled, not supported */ if (sc->sc_ht_conf.ht_supported) { if (ieee80211_is_data_qos(wh)) { uint8_t *qc, tid; struct ath_node *an; struct ieee80211_qosframe *qwh = NULL; qwh = (struct ieee80211_qosframe *)wh; tid = qc[0] & 0xf; an = (struct ath_node *)sta->drv_priv; if (arn_tx_aggr_check(sc, an, tid)) /* to do */ } } #endif /* ARN_TX_AGGREGATION */ } void arn_rate_init(struct arn_softc *sc, struct ieee80211_node *in) { int i; struct ath_node *an = ATH_NODE(in); struct ath_rate_priv *ath_rc_priv = (struct ath_rate_priv *)&an->rate_priv; /* should be moved to arn_node_init later */ ath_rc_priv->rssi_down_time = drv_hztousec(ddi_get_lbolt())/1000; /* mesc */ ath_rc_priv->tx_triglevel_max = sc->sc_ah->ah_caps.tx_triglevel_max; for (i = 0; i < in->in_rates.ir_nrates; i++) { ath_rc_priv->neg_rates.rs_rates[i] = in->in_rates.ir_rates[i]; ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()" "ath_rc_priv->neg_rates.rs_rates[%d] = %d\n", i, ath_rc_priv->neg_rates.rs_rates[i])); } ath_rc_priv->neg_rates.rs_nrates = in->in_rates.ir_nrates; /* negotiated ht rate set ??? */ if (in->in_flags & IEEE80211_NODE_HT) { for (i = 0; i < in->in_htrates.rs_nrates; i++) { ath_rc_priv->neg_ht_rates.rs_rates[i] = in->in_htrates.rs_rates[i]; ARN_DBG((ARN_DBG_RATE, "arn:arn_rate_init()" "ath_rc_priv->neg_ht_rates.rs_rates[%d] = %d\n", i, ath_rc_priv->neg_ht_rates.rs_rates[i])); } ath_rc_priv->neg_ht_rates.rs_nrates = in->in_htrates.rs_nrates; /* arn_update_chainmask(sc); */ } #ifdef ARN_TX_AGGREGATION /* Temply put the following ht info init here */ uint8_t ampdu_factor, ampdu_density; if (sc->sc_ht_conf.ht_support && (in->in_htcap_ie != NULL) && (in->in_htcap != 0) && (in->in_htparam != 0)) { ampdu_factor = in->in_htparam & HT_RX_AMPDU_FACTOR_MSK; ampdu_density = (in->in_htparam & HT_MPDU_DENSITY_MSK) >> HT_MPDU_DENSITY_POS; an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + ampdu_factor); an->mpdudensity = parse_mpdudensity(ampdu_density); } /* end */ #endif /* ARN_TX_AGGREGATION */ arn_rc_init(sc, ath_rc_priv, in); } static void arn_setup_rate_table(struct arn_softc *sc, struct ath_rate_table *rate_table) { int i; for (i = 0; i < 256; i++) rate_table->rateCodeToIndex[i] = (uint8_t)-1; for (i = 0; i < rate_table->rate_cnt; i++) { uint8_t code = rate_table->info[i].ratecode; uint8_t cix = rate_table->info[i].ctrl_rate; uint8_t sh = rate_table->info[i].short_preamble; rate_table->rateCodeToIndex[code] = (int)i; rate_table->rateCodeToIndex[code | sh] = (int)i; rate_table->info[i].lpAckDuration = ath9k_hw_computetxtime(sc->sc_ah, rate_table, WLAN_CTRL_FRAME_SIZE, cix, B_FALSE); rate_table->info[i].spAckDuration = ath9k_hw_computetxtime(sc->sc_ah, rate_table, WLAN_CTRL_FRAME_SIZE, cix, B_TRUE); } } void arn_rate_attach(struct arn_softc *sc) { sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable; sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] = &ar5416_11na_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] = &ar5416_11ng_ratetable; sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] = &ar5416_11ng_ratetable; arn_setup_rate_table(sc, &ar5416_11b_ratetable); arn_setup_rate_table(sc, &ar5416_11a_ratetable); arn_setup_rate_table(sc, &ar5416_11g_ratetable); arn_setup_rate_table(sc, &ar5416_11na_ratetable); arn_setup_rate_table(sc, &ar5416_11ng_ratetable); } #ifdef ARN_LEGACY_RC void arn_rate_update(struct arn_softc *sc, struct ieee80211_node *in, int32_t rate) { struct ath_node *an = ATH_NODE(in); const struct ath_rate_table *rt = sc->sc_currates; uint8_t rix; ASSERT(rt != NULL); in->in_txrate = rate; /* management/control frames always go at the lowest speed */ an->an_tx_mgtrate = rt->info[0].ratecode; an->an_tx_mgtratesp = an->an_tx_mgtrate | rt->info[0].short_preamble; ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_update(): " "mgtrate=%d mgtratesp=%d\n", an->an_tx_mgtrate, an->an_tx_mgtratesp)); /* * Before associating a node has no rate set setup * so we can't calculate any transmit codes to use. * This is ok since we should never be sending anything * but management frames and those always go at the * lowest hardware rate. */ if (in->in_rates.ir_nrates == 0) goto done; an->an_tx_rix0 = sc->asc_rixmap[ in->in_rates.ir_rates[rate] & IEEE80211_RATE_VAL]; an->an_tx_rate0 = rt->info[an->an_tx_rix0].ratecode; an->an_tx_rate0sp = an->an_tx_rate0 | rt->info[an->an_tx_rix0].short_preamble; if (sc->sc_mrretry) { /* * Hardware supports multi-rate retry; setup two * step-down retry rates and make the lowest rate * be the ``last chance''. We use 4, 2, 2, 2 tries * respectively (4 is set here, the rest are fixed * in the xmit routine). */ an->an_tx_try0 = 1 + 3; /* 4 tries at rate 0 */ if (--rate >= 0) { rix = sc->asc_rixmap[ in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL]; an->an_tx_rate1 = rt->info[rix].ratecode; an->an_tx_rate1sp = an->an_tx_rate1 | rt->info[rix].short_preamble; } else { an->an_tx_rate1 = an->an_tx_rate1sp = 0; } if (--rate >= 0) { rix = sc->asc_rixmap[ in->in_rates.ir_rates[rate]&IEEE80211_RATE_VAL]; an->an_tx_rate2 = rt->info[rix].ratecode; an->an_tx_rate2sp = an->an_tx_rate2 | rt->info[rix].short_preamble; } else { an->an_tx_rate2 = an->an_tx_rate2sp = 0; } if (rate > 0) { an->an_tx_rate3 = rt->info[0].ratecode; an->an_tx_rate3sp = an->an_tx_mgtrate | rt->info[0].short_preamble; } else { an->an_tx_rate3 = an->an_tx_rate3sp = 0; } } else { an->an_tx_try0 = ATH_TXMAXTRY; /* max tries at rate 0 */ an->an_tx_rate1 = an->an_tx_rate1sp = 0; an->an_tx_rate2 = an->an_tx_rate2sp = 0; an->an_tx_rate3 = an->an_tx_rate3sp = 0; } done: an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; } /* * Set the starting transmit rate for a node. */ void arn_rate_ctl_start(struct arn_softc *sc, struct ieee80211_node *in) { ieee80211com_t *ic = (ieee80211com_t *)sc; int32_t srate; if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { /* * No fixed rate is requested. For 11b start with * the highest negotiated rate; otherwise, for 11g * and 11a, we start "in the middle" at 24Mb or 36Mb. */ srate = in->in_rates.ir_nrates - 1; if (sc->sc_curmode != IEEE80211_MODE_11B) { /* * Scan the negotiated rate set to find the * closest rate. */ /* NB: the rate set is assumed sorted */ for (; srate >= 0 && IEEE80211_RATE(srate) > 72; srate--) {} } } else { /* * A fixed rate is to be used; We know the rate is * there because the rate set is checked when the * station associates. */ /* NB: the rate set is assumed sorted */ srate = in->in_rates.ir_nrates - 1; for (; srate >= 0 && IEEE80211_RATE(srate) != ic->ic_fixed_rate; srate--) {} } ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl_start(): " "srate=%d rate=%d\n", srate, IEEE80211_RATE(srate))); arn_rate_update(sc, in, srate); } void arn_rate_cb(void *arg, struct ieee80211_node *in) { arn_rate_update((struct arn_softc *)arg, in, 0); } #endif /* ARN_LEGACY_RC */ /* * Reset the rate control state for each 802.11 state transition. */ void arn_rate_ctl_reset(struct arn_softc *sc, enum ieee80211_state state) { ieee80211com_t *ic = (ieee80211com_t *)sc; struct ieee80211_node *in; if (ic->ic_opmode == IEEE80211_M_STA) { /* * Reset local xmit state; this is really only * meaningful when operating in station mode. */ in = (struct ieee80211_node *)ic->ic_bss; #ifdef ARN_LEGACY_RC if (state == IEEE80211_S_RUN) { arn_rate_ctl_start(sc, in); } else { arn_rate_update(sc, in, 0); } #else if (state == IEEE80211_S_RUN) arn_rate_init(sc, in); #endif /* LINTED E_NOP_ELSE_STMT */ } else { /* * When operating as a station the node table holds * the AP's that were discovered during scanning. * For any other operating mode we want to reset the * tx rate state of each node. */ #ifdef ARN_LEGACY_RC ieee80211_iterate_nodes(&ic->ic_sta, arn_rate_cb, sc); #endif } } #ifdef ARN_LEGACY_RC /* * Examine and potentially adjust the transmit rate. */ void arn_rate_ctl(void *arg, struct ieee80211_node *in) { struct arn_softc *sc = arg; struct ath_node *an = ATH_NODE(in); struct ieee80211_rateset *rs = &in->in_rates; int32_t mod = 0, nrate, enough; /* * Rate control(very primitive version). */ sc->sc_stats.ast_rate_calls++; enough = (an->an_tx_ok + an->an_tx_err >= 10); /* no packet reached -> down */ if (an->an_tx_err > 0 && an->an_tx_ok == 0) mod = -1; /* all packets needs retry in average -> down */ if (enough && an->an_tx_ok < an->an_tx_retr) mod = -1; /* no error and less than 10% of packets needs retry -> up */ if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10) mod = 1; nrate = in->in_txrate; switch (mod) { case 0: if (enough && an->an_tx_upper > 0) an->an_tx_upper--; break; case -1: if (nrate > 0) { nrate--; sc->sc_stats.ast_rate_drop++; } an->an_tx_upper = 0; break; case 1: if (++an->an_tx_upper < 10) break; an->an_tx_upper = 0; if (nrate + 1 < rs->ir_nrates) { nrate++; sc->sc_stats.ast_rate_raise++; } break; } if (nrate != in->in_txrate) { ARN_DBG((ARN_DBG_RATE, "arn: arn_rate_ctl(): %dM -> %dM " "(%d ok, %d err, %d retr)\n", (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2, (rs->ir_rates[nrate] & IEEE80211_RATE_VAL) / 2, an->an_tx_ok, an->an_tx_err, an->an_tx_retr)); arn_rate_update(sc, in, nrate); } else if (enough) an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0; } #endif /* ARN_LEGACY_RC */