/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ #include #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For LBOLT_FASTPATH{,64} */ /* * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) * * (Read the detailed design doc in PSARC case directory) * * The entire tcp state is contained in tcp_t and conn_t structure * which are allocated in tandem using ipcl_conn_create() and passing * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect * the references on the tcp_t. The tcp_t structure is never compressed * and packets always land on the correct TCP perimeter from the time * eager is created till the time tcp_t dies (as such the old mentat * TCP global queue is not used for detached state and no IPSEC checking * is required). The global queue is still allocated to send out resets * for connection which have no listeners and IP directly calls * tcp_xmit_listeners_reset() which does any policy check. * * Protection and Synchronisation mechanism: * * The tcp data structure does not use any kind of lock for protecting * its state but instead uses 'squeues' for mutual exclusion from various * read and write side threads. To access a tcp member, the thread should * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, * or SQ_NODRAIN). Since the squeues allow a direct function call, caller * can pass any tcp function having prototype of edesc_t as argument * (different from traditional STREAMs model where packets come in only * designated entry points). The list of functions that can be directly * called via squeue are listed before the usual function prototype. * * Referencing: * * TCP is MT-Hot and we use a reference based scheme to make sure that the * tcp structure doesn't disappear when its needed. When the application * creates an outgoing connection or accepts an incoming connection, we * start out with 2 references on 'conn_ref'. One for TCP and one for IP. * The IP reference is just a symbolic reference since ip_tcpclose() * looks at tcp structure after tcp_close_output() returns which could * have dropped the last TCP reference. So as long as the connection is * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the * conn_t. The classifier puts its own reference when the connection is * inserted in listen or connected hash. Anytime a thread needs to enter * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr * on write side or by doing a classify on read side and then puts a * reference on the conn before doing squeue_enter/tryenter/fill. For * read side, the classifier itself puts the reference under fanout lock * to make sure that tcp can't disappear before it gets processed. The * squeue will drop this reference automatically so the called function * doesn't have to do a DEC_REF. * * Opening a new connection: * * The outgoing connection open is pretty simple. tcp_open() does the * work in creating the conn/tcp structure and initializing it. The * squeue assignment is done based on the CPU the application * is running on. So for outbound connections, processing is always done * on application CPU which might be different from the incoming CPU * being interrupted by the NIC. An optimal way would be to figure out * the NIC <-> CPU binding at listen time, and assign the outgoing * connection to the squeue attached to the CPU that will be interrupted * for incoming packets (we know the NIC based on the bind IP address). * This might seem like a problem if more data is going out but the * fact is that in most cases the transmit is ACK driven transmit where * the outgoing data normally sits on TCP's xmit queue waiting to be * transmitted. * * Accepting a connection: * * This is a more interesting case because of various races involved in * establishing a eager in its own perimeter. Read the meta comment on * top of tcp_input_listener(). But briefly, the squeue is picked by * ip_fanout based on the ring or the sender (if loopback). * * Closing a connection: * * The close is fairly straight forward. tcp_close() calls tcp_close_output() * via squeue to do the close and mark the tcp as detached if the connection * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its * reference but tcp_close() drop IP's reference always. So if tcp was * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP * and 1 because it is in classifier's connected hash. This is the condition * we use to determine that its OK to clean up the tcp outside of squeue * when time wait expires (check the ref under fanout and conn_lock and * if it is 2, remove it from fanout hash and kill it). * * Although close just drops the necessary references and marks the * tcp_detached state, tcp_close needs to know the tcp_detached has been * set (under squeue) before letting the STREAM go away (because a * inbound packet might attempt to go up the STREAM while the close * has happened and tcp_detached is not set). So a special lock and * flag is used along with a condition variable (tcp_closelock, tcp_closed, * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked * tcp_detached. * * Special provisions and fast paths: * * We make special provisions for sockfs by marking tcp_issocket * whenever we have only sockfs on top of TCP. This allows us to skip * putting the tcp in acceptor hash since a sockfs listener can never * become acceptor and also avoid allocating a tcp_t for acceptor STREAM * since eager has already been allocated and the accept now happens * on acceptor STREAM. There is a big blob of comment on top of * tcp_input_listener explaining the new accept. When socket is POP'd, * sockfs sends us an ioctl to mark the fact and we go back to old * behaviour. Once tcp_issocket is unset, its never set for the * life of that connection. * * IPsec notes : * * Since a packet is always executed on the correct TCP perimeter * all IPsec processing is defered to IP including checking new * connections and setting IPSEC policies for new connection. The * only exception is tcp_xmit_listeners_reset() which is called * directly from IP and needs to policy check to see if TH_RST * can be sent out. */ /* * Values for squeue switch: * 1: SQ_NODRAIN * 2: SQ_PROCESS * 3: SQ_FILL */ int tcp_squeue_wput = 2; /* /etc/systems */ int tcp_squeue_flag; /* * This controls how tiny a write must be before we try to copy it * into the mblk on the tail of the transmit queue. Not much * speedup is observed for values larger than sixteen. Zero will * disable the optimisation. */ int tcp_tx_pull_len = 16; /* * TCP Statistics. * * How TCP statistics work. * * There are two types of statistics invoked by two macros. * * TCP_STAT(name) does non-atomic increment of a named stat counter. It is * supposed to be used in non MT-hot paths of the code. * * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is * supposed to be used for DEBUG purposes and may be used on a hot path. * * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat * (use "kstat tcp" to get them). * * There is also additional debugging facility that marks tcp_clean_death() * instances and saves them in tcp_t structure. It is triggered by * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for * tcp_clean_death() calls that counts the number of times each tag was hit. It * is triggered by TCP_CLD_COUNTERS define. * * How to add new counters. * * 1) Add a field in the tcp_stat structure describing your counter. * 2) Add a line in the template in tcp_kstat2_init() with the name * of the counter. * * IMPORTANT!! - make sure that both are in sync !! * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. * * Please avoid using private counters which are not kstat-exported. * * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances * in tcp_t structure. * * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. */ #ifndef TCP_DEBUG_COUNTER #ifdef DEBUG #define TCP_DEBUG_COUNTER 1 #else #define TCP_DEBUG_COUNTER 0 #endif #endif #define TCP_CLD_COUNTERS 0 #define TCP_TAG_CLEAN_DEATH 1 #define TCP_MAX_CLEAN_DEATH_TAG 32 #ifdef lint static int _lint_dummy_; #endif #if TCP_CLD_COUNTERS static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ #elif defined(lint) #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); #else #define TCP_CLD_STAT(x) #endif #if TCP_DEBUG_COUNTER #define TCP_DBGSTAT(tcps, x) \ atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) #define TCP_G_DBGSTAT(x) \ atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) #elif defined(lint) #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); #else #define TCP_DBGSTAT(tcps, x) #define TCP_G_DBGSTAT(x) #endif #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) tcp_g_stat_t tcp_g_statistics; kstat_t *tcp_g_kstat; /* Macros for timestamp comparisons */ #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) /* * Parameters for TCP Initial Send Sequence number (ISS) generation. When * tcp_strong_iss is set to 1, which is the default, the ISS is calculated * by adding three components: a time component which grows by 1 every 4096 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); * a per-connection component which grows by 125000 for every new connection; * and an "extra" component that grows by a random amount centered * approximately on 64000. This causes the ISS generator to cycle every * 4.89 hours if no TCP connections are made, and faster if connections are * made. * * When tcp_strong_iss is set to 0, ISS is calculated by adding two * components: a time component which grows by 250000 every second; and * a per-connection component which grows by 125000 for every new connections. * * A third method, when tcp_strong_iss is set to 2, for generating ISS is * prescribed by Steve Bellovin. This involves adding time, the 125000 per * connection, and a one-way hash (MD5) of the connection ID , a "truly" random (per RFC 1750) number, and a console-entered * password. */ #define ISS_INCR 250000 #define ISS_NSEC_SHT 12 static sin_t sin_null; /* Zero address for quick clears */ static sin6_t sin6_null; /* Zero address for quick clears */ /* * This implementation follows the 4.3BSD interpretation of the urgent * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause * incompatible changes in protocols like telnet and rlogin. */ #define TCP_OLD_URP_INTERPRETATION 1 /* * Since tcp_listener is not cleared atomically with tcp_detached * being cleared we need this extra bit to tell a detached connection * apart from one that is in the process of being accepted. */ #define TCP_IS_DETACHED_NONEAGER(tcp) \ (TCP_IS_DETACHED(tcp) && \ (!(tcp)->tcp_hard_binding)) /* * TCP reassembly macros. We hide starting and ending sequence numbers in * b_next and b_prev of messages on the reassembly queue. The messages are * chained using b_cont. These macros are used in tcp_reass() so we don't * have to see the ugly casts and assignments. */ #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ (mblk_t *)(uintptr_t)(u)) #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ (mblk_t *)(uintptr_t)(u)) /* * Implementation of TCP Timers. * ============================= * * INTERFACE: * * There are two basic functions dealing with tcp timers: * * timeout_id_t tcp_timeout(connp, func, time) * clock_t tcp_timeout_cancel(connp, timeout_id) * TCP_TIMER_RESTART(tcp, intvl) * * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' * after 'time' ticks passed. The function called by timeout() must adhere to * the same restrictions as a driver soft interrupt handler - it must not sleep * or call other functions that might sleep. The value returned is the opaque * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to * cancel the request. The call to tcp_timeout() may fail in which case it * returns zero. This is different from the timeout(9F) function which never * fails. * * The call-back function 'func' always receives 'connp' as its single * argument. It is always executed in the squeue corresponding to the tcp * structure. The tcp structure is guaranteed to be present at the time the * call-back is called. * * NOTE: The call-back function 'func' is never called if tcp is in * the TCPS_CLOSED state. * * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() * request. locks acquired by the call-back routine should not be held across * the call to tcp_timeout_cancel() or a deadlock may result. * * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. * Otherwise, it returns an integer value greater than or equal to 0. In * particular, if the call-back function is already placed on the squeue, it can * not be canceled. * * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called * within squeue context corresponding to the tcp instance. Since the * call-back is also called via the same squeue, there are no race * conditions described in untimeout(9F) manual page since all calls are * strictly serialized. * * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout * stored in tcp_timer_tid and starts a new one using * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid * field. * * NOTE: since the timeout cancellation is not guaranteed, the cancelled * call-back may still be called, so it is possible tcp_timer() will be * called several times. This should not be a problem since tcp_timer() * should always check the tcp instance state. * * * IMPLEMENTATION: * * TCP timers are implemented using three-stage process. The call to * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function * when the timer expires. The tcp_timer_callback() arranges the call of the * tcp_timer_handler() function via squeue corresponding to the tcp * instance. The tcp_timer_handler() calls actual requested timeout call-back * and passes tcp instance as an argument to it. Information is passed between * stages using the tcp_timer_t structure which contains the connp pointer, the * tcp call-back to call and the timeout id returned by the timeout(9F). * * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() * returns the pointer to this mblk. * * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It * looks like a normal mblk without actual dblk attached to it. * * To optimize performance each tcp instance holds a small cache of timer * mblocks. In the current implementation it caches up to two timer mblocks per * tcp instance. The cache is preserved over tcp frees and is only freed when * the whole tcp structure is destroyed by its kmem destructor. Since all tcp * timer processing happens on a corresponding squeue, the cache manipulation * does not require any locks. Experiments show that majority of timer mblocks * allocations are satisfied from the tcp cache and do not involve kmem calls. * * The tcp_timeout() places a refhold on the connp instance which guarantees * that it will be present at the time the call-back function fires. The * tcp_timer_handler() drops the reference after calling the call-back, so the * call-back function does not need to manipulate the references explicitly. */ typedef struct tcp_timer_s { conn_t *connp; void (*tcpt_proc)(void *); callout_id_t tcpt_tid; } tcp_timer_t; static kmem_cache_t *tcp_timercache; kmem_cache_t *tcp_sack_info_cache; /* * For scalability, we must not run a timer for every TCP connection * in TIME_WAIT state. To see why, consider (for time wait interval of * 4 minutes): * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's * * This list is ordered by time, so you need only delete from the head * until you get to entries which aren't old enough to delete yet. * The list consists of only the detached TIME_WAIT connections. * * Note that the timer (tcp_time_wait_expire) is started when the tcp_t * becomes detached TIME_WAIT (either by changing the state and already * being detached or the other way around). This means that the TIME_WAIT * state can be extended (up to doubled) if the connection doesn't become * detached for a long time. * * The list manipulations (including tcp_time_wait_next/prev) * are protected by the tcp_time_wait_lock. The content of the * detached TIME_WAIT connections is protected by the normal perimeters. * * This list is per squeue and squeues are shared across the tcp_stack_t's. * Things on tcp_time_wait_head remain associated with the tcp_stack_t * and conn_netstack. * The tcp_t's that are added to tcp_free_list are disassociated and * have NULL tcp_tcps and conn_netstack pointers. */ typedef struct tcp_squeue_priv_s { kmutex_t tcp_time_wait_lock; callout_id_t tcp_time_wait_tid; tcp_t *tcp_time_wait_head; tcp_t *tcp_time_wait_tail; tcp_t *tcp_free_list; uint_t tcp_free_list_cnt; } tcp_squeue_priv_t; /* * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. * Running it every 5 seconds seems to give the best results. */ #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) /* * To prevent memory hog, limit the number of entries in tcp_free_list * to 1% of available memory / number of cpus */ uint_t tcp_free_list_max_cnt = 0; #define TCP_XMIT_LOWATER 4096 #define TCP_XMIT_HIWATER 49152 #define TCP_RECV_LOWATER 2048 #define TCP_RECV_HIWATER 128000 /* * PAWS needs a timer for 24 days. This is the number of ticks in 24 days */ #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) #define TIDUSZ 4096 /* transport interface data unit size */ /* * Bind hash list size and has function. It has to be a power of 2 for * hashing. */ #define TCP_BIND_FANOUT_SIZE 512 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) /* * Size of listen and acceptor hash list. It has to be a power of 2 for * hashing. */ #define TCP_FANOUT_SIZE 256 #ifdef _ILP32 #define TCP_ACCEPTOR_HASH(accid) \ (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) #else #define TCP_ACCEPTOR_HASH(accid) \ ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) #endif /* _ILP32 */ #define IP_ADDR_CACHE_SIZE 2048 #define IP_ADDR_CACHE_HASH(faddr) \ (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) /* * TCP options struct returned from tcp_parse_options. */ typedef struct tcp_opt_s { uint32_t tcp_opt_mss; uint32_t tcp_opt_wscale; uint32_t tcp_opt_ts_val; uint32_t tcp_opt_ts_ecr; tcp_t *tcp; } tcp_opt_t; /* * RFC1323-recommended phrasing of TSTAMP option, for easier parsing */ #ifdef _BIG_ENDIAN #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ (TCPOPT_TSTAMP << 8) | 10) #else #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ (TCPOPT_NOP << 8) | TCPOPT_NOP) #endif /* * Flags returned from tcp_parse_options. */ #define TCP_OPT_MSS_PRESENT 1 #define TCP_OPT_WSCALE_PRESENT 2 #define TCP_OPT_TSTAMP_PRESENT 4 #define TCP_OPT_SACK_OK_PRESENT 8 #define TCP_OPT_SACK_PRESENT 16 /* TCP option length */ #define TCPOPT_NOP_LEN 1 #define TCPOPT_MAXSEG_LEN 4 #define TCPOPT_WS_LEN 3 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) #define TCPOPT_TSTAMP_LEN 10 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) #define TCPOPT_SACK_OK_LEN 2 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) #define TCPOPT_REAL_SACK_LEN 4 #define TCPOPT_MAX_SACK_LEN 36 #define TCPOPT_HEADER_LEN 2 /* TCP cwnd burst factor. */ #define TCP_CWND_INFINITE 65535 #define TCP_CWND_SS 3 #define TCP_CWND_NORMAL 5 /* Maximum TCP initial cwin (start/restart). */ #define TCP_MAX_INIT_CWND 8 /* * Initialize cwnd according to RFC 3390. def_max_init_cwnd is * either tcp_slow_start_initial or tcp_slow_start_after idle * depending on the caller. If the upper layer has not used the * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. * If the upper layer has changed set the tcp_init_cwnd, just use * it to calculate the tcp_cwnd. */ #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ { \ if ((tcp)->tcp_init_cwnd == 0) { \ (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ } else { \ (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ } \ tcp->tcp_cwnd_cnt = 0; \ } /* TCP Timer control structure */ typedef struct tcpt_s { pfv_t tcpt_pfv; /* The routine we are to call */ tcp_t *tcpt_tcp; /* The parameter we are to pass in */ } tcpt_t; /* * Functions called directly via squeue having a prototype of edesc_t. */ void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira); static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); void tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira); static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); void tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); /* Prototype for TCP functions */ static void tcp_random_init(void); int tcp_random(void); static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager); static int tcp_set_destination(tcp_t *tcp); static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, boolean_t user_specified); static void tcp_closei_local(tcp_t *tcp); static void tcp_close_detached(tcp_t *tcp); static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira); static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, uint_t srcid); static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id); static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); static char *tcp_display(tcp_t *tcp, char *, char); static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); static void tcp_eager_unlink(tcp_t *tcp); static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, int unixerr); static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, int tlierr, int unixerr); static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_tpistate(tcp_t *tcp); static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, int caller_holds_lock); static void tcp_bind_hash_remove(tcp_t *tcp); static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); static void tcp_acceptor_hash_remove(tcp_t *tcp); static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); static void tcp_info_req(tcp_t *tcp, mblk_t *mp); static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); static void tcp_init_values(tcp_t *tcp); static void tcp_ip_notify(tcp_t *tcp); static void tcp_iss_init(tcp_t *tcp); static void tcp_keepalive_killer(void *arg); static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt); static void tcp_mss_set(tcp_t *tcp, uint32_t size); static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, int *t_errorp, int *sys_errorp); static boolean_t tcp_allow_connopt_set(int level, int name); int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *); static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr); static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); static void tcp_reinit(tcp_t *tcp); static void tcp_reinit_values(tcp_t *tcp); static uint_t tcp_rwnd_reopen(tcp_t *tcp); static uint_t tcp_rcv_drain(tcp_t *tcp); static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); static boolean_t tcp_send_rst_chk(tcp_stack_t *); static void tcp_ss_rexmit(tcp_t *tcp); static mblk_t *tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, ip_recv_attr_t *); static void tcp_process_options(tcp_t *, tcpha_t *); static void tcp_rsrv(queue_t *q); static int tcp_snmp_state(tcp_t *tcp); static void tcp_timer(void *arg); static void tcp_timer_callback(void *); static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random); static in_port_t tcp_get_next_priv_port(const tcp_t *); static void tcp_wput_sock(queue_t *q, mblk_t *mp); static void tcp_wput_fallback(queue_t *q, mblk_t *mp); void tcp_tpi_accept(queue_t *q, mblk_t *mp); static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); static int tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, const int tcp_hdr_len, const int num_sack_blk, int *usable, uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time); static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk); static void tcp_wsrv(queue_t *q); static int tcp_xmit_end(tcp_t *tcp); static void tcp_ack_timer(void *arg); static mblk_t *tcp_ack_mp(tcp_t *tcp); static void tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *, ip_stack_t *, conn_t *); static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl); static void tcp_set_rto(tcp_t *, time_t); static void tcp_icmp_input(void *, mblk_t *, void *, ip_recv_attr_t *); static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *); static boolean_t tcp_verifyicmp(conn_t *, void *, icmph_t *, icmp6_t *, ip_recv_attr_t *); static int tcp_build_hdrs(tcp_t *); static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira); boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp); static boolean_t tcp_zcopy_check(tcp_t *); static void tcp_zcopy_notify(tcp_t *); static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, boolean_t); static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only); static void tcp_update_zcopy(tcp_t *tcp); static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, ixa_notify_arg_t); static void tcp_rexmit_after_error(tcp_t *tcp); static void tcp_send_data(tcp_t *, mblk_t *); extern mblk_t *tcp_timermp_alloc(int); extern void tcp_timermp_free(tcp_t *); static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); static void tcp_stop_lingering(tcp_t *tcp); static void tcp_close_linger_timeout(void *arg); static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); static void tcp_stack_fini(netstackid_t stackid, void *arg); static void *tcp_g_kstat_init(tcp_g_stat_t *); static void tcp_g_kstat_fini(kstat_t *); static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); static void tcp_kstat_fini(netstackid_t, kstat_t *); static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); static void tcp_kstat2_fini(netstackid_t, kstat_t *); static int tcp_kstat_update(kstat_t *kp, int rw); static mblk_t *tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira); static mblk_t *tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira); static int tcp_squeue_switch(int); static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); static int tcp_tpi_close(queue_t *, int); static int tcp_tpi_close_accept(queue_t *); static void tcp_squeue_add(squeue_t *); static void tcp_setcred_data(mblk_t *, ip_recv_attr_t *); extern void tcp_kssl_input(tcp_t *, mblk_t *, cred_t *); void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, sock_upper_handle_t, cred_t *); static int tcp_listen(sock_lower_handle_t, int, cred_t *); static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, boolean_t); static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, cred_t *, pid_t); static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, boolean_t); static int tcp_do_unbind(conn_t *); static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, boolean_t); static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); /* * Routines related to the TCP_IOC_ABORT_CONN ioctl command. * * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure * (defined in tcp.h) needs to be filled in and passed into the kernel * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t * structure contains the four-tuple of a TCP connection and a range of TCP * states (specified by ac_start and ac_end). The use of wildcard addresses * and ports is allowed. Connections with a matching four tuple and a state * within the specified range will be aborted. The valid states for the * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, * inclusive. * * An application which has its connection aborted by this ioctl will receive * an error that is dependent on the connection state at the time of the abort. * If the connection state is < TCPS_TIME_WAIT, an application should behave as * though a RST packet has been received. If the connection state is equal to * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel * and all resources associated with the connection will be freed. */ static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy); static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, boolean_t, tcp_stack_t *); static struct module_info tcp_rinfo = { TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER }; static struct module_info tcp_winfo = { TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 }; /* * Entry points for TCP as a device. The normal case which supports * the TCP functionality. * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. */ struct qinit tcp_rinitv4 = { NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo }; struct qinit tcp_rinitv6 = { NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo }; struct qinit tcp_winit = { (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo }; /* Initial entry point for TCP in socket mode. */ struct qinit tcp_sock_winit = { (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo }; /* TCP entry point during fallback */ struct qinit tcp_fallback_sock_winit = { (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo }; /* * Entry points for TCP as a acceptor STREAM opened by sockfs when doing * an accept. Avoid allocating data structures since eager has already * been created. */ struct qinit tcp_acceptor_rinit = { NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo }; struct qinit tcp_acceptor_winit = { (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo }; /* For AF_INET aka /dev/tcp */ struct streamtab tcpinfov4 = { &tcp_rinitv4, &tcp_winit }; /* For AF_INET6 aka /dev/tcp6 */ struct streamtab tcpinfov6 = { &tcp_rinitv6, &tcp_winit }; sock_downcalls_t sock_tcp_downcalls; /* Setable only in /etc/system. Move to ndd? */ boolean_t tcp_icmp_source_quench = B_FALSE; /* * Following assumes TPI alignment requirements stay along 32 bit * boundaries */ #define ROUNDUP32(x) \ (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) /* Template for response to info request. */ static struct T_info_ack tcp_g_t_info_ack = { T_INFO_ACK, /* PRIM_type */ 0, /* TSDU_size */ T_INFINITE, /* ETSDU_size */ T_INVALID, /* CDATA_size */ T_INVALID, /* DDATA_size */ sizeof (sin_t), /* ADDR_size */ 0, /* OPT_size - not initialized here */ TIDUSZ, /* TIDU_size */ T_COTS_ORD, /* SERV_type */ TCPS_IDLE, /* CURRENT_state */ (XPG4_1|EXPINLINE) /* PROVIDER_flag */ }; static struct T_info_ack tcp_g_t_info_ack_v6 = { T_INFO_ACK, /* PRIM_type */ 0, /* TSDU_size */ T_INFINITE, /* ETSDU_size */ T_INVALID, /* CDATA_size */ T_INVALID, /* DDATA_size */ sizeof (sin6_t), /* ADDR_size */ 0, /* OPT_size - not initialized here */ TIDUSZ, /* TIDU_size */ T_COTS_ORD, /* SERV_type */ TCPS_IDLE, /* CURRENT_state */ (XPG4_1|EXPINLINE) /* PROVIDER_flag */ }; #define MS 1L #define SECONDS (1000 * MS) #define MINUTES (60 * SECONDS) #define HOURS (60 * MINUTES) #define DAYS (24 * HOURS) #define PARAM_MAX (~(uint32_t)0) /* Max size IP datagram is 64k - 1 */ #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcpha_t))) #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcpha_t))) /* Max of the above */ #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 /* Largest TCP port number */ #define TCP_MAX_PORT (64 * 1024 - 1) /* * tcp_wroff_xtra is the extra space in front of TCP/IP header for link * layer header. It has to be a multiple of 4. */ static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val /* * All of these are alterable, within the min/max values given, at run time. * Note that the default value of "tcp_time_wait_interval" is four minutes, * per the TCP spec. */ /* BEGIN CSTYLED */ static tcpparam_t lcl_tcp_param_arr[] = { /*min max value name */ { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, { 1, 1024, 1, "tcp_conn_req_min" }, { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, { 0, 10, 0, "tcp_debug" }, { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, { 1, 255, 64, "tcp_ipv4_ttl"}, { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, { 0, 100, 10, "tcp_maxpsz_multiplier" }, { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, { 0, 16, 0, "tcp_snd_lowat_fraction" }, { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, { 0, 128000, 0, "tcp_sth_rcv_lowat" }, { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, { 0, 1, 0, "tcp_ignore_path_mtu" }, { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, /* * Question: What default value should I set for tcp_strong_iss? */ { 0, 2, 1, "tcp_strong_iss"}, { 0, 65536, 20, "tcp_rtt_updates"}, { 0, 1, 1, "tcp_wscale_always"}, { 0, 1, 0, "tcp_tstamp_always"}, { 0, 1, 1, "tcp_tstamp_if_wscale"}, { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, { 0, 16, 2, "tcp_deferred_acks_max"}, { 1, 16384, 4, "tcp_slow_start_after_idle"}, { 1, 4, 4, "tcp_slow_start_initial"}, { 0, 2, 2, "tcp_sack_permitted"}, { 0, 1, 1, "tcp_compression_enabled"}, { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, { 0, 1, 0, "tcp_rev_src_routes"}, { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, { 0, 16, 8, "tcp_local_dacks_max"}, { 0, 2, 1, "tcp_ecn_permitted"}, { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, { 0, 1, 0, "tcp_dev_flow_ctl"}, }; /* END CSTYLED */ /* Round up the value to the nearest mss. */ #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) /* * Set ECN capable transport (ECT) code point in IP header. * * Note that there are 2 ECT code points '01' and '10', which are called * ECT(1) and ECT(0) respectively. Here we follow the original ECT code * point ECT(0) for TCP as described in RFC 2481. */ #define SET_ECT(tcp, iph) \ if ((tcp)->tcp_connp->conn_ipversion == IPV4_VERSION) { \ /* We need to clear the code point first. */ \ ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ } else { \ ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ } /* * The format argument to pass to tcp_display(). * DISP_PORT_ONLY means that the returned string has only port info. * DISP_ADDR_AND_PORT means that the returned string also contains the * remote and local IP address. */ #define DISP_PORT_ONLY 1 #define DISP_ADDR_AND_PORT 2 #define IS_VMLOANED_MBLK(mp) \ (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ /* * Forces all connections to obey the value of the tcps_maxpsz_multiplier * tunable settable via NDD. Otherwise, the per-connection behavior is * determined dynamically during tcp_set_destination(), which is the default. */ boolean_t tcp_static_maxpsz = B_FALSE; /* Setable in /etc/system */ /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ uint32_t tcp_random_anon_port = 1; /* * To reach to an eager in Q0 which can be dropped due to an incoming * new SYN request when Q0 is full, a new doubly linked list is * introduced. This list allows to select an eager from Q0 in O(1) time. * This is needed to avoid spending too much time walking through the * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of * this new list has to be a member of Q0. * This list is headed by listener's tcp_t. When the list is empty, * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, * of listener's tcp_t point to listener's tcp_t itself. * * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. * These macros do not affect the eager's membership to Q0. */ #define MAKE_DROPPABLE(listener, eager) \ if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ = (eager); \ (eager)->tcp_eager_prev_drop_q0 = (listener); \ (eager)->tcp_eager_next_drop_q0 = \ (listener)->tcp_eager_next_drop_q0; \ (listener)->tcp_eager_next_drop_q0 = (eager); \ } #define MAKE_UNDROPPABLE(eager) \ if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ = (eager)->tcp_eager_prev_drop_q0; \ (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ = (eager)->tcp_eager_next_drop_q0; \ (eager)->tcp_eager_prev_drop_q0 = NULL; \ (eager)->tcp_eager_next_drop_q0 = NULL; \ } /* * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent * data, TCP will not respond with an ACK. RFC 793 requires that * TCP responds with an ACK for such a bogus ACK. By not following * the RFC, we prevent TCP from getting into an ACK storm if somehow * an attacker successfully spoofs an acceptable segment to our * peer; or when our peer is "confused." */ uint32_t tcp_drop_ack_unsent_cnt = 10; /* * Hook functions to enable cluster networking * On non-clustered systems these vectors must always be NULL. */ void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, void *args) = NULL; void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, void *args) = NULL; int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, boolean_t is_outgoing, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, uint8_t *faddrp, in_port_t fport, void *args) = NULL; void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, sa_family_t addr_family, uint8_t *laddrp, in_port_t lport, uint8_t *faddrp, in_port_t fport, void *args) = NULL; /* * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) */ #define CL_INET_CONNECT(connp, is_outgoing, err) { \ (err) = 0; \ if (cl_inet_connect2 != NULL) { \ /* \ * Running in cluster mode - register active connection \ * information \ */ \ if ((connp)->conn_ipversion == IPV4_VERSION) { \ if ((connp)->conn_laddr_v4 != 0) { \ (err) = (*cl_inet_connect2)( \ (connp)->conn_netstack->netstack_stackid,\ IPPROTO_TCP, is_outgoing, AF_INET, \ (uint8_t *)(&((connp)->conn_laddr_v4)),\ (in_port_t)(connp)->conn_lport, \ (uint8_t *)(&((connp)->conn_faddr_v4)),\ (in_port_t)(connp)->conn_fport, NULL); \ } \ } else { \ if (!IN6_IS_ADDR_UNSPECIFIED( \ &(connp)->conn_laddr_v6)) { \ (err) = (*cl_inet_connect2)( \ (connp)->conn_netstack->netstack_stackid,\ IPPROTO_TCP, is_outgoing, AF_INET6, \ (uint8_t *)(&((connp)->conn_laddr_v6)),\ (in_port_t)(connp)->conn_lport, \ (uint8_t *)(&((connp)->conn_faddr_v6)), \ (in_port_t)(connp)->conn_fport, NULL); \ } \ } \ } \ } #define CL_INET_DISCONNECT(connp) { \ if (cl_inet_disconnect != NULL) { \ /* \ * Running in cluster mode - deregister active \ * connection information \ */ \ if ((connp)->conn_ipversion == IPV4_VERSION) { \ if ((connp)->conn_laddr_v4 != 0) { \ (*cl_inet_disconnect)( \ (connp)->conn_netstack->netstack_stackid,\ IPPROTO_TCP, AF_INET, \ (uint8_t *)(&((connp)->conn_laddr_v4)),\ (in_port_t)(connp)->conn_lport, \ (uint8_t *)(&((connp)->conn_faddr_v4)),\ (in_port_t)(connp)->conn_fport, NULL); \ } \ } else { \ if (!IN6_IS_ADDR_UNSPECIFIED( \ &(connp)->conn_laddr_v6)) { \ (*cl_inet_disconnect)( \ (connp)->conn_netstack->netstack_stackid,\ IPPROTO_TCP, AF_INET6, \ (uint8_t *)(&((connp)->conn_laddr_v6)),\ (in_port_t)(connp)->conn_lport, \ (uint8_t *)(&((connp)->conn_faddr_v6)), \ (in_port_t)(connp)->conn_fport, NULL); \ } \ } \ } \ } /* * Cluster networking hook for traversing current connection list. * This routine is used to extract the current list of live connections * which must continue to to be dispatched to this node. */ int cl_tcp_walk_list(netstackid_t stack_id, int (*callback)(cl_tcp_info_t *, void *), void *arg); static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, tcp_stack_t *tcps); static void tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) { uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; if (IPCL_IS_NONSTR(tcp->tcp_connp)) { conn_t *connp = tcp->tcp_connp; struct sock_proto_props sopp; /* * only increase rcvthresh upto default_threshold */ if (new_rcvthresh > default_threshold) new_rcvthresh = default_threshold; sopp.sopp_flags = SOCKOPT_RCVTHRESH; sopp.sopp_rcvthresh = new_rcvthresh; (*connp->conn_upcalls->su_set_proto_props) (connp->conn_upper_handle, &sopp); } } /* * Figure out the value of window scale opton. Note that the rwnd is * ASSUMED to be rounded up to the nearest MSS before the calculation. * We cannot find the scale value and then do a round up of tcp_rwnd * because the scale value may not be correct after that. * * Set the compiler flag to make this function inline. */ static void tcp_set_ws_value(tcp_t *tcp) { int i; uint32_t rwnd = tcp->tcp_rwnd; for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; i++, rwnd >>= 1) ; tcp->tcp_rcv_ws = i; } /* * Remove a connection from the list of detached TIME_WAIT connections. * It returns B_FALSE if it can't remove the connection from the list * as the connection has already been removed from the list due to an * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. */ static boolean_t tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) { boolean_t locked = B_FALSE; if (tcp_time_wait == NULL) { tcp_time_wait = *((tcp_squeue_priv_t **) squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); locked = B_TRUE; } else { ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); } if (tcp->tcp_time_wait_expire == 0) { ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); if (locked) mutex_exit(&tcp_time_wait->tcp_time_wait_lock); return (B_FALSE); } ASSERT(TCP_IS_DETACHED(tcp)); ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); if (tcp == tcp_time_wait->tcp_time_wait_head) { ASSERT(tcp->tcp_time_wait_prev == NULL); tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; if (tcp_time_wait->tcp_time_wait_head != NULL) { tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = NULL; } else { tcp_time_wait->tcp_time_wait_tail = NULL; } } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); ASSERT(tcp->tcp_time_wait_next == NULL); tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; } else { ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); tcp->tcp_time_wait_prev->tcp_time_wait_next = tcp->tcp_time_wait_next; tcp->tcp_time_wait_next->tcp_time_wait_prev = tcp->tcp_time_wait_prev; } tcp->tcp_time_wait_next = NULL; tcp->tcp_time_wait_prev = NULL; tcp->tcp_time_wait_expire = 0; if (locked) mutex_exit(&tcp_time_wait->tcp_time_wait_lock); return (B_TRUE); } /* * Add a connection to the list of detached TIME_WAIT connections * and set its time to expire. */ static void tcp_time_wait_append(tcp_t *tcp) { tcp_stack_t *tcps = tcp->tcp_tcps; tcp_squeue_priv_t *tcp_time_wait = *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); tcp_timers_stop(tcp); /* Freed above */ ASSERT(tcp->tcp_timer_tid == 0); ASSERT(tcp->tcp_ack_tid == 0); /* must have happened at the time of detaching the tcp */ ASSERT(tcp->tcp_ptpahn == NULL); ASSERT(tcp->tcp_flow_stopped == 0); ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == NULL); ASSERT(tcp->tcp_listener == NULL); tcp->tcp_time_wait_expire = ddi_get_lbolt(); /* * The value computed below in tcp->tcp_time_wait_expire may * appear negative or wrap around. That is ok since our * interest is only in the difference between the current lbolt * value and tcp->tcp_time_wait_expire. But the value should not * be zero, since it means the tcp is not in the TIME_WAIT list. * The corresponding comparison in tcp_time_wait_collector() uses * modular arithmetic. */ tcp->tcp_time_wait_expire += drv_usectohz(tcps->tcps_time_wait_interval * 1000); if (tcp->tcp_time_wait_expire == 0) tcp->tcp_time_wait_expire = 1; ASSERT(TCP_IS_DETACHED(tcp)); ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); TCP_DBGSTAT(tcps, tcp_time_wait); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); if (tcp_time_wait->tcp_time_wait_head == NULL) { ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); tcp_time_wait->tcp_time_wait_head = tcp; } else { ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == TCPS_TIME_WAIT); tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; } tcp_time_wait->tcp_time_wait_tail = tcp; mutex_exit(&tcp_time_wait->tcp_time_wait_lock); } /* ARGSUSED */ void tcp_timewait_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(tcp != NULL); if (tcp->tcp_state == TCPS_CLOSED) { return; } ASSERT((connp->conn_family == AF_INET && connp->conn_ipversion == IPV4_VERSION) || (connp->conn_family == AF_INET6 && (connp->conn_ipversion == IPV4_VERSION || connp->conn_ipversion == IPV6_VERSION))); ASSERT(!tcp->tcp_listener); TCP_STAT(tcps, tcp_time_wait_reap); ASSERT(TCP_IS_DETACHED(tcp)); /* * Because they have no upstream client to rebind or tcp_close() * them later, we axe the connection here and now. */ tcp_close_detached(tcp); } /* * Remove cached/latched IPsec references. */ void tcp_ipsec_cleanup(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; ASSERT(connp->conn_flags & IPCL_TCPCONN); if (connp->conn_latch != NULL) { IPLATCH_REFRELE(connp->conn_latch); connp->conn_latch = NULL; } if (connp->conn_latch_in_policy != NULL) { IPPOL_REFRELE(connp->conn_latch_in_policy); connp->conn_latch_in_policy = NULL; } if (connp->conn_latch_in_action != NULL) { IPACT_REFRELE(connp->conn_latch_in_action); connp->conn_latch_in_action = NULL; } if (connp->conn_policy != NULL) { IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); connp->conn_policy = NULL; } } /* * Cleaup before placing on free list. * Disassociate from the netstack/tcp_stack_t since the freelist * is per squeue and not per netstack. */ void tcp_cleanup(tcp_t *tcp) { mblk_t *mp; tcp_sack_info_t *tcp_sack_info; conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; netstack_t *ns = tcps->tcps_netstack; mblk_t *tcp_rsrv_mp; tcp_bind_hash_remove(tcp); /* Cleanup that which needs the netstack first */ tcp_ipsec_cleanup(tcp); ixa_cleanup(connp->conn_ixa); if (connp->conn_ht_iphc != NULL) { kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); connp->conn_ht_iphc = NULL; connp->conn_ht_iphc_allocated = 0; connp->conn_ht_iphc_len = 0; connp->conn_ht_ulp = NULL; connp->conn_ht_ulp_len = 0; tcp->tcp_ipha = NULL; tcp->tcp_ip6h = NULL; tcp->tcp_tcpha = NULL; } /* We clear any IP_OPTIONS and extension headers */ ip_pkt_free(&connp->conn_xmit_ipp); tcp_free(tcp); /* Release any SSL context */ if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); tcp->tcp_kssl_ent = NULL; } if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; } tcp->tcp_kssl_pending = B_FALSE; /* * Since we will bzero the entire structure, we need to * remove it and reinsert it in global hash list. We * know the walkers can't get to this conn because we * had set CONDEMNED flag earlier and checked reference * under conn_lock so walker won't pick it and when we * go the ipcl_globalhash_remove() below, no walker * can get to it. */ ipcl_globalhash_remove(connp); /* Save some state */ mp = tcp->tcp_timercache; tcp_sack_info = tcp->tcp_sack_info; tcp_rsrv_mp = tcp->tcp_rsrv_mp; if (connp->conn_cred != NULL) { crfree(connp->conn_cred); connp->conn_cred = NULL; } ipcl_conn_cleanup(connp); connp->conn_flags = IPCL_TCPCONN; /* * Now it is safe to decrement the reference counts. * This might be the last reference on the netstack * in which case it will cause the freeing of the IP Instance. */ connp->conn_netstack = NULL; connp->conn_ixa->ixa_ipst = NULL; netstack_rele(ns); ASSERT(tcps != NULL); tcp->tcp_tcps = NULL; bzero(tcp, sizeof (tcp_t)); /* restore the state */ tcp->tcp_timercache = mp; tcp->tcp_sack_info = tcp_sack_info; tcp->tcp_rsrv_mp = tcp_rsrv_mp; tcp->tcp_connp = connp; ASSERT(connp->conn_tcp == tcp); ASSERT(connp->conn_flags & IPCL_TCPCONN); connp->conn_state_flags = CONN_INCIPIENT; ASSERT(connp->conn_proto == IPPROTO_TCP); ASSERT(connp->conn_ref == 1); } /* * Blows away all tcps whose TIME_WAIT has expired. List traversal * is done forwards from the head. * This walks all stack instances since * tcp_time_wait remains global across all stacks. */ /* ARGSUSED */ void tcp_time_wait_collector(void *arg) { tcp_t *tcp; clock_t now; mblk_t *mp; conn_t *connp; kmutex_t *lock; boolean_t removed; squeue_t *sqp = (squeue_t *)arg; tcp_squeue_priv_t *tcp_time_wait = *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); tcp_time_wait->tcp_time_wait_tid = 0; if (tcp_time_wait->tcp_free_list != NULL && tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { TCP_G_STAT(tcp_freelist_cleanup); while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; tcp->tcp_time_wait_next = NULL; tcp_time_wait->tcp_free_list_cnt--; ASSERT(tcp->tcp_tcps == NULL); CONN_DEC_REF(tcp->tcp_connp); } ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); } /* * In order to reap time waits reliably, we should use a * source of time that is not adjustable by the user -- hence * the call to ddi_get_lbolt(). */ now = ddi_get_lbolt(); while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { /* * Compare times using modular arithmetic, since * lbolt can wrapover. */ if ((now - tcp->tcp_time_wait_expire) < 0) { break; } removed = tcp_time_wait_remove(tcp, tcp_time_wait); ASSERT(removed); connp = tcp->tcp_connp; ASSERT(connp->conn_fanout != NULL); lock = &connp->conn_fanout->connf_lock; /* * This is essentially a TW reclaim fast path optimization for * performance where the timewait collector checks under the * fanout lock (so that no one else can get access to the * conn_t) that the refcnt is 2 i.e. one for TCP and one for * the classifier hash list. If ref count is indeed 2, we can * just remove the conn under the fanout lock and avoid * cleaning up the conn under the squeue, provided that * clustering callbacks are not enabled. If clustering is * enabled, we need to make the clustering callback before * setting the CONDEMNED flag and after dropping all locks and * so we forego this optimization and fall back to the slow * path. Also please see the comments in tcp_closei_local * regarding the refcnt logic. * * Since we are holding the tcp_time_wait_lock, its better * not to block on the fanout_lock because other connections * can't add themselves to time_wait list. So we do a * tryenter instead of mutex_enter. */ if (mutex_tryenter(lock)) { mutex_enter(&connp->conn_lock); if ((connp->conn_ref == 2) && (cl_inet_disconnect == NULL)) { ipcl_hash_remove_locked(connp, connp->conn_fanout); /* * Set the CONDEMNED flag now itself so that * the refcnt cannot increase due to any * walker. */ connp->conn_state_flags |= CONN_CONDEMNED; mutex_exit(lock); mutex_exit(&connp->conn_lock); if (tcp_time_wait->tcp_free_list_cnt < tcp_free_list_max_cnt) { /* Add to head of tcp_free_list */ mutex_exit( &tcp_time_wait->tcp_time_wait_lock); tcp_cleanup(tcp); ASSERT(connp->conn_latch == NULL); ASSERT(connp->conn_policy == NULL); ASSERT(tcp->tcp_tcps == NULL); ASSERT(connp->conn_netstack == NULL); mutex_enter( &tcp_time_wait->tcp_time_wait_lock); tcp->tcp_time_wait_next = tcp_time_wait->tcp_free_list; tcp_time_wait->tcp_free_list = tcp; tcp_time_wait->tcp_free_list_cnt++; continue; } else { /* Do not add to tcp_free_list */ mutex_exit( &tcp_time_wait->tcp_time_wait_lock); tcp_bind_hash_remove(tcp); ixa_cleanup(tcp->tcp_connp->conn_ixa); tcp_ipsec_cleanup(tcp); CONN_DEC_REF(tcp->tcp_connp); } } else { CONN_INC_REF_LOCKED(connp); mutex_exit(lock); mutex_exit(&tcp_time_wait->tcp_time_wait_lock); mutex_exit(&connp->conn_lock); /* * We can reuse the closemp here since conn has * detached (otherwise we wouldn't even be in * time_wait list). tcp_closemp_used can safely * be changed without taking a lock as no other * thread can concurrently access it at this * point in the connection lifecycle. */ if (tcp->tcp_closemp.b_prev == NULL) tcp->tcp_closemp_used = B_TRUE; else cmn_err(CE_PANIC, "tcp_timewait_collector: " "concurrent use of tcp_closemp: " "connp %p tcp %p\n", (void *)connp, (void *)tcp); TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); mp = &tcp->tcp_closemp; SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timewait_output, connp, NULL, SQ_FILL, SQTAG_TCP_TIMEWAIT); } } else { mutex_enter(&connp->conn_lock); CONN_INC_REF_LOCKED(connp); mutex_exit(&tcp_time_wait->tcp_time_wait_lock); mutex_exit(&connp->conn_lock); /* * We can reuse the closemp here since conn has * detached (otherwise we wouldn't even be in * time_wait list). tcp_closemp_used can safely * be changed without taking a lock as no other * thread can concurrently access it at this * point in the connection lifecycle. */ if (tcp->tcp_closemp.b_prev == NULL) tcp->tcp_closemp_used = B_TRUE; else cmn_err(CE_PANIC, "tcp_timewait_collector: " "concurrent use of tcp_closemp: " "connp %p tcp %p\n", (void *)connp, (void *)tcp); TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); mp = &tcp->tcp_closemp; SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timewait_output, connp, NULL, SQ_FILL, SQTAG_TCP_TIMEWAIT); } mutex_enter(&tcp_time_wait->tcp_time_wait_lock); } if (tcp_time_wait->tcp_free_list != NULL) tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; tcp_time_wait->tcp_time_wait_tid = timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); mutex_exit(&tcp_time_wait->tcp_time_wait_lock); } /* * Reply to a clients T_CONN_RES TPI message. This function * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES * on the acceptor STREAM and processed in tcp_accept_common(). * Read the block comment on top of tcp_input_listener(). */ static void tcp_tli_accept(tcp_t *listener, mblk_t *mp) { tcp_t *acceptor; tcp_t *eager; tcp_t *tcp; struct T_conn_res *tcr; t_uscalar_t acceptor_id; t_scalar_t seqnum; mblk_t *discon_mp = NULL; mblk_t *ok_mp; mblk_t *mp1; tcp_stack_t *tcps = listener->tcp_tcps; conn_t *econnp; if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { tcp_err_ack(listener, mp, TPROTO, 0); return; } tcr = (struct T_conn_res *)mp->b_rptr; /* * Under ILP32 the stream head points tcr->ACCEPTOR_id at the * read side queue of the streams device underneath us i.e. the * read side queue of 'ip'. Since we can't deference QUEUE_ptr we * look it up in the queue_hash. Under LP64 it sends down the * minor_t of the accepting endpoint. * * Once the acceptor/eager are modified (in tcp_accept_swap) the * fanout hash lock is held. * This prevents any thread from entering the acceptor queue from * below (since it has not been hard bound yet i.e. any inbound * packets will arrive on the listener conn_t and * go through the classifier). * The CONN_INC_REF will prevent the acceptor from closing. * * XXX It is still possible for a tli application to send down data * on the accepting stream while another thread calls t_accept. * This should not be a problem for well-behaved applications since * the T_OK_ACK is sent after the queue swapping is completed. * * If the accepting fd is the same as the listening fd, avoid * queue hash lookup since that will return an eager listener in a * already established state. */ acceptor_id = tcr->ACCEPTOR_id; mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_acceptor_id == acceptor_id) { eager = listener->tcp_eager_next_q; /* only count how many T_CONN_INDs so don't count q0 */ if ((listener->tcp_conn_req_cnt_q != 1) || (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TBADF, 0); return; } if (listener->tcp_conn_req_cnt_q0 != 0) { /* Throw away all the eagers on q0. */ tcp_eager_cleanup(listener, 1); } if (listener->tcp_syn_defense) { listener->tcp_syn_defense = B_FALSE; if (listener->tcp_ip_addr_cache != NULL) { kmem_free(listener->tcp_ip_addr_cache, IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); listener->tcp_ip_addr_cache = NULL; } } /* * Transfer tcp_conn_req_max to the eager so that when * a disconnect occurs we can revert the endpoint to the * listen state. */ eager->tcp_conn_req_max = listener->tcp_conn_req_max; ASSERT(listener->tcp_conn_req_cnt_q0 == 0); /* * Get a reference on the acceptor just like the * tcp_acceptor_hash_lookup below. */ acceptor = listener; CONN_INC_REF(acceptor->tcp_connp); } else { acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); if (acceptor == NULL) { if (listener->tcp_connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_accept: did not find acceptor 0x%x\n", acceptor_id); } mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TPROVMISMATCH, 0); return; } /* * Verify acceptor state. The acceptable states for an acceptor * include TCPS_IDLE and TCPS_BOUND. */ switch (acceptor->tcp_state) { case TCPS_IDLE: /* FALLTHRU */ case TCPS_BOUND: break; default: CONN_DEC_REF(acceptor->tcp_connp); mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TOUTSTATE, 0); return; } } /* The listener must be in TCPS_LISTEN */ if (listener->tcp_state != TCPS_LISTEN) { CONN_DEC_REF(acceptor->tcp_connp); mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TOUTSTATE, 0); return; } /* * Rendezvous with an eager connection request packet hanging off * 'tcp' that has the 'seqnum' tag. We tagged the detached open * tcp structure when the connection packet arrived in * tcp_input_listener(). */ seqnum = tcr->SEQ_number; eager = listener; do { eager = eager->tcp_eager_next_q; if (eager == NULL) { CONN_DEC_REF(acceptor->tcp_connp); mutex_exit(&listener->tcp_eager_lock); tcp_err_ack(listener, mp, TBADSEQ, 0); return; } } while (eager->tcp_conn_req_seqnum != seqnum); mutex_exit(&listener->tcp_eager_lock); /* * At this point, both acceptor and listener have 2 ref * that they begin with. Acceptor has one additional ref * we placed in lookup while listener has 3 additional * ref for being behind the squeue (tcp_accept() is * done on listener's squeue); being in classifier hash; * and eager's ref on listener. */ ASSERT(listener->tcp_connp->conn_ref >= 5); ASSERT(acceptor->tcp_connp->conn_ref >= 3); /* * The eager at this point is set in its own squeue and * could easily have been killed (tcp_accept_finish will * deal with that) because of a TH_RST so we can only * ASSERT for a single ref. */ ASSERT(eager->tcp_connp->conn_ref >= 1); /* * Pre allocate the discon_ind mblk also. tcp_accept_finish will * use it if something failed. */ discon_mp = allocb(MAX(sizeof (struct T_discon_ind), sizeof (struct stroptions)), BPRI_HI); if (discon_mp == NULL) { CONN_DEC_REF(acceptor->tcp_connp); CONN_DEC_REF(eager->tcp_connp); tcp_err_ack(listener, mp, TSYSERR, ENOMEM); return; } econnp = eager->tcp_connp; /* Hold a copy of mp, in case reallocb fails */ if ((mp1 = copymsg(mp)) == NULL) { CONN_DEC_REF(acceptor->tcp_connp); CONN_DEC_REF(eager->tcp_connp); freemsg(discon_mp); tcp_err_ack(listener, mp, TSYSERR, ENOMEM); return; } tcr = (struct T_conn_res *)mp1->b_rptr; /* * This is an expanded version of mi_tpi_ok_ack_alloc() * which allocates a larger mblk and appends the new * local address to the ok_ack. The address is copied by * soaccept() for getsockname(). */ { int extra; extra = (econnp->conn_family == AF_INET) ? sizeof (sin_t) : sizeof (sin6_t); /* * Try to re-use mp, if possible. Otherwise, allocate * an mblk and return it as ok_mp. In any case, mp * is no longer usable upon return. */ if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { CONN_DEC_REF(acceptor->tcp_connp); CONN_DEC_REF(eager->tcp_connp); freemsg(discon_mp); /* Original mp has been freed by now, so use mp1 */ tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); return; } mp = NULL; /* We should never use mp after this point */ switch (extra) { case sizeof (sin_t): { sin_t *sin = (sin_t *)ok_mp->b_wptr; ok_mp->b_wptr += extra; sin->sin_family = AF_INET; sin->sin_port = econnp->conn_lport; sin->sin_addr.s_addr = econnp->conn_laddr_v4; break; } case sizeof (sin6_t): { sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; ok_mp->b_wptr += extra; sin6->sin6_family = AF_INET6; sin6->sin6_port = econnp->conn_lport; sin6->sin6_addr = econnp->conn_laddr_v6; sin6->sin6_flowinfo = econnp->conn_flowinfo; if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { sin6->sin6_scope_id = econnp->conn_ixa->ixa_scopeid; } else { sin6->sin6_scope_id = 0; } sin6->__sin6_src_id = 0; break; } default: break; } ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); } /* * If there are no options we know that the T_CONN_RES will * succeed. However, we can't send the T_OK_ACK upstream until * the tcp_accept_swap is done since it would be dangerous to * let the application start using the new fd prior to the swap. */ tcp_accept_swap(listener, acceptor, eager); /* * tcp_accept_swap unlinks eager from listener but does not drop * the eager's reference on the listener. */ ASSERT(eager->tcp_listener == NULL); ASSERT(listener->tcp_connp->conn_ref >= 5); /* * The eager is now associated with its own queue. Insert in * the hash so that the connection can be reused for a future * T_CONN_RES. */ tcp_acceptor_hash_insert(acceptor_id, eager); /* * We now do the processing of options with T_CONN_RES. * We delay till now since we wanted to have queue to pass to * option processing routines that points back to the right * instance structure which does not happen until after * tcp_accept_swap(). * * Note: * The sanity of the logic here assumes that whatever options * are appropriate to inherit from listner=>eager are done * before this point, and whatever were to be overridden (or not) * in transfer logic from eager=>acceptor in tcp_accept_swap(). * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it * before its ACCEPTOR_id comes down in T_CONN_RES ] * This may not be true at this point in time but can be fixed * independently. This option processing code starts with * the instantiated acceptor instance and the final queue at * this point. */ if (tcr->OPT_length != 0) { /* Options to process */ int t_error = 0; int sys_error = 0; int do_disconnect = 0; if (tcp_conprim_opt_process(eager, mp1, &do_disconnect, &t_error, &sys_error) < 0) { eager->tcp_accept_error = 1; if (do_disconnect) { /* * An option failed which does not allow * connection to be accepted. * * We allow T_CONN_RES to succeed and * put a T_DISCON_IND on the eager queue. */ ASSERT(t_error == 0 && sys_error == 0); eager->tcp_send_discon_ind = 1; } else { ASSERT(t_error != 0); freemsg(ok_mp); /* * Original mp was either freed or set * to ok_mp above, so use mp1 instead. */ tcp_err_ack(listener, mp1, t_error, sys_error); goto finish; } } /* * Most likely success in setting options (except if * eager->tcp_send_discon_ind set). * mp1 option buffer represented by OPT_length/offset * potentially modified and contains results of setting * options at this point */ } /* We no longer need mp1, since all options processing has passed */ freemsg(mp1); putnext(listener->tcp_connp->conn_rq, ok_mp); mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { tcp_t *tail; mblk_t *conn_ind; /* * This path should not be executed if listener and * acceptor streams are the same. */ ASSERT(listener != acceptor); tcp = listener->tcp_eager_prev_q0; /* * listener->tcp_eager_prev_q0 points to the TAIL of the * deferred T_conn_ind queue. We need to get to the head of * the queue in order to send up T_conn_ind the same order as * how the 3WHS is completed. */ while (tcp != listener) { if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) break; else tcp = tcp->tcp_eager_prev_q0; } ASSERT(tcp != listener); conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; ASSERT(conn_ind != NULL); tcp->tcp_conn.tcp_eager_conn_ind = NULL; /* Move from q0 to q */ ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; listener->tcp_conn_req_cnt_q++; tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_prev_q0 = NULL; tcp->tcp_eager_next_q0 = NULL; tcp->tcp_conn_def_q0 = B_FALSE; /* Make sure the tcp isn't in the list of droppables */ ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && tcp->tcp_eager_prev_drop_q0 == NULL); /* * Insert at end of the queue because sockfs sends * down T_CONN_RES in chronological order. Leaving * the older conn indications at front of the queue * helps reducing search time. */ tail = listener->tcp_eager_last_q; if (tail != NULL) tail->tcp_eager_next_q = tcp; else listener->tcp_eager_next_q = tcp; listener->tcp_eager_last_q = tcp; tcp->tcp_eager_next_q = NULL; mutex_exit(&listener->tcp_eager_lock); putnext(tcp->tcp_connp->conn_rq, conn_ind); } else { mutex_exit(&listener->tcp_eager_lock); } /* * Done with the acceptor - free it * * Note: from this point on, no access to listener should be made * as listener can be equal to acceptor. */ finish: ASSERT(acceptor->tcp_detached); acceptor->tcp_connp->conn_rq = NULL; ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); acceptor->tcp_connp->conn_wq = NULL; (void) tcp_clean_death(acceptor, 0, 2); CONN_DEC_REF(acceptor->tcp_connp); /* * We pass discon_mp to tcp_accept_finish to get on the right squeue. * * It will update the setting for sockfs/stream head and also take * care of any data that arrived before accept() wad called. * In case we already received a FIN then tcp_accept_finish will send up * the ordrel. It will also send up a window update if the window * has opened up. */ /* * XXX: we currently have a problem if XTI application closes the * acceptor stream in between. This problem exists in on10-gate also * and is well know but nothing can be done short of major rewrite * to fix it. Now it is possible to take care of it by assigning TLI/XTI * eager same squeue as listener (we can distinguish non socket * listeners at the time of handling a SYN in tcp_input_listener) * and do most of the work that tcp_accept_finish does here itself * and then get behind the acceptor squeue to access the acceptor * queue. */ /* * We already have a ref on tcp so no need to do one before squeue_enter */ SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, discon_mp, tcp_accept_finish, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); } /* * Swap information between the eager and acceptor for a TLI/XTI client. * The sockfs accept is done on the acceptor stream and control goes * through tcp_tli_accept() and tcp_accept()/tcp_accept_swap() is not * called. In either case, both the eager and listener are in their own * perimeter (squeue) and the code has to deal with potential race. * * See the block comment on top of tcp_accept() and tcp_tli_accept(). */ static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) { conn_t *econnp, *aconnp; ASSERT(eager->tcp_connp->conn_rq == listener->tcp_connp->conn_rq); ASSERT(eager->tcp_detached && !acceptor->tcp_detached); ASSERT(!TCP_IS_SOCKET(acceptor)); ASSERT(!TCP_IS_SOCKET(eager)); ASSERT(!TCP_IS_SOCKET(listener)); /* * Trusted Extensions may need to use a security label that is * different from the acceptor's label on MLP and MAC-Exempt * sockets. If this is the case, the required security label * already exists in econnp->conn_ixa->ixa_tsl. Since we make the * acceptor stream refer to econnp we atomatically get that label. */ acceptor->tcp_detached = B_TRUE; /* * To permit stream re-use by TLI/XTI, the eager needs a copy of * the acceptor id. */ eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; /* remove eager from listen list... */ mutex_enter(&listener->tcp_eager_lock); tcp_eager_unlink(eager); ASSERT(eager->tcp_eager_next_q == NULL && eager->tcp_eager_last_q == NULL); ASSERT(eager->tcp_eager_next_q0 == NULL && eager->tcp_eager_prev_q0 == NULL); mutex_exit(&listener->tcp_eager_lock); econnp = eager->tcp_connp; aconnp = acceptor->tcp_connp; econnp->conn_rq = aconnp->conn_rq; econnp->conn_wq = aconnp->conn_wq; econnp->conn_rq->q_ptr = econnp; econnp->conn_wq->q_ptr = econnp; /* * In the TLI/XTI loopback case, we are inside the listener's squeue, * which might be a different squeue from our peer TCP instance. * For TCP Fusion, the peer expects that whenever tcp_detached is * clear, our TCP queues point to the acceptor's queues. Thus, use * membar_producer() to ensure that the assignments of conn_rq/conn_wq * above reach global visibility prior to the clearing of tcp_detached. */ membar_producer(); eager->tcp_detached = B_FALSE; ASSERT(eager->tcp_ack_tid == 0); econnp->conn_dev = aconnp->conn_dev; econnp->conn_minor_arena = aconnp->conn_minor_arena; ASSERT(econnp->conn_minor_arena != NULL); if (econnp->conn_cred != NULL) crfree(econnp->conn_cred); econnp->conn_cred = aconnp->conn_cred; aconnp->conn_cred = NULL; econnp->conn_cpid = aconnp->conn_cpid; ASSERT(econnp->conn_netstack == aconnp->conn_netstack); ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); econnp->conn_zoneid = aconnp->conn_zoneid; econnp->conn_allzones = aconnp->conn_allzones; econnp->conn_ixa->ixa_zoneid = aconnp->conn_ixa->ixa_zoneid; econnp->conn_mac_mode = aconnp->conn_mac_mode; econnp->conn_zone_is_global = aconnp->conn_zone_is_global; aconnp->conn_mac_mode = CONN_MAC_DEFAULT; /* Do the IPC initialization */ CONN_INC_REF(econnp); /* Done with old IPC. Drop its ref on its connp */ CONN_DEC_REF(aconnp); } /* * Adapt to the information, such as rtt and rtt_sd, provided from the * DCE and IRE maintained by IP. * * Checks for multicast and broadcast destination address. * Returns zero if ok; an errno on failure. * * Note that the MSS calculation here is based on the info given in * the DCE and IRE. We do not do any calculation based on TCP options. They * will be handled in tcp_input_data() when TCP knows which options to use. * * Note on how TCP gets its parameters for a connection. * * When a tcp_t structure is allocated, it gets all the default parameters. * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, * spipe, rpipe, ... from the route metrics. Route metric overrides the * default. * * An incoming SYN with a multicast or broadcast destination address is dropped * in ip_fanout_v4/v6. * * An incoming SYN with a multicast or broadcast source address is always * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in * conn_connect. * The same logic in tcp_set_destination also serves to * reject an attempt to connect to a broadcast or multicast (destination) * address. */ static int tcp_set_destination(tcp_t *tcp) { uint32_t mss_max; uint32_t mss; boolean_t tcp_detached = TCP_IS_DETACHED(tcp); conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; iulp_t uinfo; int error; uint32_t flags; flags = IPDF_LSO | IPDF_ZCOPY; /* * Make sure we have a dce for the destination to avoid dce_ident * contention for connected sockets. */ flags |= IPDF_UNIQUE_DCE; if (!tcps->tcps_ignore_path_mtu) connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; /* Use conn_lock to satify ASSERT; tcp is already serialized */ mutex_enter(&connp->conn_lock); error = conn_connect(connp, &uinfo, flags); mutex_exit(&connp->conn_lock); if (error != 0) return (error); error = tcp_build_hdrs(tcp); if (error != 0) return (error); tcp->tcp_localnet = uinfo.iulp_localnet; if (uinfo.iulp_rtt != 0) { clock_t rto; tcp->tcp_rtt_sa = uinfo.iulp_rtt; tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd; rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); if (rto > tcps->tcps_rexmit_interval_max) { tcp->tcp_rto = tcps->tcps_rexmit_interval_max; } else if (rto < tcps->tcps_rexmit_interval_min) { tcp->tcp_rto = tcps->tcps_rexmit_interval_min; } else { tcp->tcp_rto = rto; } } if (uinfo.iulp_ssthresh != 0) tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; else tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; if (uinfo.iulp_spipe > 0) { connp->conn_sndbuf = MIN(uinfo.iulp_spipe, tcps->tcps_max_buf); if (tcps->tcps_snd_lowat_fraction != 0) { connp->conn_sndlowat = connp->conn_sndbuf / tcps->tcps_snd_lowat_fraction; } (void) tcp_maxpsz_set(tcp, B_TRUE); } /* * Note that up till now, acceptor always inherits receive * window from the listener. But if there is a metrics * associated with a host, we should use that instead of * inheriting it from listener. Thus we need to pass this * info back to the caller. */ if (uinfo.iulp_rpipe > 0) { tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, tcps->tcps_max_buf); } if (uinfo.iulp_rtomax > 0) { tcp->tcp_second_timer_threshold = uinfo.iulp_rtomax; } /* * Use the metric option settings, iulp_tstamp_ok and * iulp_wscale_ok, only for active open. What this means * is that if the other side uses timestamp or window * scale option, TCP will also use those options. That * is for passive open. If the application sets a * large window, window scale is enabled regardless of * the value in iulp_wscale_ok. This is the behavior * since 2.6. So we keep it. * The only case left in passive open processing is the * check for SACK. * For ECN, it should probably be like SACK. But the * current value is binary, so we treat it like the other * cases. The metric only controls active open.For passive * open, the ndd param, tcp_ecn_permitted, controls the * behavior. */ if (!tcp_detached) { /* * The if check means that the following can only * be turned on by the metrics only IRE, but not off. */ if (uinfo.iulp_tstamp_ok) tcp->tcp_snd_ts_ok = B_TRUE; if (uinfo.iulp_wscale_ok) tcp->tcp_snd_ws_ok = B_TRUE; if (uinfo.iulp_sack == 2) tcp->tcp_snd_sack_ok = B_TRUE; if (uinfo.iulp_ecn_ok) tcp->tcp_ecn_ok = B_TRUE; } else { /* * Passive open. * * As above, the if check means that SACK can only be * turned on by the metric only IRE. */ if (uinfo.iulp_sack > 0) { tcp->tcp_snd_sack_ok = B_TRUE; } } /* * XXX Note that currently, iulp_mtu can be as small as 68 * because of PMTUd. So tcp_mss may go to negative if combined * length of all those options exceeds 28 bytes. But because * of the tcp_mss_min check below, we may not have a problem if * tcp_mss_min is of a reasonable value. The default is 1 so * the negative problem still exists. And the check defeats PMTUd. * In fact, if PMTUd finds that the MSS should be smaller than * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min * value. * * We do not deal with that now. All those problems related to * PMTUd will be fixed later. */ ASSERT(uinfo.iulp_mtu != 0); mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; /* Sanity check for MSS value. */ if (connp->conn_ipversion == IPV4_VERSION) mss_max = tcps->tcps_mss_max_ipv4; else mss_max = tcps->tcps_mss_max_ipv6; if (tcp->tcp_ipsec_overhead == 0) tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); mss -= tcp->tcp_ipsec_overhead; if (mss < tcps->tcps_mss_min) mss = tcps->tcps_mss_min; if (mss > mss_max) mss = mss_max; /* Note that this is the maximum MSS, excluding all options. */ tcp->tcp_mss = mss; /* * Update the tcp connection with LSO capability. */ tcp_update_lso(tcp, connp->conn_ixa); /* * Initialize the ISS here now that we have the full connection ID. * The RFC 1948 method of initial sequence number generation requires * knowledge of the full connection ID before setting the ISS. */ tcp_iss_init(tcp); tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); /* * Make sure that conn is not marked incipient * for incoming connections. A blind * removal of incipient flag is cheaper than * check and removal. */ mutex_enter(&connp->conn_lock); connp->conn_state_flags &= ~CONN_INCIPIENT; mutex_exit(&connp->conn_lock); return (0); } static void tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) { int error; conn_t *connp = tcp->tcp_connp; struct sockaddr *sa; mblk_t *mp1; struct T_bind_req *tbr; int backlog; socklen_t len; sin_t *sin; sin6_t *sin6; cred_t *cr; /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) { tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_tpi_bind: bad req, len %u", (uint_t)(mp->b_wptr - mp->b_rptr)); } tcp_err_ack(tcp, mp, TPROTO, 0); return; } /* Make sure the largest address fits */ mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t), 1); if (mp1 == NULL) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } mp = mp1; tbr = (struct T_bind_req *)mp->b_rptr; backlog = tbr->CONIND_number; len = tbr->ADDR_length; switch (len) { case 0: /* request for a generic port */ tbr->ADDR_offset = sizeof (struct T_bind_req); if (connp->conn_family == AF_INET) { tbr->ADDR_length = sizeof (sin_t); sin = (sin_t *)&tbr[1]; *sin = sin_null; sin->sin_family = AF_INET; sa = (struct sockaddr *)sin; len = sizeof (sin_t); mp->b_wptr = (uchar_t *)&sin[1]; } else { ASSERT(connp->conn_family == AF_INET6); tbr->ADDR_length = sizeof (sin6_t); sin6 = (sin6_t *)&tbr[1]; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sa = (struct sockaddr *)sin6; len = sizeof (sin6_t); mp->b_wptr = (uchar_t *)&sin6[1]; } break; case sizeof (sin_t): /* Complete IPv4 address */ sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin_t)); break; case sizeof (sin6_t): /* Complete IPv6 address */ sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, sizeof (sin6_t)); break; default: if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_tpi_bind: bad address length, %d", tbr->ADDR_length); } tcp_err_ack(tcp, mp, TBADADDR, 0); return; } if (backlog > 0) { error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), tbr->PRIM_type != O_T_BIND_REQ); } else { error = tcp_do_bind(connp, sa, len, DB_CRED(mp), tbr->PRIM_type != O_T_BIND_REQ); } done: if (error > 0) { tcp_err_ack(tcp, mp, TSYSERR, error); } else if (error < 0) { tcp_err_ack(tcp, mp, -error, 0); } else { /* * Update port information as sockfs/tpi needs it for checking */ if (connp->conn_family == AF_INET) { sin = (sin_t *)sa; sin->sin_port = connp->conn_lport; } else { sin6 = (sin6_t *)sa; sin6->sin6_port = connp->conn_lport; } mp->b_datap->db_type = M_PCPROTO; tbr->PRIM_type = T_BIND_ACK; putnext(connp->conn_rq, mp); } } /* * If the "bind_to_req_port_only" parameter is set, if the requested port * number is available, return it, If not return 0 * * If "bind_to_req_port_only" parameter is not set and * If the requested port number is available, return it. If not, return * the first anonymous port we happen across. If no anonymous ports are * available, return 0. addr is the requested local address, if any. * * In either case, when succeeding update the tcp_t to record the port number * and insert it in the bind hash table. * * Note that TCP over IPv4 and IPv6 sockets can use the same port number * without setting SO_REUSEADDR. This is needed so that they * can be viewed as two independent transport protocols. */ static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, boolean_t user_specified) { /* number of times we have run around the loop */ int count = 0; /* maximum number of times to run around the loop */ int loopmax; conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; /* * Lookup for free addresses is done in a loop and "loopmax" * influences how long we spin in the loop */ if (bind_to_req_port_only) { /* * If the requested port is busy, don't bother to look * for a new one. Setting loop maximum count to 1 has * that effect. */ loopmax = 1; } else { /* * If the requested port is busy, look for a free one * in the anonymous port range. * Set loopmax appropriately so that one does not look * forever in the case all of the anonymous ports are in use. */ if (connp->conn_anon_priv_bind) { /* * loopmax = * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 */ loopmax = IPPORT_RESERVED - tcps->tcps_min_anonpriv_port; } else { loopmax = (tcps->tcps_largest_anon_port - tcps->tcps_smallest_anon_port + 1); } } do { uint16_t lport; tf_t *tbf; tcp_t *ltcp; conn_t *lconnp; lport = htons(port); /* * Ensure that the tcp_t is not currently in the bind hash. * Hold the lock on the hash bucket to ensure that * the duplicate check plus the insertion is an atomic * operation. * * This function does an inline lookup on the bind hash list * Make sure that we access only members of tcp_t * and that we don't look at tcp_tcp, since we are not * doing a CONN_INC_REF. */ tcp_bind_hash_remove(tcp); tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; mutex_enter(&tbf->tf_lock); for (ltcp = tbf->tf_tcp; ltcp != NULL; ltcp = ltcp->tcp_bind_hash) { if (lport == ltcp->tcp_connp->conn_lport) break; } for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { boolean_t not_socket; boolean_t exclbind; lconnp = ltcp->tcp_connp; /* * On a labeled system, we must treat bindings to ports * on shared IP addresses by sockets with MAC exemption * privilege as being in all zones, as there's * otherwise no way to identify the right receiver. */ if (!IPCL_BIND_ZONE_MATCH(lconnp, connp)) continue; /* * If TCP_EXCLBIND is set for either the bound or * binding endpoint, the semantics of bind * is changed according to the following. * * spec = specified address (v4 or v6) * unspec = unspecified address (v4 or v6) * A = specified addresses are different for endpoints * * bound bind to allowed * ------------------------------------- * unspec unspec no * unspec spec no * spec unspec no * spec spec yes if A * * For labeled systems, SO_MAC_EXEMPT behaves the same * as TCP_EXCLBIND, except that zoneid is ignored. * * Note: * * 1. Because of TLI semantics, an endpoint can go * back from, say TCP_ESTABLISHED to TCPS_LISTEN or * TCPS_BOUND, depending on whether it is originally * a listener or not. That is why we need to check * for states greater than or equal to TCPS_BOUND * here. * * 2. Ideally, we should only check for state equals * to TCPS_LISTEN. And the following check should be * added. * * if (ltcp->tcp_state == TCPS_LISTEN || * !reuseaddr || !lconnp->conn_reuseaddr) { * ... * } * * The semantics will be changed to this. If the * endpoint on the list is in state not equal to * TCPS_LISTEN and both endpoints have SO_REUSEADDR * set, let the bind succeed. * * Because of (1), we cannot do that for TLI * endpoints. But we can do that for socket endpoints. * If in future, we can change this going back * semantics, we can use the above check for TLI also. */ not_socket = !(TCP_IS_SOCKET(ltcp) && TCP_IS_SOCKET(tcp)); exclbind = lconnp->conn_exclbind || connp->conn_exclbind; if ((lconnp->conn_mac_mode != CONN_MAC_DEFAULT) || (connp->conn_mac_mode != CONN_MAC_DEFAULT) || (exclbind && (not_socket || ltcp->tcp_state <= TCPS_ESTABLISHED))) { if (V6_OR_V4_INADDR_ANY( lconnp->conn_bound_addr_v6) || V6_OR_V4_INADDR_ANY(*laddr) || IN6_ARE_ADDR_EQUAL(laddr, &lconnp->conn_bound_addr_v6)) { break; } continue; } /* * Check ipversion to allow IPv4 and IPv6 sockets to * have disjoint port number spaces, if *_EXCLBIND * is not set and only if the application binds to a * specific port. We use the same autoassigned port * number space for IPv4 and IPv6 sockets. */ if (connp->conn_ipversion != lconnp->conn_ipversion && bind_to_req_port_only) continue; /* * Ideally, we should make sure that the source * address, remote address, and remote port in the * four tuple for this tcp-connection is unique. * However, trying to find out the local source * address would require too much code duplication * with IP, since IP needs needs to have that code * to support userland TCP implementations. */ if (quick_connect && (ltcp->tcp_state > TCPS_LISTEN) && ((connp->conn_fport != lconnp->conn_fport) || !IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &lconnp->conn_faddr_v6))) continue; if (!reuseaddr) { /* * No socket option SO_REUSEADDR. * If existing port is bound to * a non-wildcard IP address * and the requesting stream is * bound to a distinct * different IP addresses * (non-wildcard, also), keep * going. */ if (!V6_OR_V4_INADDR_ANY(*laddr) && !V6_OR_V4_INADDR_ANY( lconnp->conn_bound_addr_v6) && !IN6_ARE_ADDR_EQUAL(laddr, &lconnp->conn_bound_addr_v6)) continue; if (ltcp->tcp_state >= TCPS_BOUND) { /* * This port is being used and * its state is >= TCPS_BOUND, * so we can't bind to it. */ break; } } else { /* * socket option SO_REUSEADDR is set on the * binding tcp_t. * * If two streams are bound to * same IP address or both addr * and bound source are wildcards * (INADDR_ANY), we want to stop * searching. * We have found a match of IP source * address and source port, which is * refused regardless of the * SO_REUSEADDR setting, so we break. */ if (IN6_ARE_ADDR_EQUAL(laddr, &lconnp->conn_bound_addr_v6) && (ltcp->tcp_state == TCPS_LISTEN || ltcp->tcp_state == TCPS_BOUND)) break; } } if (ltcp != NULL) { /* The port number is busy */ mutex_exit(&tbf->tf_lock); } else { /* * This port is ours. Insert in fanout and mark as * bound to prevent others from getting the port * number. */ tcp->tcp_state = TCPS_BOUND; connp->conn_lport = htons(port); ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( connp->conn_lport)] == tbf); tcp_bind_hash_insert(tbf, tcp, 1); mutex_exit(&tbf->tf_lock); /* * We don't want tcp_next_port_to_try to "inherit" * a port number supplied by the user in a bind. */ if (user_specified) return (port); /* * This is the only place where tcp_next_port_to_try * is updated. After the update, it may or may not * be in the valid range. */ if (!connp->conn_anon_priv_bind) tcps->tcps_next_port_to_try = port + 1; return (port); } if (connp->conn_anon_priv_bind) { port = tcp_get_next_priv_port(tcp); } else { if (count == 0 && user_specified) { /* * We may have to return an anonymous port. So * get one to start with. */ port = tcp_update_next_port( tcps->tcps_next_port_to_try, tcp, B_TRUE); user_specified = B_FALSE; } else { port = tcp_update_next_port(port + 1, tcp, B_FALSE); } } if (port == 0) break; /* * Don't let this loop run forever in the case where * all of the anonymous ports are in use. */ } while (++count < loopmax); return (0); } /* * tcp_clean_death / tcp_close_detached must not be called more than once * on a tcp. Thus every function that potentially calls tcp_clean_death * must check for the tcp state before calling tcp_clean_death. * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, * tcp_timer_handler, all check for the tcp state. */ /* ARGSUSED */ void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { tcp_t *tcp = ((conn_t *)arg)->conn_tcp; freemsg(mp); if (tcp->tcp_state > TCPS_BOUND) (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); } /* * We are dying for some reason. Try to do it gracefully. (May be called * as writer.) * * Return -1 if the structure was not cleaned up (if the cleanup had to be * done by a service procedure). * TBD - Should the return value distinguish between the tcp_t being * freed and it being reinitialized? */ static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) { mblk_t *mp; queue_t *q; conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; TCP_CLD_STAT(tag); #if TCP_TAG_CLEAN_DEATH tcp->tcp_cleandeathtag = tag; #endif if (tcp->tcp_fused) tcp_unfuse(tcp); if (tcp->tcp_linger_tid != 0 && TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { tcp_stop_lingering(tcp); } ASSERT(tcp != NULL); ASSERT((connp->conn_family == AF_INET && connp->conn_ipversion == IPV4_VERSION) || (connp->conn_family == AF_INET6 && (connp->conn_ipversion == IPV4_VERSION || connp->conn_ipversion == IPV6_VERSION))); if (TCP_IS_DETACHED(tcp)) { if (tcp->tcp_hard_binding) { /* * Its an eager that we are dealing with. We close the * eager but in case a conn_ind has already gone to the * listener, let tcp_accept_finish() send a discon_ind * to the listener and drop the last reference. If the * listener doesn't even know about the eager i.e. the * conn_ind hasn't gone up, blow away the eager and drop * the last reference as well. If the conn_ind has gone * up, state should be BOUND. tcp_accept_finish * will figure out that the connection has received a * RST and will send a DISCON_IND to the application. */ tcp_closei_local(tcp); if (!tcp->tcp_tconnind_started) { CONN_DEC_REF(connp); } else { tcp->tcp_state = TCPS_BOUND; } } else { tcp_close_detached(tcp); } return (0); } TCP_STAT(tcps, tcp_clean_death_nondetached); q = connp->conn_rq; /* Trash all inbound data */ if (!IPCL_IS_NONSTR(connp)) { ASSERT(q != NULL); flushq(q, FLUSHALL); } /* * If we are at least part way open and there is error * (err==0 implies no error) * notify our client by a T_DISCON_IND. */ if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { if (tcp->tcp_state >= TCPS_ESTABLISHED && !TCP_IS_SOCKET(tcp)) { /* * Send M_FLUSH according to TPI. Because sockets will * (and must) ignore FLUSHR we do that only for TPI * endpoints and sockets in STREAMS mode. */ (void) putnextctl1(q, M_FLUSH, FLUSHR); } if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_clean_death: discon err %d", err); } if (IPCL_IS_NONSTR(connp)) { /* Direct socket, use upcall */ (*connp->conn_upcalls->su_disconnected)( connp->conn_upper_handle, tcp->tcp_connid, err); } else { mp = mi_tpi_discon_ind(NULL, err, 0); if (mp != NULL) { putnext(q, mp); } else { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_clean_death, sending M_ERROR"); } (void) putnextctl1(q, M_ERROR, EPROTO); } } if (tcp->tcp_state <= TCPS_SYN_RCVD) { /* SYN_SENT or SYN_RCVD */ BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { /* ESTABLISHED or CLOSE_WAIT */ BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); } } tcp_reinit(tcp); if (IPCL_IS_NONSTR(connp)) (void) tcp_do_unbind(connp); return (-1); } /* * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout * to expire, stop the wait and finish the close. */ static void tcp_stop_lingering(tcp_t *tcp) { clock_t delta = 0; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; tcp->tcp_linger_tid = 0; if (tcp->tcp_state > TCPS_LISTEN) { tcp_acceptor_hash_remove(tcp); mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped) { tcp_clrqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); if (tcp->tcp_timer_tid != 0) { delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } /* * Need to cancel those timers which will not be used when * TCP is detached. This has to be done before the conn_wq * is cleared. */ tcp_timers_stop(tcp); tcp->tcp_detached = B_TRUE; connp->conn_rq = NULL; connp->conn_wq = NULL; if (tcp->tcp_state == TCPS_TIME_WAIT) { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcps, tcp_detach_time_wait); goto finish; } /* * If delta is zero the timer event wasn't executed and was * successfully canceled. In this case we need to restart it * with the minimal delta possible. */ if (delta >= 0) { tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, delta ? delta : 1); } } else { tcp_closei_local(tcp); CONN_DEC_REF(connp); } finish: /* Signal closing thread that it can complete close */ mutex_enter(&tcp->tcp_closelock); tcp->tcp_detached = B_TRUE; connp->conn_rq = NULL; connp->conn_wq = NULL; tcp->tcp_closed = 1; cv_signal(&tcp->tcp_closecv); mutex_exit(&tcp->tcp_closelock); } /* * Handle lingering timeouts. This function is called when the SO_LINGER timeout * expires. */ static void tcp_close_linger_timeout(void *arg) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcp->tcp_client_errno = ETIMEDOUT; tcp_stop_lingering(tcp); } static void tcp_close_common(conn_t *connp, int flags) { tcp_t *tcp = connp->conn_tcp; mblk_t *mp = &tcp->tcp_closemp; boolean_t conn_ioctl_cleanup_reqd = B_FALSE; mblk_t *bp; ASSERT(connp->conn_ref >= 2); /* * Mark the conn as closing. ipsq_pending_mp_add will not * add any mp to the pending mp list, after this conn has * started closing. */ mutex_enter(&connp->conn_lock); connp->conn_state_flags |= CONN_CLOSING; if (connp->conn_oper_pending_ill != NULL) conn_ioctl_cleanup_reqd = B_TRUE; CONN_INC_REF_LOCKED(connp); mutex_exit(&connp->conn_lock); tcp->tcp_closeflags = (uint8_t)flags; ASSERT(connp->conn_ref >= 3); /* * tcp_closemp_used is used below without any protection of a lock * as we don't expect any one else to use it concurrently at this * point otherwise it would be a major defect. */ if (mp->b_prev == NULL) tcp->tcp_closemp_used = B_TRUE; else cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " "connp %p tcp %p\n", (void *)connp, (void *)tcp); TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); mutex_enter(&tcp->tcp_closelock); while (!tcp->tcp_closed) { if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { /* * The cv_wait_sig() was interrupted. We now do the * following: * * 1) If the endpoint was lingering, we allow this * to be interrupted by cancelling the linger timeout * and closing normally. * * 2) Revert to calling cv_wait() * * We revert to using cv_wait() to avoid an * infinite loop which can occur if the calling * thread is higher priority than the squeue worker * thread and is bound to the same cpu. */ if (connp->conn_linger && connp->conn_lingertime > 0) { mutex_exit(&tcp->tcp_closelock); /* Entering squeue, bump ref count. */ CONN_INC_REF(connp); bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_linger_interrupted, connp, NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); mutex_enter(&tcp->tcp_closelock); } break; } } while (!tcp->tcp_closed) cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); mutex_exit(&tcp->tcp_closelock); /* * In the case of listener streams that have eagers in the q or q0 * we wait for the eagers to drop their reference to us. conn_rq and * conn_wq of the eagers point to our queues. By waiting for the * refcnt to drop to 1, we are sure that the eagers have cleaned * up their queue pointers and also dropped their references to us. */ if (tcp->tcp_wait_for_eagers) { mutex_enter(&connp->conn_lock); while (connp->conn_ref != 1) { cv_wait(&connp->conn_cv, &connp->conn_lock); } mutex_exit(&connp->conn_lock); } /* * ioctl cleanup. The mp is queued in the ipx_pending_mp. */ if (conn_ioctl_cleanup_reqd) conn_ioctl_cleanup(connp); connp->conn_cpid = NOPID; } static int tcp_tpi_close(queue_t *q, int flags) { conn_t *connp; ASSERT(WR(q)->q_next == NULL); if (flags & SO_FALLBACK) { /* * stream is being closed while in fallback * simply free the resources that were allocated */ inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); qprocsoff(q); goto done; } connp = Q_TO_CONN(q); /* * We are being closed as /dev/tcp or /dev/tcp6. */ tcp_close_common(connp, flags); qprocsoff(q); inet_minor_free(connp->conn_minor_arena, connp->conn_dev); /* * Drop IP's reference on the conn. This is the last reference * on the connp if the state was less than established. If the * connection has gone into timewait state, then we will have * one ref for the TCP and one more ref (total of two) for the * classifier connected hash list (a timewait connections stays * in connected hash till closed). * * We can't assert the references because there might be other * transient reference places because of some walkers or queued * packets in squeue for the timewait state. */ CONN_DEC_REF(connp); done: q->q_ptr = WR(q)->q_ptr = NULL; return (0); } static int tcp_tpi_close_accept(queue_t *q) { vmem_t *minor_arena; dev_t conn_dev; ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); /* * We had opened an acceptor STREAM for sockfs which is * now being closed due to some error. */ qprocsoff(q); minor_arena = (vmem_t *)WR(q)->q_ptr; conn_dev = (dev_t)RD(q)->q_ptr; ASSERT(minor_arena != NULL); ASSERT(conn_dev != 0); inet_minor_free(minor_arena, conn_dev); q->q_ptr = WR(q)->q_ptr = NULL; return (0); } /* * Called by tcp_close() routine via squeue when lingering is * interrupted by a signal. */ /* ARGSUSED */ static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; freeb(mp); if (tcp->tcp_linger_tid != 0 && TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { tcp_stop_lingering(tcp); tcp->tcp_client_errno = EINTR; } } /* * Called by streams close routine via squeues when our client blows off her * descriptor, we take this to mean: "close the stream state NOW, close the tcp * connection politely" When SO_LINGER is set (with a non-zero linger time and * it is not a nonblocking socket) then this routine sleeps until the FIN is * acked. * * NOTE: tcp_close potentially returns error when lingering. * However, the stream head currently does not pass these errors * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK * errors to the application (from tsleep()) and not errors * like ECONNRESET caused by receiving a reset packet. */ /* ARGSUSED */ static void tcp_close_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { char *msg; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; clock_t delta = 0; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); mutex_enter(&tcp->tcp_eager_lock); if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { /* Cleanup for listener */ tcp_eager_cleanup(tcp, 0); tcp->tcp_wait_for_eagers = 1; } mutex_exit(&tcp->tcp_eager_lock); tcp->tcp_lso = B_FALSE; msg = NULL; switch (tcp->tcp_state) { case TCPS_CLOSED: case TCPS_IDLE: case TCPS_BOUND: case TCPS_LISTEN: break; case TCPS_SYN_SENT: msg = "tcp_close, during connect"; break; case TCPS_SYN_RCVD: /* * Close during the connect 3-way handshake * but here there may or may not be pending data * already on queue. Process almost same as in * the ESTABLISHED state. */ /* FALLTHRU */ default: if (tcp->tcp_fused) tcp_unfuse(tcp); /* * If SO_LINGER has set a zero linger time, abort the * connection with a reset. */ if (connp->conn_linger && connp->conn_lingertime == 0) { msg = "tcp_close, zero lingertime"; break; } /* * Abort connection if there is unread data queued. */ if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { msg = "tcp_close, unread data"; break; } /* * We have done a qwait() above which could have possibly * drained more messages in turn causing transition to a * different state. Check whether we have to do the rest * of the processing or not. */ if (tcp->tcp_state <= TCPS_LISTEN) break; /* * Transmit the FIN before detaching the tcp_t. * After tcp_detach returns this queue/perimeter * no longer owns the tcp_t thus others can modify it. */ (void) tcp_xmit_end(tcp); /* * If lingering on close then wait until the fin is acked, * the SO_LINGER time passes, or a reset is sent/received. */ if (connp->conn_linger && connp->conn_lingertime > 0 && !(tcp->tcp_fin_acked) && tcp->tcp_state >= TCPS_ESTABLISHED) { if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { tcp->tcp_client_errno = EWOULDBLOCK; } else if (tcp->tcp_client_errno == 0) { ASSERT(tcp->tcp_linger_tid == 0); tcp->tcp_linger_tid = TCP_TIMER(tcp, tcp_close_linger_timeout, connp->conn_lingertime * hz); /* tcp_close_linger_timeout will finish close */ if (tcp->tcp_linger_tid == 0) tcp->tcp_client_errno = ENOSR; else return; } /* * Check if we need to detach or just close * the instance. */ if (tcp->tcp_state <= TCPS_LISTEN) break; } /* * Make sure that no other thread will access the conn_rq of * this instance (through lookups etc.) as conn_rq will go * away shortly. */ tcp_acceptor_hash_remove(tcp); mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped) { tcp_clrqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); if (tcp->tcp_timer_tid != 0) { delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } /* * Need to cancel those timers which will not be used when * TCP is detached. This has to be done before the conn_wq * is set to NULL. */ tcp_timers_stop(tcp); tcp->tcp_detached = B_TRUE; if (tcp->tcp_state == TCPS_TIME_WAIT) { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcps, tcp_detach_time_wait); ASSERT(connp->conn_ref >= 3); goto finish; } /* * If delta is zero the timer event wasn't executed and was * successfully canceled. In this case we need to restart it * with the minimal delta possible. */ if (delta >= 0) tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, delta ? delta : 1); ASSERT(connp->conn_ref >= 3); goto finish; } /* Detach did not complete. Still need to remove q from stream. */ if (msg) { if (tcp->tcp_state == TCPS_ESTABLISHED || tcp->tcp_state == TCPS_CLOSE_WAIT) BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); if (tcp->tcp_state == TCPS_SYN_SENT || tcp->tcp_state == TCPS_SYN_RCVD) BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); } tcp_closei_local(tcp); CONN_DEC_REF(connp); ASSERT(connp->conn_ref >= 2); finish: mutex_enter(&tcp->tcp_closelock); /* * Don't change the queues in the case of a listener that has * eagers in its q or q0. It could surprise the eagers. * Instead wait for the eagers outside the squeue. */ if (!tcp->tcp_wait_for_eagers) { tcp->tcp_detached = B_TRUE; connp->conn_rq = NULL; connp->conn_wq = NULL; } /* Signal tcp_close() to finish closing. */ tcp->tcp_closed = 1; cv_signal(&tcp->tcp_closecv); mutex_exit(&tcp->tcp_closelock); } /* * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. * Some stream heads get upset if they see these later on as anything but NULL. */ static void tcp_close_mpp(mblk_t **mpp) { mblk_t *mp; if ((mp = *mpp) != NULL) { do { mp->b_next = NULL; mp->b_prev = NULL; } while ((mp = mp->b_cont) != NULL); mp = *mpp; *mpp = NULL; freemsg(mp); } } /* Do detached close. */ static void tcp_close_detached(tcp_t *tcp) { if (tcp->tcp_fused) tcp_unfuse(tcp); /* * Clustering code serializes TCP disconnect callbacks and * cluster tcp list walks by blocking a TCP disconnect callback * if a cluster tcp list walk is in progress. This ensures * accurate accounting of TCPs in the cluster code even though * the TCP list walk itself is not atomic. */ tcp_closei_local(tcp); CONN_DEC_REF(tcp->tcp_connp); } /* * Stop all TCP timers, and free the timer mblks if requested. */ void tcp_timers_stop(tcp_t *tcp) { if (tcp->tcp_timer_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } if (tcp->tcp_ka_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); tcp->tcp_ka_tid = 0; } if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } if (tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); tcp->tcp_push_tid = 0; } } /* * The tcp_t is going away. Remove it from all lists and set it * to TCPS_CLOSED. The freeing up of memory is deferred until * tcp_inactive. This is needed since a thread in tcp_rput might have * done a CONN_INC_REF on this structure before it was removed from the * hashes. */ static void tcp_closei_local(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; if (!TCP_IS_SOCKET(tcp)) tcp_acceptor_hash_remove(tcp); UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); tcp->tcp_ibsegs = 0; UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); tcp->tcp_obsegs = 0; /* * If we are an eager connection hanging off a listener that * hasn't formally accepted the connection yet, get off his * list and blow off any data that we have accumulated. */ if (tcp->tcp_listener != NULL) { tcp_t *listener = tcp->tcp_listener; mutex_enter(&listener->tcp_eager_lock); /* * tcp_tconnind_started == B_TRUE means that the * conn_ind has already gone to listener. At * this point, eager will be closed but we * leave it in listeners eager list so that * if listener decides to close without doing * accept, we can clean this up. In tcp_tli_accept * we take care of the case of accept on closed * eager. */ if (!tcp->tcp_tconnind_started) { tcp_eager_unlink(tcp); mutex_exit(&listener->tcp_eager_lock); /* * We don't want to have any pointers to the * listener queue, after we have released our * reference on the listener */ ASSERT(tcp->tcp_detached); connp->conn_rq = NULL; connp->conn_wq = NULL; CONN_DEC_REF(listener->tcp_connp); } else { mutex_exit(&listener->tcp_eager_lock); } } /* Stop all the timers */ tcp_timers_stop(tcp); if (tcp->tcp_state == TCPS_LISTEN) { if (tcp->tcp_ip_addr_cache) { kmem_free((void *)tcp->tcp_ip_addr_cache, IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); tcp->tcp_ip_addr_cache = NULL; } } mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped) tcp_clrqfull(tcp); mutex_exit(&tcp->tcp_non_sq_lock); tcp_bind_hash_remove(tcp); /* * If the tcp_time_wait_collector (which runs outside the squeue) * is trying to remove this tcp from the time wait list, we will * block in tcp_time_wait_remove while trying to acquire the * tcp_time_wait_lock. The logic in tcp_time_wait_collector also * requires the ipcl_hash_remove to be ordered after the * tcp_time_wait_remove for the refcnt checks to work correctly. */ if (tcp->tcp_state == TCPS_TIME_WAIT) (void) tcp_time_wait_remove(tcp, NULL); CL_INET_DISCONNECT(connp); ipcl_hash_remove(connp); ixa_cleanup(connp->conn_ixa); /* * Mark the conn as CONDEMNED */ mutex_enter(&connp->conn_lock); connp->conn_state_flags |= CONN_CONDEMNED; mutex_exit(&connp->conn_lock); /* Need to cleanup any pending ioctls */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); tcp->tcp_state = TCPS_CLOSED; /* Release any SSL context */ if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); tcp->tcp_kssl_ent = NULL; } if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; } tcp->tcp_kssl_pending = B_FALSE; tcp_ipsec_cleanup(tcp); } /* * tcp is dying (called from ipcl_conn_destroy and error cases). * Free the tcp_t in either case. */ void tcp_free(tcp_t *tcp) { mblk_t *mp; conn_t *connp = tcp->tcp_connp; ASSERT(tcp != NULL); ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); connp->conn_rq = NULL; connp->conn_wq = NULL; tcp_close_mpp(&tcp->tcp_xmit_head); tcp_close_mpp(&tcp->tcp_reass_head); if (tcp->tcp_rcv_list != NULL) { /* Free b_next chain */ tcp_close_mpp(&tcp->tcp_rcv_list); } if ((mp = tcp->tcp_urp_mp) != NULL) { freemsg(mp); } if ((mp = tcp->tcp_urp_mark_mp) != NULL) { freemsg(mp); } if (tcp->tcp_fused_sigurg_mp != NULL) { ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); freeb(tcp->tcp_fused_sigurg_mp); tcp->tcp_fused_sigurg_mp = NULL; } if (tcp->tcp_ordrel_mp != NULL) { ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); freeb(tcp->tcp_ordrel_mp); tcp->tcp_ordrel_mp = NULL; } if (tcp->tcp_sack_info != NULL) { if (tcp->tcp_notsack_list != NULL) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); } bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); } if (tcp->tcp_hopopts != NULL) { mi_free(tcp->tcp_hopopts); tcp->tcp_hopopts = NULL; tcp->tcp_hopoptslen = 0; } ASSERT(tcp->tcp_hopoptslen == 0); if (tcp->tcp_dstopts != NULL) { mi_free(tcp->tcp_dstopts); tcp->tcp_dstopts = NULL; tcp->tcp_dstoptslen = 0; } ASSERT(tcp->tcp_dstoptslen == 0); if (tcp->tcp_rthdrdstopts != NULL) { mi_free(tcp->tcp_rthdrdstopts); tcp->tcp_rthdrdstopts = NULL; tcp->tcp_rthdrdstoptslen = 0; } ASSERT(tcp->tcp_rthdrdstoptslen == 0); if (tcp->tcp_rthdr != NULL) { mi_free(tcp->tcp_rthdr); tcp->tcp_rthdr = NULL; tcp->tcp_rthdrlen = 0; } ASSERT(tcp->tcp_rthdrlen == 0); /* * Following is really a blowing away a union. * It happens to have exactly two members of identical size * the following code is enough. */ tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); } /* * Put a connection confirmation message upstream built from the * address/flowid information with the conn and iph. Report our success or * failure. */ static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, mblk_t *idmp, mblk_t **defermp, ip_recv_attr_t *ira) { sin_t sin; sin6_t sin6; mblk_t *mp; char *optp = NULL; int optlen = 0; conn_t *connp = tcp->tcp_connp; if (defermp != NULL) *defermp = NULL; if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { /* * Return in T_CONN_CON results of option negotiation through * the T_CONN_REQ. Note: If there is an real end-to-end option * negotiation, then what is received from remote end needs * to be taken into account but there is no such thing (yet?) * in our TCP/IP. * Note: We do not use mi_offset_param() here as * tcp_opts_conn_req contents do not directly come from * an application and are either generated in kernel or * from user input that was already verified. */ mp = tcp->tcp_conn.tcp_opts_conn_req; optp = (char *)(mp->b_rptr + ((struct T_conn_req *)mp->b_rptr)->OPT_offset); optlen = (int) ((struct T_conn_req *)mp->b_rptr)->OPT_length; } if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { /* packet is IPv4 */ if (connp->conn_family == AF_INET) { sin = sin_null; sin.sin_addr.s_addr = connp->conn_faddr_v4; sin.sin_port = connp->conn_fport; sin.sin_family = AF_INET; mp = mi_tpi_conn_con(NULL, (char *)&sin, (int)sizeof (sin_t), optp, optlen); } else { sin6 = sin6_null; sin6.sin6_addr = connp->conn_faddr_v6; sin6.sin6_port = connp->conn_fport; sin6.sin6_family = AF_INET6; mp = mi_tpi_conn_con(NULL, (char *)&sin6, (int)sizeof (sin6_t), optp, optlen); } } else { ip6_t *ip6h = (ip6_t *)iphdr; ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); ASSERT(connp->conn_family == AF_INET6); sin6 = sin6_null; sin6.sin6_addr = connp->conn_faddr_v6; sin6.sin6_port = connp->conn_fport; sin6.sin6_family = AF_INET6; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; mp = mi_tpi_conn_con(NULL, (char *)&sin6, (int)sizeof (sin6_t), optp, optlen); } if (!mp) return (B_FALSE); mblk_copycred(mp, idmp); if (defermp == NULL) { conn_t *connp = tcp->tcp_connp; if (IPCL_IS_NONSTR(connp)) { (*connp->conn_upcalls->su_connected) (connp->conn_upper_handle, tcp->tcp_connid, ira->ira_cred, ira->ira_cpid); freemsg(mp); } else { if (ira->ira_cred != NULL) { /* So that getpeerucred works for TPI sockfs */ mblk_setcred(mp, ira->ira_cred, ira->ira_cpid); } putnext(connp->conn_rq, mp); } } else { *defermp = mp; } if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); return (B_TRUE); } /* * Defense for the SYN attack - * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest * one from the list of droppable eagers. This list is a subset of q0. * see comments before the definition of MAKE_DROPPABLE(). * 2. Don't drop a SYN request before its first timeout. This gives every * request at least til the first timeout to complete its 3-way handshake. * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many * requests currently on the queue that has timed out. This will be used * as an indicator of whether an attack is under way, so that appropriate * actions can be taken. (It's incremented in tcp_timer() and decremented * either when eager goes into ESTABLISHED, or gets freed up.) * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on * # of timeout drops back to <= q0len/32 => SYN alert off */ static boolean_t tcp_drop_q0(tcp_t *tcp) { tcp_t *eager; mblk_t *mp; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); /* Pick oldest eager from the list of droppable eagers */ eager = tcp->tcp_eager_prev_drop_q0; /* If list is empty. return B_FALSE */ if (eager == tcp) { return (B_FALSE); } /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ if ((mp = allocb(0, BPRI_HI)) == NULL) return (B_FALSE); /* * Take this eager out from the list of droppable eagers since we are * going to drop it. */ MAKE_UNDROPPABLE(eager); if (tcp->tcp_connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, "tcp_drop_q0: listen half-open queue (max=%d) overflow" " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, tcp->tcp_conn_req_cnt_q0, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); /* Put a reference on the conn as we are enqueueing it in the sqeue */ CONN_INC_REF(eager->tcp_connp); SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_clean_death_wrapper, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_DROP_Q0); return (B_TRUE); } /* * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6 */ static mblk_t * tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira) { tcp_t *ltcp = lconnp->conn_tcp; tcp_t *tcp = connp->conn_tcp; mblk_t *tpi_mp; ipha_t *ipha; ip6_t *ip6h; sin6_t sin6; uint_t ifindex = ira->ira_ruifindex; tcp_stack_t *tcps = tcp->tcp_tcps; if (ira->ira_flags & IRAF_IS_IPV4) { ipha = (ipha_t *)mp->b_rptr; connp->conn_ipversion = IPV4_VERSION; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); connp->conn_saddr_v6 = connp->conn_laddr_v6; sin6 = sin6_null; sin6.sin6_addr = connp->conn_faddr_v6; sin6.sin6_port = connp->conn_fport; sin6.sin6_family = AF_INET6; sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, IPCL_ZONEID(lconnp), tcps->tcps_netstack); if (connp->conn_recv_ancillary.crb_recvdstaddr) { sin6_t sin6d; sin6d = sin6_null; sin6d.sin6_addr = connp->conn_laddr_v6; sin6d.sin6_port = connp->conn_lport; sin6d.sin6_family = AF_INET; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sin6d, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sin6d, sizeof (sin6_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin6, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } } else { ip6h = (ip6_t *)mp->b_rptr; connp->conn_ipversion = IPV6_VERSION; connp->conn_laddr_v6 = ip6h->ip6_dst; connp->conn_faddr_v6 = ip6h->ip6_src; connp->conn_saddr_v6 = connp->conn_laddr_v6; sin6 = sin6_null; sin6.sin6_addr = connp->conn_faddr_v6; sin6.sin6_port = connp->conn_fport; sin6.sin6_family = AF_INET6; sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6, IPCL_ZONEID(lconnp), tcps->tcps_netstack); if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { /* Pass up the scope_id of remote addr */ sin6.sin6_scope_id = ifindex; } else { sin6.sin6_scope_id = 0; } if (connp->conn_recv_ancillary.crb_recvdstaddr) { sin6_t sin6d; sin6d = sin6_null; sin6.sin6_addr = connp->conn_laddr_v6; sin6d.sin6_port = connp->conn_lport; sin6d.sin6_family = AF_INET6; if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6)) sin6d.sin6_scope_id = ifindex; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sin6d, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sin6d, sizeof (sin6_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin6, sizeof (sin6_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } } tcp->tcp_mss = tcps->tcps_mss_def_ipv6; return (tpi_mp); } /* Handle a SYN on an AF_INET socket */ mblk_t * tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira) { tcp_t *ltcp = lconnp->conn_tcp; tcp_t *tcp = connp->conn_tcp; sin_t sin; mblk_t *tpi_mp = NULL; tcp_stack_t *tcps = tcp->tcp_tcps; ipha_t *ipha; ASSERT(ira->ira_flags & IRAF_IS_IPV4); ipha = (ipha_t *)mp->b_rptr; connp->conn_ipversion = IPV4_VERSION; IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6); IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6); connp->conn_saddr_v6 = connp->conn_laddr_v6; sin = sin_null; sin.sin_addr.s_addr = connp->conn_faddr_v4; sin.sin_port = connp->conn_fport; sin.sin_family = AF_INET; if (lconnp->conn_recv_ancillary.crb_recvdstaddr) { sin_t sind; sind = sin_null; sind.sin_addr.s_addr = connp->conn_laddr_v4; sind.sin_port = connp->conn_lport; sind.sin_family = AF_INET; tpi_mp = mi_tpi_extconn_ind(NULL, (char *)&sind, sizeof (sin_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (char *)&sind, sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } else { tpi_mp = mi_tpi_conn_ind(NULL, (char *)&sin, sizeof (sin_t), (char *)&tcp, (t_scalar_t)sizeof (intptr_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); } tcp->tcp_mss = tcps->tcps_mss_def_ipv4; return (tpi_mp); } /* * tcp_get_conn/tcp_free_conn * * tcp_get_conn is used to get a clean tcp connection structure. * It tries to reuse the connections put on the freelist by the * time_wait_collector failing which it goes to kmem_cache. This * way has two benefits compared to just allocating from and * freeing to kmem_cache. * 1) The time_wait_collector can free (which includes the cleanup) * outside the squeue. So when the interrupt comes, we have a clean * connection sitting in the freelist. Obviously, this buys us * performance. * * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener * has multiple disadvantages - tying up the squeue during alloc. * But allocating the conn/tcp in IP land is also not the best since * we can't check the 'q' and 'q0' which are protected by squeue and * blindly allocate memory which might have to be freed here if we are * not allowed to accept the connection. By using the freelist and * putting the conn/tcp back in freelist, we don't pay a penalty for * allocating memory without checking 'q/q0' and freeing it if we can't * accept the connection. * * Care should be taken to put the conn back in the same squeue's freelist * from which it was allocated. Best results are obtained if conn is * allocated from listener's squeue and freed to the same. Time wait * collector will free up the freelist is the connection ends up sitting * there for too long. */ void * tcp_get_conn(void *arg, tcp_stack_t *tcps) { tcp_t *tcp = NULL; conn_t *connp = NULL; squeue_t *sqp = (squeue_t *)arg; tcp_squeue_priv_t *tcp_time_wait; netstack_t *ns; mblk_t *tcp_rsrv_mp = NULL; tcp_time_wait = *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); mutex_enter(&tcp_time_wait->tcp_time_wait_lock); tcp = tcp_time_wait->tcp_free_list; ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); if (tcp != NULL) { tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; tcp_time_wait->tcp_free_list_cnt--; mutex_exit(&tcp_time_wait->tcp_time_wait_lock); tcp->tcp_time_wait_next = NULL; connp = tcp->tcp_connp; connp->conn_flags |= IPCL_REUSED; ASSERT(tcp->tcp_tcps == NULL); ASSERT(connp->conn_netstack == NULL); ASSERT(tcp->tcp_rsrv_mp != NULL); ns = tcps->tcps_netstack; netstack_hold(ns); connp->conn_netstack = ns; connp->conn_ixa->ixa_ipst = ns->netstack_ip; tcp->tcp_tcps = tcps; ipcl_globalhash_insert(connp); connp->conn_ixa->ixa_notify_cookie = tcp; ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); connp->conn_recv = tcp_input_data; ASSERT(connp->conn_recvicmp == tcp_icmp_input); ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); return ((void *)connp); } mutex_exit(&tcp_time_wait->tcp_time_wait_lock); /* * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until * this conn_t/tcp_t is freed at ipcl_conn_destroy(). */ tcp_rsrv_mp = allocb(0, BPRI_HI); if (tcp_rsrv_mp == NULL) return (NULL); if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, tcps->tcps_netstack)) == NULL) { freeb(tcp_rsrv_mp); return (NULL); } tcp = connp->conn_tcp; tcp->tcp_rsrv_mp = tcp_rsrv_mp; mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); tcp->tcp_tcps = tcps; connp->conn_recv = tcp_input_data; connp->conn_recvicmp = tcp_icmp_input; connp->conn_verifyicmp = tcp_verifyicmp; /* * Register tcp_notify to listen to capability changes detected by IP. * This upcall is made in the context of the call to conn_ip_output * thus it is inside the squeue. */ connp->conn_ixa->ixa_notify = tcp_notify; connp->conn_ixa->ixa_notify_cookie = tcp; return ((void *)connp); } /* BEGIN CSTYLED */ /* * * The sockfs ACCEPT path: * ======================= * * The eager is now established in its own perimeter as soon as SYN is * received in tcp_input_listener(). When sockfs receives conn_ind, it * completes the accept processing on the acceptor STREAM. The sending * of conn_ind part is common for both sockfs listener and a TLI/XTI * listener but a TLI/XTI listener completes the accept processing * on the listener perimeter. * * Common control flow for 3 way handshake: * ---------------------------------------- * * incoming SYN (listener perimeter) -> tcp_input_listener() * * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data() * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() * * Sockfs ACCEPT Path: * ------------------- * * open acceptor stream (tcp_open allocates tcp_tli_accept() * as STREAM entry point) * * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept() * * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager * association (we are not behind eager's squeue but sockfs is protecting us * and no one knows about this stream yet. The STREAMS entry point q->q_info * is changed to point at tcp_wput(). * * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to * listener (done on listener's perimeter). * * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish * accept. * * TLI/XTI client ACCEPT path: * --------------------------- * * soaccept() sends T_CONN_RES on the listener STREAM. * * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()). * * Locks: * ====== * * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and * and listeners->tcp_eager_next_q. * * Referencing: * ============ * * 1) We start out in tcp_input_listener by eager placing a ref on * listener and listener adding eager to listeners->tcp_eager_next_q0. * * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before * doing so we place a ref on the eager. This ref is finally dropped at the * end of tcp_accept_finish() while unwinding from the squeue, i.e. the * reference is dropped by the squeue framework. * * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish * * The reference must be released by the same entity that added the reference * In the above scheme, the eager is the entity that adds and releases the * references. Note that tcp_accept_finish executes in the squeue of the eager * (albeit after it is attached to the acceptor stream). Though 1. executes * in the listener's squeue, the eager is nascent at this point and the * reference can be considered to have been added on behalf of the eager. * * Eager getting a Reset or listener closing: * ========================================== * * Once the listener and eager are linked, the listener never does the unlink. * If the listener needs to close, tcp_eager_cleanup() is called which queues * a message on all eager perimeter. The eager then does the unlink, clears * any pointers to the listener's queue and drops the reference to the * listener. The listener waits in tcp_close outside the squeue until its * refcount has dropped to 1. This ensures that the listener has waited for * all eagers to clear their association with the listener. * * Similarly, if eager decides to go away, it can unlink itself and close. * When the T_CONN_RES comes down, we check if eager has closed. Note that * the reference to eager is still valid because of the extra ref we put * in tcp_send_conn_ind. * * Listener can always locate the eager under the protection * of the listener->tcp_eager_lock, and then do a refhold * on the eager during the accept processing. * * The acceptor stream accesses the eager in the accept processing * based on the ref placed on eager before sending T_conn_ind. * The only entity that can negate this refhold is a listener close * which is mutually exclusive with an active acceptor stream. * * Eager's reference on the listener * =================================== * * If the accept happens (even on a closed eager) the eager drops its * reference on the listener at the start of tcp_accept_finish. If the * eager is killed due to an incoming RST before the T_conn_ind is sent up, * the reference is dropped in tcp_closei_local. If the listener closes, * the reference is dropped in tcp_eager_kill. In all cases the reference * is dropped while executing in the eager's context (squeue). */ /* END CSTYLED */ /* Process the SYN packet, mp, directed at the listener 'tcp' */ /* * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. * tcp_input_data will not see any packets for listeners since the listener * has conn_recv set to tcp_input_listener. */ /* ARGSUSED */ void tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { tcpha_t *tcpha; uint32_t seg_seq; tcp_t *eager; int err; conn_t *econnp = NULL; squeue_t *new_sqp; mblk_t *mp1; uint_t ip_hdr_len; conn_t *lconnp = (conn_t *)arg; tcp_t *listener = lconnp->conn_tcp; tcp_stack_t *tcps = listener->tcp_tcps; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; uint_t flags; mblk_t *tpi_mp; uint_t ifindex = ira->ira_ruifindex; ip_hdr_len = ira->ira_ip_hdr_length; tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; flags = (unsigned int)tcpha->tha_flags & 0xFF; if (!(flags & TH_SYN)) { if ((flags & TH_RST) || (flags & TH_URG)) { freemsg(mp); return; } if (flags & TH_ACK) { /* Note this executes in listener's squeue */ tcp_xmit_listeners_reset(mp, ira, ipst, lconnp); return; } freemsg(mp); return; } if (listener->tcp_state != TCPS_LISTEN) goto error2; ASSERT(IPCL_IS_BOUND(lconnp)); mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) { mutex_exit(&listener->tcp_eager_lock); TCP_STAT(tcps, tcp_listendrop); BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); if (lconnp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_input_listener: listen backlog (max=%d) " "overflow (%d pending) on %s", listener->tcp_conn_req_max, listener->tcp_conn_req_cnt_q, tcp_display(listener, NULL, DISP_PORT_ONLY)); } goto error2; } if (listener->tcp_conn_req_cnt_q0 >= listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { /* * Q0 is full. Drop a pending half-open req from the queue * to make room for the new SYN req. Also mark the time we * drop a SYN. * * A more aggressive defense against SYN attack will * be to set the "tcp_syn_defense" flag now. */ TCP_STAT(tcps, tcp_listendropq0); listener->tcp_last_rcv_lbolt = ddi_get_lbolt64(); if (!tcp_drop_q0(listener)) { mutex_exit(&listener->tcp_eager_lock); BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); if (lconnp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, "tcp_input_listener: listen half-open " "queue (max=%d) full (%d pending) on %s", tcps->tcps_conn_req_max_q0, listener->tcp_conn_req_cnt_q0, tcp_display(listener, NULL, DISP_PORT_ONLY)); } goto error2; } } mutex_exit(&listener->tcp_eager_lock); /* * IP sets ira_sqp to either the senders conn_sqp (for loopback) * or based on the ring (for packets from GLD). Otherwise it is * set based on lbolt i.e., a somewhat random number. */ ASSERT(ira->ira_sqp != NULL); new_sqp = ira->ira_sqp; econnp = (conn_t *)tcp_get_conn(arg2, tcps); if (econnp == NULL) goto error2; ASSERT(econnp->conn_netstack == lconnp->conn_netstack); econnp->conn_sqp = new_sqp; econnp->conn_initial_sqp = new_sqp; econnp->conn_ixa->ixa_sqp = new_sqp; econnp->conn_fport = tcpha->tha_lport; econnp->conn_lport = tcpha->tha_fport; err = conn_inherit_parent(lconnp, econnp); if (err != 0) goto error3; ASSERT(OK_32PTR(mp->b_rptr)); ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION || IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); if (lconnp->conn_family == AF_INET) { ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira); } else { tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira); } if (tpi_mp == NULL) goto error3; eager = econnp->conn_tcp; eager->tcp_detached = B_TRUE; SOCK_CONNID_INIT(eager->tcp_connid); tcp_init_values(eager); ASSERT((econnp->conn_ixa->ixa_flags & (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) == (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)); if (!tcps->tcps_dev_flow_ctl) econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; /* Prepare for diffing against previous packets */ eager->tcp_recvifindex = 0; eager->tcp_recvhops = 0xffffffffU; if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) { if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) || IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) { econnp->conn_incoming_ifindex = ifindex; econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; econnp->conn_ixa->ixa_scopeid = ifindex; } } if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) == (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) && tcps->tcps_rev_src_routes) { ipha_t *ipha = (ipha_t *)mp->b_rptr; ip_pkt_t *ipp = &econnp->conn_xmit_ipp; /* Source routing option copyover (reverse it) */ err = ip_find_hdr_v4(ipha, ipp, B_TRUE); if (err != 0) { freemsg(tpi_mp); goto error3; } ip_pkt_source_route_reverse_v4(ipp); } ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL); ASSERT(!eager->tcp_tconnind_started); /* * If the SYN came with a credential, it's a loopback packet or a * labeled packet; attach the credential to the TPI message. */ if (ira->ira_cred != NULL) mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid); eager->tcp_conn.tcp_eager_conn_ind = tpi_mp; /* Inherit the listener's SSL protection state */ if ((eager->tcp_kssl_ent = listener->tcp_kssl_ent) != NULL) { kssl_hold_ent(eager->tcp_kssl_ent); eager->tcp_kssl_pending = B_TRUE; } /* Inherit the listener's non-STREAMS flag */ if (IPCL_IS_NONSTR(lconnp)) { econnp->conn_flags |= IPCL_NONSTR; } ASSERT(eager->tcp_ordrel_mp == NULL); if (!IPCL_IS_NONSTR(econnp)) { /* * Pre-allocate the T_ordrel_ind mblk for TPI socket so that * at close time, we will always have that to send up. * Otherwise, we need to do special handling in case the * allocation fails at that time. */ if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) goto error3; } /* * Now that the IP addresses and ports are setup in econnp we * can do the IPsec policy work. */ if (ira->ira_flags & IRAF_IPSEC_SECURE) { if (lconnp->conn_policy != NULL) { /* * Inherit the policy from the listener; use * actions from ira */ if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) { CONN_DEC_REF(econnp); freemsg(mp); goto error3; } } } /* Inherit various TCP parameters from the listener */ eager->tcp_naglim = listener->tcp_naglim; eager->tcp_first_timer_threshold = listener->tcp_first_timer_threshold; eager->tcp_second_timer_threshold = listener->tcp_second_timer_threshold; eager->tcp_first_ctimer_threshold = listener->tcp_first_ctimer_threshold; eager->tcp_second_ctimer_threshold = listener->tcp_second_ctimer_threshold; /* * tcp_set_destination() may set tcp_rwnd according to the route * metrics. If it does not, the eager's receive window will be set * to the listener's receive window later in this function. */ eager->tcp_rwnd = 0; /* * Inherit listener's tcp_init_cwnd. Need to do this before * calling tcp_process_options() which set the initial cwnd. */ eager->tcp_init_cwnd = listener->tcp_init_cwnd; if (is_system_labeled()) { ip_xmit_attr_t *ixa = econnp->conn_ixa; ASSERT(ira->ira_tsl != NULL); /* Discard any old label */ if (ixa->ixa_free_flags & IXA_FREE_TSL) { ASSERT(ixa->ixa_tsl != NULL); label_rele(ixa->ixa_tsl); ixa->ixa_free_flags &= ~IXA_FREE_TSL; ixa->ixa_tsl = NULL; } if ((lconnp->conn_mlp_type != mlptSingle || lconnp->conn_mac_mode != CONN_MAC_DEFAULT) && ira->ira_tsl != NULL) { /* * If this is an MLP connection or a MAC-Exempt * connection with an unlabeled node, packets are to be * exchanged using the security label of the received * SYN packet instead of the server application's label. * tsol_check_dest called from ip_set_destination * might later update TSF_UNLABELED by replacing * ixa_tsl with a new label. */ label_hold(ira->ira_tsl); ip_xmit_attr_replace_tsl(ixa, ira->ira_tsl); DTRACE_PROBE2(mlp_syn_accept, conn_t *, econnp, ts_label_t *, ixa->ixa_tsl) } else { ixa->ixa_tsl = crgetlabel(econnp->conn_cred); DTRACE_PROBE2(syn_accept, conn_t *, econnp, ts_label_t *, ixa->ixa_tsl) } /* * conn_connect() called from tcp_set_destination will verify * the destination is allowed to receive packets at the * security label of the SYN-ACK we are generating. As part of * that, tsol_check_dest() may create a new effective label for * this connection. * Finally conn_connect() will call conn_update_label. * All that remains for TCP to do is to call * conn_build_hdr_template which is done as part of * tcp_set_destination. */ } /* * Since we will clear tcp_listener before we clear tcp_detached * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress * so we can tell a TCP_DETACHED_NONEAGER apart. */ eager->tcp_hard_binding = B_TRUE; tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ TCP_BIND_HASH(econnp->conn_lport)], eager, 0); CL_INET_CONNECT(econnp, B_FALSE, err); if (err != 0) { tcp_bind_hash_remove(eager); goto error3; } /* * No need to check for multicast destination since ip will only pass * up multicasts to those that have expressed interest * TODO: what about rejecting broadcasts? * Also check that source is not a multicast or broadcast address. */ eager->tcp_state = TCPS_SYN_RCVD; SOCK_CONNID_BUMP(eager->tcp_connid); /* * Adapt our mss, ttl, ... based on the remote address. */ if (tcp_set_destination(eager) != 0) { BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); /* Undo the bind_hash_insert */ tcp_bind_hash_remove(eager); goto error3; } /* Process all TCP options. */ tcp_process_options(eager, tcpha); /* Is the other end ECN capable? */ if (tcps->tcps_ecn_permitted >= 1 && (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { eager->tcp_ecn_ok = B_TRUE; } /* * The listener's conn_rcvbuf should be the default window size or a * window size changed via SO_RCVBUF option. First round up the * eager's tcp_rwnd to the nearest MSS. Then find out the window * scale option value if needed. Call tcp_rwnd_set() to finish the * setting. * * Note if there is a rpipe metric associated with the remote host, * we should not inherit receive window size from listener. */ eager->tcp_rwnd = MSS_ROUNDUP( (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf : eager->tcp_rwnd), eager->tcp_mss); if (eager->tcp_snd_ws_ok) tcp_set_ws_value(eager); /* * Note that this is the only place tcp_rwnd_set() is called for * accepting a connection. We need to call it here instead of * after the 3-way handshake because we need to tell the other * side our rwnd in the SYN-ACK segment. */ (void) tcp_rwnd_set(eager, eager->tcp_rwnd); ASSERT(eager->tcp_connp->conn_rcvbuf != 0 && eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd); ASSERT(econnp->conn_rcvbuf != 0 && econnp->conn_rcvbuf == eager->tcp_rwnd); /* Put a ref on the listener for the eager. */ CONN_INC_REF(lconnp); mutex_enter(&listener->tcp_eager_lock); listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0; listener->tcp_eager_next_q0 = eager; eager->tcp_eager_prev_q0 = listener; /* Set tcp_listener before adding it to tcp_conn_fanout */ eager->tcp_listener = listener; eager->tcp_saved_listener = listener; /* * Tag this detached tcp vector for later retrieval * by our listener client in tcp_accept(). */ eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum; listener->tcp_conn_req_cnt_q0++; if (++listener->tcp_conn_req_seqnum == -1) { /* * -1 is "special" and defined in TPI as something * that should never be used in T_CONN_IND */ ++listener->tcp_conn_req_seqnum; } mutex_exit(&listener->tcp_eager_lock); if (listener->tcp_syn_defense) { /* Don't drop the SYN that comes from a good IP source */ ipaddr_t *addr_cache; addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); if (addr_cache != NULL && econnp->conn_faddr_v4 == addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) { eager->tcp_dontdrop = B_TRUE; } } /* * We need to insert the eager in its own perimeter but as soon * as we do that, we expose the eager to the classifier and * should not touch any field outside the eager's perimeter. * So do all the work necessary before inserting the eager * in its own perimeter. Be optimistic that conn_connect() * will succeed but undo everything if it fails. */ seg_seq = ntohl(tcpha->tha_seq); eager->tcp_irs = seg_seq; eager->tcp_rack = seg_seq; eager->tcp_rnxt = seg_seq + 1; eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt); BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); eager->tcp_state = TCPS_SYN_RCVD; mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); if (mp1 == NULL) { /* * Increment the ref count as we are going to * enqueueing an mp in squeue */ CONN_INC_REF(econnp); goto error; } /* * We need to start the rto timer. In normal case, we start * the timer after sending the packet on the wire (or at * least believing that packet was sent by waiting for * conn_ip_output() to return). Since this is the first packet * being sent on the wire for the eager, our initial tcp_rto * is at least tcp_rexmit_interval_min which is a fairly * large value to allow the algorithm to adjust slowly to large * fluctuations of RTT during first few transmissions. * * Starting the timer first and then sending the packet in this * case shouldn't make much difference since tcp_rexmit_interval_min * is of the order of several 100ms and starting the timer * first and then sending the packet will result in difference * of few micro seconds. * * Without this optimization, we are forced to hold the fanout * lock across the ipcl_bind_insert() and sending the packet * so that we don't race against an incoming packet (maybe RST) * for this eager. * * It is necessary to acquire an extra reference on the eager * at this point and hold it until after tcp_send_data() to * ensure against an eager close race. */ CONN_INC_REF(econnp); TCP_TIMER_RESTART(eager, eager->tcp_rto); /* * Insert the eager in its own perimeter now. We are ready to deal * with any packets on eager. */ if (ipcl_conn_insert(econnp) != 0) goto error; /* * Send the SYN-ACK. Can't use tcp_send_data since we can't update * pmtu etc; we are not on the eager's squeue */ ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp); (void) conn_ip_output(mp1, econnp->conn_ixa); CONN_DEC_REF(econnp); freemsg(mp); return; error: freemsg(mp1); eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); mp1 = &eager->tcp_closemp; SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2); /* * If a connection already exists, send the mp to that connections so * that it can be appropriately dealt with. */ ipst = tcps->tcps_netstack->netstack_ip; if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) { if (!IPCL_IS_CONNECTED(econnp)) { /* * Something bad happened. ipcl_conn_insert() * failed because a connection already existed * in connected hash but we can't find it * anymore (someone blew it away). Just * free this message and hopefully remote * will retransmit at which time the SYN can be * treated as a new connection or dealth with * a TH_RST if a connection already exists. */ CONN_DEC_REF(econnp); freemsg(mp); } else { SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data, econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1); } } else { /* Nobody wants this packet */ freemsg(mp); } return; error3: CONN_DEC_REF(econnp); error2: freemsg(mp); } /* * In an ideal case of vertical partition in NUMA architecture, its * beneficial to have the listener and all the incoming connections * tied to the same squeue. The other constraint is that incoming * connections should be tied to the squeue attached to interrupted * CPU for obvious locality reason so this leaves the listener to * be tied to the same squeue. Our only problem is that when listener * is binding, the CPU that will get interrupted by the NIC whose * IP address the listener is binding to is not even known. So * the code below allows us to change that binding at the time the * CPU is interrupted by virtue of incoming connection's squeue. * * This is usefull only in case of a listener bound to a specific IP * address. For other kind of listeners, they get bound the * very first time and there is no attempt to rebind them. */ void tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { conn_t *connp = (conn_t *)arg; squeue_t *sqp = (squeue_t *)arg2; squeue_t *new_sqp; uint32_t conn_flags; /* * IP sets ira_sqp to either the senders conn_sqp (for loopback) * or based on the ring (for packets from GLD). Otherwise it is * set based on lbolt i.e., a somewhat random number. */ ASSERT(ira->ira_sqp != NULL); new_sqp = ira->ira_sqp; if (connp->conn_fanout == NULL) goto done; if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { mutex_enter(&connp->conn_fanout->connf_lock); mutex_enter(&connp->conn_lock); /* * No one from read or write side can access us now * except for already queued packets on this squeue. * But since we haven't changed the squeue yet, they * can't execute. If they are processed after we have * changed the squeue, they are sent back to the * correct squeue down below. * But a listner close can race with processing of * incoming SYN. If incoming SYN processing changes * the squeue then the listener close which is waiting * to enter the squeue would operate on the wrong * squeue. Hence we don't change the squeue here unless * the refcount is exactly the minimum refcount. The * minimum refcount of 4 is counted as - 1 each for * TCP and IP, 1 for being in the classifier hash, and * 1 for the mblk being processed. */ if (connp->conn_ref != 4 || connp->conn_tcp->tcp_state != TCPS_LISTEN) { mutex_exit(&connp->conn_lock); mutex_exit(&connp->conn_fanout->connf_lock); goto done; } if (connp->conn_sqp != new_sqp) { while (connp->conn_sqp != new_sqp) (void) casptr(&connp->conn_sqp, sqp, new_sqp); /* No special MT issues for outbound ixa_sqp hint */ connp->conn_ixa->ixa_sqp = new_sqp; } do { conn_flags = connp->conn_flags; conn_flags |= IPCL_FULLY_BOUND; (void) cas32(&connp->conn_flags, connp->conn_flags, conn_flags); } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); mutex_exit(&connp->conn_fanout->connf_lock); mutex_exit(&connp->conn_lock); /* * Assume we have picked a good squeue for the listener. Make * subsequent SYNs not try to change the squeue. */ connp->conn_recv = tcp_input_listener; } done: if (connp->conn_sqp != sqp) { CONN_INC_REF(connp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); } else { tcp_input_listener(connp, mp, sqp, ira); } } /* * Successful connect request processing begins when our client passes * a T_CONN_REQ message into tcp_wput(), which performs function calls into * IP and the passes a T_OK_ACK (or T_ERROR_ACK upstream). * * After various error checks are completed, tcp_tpi_connect() lays * the target address and port into the composite header template. * Then we ask IP for information, including a source address if we didn't * already have one. Finally we prepare to send the SYN packet, and then * send up the T_OK_ACK reply message. */ static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) { sin_t *sin; struct T_conn_req *tcr; struct sockaddr *sa; socklen_t len; int error; cred_t *cr; pid_t cpid; conn_t *connp = tcp->tcp_connp; queue_t *q = connp->conn_wq; /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, &cpid); ASSERT(cr != NULL); if (cr == NULL) { tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } tcr = (struct T_conn_req *)mp->b_rptr; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { tcp_err_ack(tcp, mp, TPROTO, 0); return; } /* * Pre-allocate the T_ordrel_ind mblk so that at close time, we * will always have that to send up. Otherwise, we need to do * special handling in case the allocation fails at that time. * If the end point is TPI, the tcp_t can be reused and the * tcp_ordrel_mp may be allocated already. */ if (tcp->tcp_ordrel_mp == NULL) { if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } } /* * Determine packet type based on type of address passed in * the request should contain an IPv4 or IPv6 address. * Make sure that address family matches the type of * family of the address passed down. */ switch (tcr->DEST_length) { default: tcp_err_ack(tcp, mp, TBADADDR, 0); return; case (sizeof (sin_t) - sizeof (sin->sin_zero)): { /* * XXX: The check for valid DEST_length was not there * in earlier releases and some buggy * TLI apps (e.g Sybase) got away with not feeding * in sin_zero part of address. * We allow that bug to keep those buggy apps humming. * Test suites require the check on DEST_length. * We construct a new mblk with valid DEST_length * free the original so the rest of the code does * not have to keep track of this special shorter * length address case. */ mblk_t *nmp; struct T_conn_req *ntcr; sin_t *nsin; nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + tcr->OPT_length, BPRI_HI); if (nmp == NULL) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } ntcr = (struct T_conn_req *)nmp->b_rptr; bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ ntcr->PRIM_type = T_CONN_REQ; ntcr->DEST_length = sizeof (sin_t); ntcr->DEST_offset = sizeof (struct T_conn_req); nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); *nsin = sin_null; /* Get pointer to shorter address to copy from original mp */ sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, tcr->DEST_length); /* extract DEST_length worth of sin_t */ if (sin == NULL || !OK_32PTR((char *)sin)) { freemsg(nmp); tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } nsin->sin_family = sin->sin_family; nsin->sin_port = sin->sin_port; nsin->sin_addr = sin->sin_addr; /* Note:nsin->sin_zero zero-fill with sin_null assign above */ nmp->b_wptr = (uchar_t *)&nsin[1]; if (tcr->OPT_length != 0) { ntcr->OPT_length = tcr->OPT_length; ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; bcopy((uchar_t *)tcr + tcr->OPT_offset, (uchar_t *)ntcr + ntcr->OPT_offset, tcr->OPT_length); nmp->b_wptr += tcr->OPT_length; } freemsg(mp); /* original mp freed */ mp = nmp; /* re-initialize original variables */ tcr = ntcr; } /* FALLTHRU */ case sizeof (sin_t): sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin_t)); len = sizeof (sin_t); break; case sizeof (sin6_t): sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, sizeof (sin6_t)); len = sizeof (sin6_t); break; } error = proto_verify_ip_addr(connp->conn_family, sa, len); if (error != 0) { tcp_err_ack(tcp, mp, TSYSERR, error); return; } /* * TODO: If someone in TCPS_TIME_WAIT has this dst/port we * should key on their sequence number and cut them loose. */ /* * If options passed in, feed it for verification and handling */ if (tcr->OPT_length != 0) { mblk_t *ok_mp; mblk_t *discon_mp; mblk_t *conn_opts_mp; int t_error, sys_error, do_disconnect; conn_opts_mp = NULL; if (tcp_conprim_opt_process(tcp, mp, &do_disconnect, &t_error, &sys_error) < 0) { if (do_disconnect) { ASSERT(t_error == 0 && sys_error == 0); discon_mp = mi_tpi_discon_ind(NULL, ECONNREFUSED, 0); if (!discon_mp) { tcp_err_ack_prim(tcp, mp, T_CONN_REQ, TSYSERR, ENOMEM); return; } ok_mp = mi_tpi_ok_ack_alloc(mp); if (!ok_mp) { tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, TSYSERR, ENOMEM); return; } qreply(q, ok_mp); qreply(q, discon_mp); /* no flush! */ } else { ASSERT(t_error != 0); tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, sys_error); } return; } /* * Success in setting options, the mp option buffer represented * by OPT_length/offset has been potentially modified and * contains results of option processing. We copy it in * another mp to save it for potentially influencing returning * it in T_CONN_CONN. */ if (tcr->OPT_length != 0) { /* there are resulting options */ conn_opts_mp = copyb(mp); if (!conn_opts_mp) { tcp_err_ack_prim(tcp, mp, T_CONN_REQ, TSYSERR, ENOMEM); return; } ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; /* * Note: * These resulting option negotiation can include any * end-to-end negotiation options but there no such * thing (yet?) in our TCP/IP. */ } } /* call the non-TPI version */ error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); if (error < 0) { mp = mi_tpi_err_ack_alloc(mp, -error, 0); } else if (error > 0) { mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); } else { mp = mi_tpi_ok_ack_alloc(mp); } /* * Note: Code below is the "failure" case */ /* return error ack and blow away saved option results if any */ connect_failed: if (mp != NULL) putnext(connp->conn_rq, mp); else { tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, TSYSERR, ENOMEM); } } /* * Handle connect to IPv4 destinations, including connections for AF_INET6 * sockets connecting to IPv4 mapped IPv6 destinations. * Returns zero if OK, a positive errno, or a negative TLI error. */ static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, uint_t srcid) { ipaddr_t dstaddr = *dstaddrp; uint16_t lport; conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; int error; ASSERT(connp->conn_ipversion == IPV4_VERSION); /* Check for attempt to connect to INADDR_ANY */ if (dstaddr == INADDR_ANY) { /* * SunOS 4.x and 4.3 BSD allow an application * to connect a TCP socket to INADDR_ANY. * When they do this, the kernel picks the * address of one interface and uses it * instead. The kernel usually ends up * picking the address of the loopback * interface. This is an undocumented feature. * However, we provide the same thing here * in order to have source and binary * compatibility with SunOS 4.x. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ dstaddr = htonl(INADDR_LOOPBACK); *dstaddrp = dstaddr; } /* Handle __sin6_src_id if socket not bound to an IP address */ if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { ip_srcid_find_id(srcid, &connp->conn_laddr_v6, IPCL_ZONEID(connp), tcps->tcps_netstack); connp->conn_saddr_v6 = connp->conn_laddr_v6; } IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); connp->conn_fport = dstport; /* * At this point the remote destination address and remote port fields * in the tcp-four-tuple have been filled in the tcp structure. Now we * have to see which state tcp was in so we can take appropriate action. */ if (tcp->tcp_state == TCPS_IDLE) { /* * We support a quick connect capability here, allowing * clients to transition directly from IDLE to SYN_SENT * tcp_bindi will pick an unused port, insert the connection * in the bind hash and transition to BOUND state. */ lport = tcp_update_next_port(tcps->tcps_next_port_to_try, tcp, B_TRUE); lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, B_FALSE, B_FALSE); if (lport == 0) return (-TNOADDR); } /* * Lookup the route to determine a source address and the uinfo. * Setup TCP parameters based on the metrics/DCE. */ error = tcp_set_destination(tcp); if (error != 0) return (error); /* * Don't let an endpoint connect to itself. */ if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && connp->conn_fport == connp->conn_lport) return (-TBADADDR); tcp->tcp_state = TCPS_SYN_SENT; return (ipcl_conn_insert_v4(connp)); } /* * Handle connect to IPv6 destinations. * Returns zero if OK, a positive errno, or a negative TLI error. */ static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) { uint16_t lport; conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; int error; ASSERT(connp->conn_family == AF_INET6); /* * If we're here, it means that the destination address is a native * IPv6 address. Return an error if conn_ipversion is not IPv6. A * reason why it might not be IPv6 is if the socket was bound to an * IPv4-mapped IPv6 address. */ if (connp->conn_ipversion != IPV6_VERSION) return (-TBADADDR); /* * Interpret a zero destination to mean loopback. * Update the T_CONN_REQ (sin/sin6) since it is used to * generate the T_CONN_CON. */ if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) *dstaddrp = ipv6_loopback; /* Handle __sin6_src_id if socket not bound to an IP address */ if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { ip_srcid_find_id(srcid, &connp->conn_laddr_v6, IPCL_ZONEID(connp), tcps->tcps_netstack); connp->conn_saddr_v6 = connp->conn_laddr_v6; } /* * Take care of the scope_id now. */ if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; connp->conn_ixa->ixa_scopeid = scope_id; } else { connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; } connp->conn_flowinfo = flowinfo; connp->conn_faddr_v6 = *dstaddrp; connp->conn_fport = dstport; /* * At this point the remote destination address and remote port fields * in the tcp-four-tuple have been filled in the tcp structure. Now we * have to see which state tcp was in so we can take appropriate action. */ if (tcp->tcp_state == TCPS_IDLE) { /* * We support a quick connect capability here, allowing * clients to transition directly from IDLE to SYN_SENT * tcp_bindi will pick an unused port, insert the connection * in the bind hash and transition to BOUND state. */ lport = tcp_update_next_port(tcps->tcps_next_port_to_try, tcp, B_TRUE); lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, B_FALSE, B_FALSE); if (lport == 0) return (-TNOADDR); } /* * Lookup the route to determine a source address and the uinfo. * Setup TCP parameters based on the metrics/DCE. */ error = tcp_set_destination(tcp); if (error != 0) return (error); /* * Don't let an endpoint connect to itself. */ if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && connp->conn_fport == connp->conn_lport) return (-TBADADDR); tcp->tcp_state = TCPS_SYN_SENT; return (ipcl_conn_insert_v6(connp)); } /* * Disconnect * Note that unlike other functions this returns a positive tli error * when it fails; it never returns an errno. */ static int tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) { conn_t *lconnp; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; /* * Right now, upper modules pass down a T_DISCON_REQ to TCP, * when the stream is in BOUND state. Do not send a reset, * since the destination IP address is not valid, and it can * be the initialized value of all zeros (broadcast address). */ if (tcp->tcp_state <= TCPS_BOUND) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_disconnect: bad state, %d", tcp->tcp_state); } return (TOUTSTATE); } if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { /* * According to TPI, for non-listeners, ignore seqnum * and disconnect. * Following interpretation of -1 seqnum is historical * and implied TPI ? (TPI only states that for T_CONN_IND, * a valid seqnum should not be -1). * * -1 means disconnect everything * regardless even on a listener. */ int old_state = tcp->tcp_state; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; /* * The connection can't be on the tcp_time_wait_head list * since it is not detached. */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); /* * If it used to be a listener, check to make sure no one else * has taken the port before switching back to LISTEN state. */ if (connp->conn_ipversion == IPV4_VERSION) { lconnp = ipcl_lookup_listener_v4(connp->conn_lport, connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); } else { uint_t ifindex = 0; if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) ifindex = connp->conn_ixa->ixa_scopeid; /* Allow conn_bound_if listeners? */ lconnp = ipcl_lookup_listener_v6(connp->conn_lport, &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), ipst); } if (tcp->tcp_conn_req_max && lconnp == NULL) { tcp->tcp_state = TCPS_LISTEN; } else if (old_state > TCPS_BOUND) { tcp->tcp_conn_req_max = 0; tcp->tcp_state = TCPS_BOUND; } if (lconnp != NULL) CONN_DEC_REF(lconnp); if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); } else if (old_state == TCPS_ESTABLISHED || old_state == TCPS_CLOSE_WAIT) { BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); } if (tcp->tcp_fused) tcp_unfuse(tcp); mutex_enter(&tcp->tcp_eager_lock); if ((tcp->tcp_conn_req_cnt_q0 != 0) || (tcp->tcp_conn_req_cnt_q != 0)) { tcp_eager_cleanup(tcp, 0); } mutex_exit(&tcp->tcp_eager_lock); tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_RST | TH_ACK); tcp_reinit(tcp); return (0); } else if (!tcp_eager_blowoff(tcp, seqnum)) { return (TBADSEQ); } return (0); } /* * Our client hereby directs us to reject the connection request * that tcp_input_listener() marked with 'seqnum'. Rejection consists * of sending the appropriate RST, not an ICMP error. */ static void tcp_disconnect(tcp_t *tcp, mblk_t *mp) { t_scalar_t seqnum; int error; conn_t *connp = tcp->tcp_connp; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { tcp_err_ack(tcp, mp, TPROTO, 0); return; } seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; error = tcp_disconnect_common(tcp, seqnum); if (error != 0) tcp_err_ack(tcp, mp, error, 0); else { if (tcp->tcp_state >= TCPS_ESTABLISHED) { /* Send M_FLUSH according to TPI */ (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); } mp = mi_tpi_ok_ack_alloc(mp); if (mp != NULL) putnext(connp->conn_rq, mp); } } /* * Diagnostic routine used to return a string associated with the tcp state. * Note that if the caller does not supply a buffer, it will use an internal * static string. This means that if multiple threads call this function at * the same time, output can be corrupted... Note also that this function * does not check the size of the supplied buffer. The caller has to make * sure that it is big enough. */ static char * tcp_display(tcp_t *tcp, char *sup_buf, char format) { char buf1[30]; static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; char *buf; char *cp; in6_addr_t local, remote; char local_addrbuf[INET6_ADDRSTRLEN]; char remote_addrbuf[INET6_ADDRSTRLEN]; conn_t *connp; if (sup_buf != NULL) buf = sup_buf; else buf = priv_buf; if (tcp == NULL) return ("NULL_TCP"); connp = tcp->tcp_connp; switch (tcp->tcp_state) { case TCPS_CLOSED: cp = "TCP_CLOSED"; break; case TCPS_IDLE: cp = "TCP_IDLE"; break; case TCPS_BOUND: cp = "TCP_BOUND"; break; case TCPS_LISTEN: cp = "TCP_LISTEN"; break; case TCPS_SYN_SENT: cp = "TCP_SYN_SENT"; break; case TCPS_SYN_RCVD: cp = "TCP_SYN_RCVD"; break; case TCPS_ESTABLISHED: cp = "TCP_ESTABLISHED"; break; case TCPS_CLOSE_WAIT: cp = "TCP_CLOSE_WAIT"; break; case TCPS_FIN_WAIT_1: cp = "TCP_FIN_WAIT_1"; break; case TCPS_CLOSING: cp = "TCP_CLOSING"; break; case TCPS_LAST_ACK: cp = "TCP_LAST_ACK"; break; case TCPS_FIN_WAIT_2: cp = "TCP_FIN_WAIT_2"; break; case TCPS_TIME_WAIT: cp = "TCP_TIME_WAIT"; break; default: (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); cp = buf1; break; } switch (format) { case DISP_ADDR_AND_PORT: if (connp->conn_ipversion == IPV4_VERSION) { /* * Note that we use the remote address in the tcp_b * structure. This means that it will print out * the real destination address, not the next hop's * address if source routing is used. */ IN6_IPADDR_TO_V4MAPPED(connp->conn_laddr_v4, &local); IN6_IPADDR_TO_V4MAPPED(connp->conn_faddr_v4, &remote); } else { local = connp->conn_laddr_v6; remote = connp->conn_faddr_v6; } (void) inet_ntop(AF_INET6, &local, local_addrbuf, sizeof (local_addrbuf)); (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, sizeof (remote_addrbuf)); (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", local_addrbuf, ntohs(connp->conn_lport), remote_addrbuf, ntohs(connp->conn_fport), cp); break; case DISP_PORT_ONLY: default: (void) mi_sprintf(buf, "[%u, %u] %s", ntohs(connp->conn_lport), ntohs(connp->conn_fport), cp); break; } return (buf); } /* * Called via squeue to get on to eager's perimeter. It sends a * TH_RST if eager is in the fanout table. The listener wants the * eager to disappear either by means of tcp_eager_blowoff() or * tcp_eager_cleanup() being called. tcp_eager_kill() can also be * called (via squeue) if the eager cannot be inserted in the * fanout table in tcp_input_listener(). */ /* ARGSUSED */ void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *econnp = (conn_t *)arg; tcp_t *eager = econnp->conn_tcp; tcp_t *listener = eager->tcp_listener; /* * We could be called because listener is closing. Since * the eager was using listener's queue's, we avoid * using the listeners queues from now on. */ ASSERT(eager->tcp_detached); econnp->conn_rq = NULL; econnp->conn_wq = NULL; /* * An eager's conn_fanout will be NULL if it's a duplicate * for an existing 4-tuples in the conn fanout table. * We don't want to send an RST out in such case. */ if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { tcp_xmit_ctl("tcp_eager_kill, can't wait", eager, eager->tcp_snxt, 0, TH_RST); } /* We are here because listener wants this eager gone */ if (listener != NULL) { mutex_enter(&listener->tcp_eager_lock); tcp_eager_unlink(eager); if (eager->tcp_tconnind_started) { /* * The eager has sent a conn_ind up to the * listener but listener decides to close * instead. We need to drop the extra ref * placed on eager in tcp_input_data() before * sending the conn_ind to listener. */ CONN_DEC_REF(econnp); } mutex_exit(&listener->tcp_eager_lock); CONN_DEC_REF(listener->tcp_connp); } if (eager->tcp_state != TCPS_CLOSED) tcp_close_detached(eager); } /* * Reset any eager connection hanging off this listener marked * with 'seqnum' and then reclaim it's resources. */ static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) { tcp_t *eager; mblk_t *mp; tcp_stack_t *tcps = listener->tcp_tcps; TCP_STAT(tcps, tcp_eager_blowoff_calls); eager = listener; mutex_enter(&listener->tcp_eager_lock); do { eager = eager->tcp_eager_next_q; if (eager == NULL) { mutex_exit(&listener->tcp_eager_lock); return (B_FALSE); } } while (eager->tcp_conn_req_seqnum != seqnum); if (eager->tcp_closemp_used) { mutex_exit(&listener->tcp_eager_lock); return (B_TRUE); } eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); CONN_INC_REF(eager->tcp_connp); mutex_exit(&listener->tcp_eager_lock); mp = &eager->tcp_closemp; SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); return (B_TRUE); } /* * Reset any eager connection hanging off this listener * and then reclaim it's resources. */ static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) { tcp_t *eager; mblk_t *mp; tcp_stack_t *tcps = listener->tcp_tcps; ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); if (!q0_only) { /* First cleanup q */ TCP_STAT(tcps, tcp_eager_blowoff_q); eager = listener->tcp_eager_next_q; while (eager != NULL) { if (!eager->tcp_closemp_used) { eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); CONN_INC_REF(eager->tcp_connp); mp = &eager->tcp_closemp; SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); } eager = eager->tcp_eager_next_q; } } /* Then cleanup q0 */ TCP_STAT(tcps, tcp_eager_blowoff_q0); eager = listener->tcp_eager_next_q0; while (eager != listener) { if (!eager->tcp_closemp_used) { eager->tcp_closemp_used = B_TRUE; TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); CONN_INC_REF(eager->tcp_connp); mp = &eager->tcp_closemp; SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_CLEANUP_Q0); } eager = eager->tcp_eager_next_q0; } } /* * If we are an eager connection hanging off a listener that hasn't * formally accepted the connection yet, get off his list and blow off * any data that we have accumulated. */ static void tcp_eager_unlink(tcp_t *tcp) { tcp_t *listener = tcp->tcp_listener; ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); ASSERT(listener != NULL); if (tcp->tcp_eager_next_q0 != NULL) { ASSERT(tcp->tcp_eager_prev_q0 != NULL); /* Remove the eager tcp from q0 */ tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; tcp->tcp_eager_next_q0 = NULL; tcp->tcp_eager_prev_q0 = NULL; /* * Take the eager out, if it is in the list of droppable * eagers. */ MAKE_UNDROPPABLE(tcp); if (tcp->tcp_syn_rcvd_timeout != 0) { /* we have timed out before */ ASSERT(listener->tcp_syn_rcvd_timeout > 0); listener->tcp_syn_rcvd_timeout--; } } else { tcp_t **tcpp = &listener->tcp_eager_next_q; tcp_t *prev = NULL; for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { if (tcpp[0] == tcp) { if (listener->tcp_eager_last_q == tcp) { /* * If we are unlinking the last * element on the list, adjust * tail pointer. Set tail pointer * to nil when list is empty. */ ASSERT(tcp->tcp_eager_next_q == NULL); if (listener->tcp_eager_last_q == listener->tcp_eager_next_q) { listener->tcp_eager_last_q = NULL; } else { /* * We won't get here if there * is only one eager in the * list. */ ASSERT(prev != NULL); listener->tcp_eager_last_q = prev; } } tcpp[0] = tcp->tcp_eager_next_q; tcp->tcp_eager_next_q = NULL; tcp->tcp_eager_last_q = NULL; ASSERT(listener->tcp_conn_req_cnt_q > 0); listener->tcp_conn_req_cnt_q--; break; } prev = tcpp[0]; } } tcp->tcp_listener = NULL; } /* Shorthand to generate and send TPI error acks to our client */ static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) { if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) putnext(tcp->tcp_connp->conn_rq, mp); } /* Shorthand to generate and send TPI error acks to our client */ static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, int t_error, int sys_error) { struct T_error_ack *teackp; if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), M_PCPROTO, T_ERROR_ACK)) != NULL) { teackp = (struct T_error_ack *)mp->b_rptr; teackp->ERROR_prim = primitive; teackp->TLI_error = t_error; teackp->UNIX_error = sys_error; putnext(tcp->tcp_connp->conn_rq, mp); } } /* * Note: No locks are held when inspecting tcp_g_*epriv_ports * but instead the code relies on: * - the fact that the address of the array and its size never changes * - the atomic assignment of the elements of the array */ /* ARGSUSED */ static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { int i; tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { if (tcps->tcps_g_epriv_ports[i] != 0) (void) mi_mpprintf(mp, "%d ", tcps->tcps_g_epriv_ports[i]); } return (0); } /* * Hold a lock while changing tcp_g_epriv_ports to prevent multiple * threads from changing it at the same time. */ /* ARGSUSED */ static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } mutex_enter(&tcps->tcps_epriv_port_lock); /* Check if the value is already in the list */ for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { if (new_value == tcps->tcps_g_epriv_ports[i]) { mutex_exit(&tcps->tcps_epriv_port_lock); return (EEXIST); } } /* Find an empty slot */ for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { if (tcps->tcps_g_epriv_ports[i] == 0) break; } if (i == tcps->tcps_g_num_epriv_ports) { mutex_exit(&tcps->tcps_epriv_port_lock); return (EOVERFLOW); } /* Set the new value */ tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; mutex_exit(&tcps->tcps_epriv_port_lock); return (0); } /* * Hold a lock while changing tcp_g_epriv_ports to prevent multiple * threads from changing it at the same time. */ /* ARGSUSED */ static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; int i; tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; /* * Fail the request if the new value does not lie within the * port number limits. */ if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || new_value >= 65536) { return (EINVAL); } mutex_enter(&tcps->tcps_epriv_port_lock); /* Check that the value is already in the list */ for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { if (tcps->tcps_g_epriv_ports[i] == new_value) break; } if (i == tcps->tcps_g_num_epriv_ports) { mutex_exit(&tcps->tcps_epriv_port_lock); return (ESRCH); } /* Clear the value */ tcps->tcps_g_epriv_ports[i] = 0; mutex_exit(&tcps->tcps_epriv_port_lock); return (0); } /* Return the TPI/TLI equivalent of our current tcp_state */ static int tcp_tpistate(tcp_t *tcp) { switch (tcp->tcp_state) { case TCPS_IDLE: return (TS_UNBND); case TCPS_LISTEN: /* * Return whether there are outstanding T_CONN_IND waiting * for the matching T_CONN_RES. Therefore don't count q0. */ if (tcp->tcp_conn_req_cnt_q > 0) return (TS_WRES_CIND); else return (TS_IDLE); case TCPS_BOUND: return (TS_IDLE); case TCPS_SYN_SENT: return (TS_WCON_CREQ); case TCPS_SYN_RCVD: /* * Note: assumption: this has to the active open SYN_RCVD. * The passive instance is detached in SYN_RCVD stage of * incoming connection processing so we cannot get request * for T_info_ack on it. */ return (TS_WACK_CRES); case TCPS_ESTABLISHED: return (TS_DATA_XFER); case TCPS_CLOSE_WAIT: return (TS_WREQ_ORDREL); case TCPS_FIN_WAIT_1: return (TS_WIND_ORDREL); case TCPS_FIN_WAIT_2: return (TS_WIND_ORDREL); case TCPS_CLOSING: case TCPS_LAST_ACK: case TCPS_TIME_WAIT: case TCPS_CLOSED: /* * Following TS_WACK_DREQ7 is a rendition of "not * yet TS_IDLE" TPI state. There is no best match to any * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we * choose a value chosen that will map to TLI/XTI level * state of TSTATECHNG (state is process of changing) which * captures what this dummy state represents. */ return (TS_WACK_DREQ7); default: cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", tcp->tcp_state, tcp_display(tcp, NULL, DISP_PORT_ONLY)); return (TS_UNBND); } } static void tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) { tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; if (connp->conn_family == AF_INET6) *tia = tcp_g_t_info_ack_v6; else *tia = tcp_g_t_info_ack; tia->CURRENT_state = tcp_tpistate(tcp); tia->OPT_size = tcp_max_optsize; if (tcp->tcp_mss == 0) { /* Not yet set - tcp_open does not set mss */ if (connp->conn_ipversion == IPV4_VERSION) tia->TIDU_size = tcps->tcps_mss_def_ipv4; else tia->TIDU_size = tcps->tcps_mss_def_ipv6; } else { tia->TIDU_size = tcp->tcp_mss; } /* TODO: Default ETSDU is 1. Is that correct for tcp? */ } static void tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, t_uscalar_t cap_bits1) { tcap->CAP_bits1 = 0; if (cap_bits1 & TC1_INFO) { tcp_copy_info(&tcap->INFO_ack, tcp); tcap->CAP_bits1 |= TC1_INFO; } if (cap_bits1 & TC1_ACCEPTOR_ID) { tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; } } /* * This routine responds to T_CAPABILITY_REQ messages. It is called by * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from * tcp_g_t_info_ack. The current state of the stream is copied from * tcp_state. */ static void tcp_capability_req(tcp_t *tcp, mblk_t *mp) { t_uscalar_t cap_bits1; struct T_capability_ack *tcap; if (MBLKL(mp) < sizeof (struct T_capability_req)) { freemsg(mp); return; } cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), mp->b_datap->db_type, T_CAPABILITY_ACK); if (mp == NULL) return; tcap = (struct T_capability_ack *)mp->b_rptr; tcp_do_capability_ack(tcp, tcap, cap_bits1); putnext(tcp->tcp_connp->conn_rq, mp); } /* * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. * The current state of the stream is copied from tcp_state. */ static void tcp_info_req(tcp_t *tcp, mblk_t *mp) { mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, T_INFO_ACK); if (!mp) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); putnext(tcp->tcp_connp->conn_rq, mp); } /* Respond to the TPI addr request */ static void tcp_addr_req(tcp_t *tcp, mblk_t *mp) { struct sockaddr *sa; mblk_t *ackmp; struct T_addr_ack *taa; conn_t *connp = tcp->tcp_connp; uint_t addrlen; /* Make it large enough for worst case */ ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2 * sizeof (sin6_t), 1); if (ackmp == NULL) { tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); return; } taa = (struct T_addr_ack *)ackmp->b_rptr; bzero(taa, sizeof (struct T_addr_ack)); ackmp->b_wptr = (uchar_t *)&taa[1]; taa->PRIM_type = T_ADDR_ACK; ackmp->b_datap->db_type = M_PCPROTO; if (connp->conn_family == AF_INET) addrlen = sizeof (sin_t); else addrlen = sizeof (sin6_t); /* * Note: Following code assumes 32 bit alignment of basic * data structures like sin_t and struct T_addr_ack. */ if (tcp->tcp_state >= TCPS_BOUND) { /* * Fill in local address first */ taa->LOCADDR_offset = sizeof (*taa); taa->LOCADDR_length = addrlen; sa = (struct sockaddr *)&taa[1]; (void) conn_getsockname(connp, sa, &addrlen); ackmp->b_wptr += addrlen; } if (tcp->tcp_state >= TCPS_SYN_RCVD) { /* * Fill in Remote address */ taa->REMADDR_length = addrlen; /* assumed 32-bit alignment */ taa->REMADDR_offset = taa->LOCADDR_offset + taa->LOCADDR_length; sa = (struct sockaddr *)(ackmp->b_rptr + taa->REMADDR_offset); (void) conn_getpeername(connp, sa, &addrlen); ackmp->b_wptr += addrlen; } ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); putnext(tcp->tcp_connp->conn_rq, ackmp); } /* * Handle reinitialization of a tcp structure. * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. */ static void tcp_reinit(tcp_t *tcp) { mblk_t *mp; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; TCP_STAT(tcps, tcp_reinit_calls); /* tcp_reinit should never be called for detached tcp_t's */ ASSERT(tcp->tcp_listener == NULL); ASSERT((connp->conn_family == AF_INET && connp->conn_ipversion == IPV4_VERSION) || (connp->conn_family == AF_INET6 && (connp->conn_ipversion == IPV4_VERSION || connp->conn_ipversion == IPV6_VERSION))); /* Cancel outstanding timers */ tcp_timers_stop(tcp); /* * Reset everything in the state vector, after updating global * MIB data from instance counters. */ UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); tcp->tcp_ibsegs = 0; UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); tcp->tcp_obsegs = 0; tcp_close_mpp(&tcp->tcp_xmit_head); if (tcp->tcp_snd_zcopy_aware) tcp_zcopy_notify(tcp); tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { tcp_clrqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); tcp_close_mpp(&tcp->tcp_reass_head); tcp->tcp_reass_tail = NULL; if (tcp->tcp_rcv_list != NULL) { /* Free b_next chain */ tcp_close_mpp(&tcp->tcp_rcv_list); tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; } tcp->tcp_rcv_last_tail = NULL; if ((mp = tcp->tcp_urp_mp) != NULL) { freemsg(mp); tcp->tcp_urp_mp = NULL; } if ((mp = tcp->tcp_urp_mark_mp) != NULL) { freemsg(mp); tcp->tcp_urp_mark_mp = NULL; } if (tcp->tcp_fused_sigurg_mp != NULL) { ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); freeb(tcp->tcp_fused_sigurg_mp); tcp->tcp_fused_sigurg_mp = NULL; } if (tcp->tcp_ordrel_mp != NULL) { ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); freeb(tcp->tcp_ordrel_mp); tcp->tcp_ordrel_mp = NULL; } /* * Following is a union with two members which are * identical types and size so the following cleanup * is enough. */ tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); CL_INET_DISCONNECT(connp); /* * The connection can't be on the tcp_time_wait_head list * since it is not detached. */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); if (tcp->tcp_kssl_pending) { tcp->tcp_kssl_pending = B_FALSE; /* Don't reset if the initialized by bind. */ if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); } } if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; } /* * Reset/preserve other values */ tcp_reinit_values(tcp); ipcl_hash_remove(connp); ixa_cleanup(connp->conn_ixa); tcp_ipsec_cleanup(tcp); connp->conn_laddr_v6 = connp->conn_bound_addr_v6; connp->conn_saddr_v6 = connp->conn_bound_addr_v6; if (tcp->tcp_conn_req_max != 0) { /* * This is the case when a TLI program uses the same * transport end point to accept a connection. This * makes the TCP both a listener and acceptor. When * this connection is closed, we need to set the state * back to TCPS_LISTEN. Make sure that the eager list * is reinitialized. * * Note that this stream is still bound to the four * tuples of the previous connection in IP. If a new * SYN with different foreign address comes in, IP will * not find it and will send it to the global queue. In * the global queue, TCP will do a tcp_lookup_listener() * to find this stream. This works because this stream * is only removed from connected hash. * */ tcp->tcp_state = TCPS_LISTEN; tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; tcp->tcp_eager_next_drop_q0 = tcp; tcp->tcp_eager_prev_drop_q0 = tcp; /* * Initially set conn_recv to tcp_input_listener_unbound to try * to pick a good squeue for the listener when the first SYN * arrives. tcp_input_listener_unbound sets it to * tcp_input_listener on that first SYN. */ connp->conn_recv = tcp_input_listener_unbound; connp->conn_proto = IPPROTO_TCP; connp->conn_faddr_v6 = ipv6_all_zeros; connp->conn_fport = 0; (void) ipcl_bind_insert(connp); } else { tcp->tcp_state = TCPS_BOUND; } /* * Initialize to default values */ tcp_init_values(tcp); ASSERT(tcp->tcp_ptpbhn != NULL); tcp->tcp_rwnd = connp->conn_rcvbuf; tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; } /* * Force values to zero that need be zero. * Do not touch values asociated with the BOUND or LISTEN state * since the connection will end up in that state after the reinit. * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t * structure! */ static void tcp_reinit_values(tcp) tcp_t *tcp; { tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; #ifndef lint #define DONTCARE(x) #define PRESERVE(x) #else #define DONTCARE(x) ((x) = (x)) #define PRESERVE(x) ((x) = (x)) #endif /* lint */ PRESERVE(tcp->tcp_bind_hash_port); PRESERVE(tcp->tcp_bind_hash); PRESERVE(tcp->tcp_ptpbhn); PRESERVE(tcp->tcp_acceptor_hash); PRESERVE(tcp->tcp_ptpahn); /* Should be ASSERT NULL on these with new code! */ ASSERT(tcp->tcp_time_wait_next == NULL); ASSERT(tcp->tcp_time_wait_prev == NULL); ASSERT(tcp->tcp_time_wait_expire == 0); PRESERVE(tcp->tcp_state); PRESERVE(connp->conn_rq); PRESERVE(connp->conn_wq); ASSERT(tcp->tcp_xmit_head == NULL); ASSERT(tcp->tcp_xmit_last == NULL); ASSERT(tcp->tcp_unsent == 0); ASSERT(tcp->tcp_xmit_tail == NULL); ASSERT(tcp->tcp_xmit_tail_unsent == 0); tcp->tcp_snxt = 0; /* Displayed in mib */ tcp->tcp_suna = 0; /* Displayed in mib */ tcp->tcp_swnd = 0; DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ ASSERT(tcp->tcp_ibsegs == 0); ASSERT(tcp->tcp_obsegs == 0); if (connp->conn_ht_iphc != NULL) { kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); connp->conn_ht_iphc = NULL; connp->conn_ht_iphc_allocated = 0; connp->conn_ht_iphc_len = 0; connp->conn_ht_ulp = NULL; connp->conn_ht_ulp_len = 0; tcp->tcp_ipha = NULL; tcp->tcp_ip6h = NULL; tcp->tcp_tcpha = NULL; } /* We clear any IP_OPTIONS and extension headers */ ip_pkt_free(&connp->conn_xmit_ipp); DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_ipha); DONTCARE(tcp->tcp_ip6h); DONTCARE(tcp->tcp_tcpha); tcp->tcp_valid_bits = 0; DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ tcp->tcp_last_rcv_lbolt = 0; tcp->tcp_init_cwnd = 0; tcp->tcp_urp_last_valid = 0; tcp->tcp_hard_binding = 0; tcp->tcp_fin_acked = 0; tcp->tcp_fin_rcvd = 0; tcp->tcp_fin_sent = 0; tcp->tcp_ordrel_done = 0; tcp->tcp_detached = 0; tcp->tcp_snd_ws_ok = B_FALSE; tcp->tcp_snd_ts_ok = B_FALSE; tcp->tcp_zero_win_probe = 0; tcp->tcp_loopback = 0; tcp->tcp_localnet = 0; tcp->tcp_syn_defense = 0; tcp->tcp_set_timer = 0; tcp->tcp_active_open = 0; tcp->tcp_rexmit = B_FALSE; tcp->tcp_xmit_zc_clean = B_FALSE; tcp->tcp_snd_sack_ok = B_FALSE; tcp->tcp_hwcksum = B_FALSE; DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ tcp->tcp_conn_def_q0 = 0; tcp->tcp_ip_forward_progress = B_FALSE; tcp->tcp_ecn_ok = B_FALSE; tcp->tcp_cwr = B_FALSE; tcp->tcp_ecn_echo_on = B_FALSE; tcp->tcp_is_wnd_shrnk = B_FALSE; if (tcp->tcp_sack_info != NULL) { if (tcp->tcp_notsack_list != NULL) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); } kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); tcp->tcp_sack_info = NULL; } tcp->tcp_rcv_ws = 0; tcp->tcp_snd_ws = 0; tcp->tcp_ts_recent = 0; tcp->tcp_rnxt = 0; /* Displayed in mib */ DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ tcp->tcp_initial_pmtu = 0; ASSERT(tcp->tcp_reass_head == NULL); ASSERT(tcp->tcp_reass_tail == NULL); tcp->tcp_cwnd_cnt = 0; ASSERT(tcp->tcp_rcv_list == NULL); ASSERT(tcp->tcp_rcv_last_head == NULL); ASSERT(tcp->tcp_rcv_last_tail == NULL); ASSERT(tcp->tcp_rcv_cnt == 0); DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ tcp->tcp_csuna = 0; tcp->tcp_rto = 0; /* Displayed in MIB */ DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ tcp->tcp_rtt_update = 0; DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ tcp->tcp_rack = 0; /* Displayed in mib */ tcp->tcp_rack_cnt = 0; tcp->tcp_rack_cur_max = 0; tcp->tcp_rack_abs_max = 0; tcp->tcp_max_swnd = 0; ASSERT(tcp->tcp_listener == NULL); DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ ASSERT(tcp->tcp_conn_req_cnt_q == 0); ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); PRESERVE(tcp->tcp_conn_req_max); PRESERVE(tcp->tcp_conn_req_seqnum); DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ ASSERT(tcp->tcp_urp_mp == NULL); ASSERT(tcp->tcp_urp_mark_mp == NULL); ASSERT(tcp->tcp_fused_sigurg_mp == NULL); ASSERT(tcp->tcp_eager_next_q == NULL); ASSERT(tcp->tcp_eager_last_q == NULL); ASSERT((tcp->tcp_eager_next_q0 == NULL && tcp->tcp_eager_prev_q0 == NULL) || tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && tcp->tcp_eager_prev_drop_q0 == NULL) || tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); tcp->tcp_client_errno = 0; DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ PRESERVE(connp->conn_bound_addr_v6); tcp->tcp_last_sent_len = 0; tcp->tcp_dupack_cnt = 0; connp->conn_fport = 0; /* Displayed in MIB */ PRESERVE(connp->conn_lport); PRESERVE(tcp->tcp_acceptor_lockp); ASSERT(tcp->tcp_ordrel_mp == NULL); PRESERVE(tcp->tcp_acceptor_id); DONTCARE(tcp->tcp_ipsec_overhead); PRESERVE(connp->conn_family); /* Remove any remnants of mapped address binding */ if (connp->conn_family == AF_INET6) { connp->conn_ipversion = IPV6_VERSION; tcp->tcp_mss = tcps->tcps_mss_def_ipv6; } else { connp->conn_ipversion = IPV4_VERSION; tcp->tcp_mss = tcps->tcps_mss_def_ipv4; } connp->conn_bound_if = 0; connp->conn_recv_ancillary.crb_all = 0; tcp->tcp_recvifindex = 0; tcp->tcp_recvhops = 0; tcp->tcp_closed = 0; tcp->tcp_cleandeathtag = 0; if (tcp->tcp_hopopts != NULL) { mi_free(tcp->tcp_hopopts); tcp->tcp_hopopts = NULL; tcp->tcp_hopoptslen = 0; } ASSERT(tcp->tcp_hopoptslen == 0); if (tcp->tcp_dstopts != NULL) { mi_free(tcp->tcp_dstopts); tcp->tcp_dstopts = NULL; tcp->tcp_dstoptslen = 0; } ASSERT(tcp->tcp_dstoptslen == 0); if (tcp->tcp_rthdrdstopts != NULL) { mi_free(tcp->tcp_rthdrdstopts); tcp->tcp_rthdrdstopts = NULL; tcp->tcp_rthdrdstoptslen = 0; } ASSERT(tcp->tcp_rthdrdstoptslen == 0); if (tcp->tcp_rthdr != NULL) { mi_free(tcp->tcp_rthdr); tcp->tcp_rthdr = NULL; tcp->tcp_rthdrlen = 0; } ASSERT(tcp->tcp_rthdrlen == 0); /* Reset fusion-related fields */ tcp->tcp_fused = B_FALSE; tcp->tcp_unfusable = B_FALSE; tcp->tcp_fused_sigurg = B_FALSE; tcp->tcp_loopback_peer = NULL; tcp->tcp_lso = B_FALSE; tcp->tcp_in_ack_unsent = 0; tcp->tcp_cork = B_FALSE; tcp->tcp_tconnind_started = B_FALSE; PRESERVE(tcp->tcp_squeue_bytes); ASSERT(tcp->tcp_kssl_ctx == NULL); ASSERT(!tcp->tcp_kssl_pending); PRESERVE(tcp->tcp_kssl_ent); tcp->tcp_closemp_used = B_FALSE; PRESERVE(tcp->tcp_rsrv_mp); PRESERVE(tcp->tcp_rsrv_mp_lock); #ifdef DEBUG DONTCARE(tcp->tcmp_stk[0]); #endif PRESERVE(tcp->tcp_connid); #undef DONTCARE #undef PRESERVE } static void tcp_init_values(tcp_t *tcp) { tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; ASSERT((connp->conn_family == AF_INET && connp->conn_ipversion == IPV4_VERSION) || (connp->conn_family == AF_INET6 && (connp->conn_ipversion == IPV4_VERSION || connp->conn_ipversion == IPV6_VERSION))); /* * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO * will be close to tcp_rexmit_interval_initial. By doing this, we * allow the algorithm to adjust slowly to large fluctuations of RTT * during first few transmissions of a connection as seen in slow * links. */ tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + tcps->tcps_conn_grace_period; if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) tcp->tcp_rto = tcps->tcps_rexmit_interval_min; tcp->tcp_timer_backoff = 0; tcp->tcp_ms_we_have_waited = 0; tcp->tcp_last_recv_time = ddi_get_lbolt(); tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; tcp->tcp_snd_burst = TCP_CWND_INFINITE; tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; /* * Fix it to tcp_ip_abort_linterval later if it turns out to be a * passive open. */ tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; tcp->tcp_naglim = tcps->tcps_naglim_def; /* NOTE: ISS is now set in tcp_set_destination(). */ /* Reset fusion-related fields */ tcp->tcp_fused = B_FALSE; tcp->tcp_unfusable = B_FALSE; tcp->tcp_fused_sigurg = B_FALSE; tcp->tcp_loopback_peer = NULL; /* We rebuild the header template on the next connect/conn_request */ connp->conn_mlp_type = mlptSingle; /* * Init the window scale to the max so tcp_rwnd_set() won't pare * down tcp_rwnd. tcp_set_destination() will set the right value later. */ tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; tcp->tcp_rwnd = connp->conn_rcvbuf; tcp->tcp_cork = B_FALSE; /* * Init the tcp_debug option if it wasn't already set. This value * determines whether TCP * calls strlog() to print out debug messages. Doing this * initialization here means that this value is not inherited thru * tcp_reinit(). */ if (!connp->conn_debug) connp->conn_debug = tcps->tcps_dbg; tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; } /* At minimum we need 8 bytes in the TCP header for the lookup */ #define ICMP_MIN_TCP_HDR 8 /* * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages * passed up by IP. The message is always received on the correct tcp_t. * Assumes that IP has pulled up everything up to and including the ICMP header. */ /* ARGSUSED2 */ static void tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { conn_t *connp = (conn_t *)arg1; icmph_t *icmph; ipha_t *ipha; int iph_hdr_length; tcpha_t *tcpha; uint32_t seg_seq; tcp_t *tcp = connp->conn_tcp; /* Assume IP provides aligned packets */ ASSERT(OK_32PTR(mp->b_rptr)); ASSERT((MBLKL(mp) >= sizeof (ipha_t))); /* * Verify IP version. Anything other than IPv4 or IPv6 packet is sent * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. */ if (!(ira->ira_flags & IRAF_IS_IPV4)) { tcp_icmp_error_ipv6(tcp, mp, ira); return; } /* Skip past the outer IP and ICMP headers */ iph_hdr_length = ira->ira_ip_hdr_length; icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; /* * If we don't have the correct outer IP header length * or if we don't have a complete inner IP header * drop it. */ if (iph_hdr_length < sizeof (ipha_t) || (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { noticmpv4: freemsg(mp); return; } ipha = (ipha_t *)&icmph[1]; /* Skip past the inner IP and find the ULP header */ iph_hdr_length = IPH_HDR_LENGTH(ipha); tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length); /* * If we don't have the correct inner IP header length or if the ULP * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR * bytes of TCP header, drop it. */ if (iph_hdr_length < sizeof (ipha_t) || ipha->ipha_protocol != IPPROTO_TCP || (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) { goto noticmpv4; } seg_seq = ntohl(tcpha->tha_seq); switch (icmph->icmph_type) { case ICMP_DEST_UNREACHABLE: switch (icmph->icmph_code) { case ICMP_FRAGMENTATION_NEEDED: /* * Update Path MTU, then try to send something out. */ tcp_update_pmtu(tcp, B_TRUE); tcp_rexmit_after_error(tcp); break; case ICMP_PORT_UNREACHABLE: case ICMP_PROTOCOL_UNREACHABLE: switch (tcp->tcp_state) { case TCPS_SYN_SENT: case TCPS_SYN_RCVD: /* * ICMP can snipe away incipient * TCP connections as long as * seq number is same as initial * send seq number. */ if (seg_seq == tcp->tcp_iss) { (void) tcp_clean_death(tcp, ECONNREFUSED, 6); } break; } break; case ICMP_HOST_UNREACHABLE: case ICMP_NET_UNREACHABLE: /* Record the error in case we finally time out. */ if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) tcp->tcp_client_errno = EHOSTUNREACH; else tcp->tcp_client_errno = ENETUNREACH; if (tcp->tcp_state == TCPS_SYN_RCVD) { if (tcp->tcp_listener != NULL && tcp->tcp_listener->tcp_syn_defense) { /* * Ditch the half-open connection if we * suspect a SYN attack is under way. */ (void) tcp_clean_death(tcp, tcp->tcp_client_errno, 7); } } break; default: break; } break; case ICMP_SOURCE_QUENCH: { /* * use a global boolean to control * whether TCP should respond to ICMP_SOURCE_QUENCH. * The default is false. */ if (tcp_icmp_source_quench) { /* * Reduce the sending rate as if we got a * retransmit timeout */ uint32_t npkt; npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / tcp->tcp_mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; tcp->tcp_cwnd = tcp->tcp_mss; tcp->tcp_cwnd_cnt = 0; } break; } } freemsg(mp); } /* * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might * change. But it can refer to fields like tcp_suna and tcp_snxt. * * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP * error messages received by IP. The message is always received on the correct * tcp_t. */ /* ARGSUSED */ static boolean_t tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6, ip_recv_attr_t *ira) { tcpha_t *tcpha = (tcpha_t *)arg2; uint32_t seq = ntohl(tcpha->tha_seq); tcp_t *tcp = connp->conn_tcp; /* * TCP sequence number contained in payload of the ICMP error message * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise, * the message is either a stale ICMP error, or an attack from the * network. Fail the verification. */ if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) return (B_FALSE); /* For "too big" we also check the ignore flag */ if (ira->ira_flags & IRAF_IS_IPV4) { ASSERT(icmph != NULL); if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && tcp->tcp_tcps->tcps_ignore_path_mtu) return (B_FALSE); } else { ASSERT(icmp6 != NULL); if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG && tcp->tcp_tcps->tcps_ignore_path_mtu) return (B_FALSE); } return (B_TRUE); } /* * Update the TCP connection according to change of PMTU. * * Path MTU might have changed by either increase or decrease, so need to * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny * or negative MSS, since tcp_mss_set() will do it. */ static void tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) { uint32_t pmtu; int32_t mss; conn_t *connp = tcp->tcp_connp; ip_xmit_attr_t *ixa = connp->conn_ixa; iaflags_t ixaflags; if (tcp->tcp_tcps->tcps_ignore_path_mtu) return; if (tcp->tcp_state < TCPS_ESTABLISHED) return; /* * Always call ip_get_pmtu() to make sure that IP has updated * ixa_flags properly. */ pmtu = ip_get_pmtu(ixa); ixaflags = ixa->ixa_flags; /* * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and * IPsec overhead if applied. Make sure to use the most recent * IPsec information. */ mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); /* * Nothing to change, so just return. */ if (mss == tcp->tcp_mss) return; /* * Currently, for ICMP errors, only PMTU decrease is handled. */ if (mss > tcp->tcp_mss && decrease_only) return; DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); /* * Update ixa_fragsize and ixa_pmtu. */ ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; /* * Adjust MSS and all relevant variables. */ tcp_mss_set(tcp, mss); /* * If the PMTU is below the min size maintained by IP, then ip_get_pmtu * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP * has a (potentially different) min size we do the same. Make sure to * clear IXAF_DONTFRAG, which is used by IP to decide whether to * fragment the packet. * * LSO over IPv6 can not be fragmented. So need to disable LSO * when IPv6 fragmentation is needed. */ if (mss < tcp->tcp_tcps->tcps_mss_min) ixaflags |= IXAF_PMTU_TOO_SMALL; if (ixaflags & IXAF_PMTU_TOO_SMALL) ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); if ((connp->conn_ipversion == IPV4_VERSION) && !(ixaflags & IXAF_PMTU_IPV4_DF)) { tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; } ixa->ixa_flags = ixaflags; } /* * Do slow start retransmission after ICMP errors of PMTU changes. */ static void tcp_rexmit_after_error(tcp_t *tcp) { /* * All sent data has been acknowledged or no data left to send, just * to return. */ if (!SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) || (tcp->tcp_xmit_head == NULL)) return; if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) tcp->tcp_rexmit_max = tcp->tcp_fss; else tcp->tcp_rexmit_max = tcp->tcp_snxt; tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; tcp->tcp_snd_burst = TCP_CWND_SS; tcp_ss_rexmit(tcp); } /* * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6 * error messages passed up by IP. * Assumes that IP has pulled up all the extension headers as well * as the ICMPv6 header. */ static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira) { icmp6_t *icmp6; ip6_t *ip6h; uint16_t iph_hdr_length = ira->ira_ip_hdr_length; tcpha_t *tcpha; uint8_t *nexthdrp; uint32_t seg_seq; /* * Verify that we have a complete IP header. */ ASSERT((MBLKL(mp) >= sizeof (ip6_t))); icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; ip6h = (ip6_t *)&icmp6[1]; /* * Verify if we have a complete ICMP and inner IP header. */ if ((uchar_t *)&ip6h[1] > mp->b_wptr) { noticmpv6: freemsg(mp); return; } if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) goto noticmpv6; tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); /* * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the * packet. */ if ((*nexthdrp != IPPROTO_TCP) || ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { goto noticmpv6; } seg_seq = ntohl(tcpha->tha_seq); switch (icmp6->icmp6_type) { case ICMP6_PACKET_TOO_BIG: /* * Update Path MTU, then try to send something out. */ tcp_update_pmtu(tcp, B_TRUE); tcp_rexmit_after_error(tcp); break; case ICMP6_DST_UNREACH: switch (icmp6->icmp6_code) { case ICMP6_DST_UNREACH_NOPORT: if (((tcp->tcp_state == TCPS_SYN_SENT) || (tcp->tcp_state == TCPS_SYN_RCVD)) && (seg_seq == tcp->tcp_iss)) { (void) tcp_clean_death(tcp, ECONNREFUSED, 8); } break; case ICMP6_DST_UNREACH_ADMIN: case ICMP6_DST_UNREACH_NOROUTE: case ICMP6_DST_UNREACH_BEYONDSCOPE: case ICMP6_DST_UNREACH_ADDR: /* Record the error in case we finally time out. */ tcp->tcp_client_errno = EHOSTUNREACH; if (((tcp->tcp_state == TCPS_SYN_SENT) || (tcp->tcp_state == TCPS_SYN_RCVD)) && (seg_seq == tcp->tcp_iss)) { if (tcp->tcp_listener != NULL && tcp->tcp_listener->tcp_syn_defense) { /* * Ditch the half-open connection if we * suspect a SYN attack is under way. */ (void) tcp_clean_death(tcp, tcp->tcp_client_errno, 9); } } break; default: break; } break; case ICMP6_PARAM_PROB: /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && (uchar_t *)ip6h + icmp6->icmp6_pptr == (uchar_t *)nexthdrp) { if (tcp->tcp_state == TCPS_SYN_SENT || tcp->tcp_state == TCPS_SYN_RCVD) { (void) tcp_clean_death(tcp, ECONNREFUSED, 10); } break; } break; case ICMP6_TIME_EXCEEDED: default: break; } freemsg(mp); } /* * Notify IP that we are having trouble with this connection. IP should * make note so it can potentially use a different IRE. */ static void tcp_ip_notify(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; ire_t *ire; /* * Note: in the case of source routing we want to blow away the * route to the first source route hop. */ ire = connp->conn_ixa->ixa_ire; if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { if (ire->ire_ipversion == IPV4_VERSION) { /* * As per RFC 1122, we send an RTM_LOSING to inform * routing protocols. */ ip_rts_change(RTM_LOSING, ire->ire_addr, ire->ire_gateway_addr, ire->ire_mask, connp->conn_laddr_v4, 0, 0, 0, (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), ire->ire_ipst); } (void) ire_no_good(ire); } } #pragma inline(tcp_send_data) /* * Timer callback routine for keepalive probe. We do a fake resend of * last ACKed byte. Then set a timer using RTO. When the timer expires, * check to see if we have heard anything from the other end for the last * RTO period. If we have, set the timer to expire for another * tcp_keepalive_intrvl and check again. If we have not, set a timer using * RTO << 1 and check again when it expires. Keep exponentially increasing * the timeout if we have not heard from the other side. If for more than * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, * kill the connection unless the keepalive abort threshold is 0. In * that case, we will probe "forever." */ static void tcp_keepalive_killer(void *arg) { mblk_t *mp; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; int32_t firetime; int32_t idletime; int32_t ka_intrvl; tcp_stack_t *tcps = tcp->tcp_tcps; tcp->tcp_ka_tid = 0; if (tcp->tcp_fused) return; BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); ka_intrvl = tcp->tcp_ka_interval; /* * Keepalive probe should only be sent if the application has not * done a close on the connection. */ if (tcp->tcp_state > TCPS_CLOSE_WAIT) { return; } /* Timer fired too early, restart it. */ if (tcp->tcp_state < TCPS_ESTABLISHED) { tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(ka_intrvl)); return; } idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); /* * If we have not heard from the other side for a long * time, kill the connection unless the keepalive abort * threshold is 0. In that case, we will probe "forever." */ if (tcp->tcp_ka_abort_thres != 0 && idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? tcp->tcp_client_errno : ETIMEDOUT, 11); return; } if (tcp->tcp_snxt == tcp->tcp_suna && idletime >= ka_intrvl) { /* Fake resend of last ACKed byte. */ mblk_t *mp1 = allocb(1, BPRI_LO); if (mp1 != NULL) { *mp1->b_wptr++ = '\0'; mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); freeb(mp1); /* * if allocation failed, fall through to start the * timer back. */ if (mp != NULL) { tcp_send_data(tcp, mp); BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveProbe); if (tcp->tcp_ka_last_intrvl != 0) { int max; /* * We should probe again at least * in ka_intrvl, but not more than * tcp_rexmit_interval_max. */ max = tcps->tcps_rexmit_interval_max; firetime = MIN(ka_intrvl - 1, tcp->tcp_ka_last_intrvl << 1); if (firetime > max) firetime = max; } else { firetime = tcp->tcp_rto; } tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(firetime)); tcp->tcp_ka_last_intrvl = firetime; return; } } } else { tcp->tcp_ka_last_intrvl = 0; } /* firetime can be negative if (mp1 == NULL || mp == NULL) */ if ((firetime = ka_intrvl - idletime) < 0) { firetime = ka_intrvl; } tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(firetime)); } int tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) { conn_t *connp = tcp->tcp_connp; queue_t *q = connp->conn_rq; int32_t mss = tcp->tcp_mss; int maxpsz; if (TCP_IS_DETACHED(tcp)) return (mss); if (tcp->tcp_fused) { maxpsz = tcp_fuse_maxpsz(tcp); mss = INFPSZ; } else if (tcp->tcp_maxpsz_multiplier == 0) { /* * Set the sd_qn_maxpsz according to the socket send buffer * size, and sd_maxblk to INFPSZ (-1). This will essentially * instruct the stream head to copyin user data into contiguous * kernel-allocated buffers without breaking it up into smaller * chunks. We round up the buffer size to the nearest SMSS. */ maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); if (tcp->tcp_kssl_ctx == NULL) mss = INFPSZ; else mss = SSL3_MAX_RECORD_LEN; } else { /* * Set sd_qn_maxpsz to approx half the (receivers) buffer * (and a multiple of the mss). This instructs the stream * head to break down larger than SMSS writes into SMSS- * size mblks, up to tcp_maxpsz_multiplier mblks at a time. */ maxpsz = tcp->tcp_maxpsz_multiplier * mss; if (maxpsz > connp->conn_sndbuf / 2) { maxpsz = connp->conn_sndbuf / 2; /* Round up to nearest mss */ maxpsz = MSS_ROUNDUP(maxpsz, mss); } } (void) proto_set_maxpsz(q, connp, maxpsz); if (!(IPCL_IS_NONSTR(connp))) connp->conn_wq->q_maxpsz = maxpsz; if (set_maxblk) (void) proto_set_tx_maxblk(q, connp, mss); return (mss); } /* * Extract option values from a tcp header. We put any found values into the * tcpopt struct and return a bitmask saying which options were found. */ static int tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt) { uchar_t *endp; int len; uint32_t mss; uchar_t *up = (uchar_t *)tcpha; int found = 0; int32_t sack_len; tcp_seq sack_begin, sack_end; tcp_t *tcp; endp = up + TCP_HDR_LENGTH(tcpha); up += TCP_MIN_HEADER_LENGTH; while (up < endp) { len = endp - up; switch (*up) { case TCPOPT_EOL: break; case TCPOPT_NOP: up++; continue; case TCPOPT_MAXSEG: if (len < TCPOPT_MAXSEG_LEN || up[1] != TCPOPT_MAXSEG_LEN) break; mss = BE16_TO_U16(up+2); /* Caller must handle tcp_mss_min and tcp_mss_max_* */ tcpopt->tcp_opt_mss = mss; found |= TCP_OPT_MSS_PRESENT; up += TCPOPT_MAXSEG_LEN; continue; case TCPOPT_WSCALE: if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) break; if (up[2] > TCP_MAX_WINSHIFT) tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; else tcpopt->tcp_opt_wscale = up[2]; found |= TCP_OPT_WSCALE_PRESENT; up += TCPOPT_WS_LEN; continue; case TCPOPT_SACK_PERMITTED: if (len < TCPOPT_SACK_OK_LEN || up[1] != TCPOPT_SACK_OK_LEN) break; found |= TCP_OPT_SACK_OK_PRESENT; up += TCPOPT_SACK_OK_LEN; continue; case TCPOPT_SACK: if (len <= 2 || up[1] <= 2 || len < up[1]) break; /* If TCP is not interested in SACK blks... */ if ((tcp = tcpopt->tcp) == NULL) { up += up[1]; continue; } sack_len = up[1] - TCPOPT_HEADER_LEN; up += TCPOPT_HEADER_LEN; /* * If the list is empty, allocate one and assume * nothing is sack'ed. */ ASSERT(tcp->tcp_sack_info != NULL); if (tcp->tcp_notsack_list == NULL) { tcp_notsack_update(&(tcp->tcp_notsack_list), tcp->tcp_suna, tcp->tcp_snxt, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); /* * Make sure tcp_notsack_list is not NULL. * This happens when kmem_alloc(KM_NOSLEEP) * returns NULL. */ if (tcp->tcp_notsack_list == NULL) { up += sack_len; continue; } tcp->tcp_fack = tcp->tcp_suna; } while (sack_len > 0) { if (up + 8 > endp) { up = endp; break; } sack_begin = BE32_TO_U32(up); up += 4; sack_end = BE32_TO_U32(up); up += 4; sack_len -= 8; /* * Bounds checking. Make sure the SACK * info is within tcp_suna and tcp_snxt. * If this SACK blk is out of bound, ignore * it but continue to parse the following * blks. */ if (SEQ_LEQ(sack_end, sack_begin) || SEQ_LT(sack_begin, tcp->tcp_suna) || SEQ_GT(sack_end, tcp->tcp_snxt)) { continue; } tcp_notsack_insert(&(tcp->tcp_notsack_list), sack_begin, sack_end, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); if (SEQ_GT(sack_end, tcp->tcp_fack)) { tcp->tcp_fack = sack_end; } } found |= TCP_OPT_SACK_PRESENT; continue; case TCPOPT_TSTAMP: if (len < TCPOPT_TSTAMP_LEN || up[1] != TCPOPT_TSTAMP_LEN) break; tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); found |= TCP_OPT_TSTAMP_PRESENT; up += TCPOPT_TSTAMP_LEN; continue; default: if (len <= 1 || len < (int)up[1] || up[1] == 0) break; up += up[1]; continue; } break; } return (found); } /* * Set the MSS associated with a particular tcp based on its current value, * and a new one passed in. Observe minimums and maximums, and reset other * state variables that we want to view as multiples of MSS. * * The value of MSS could be either increased or descreased. */ static void tcp_mss_set(tcp_t *tcp, uint32_t mss) { uint32_t mss_max; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; if (connp->conn_ipversion == IPV4_VERSION) mss_max = tcps->tcps_mss_max_ipv4; else mss_max = tcps->tcps_mss_max_ipv6; if (mss < tcps->tcps_mss_min) mss = tcps->tcps_mss_min; if (mss > mss_max) mss = mss_max; /* * Unless naglim has been set by our client to * a non-mss value, force naglim to track mss. * This can help to aggregate small writes. */ if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) tcp->tcp_naglim = mss; /* * TCP should be able to buffer at least 4 MSS data for obvious * performance reason. */ if ((mss << 2) > connp->conn_sndbuf) connp->conn_sndbuf = mss << 2; /* * Set the send lowater to at least twice of MSS. */ if ((mss << 1) > connp->conn_sndlowat) connp->conn_sndlowat = mss << 1; /* * Update tcp_cwnd according to the new value of MSS. Keep the * previous ratio to preserve the transmit rate. */ tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; tcp->tcp_cwnd_cnt = 0; tcp->tcp_mss = mss; (void) tcp_maxpsz_set(tcp, B_TRUE); } /* For /dev/tcp aka AF_INET open */ static int tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); } /* For /dev/tcp6 aka AF_INET6 open */ static int tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); } static conn_t * tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, int *errorp) { tcp_t *tcp = NULL; conn_t *connp; zoneid_t zoneid; tcp_stack_t *tcps; squeue_t *sqp; ASSERT(errorp != NULL); /* * Find the proper zoneid and netstack. */ /* * Special case for install: miniroot needs to be able to * access files via NFS as though it were always in the * global zone. */ if (credp == kcred && nfs_global_client_only != 0) { zoneid = GLOBAL_ZONEID; tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> netstack_tcp; ASSERT(tcps != NULL); } else { netstack_t *ns; ns = netstack_find_by_cred(credp); ASSERT(ns != NULL); tcps = ns->netstack_tcp; ASSERT(tcps != NULL); /* * For exclusive stacks we set the zoneid to zero * to make TCP operate as if in the global zone. */ if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) zoneid = GLOBAL_ZONEID; else zoneid = crgetzoneid(credp); } sqp = IP_SQUEUE_GET((uint_t)gethrtime()); connp = (conn_t *)tcp_get_conn(sqp, tcps); /* * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, * so we drop it by one. */ netstack_rele(tcps->tcps_netstack); if (connp == NULL) { *errorp = ENOSR; return (NULL); } ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); connp->conn_sqp = sqp; connp->conn_initial_sqp = connp->conn_sqp; connp->conn_ixa->ixa_sqp = connp->conn_sqp; tcp = connp->conn_tcp; /* * Besides asking IP to set the checksum for us, have conn_ip_output * to do the following checks when necessary: * * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid * IXAF_VERIFY_PMTU: verify PMTU changes * IXAF_VERIFY_LSO: verify LSO capability changes */ connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; if (!tcps->tcps_dev_flow_ctl) connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; if (isv6) { connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; connp->conn_ipversion = IPV6_VERSION; connp->conn_family = AF_INET6; tcp->tcp_mss = tcps->tcps_mss_def_ipv6; connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; } else { connp->conn_ipversion = IPV4_VERSION; connp->conn_family = AF_INET; tcp->tcp_mss = tcps->tcps_mss_def_ipv4; connp->conn_default_ttl = tcps->tcps_ipv4_ttl; } connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; crhold(credp); connp->conn_cred = credp; connp->conn_cpid = curproc->p_pid; connp->conn_open_time = ddi_get_lbolt64(); connp->conn_zoneid = zoneid; /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ connp->conn_ixa->ixa_zoneid = zoneid; connp->conn_mlp_type = mlptSingle; ASSERT(connp->conn_netstack == tcps->tcps_netstack); ASSERT(tcp->tcp_tcps == tcps); /* * If the caller has the process-wide flag set, then default to MAC * exempt mode. This allows read-down to unlabeled hosts. */ if (getpflags(NET_MAC_AWARE, credp) != 0) connp->conn_mac_mode = CONN_MAC_AWARE; connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); if (issocket) { tcp->tcp_issocket = 1; } connp->conn_rcvbuf = tcps->tcps_recv_hiwat; connp->conn_sndbuf = tcps->tcps_xmit_hiwat; connp->conn_sndlowat = tcps->tcps_xmit_lowat; connp->conn_so_type = SOCK_STREAM; connp->conn_wroff = connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra; SOCK_CONNID_INIT(tcp->tcp_connid); tcp->tcp_state = TCPS_IDLE; tcp_init_values(tcp); return (connp); } static int tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, boolean_t isv6) { tcp_t *tcp = NULL; conn_t *connp = NULL; int err; vmem_t *minor_arena = NULL; dev_t conn_dev; boolean_t issocket; if (q->q_ptr != NULL) return (0); if (sflag == MODOPEN) return (EINVAL); if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { minor_arena = ip_minor_arena_la; } else { /* * Either minor numbers in the large arena were exhausted * or a non socket application is doing the open. * Try to allocate from the small arena. */ if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { return (EBUSY); } minor_arena = ip_minor_arena_sa; } ASSERT(minor_arena != NULL); *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); if (flag & SO_FALLBACK) { /* * Non streams socket needs a stream to fallback to */ RD(q)->q_ptr = (void *)conn_dev; WR(q)->q_qinfo = &tcp_fallback_sock_winit; WR(q)->q_ptr = (void *)minor_arena; qprocson(q); return (0); } else if (flag & SO_ACCEPTOR) { q->q_qinfo = &tcp_acceptor_rinit; /* * the conn_dev and minor_arena will be subsequently used by * tcp_tli_accept() and tcp_tpi_close_accept() to figure out * the minor device number for this connection from the q_ptr. */ RD(q)->q_ptr = (void *)conn_dev; WR(q)->q_qinfo = &tcp_acceptor_winit; WR(q)->q_ptr = (void *)minor_arena; qprocson(q); return (0); } issocket = flag & SO_SOCKSTR; connp = tcp_create_common(credp, isv6, issocket, &err); if (connp == NULL) { inet_minor_free(minor_arena, conn_dev); q->q_ptr = WR(q)->q_ptr = NULL; return (err); } connp->conn_rq = q; connp->conn_wq = WR(q); q->q_ptr = WR(q)->q_ptr = connp; connp->conn_dev = conn_dev; connp->conn_minor_arena = minor_arena; ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); ASSERT(WR(q)->q_qinfo == &tcp_winit); tcp = connp->conn_tcp; if (issocket) { WR(q)->q_qinfo = &tcp_sock_winit; } else { #ifdef _ILP32 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); #else tcp->tcp_acceptor_id = conn_dev; #endif /* _ILP32 */ tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); } /* * Put the ref for TCP. Ref for IP was already put * by ipcl_conn_create. Also Make the conn_t globally * visible to walkers */ mutex_enter(&connp->conn_lock); CONN_INC_REF_LOCKED(connp); ASSERT(connp->conn_ref == 2); connp->conn_state_flags &= ~CONN_INCIPIENT; mutex_exit(&connp->conn_lock); qprocson(q); return (0); } /* * Some TCP options can be "set" by requesting them in the option * buffer. This is needed for XTI feature test though we do not * allow it in general. We interpret that this mechanism is more * applicable to OSI protocols and need not be allowed in general. * This routine filters out options for which it is not allowed (most) * and lets through those (few) for which it is. [ The XTI interface * test suite specifics will imply that any XTI_GENERIC level XTI_* if * ever implemented will have to be allowed here ]. */ static boolean_t tcp_allow_connopt_set(int level, int name) { switch (level) { case IPPROTO_TCP: switch (name) { case TCP_NODELAY: return (B_TRUE); default: return (B_FALSE); } /*NOTREACHED*/ default: return (B_FALSE); } /*NOTREACHED*/ } /* * This routine gets default values of certain options whose default * values are maintained by protocol specific code */ /* ARGSUSED */ int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) { int32_t *i1 = (int32_t *)ptr; tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; switch (level) { case IPPROTO_TCP: switch (name) { case TCP_NOTIFY_THRESHOLD: *i1 = tcps->tcps_ip_notify_interval; break; case TCP_ABORT_THRESHOLD: *i1 = tcps->tcps_ip_abort_interval; break; case TCP_CONN_NOTIFY_THRESHOLD: *i1 = tcps->tcps_ip_notify_cinterval; break; case TCP_CONN_ABORT_THRESHOLD: *i1 = tcps->tcps_ip_abort_cinterval; break; default: return (-1); } break; case IPPROTO_IP: switch (name) { case IP_TTL: *i1 = tcps->tcps_ipv4_ttl; break; default: return (-1); } break; case IPPROTO_IPV6: switch (name) { case IPV6_UNICAST_HOPS: *i1 = tcps->tcps_ipv6_hoplimit; break; default: return (-1); } break; default: return (-1); } return (sizeof (int)); } /* * TCP routine to get the values of options. */ static int tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) { int *i1 = (int *)ptr; tcp_t *tcp = connp->conn_tcp; conn_opt_arg_t coas; int retval; coas.coa_connp = connp; coas.coa_ixa = connp->conn_ixa; coas.coa_ipp = &connp->conn_xmit_ipp; coas.coa_ancillary = B_FALSE; coas.coa_changed = 0; switch (level) { case SOL_SOCKET: switch (name) { case SO_SND_COPYAVOID: *i1 = tcp->tcp_snd_zcopy_on ? SO_SND_COPYAVOID : 0; return (sizeof (int)); case SO_ACCEPTCONN: *i1 = (tcp->tcp_state == TCPS_LISTEN); return (sizeof (int)); } break; case IPPROTO_TCP: switch (name) { case TCP_NODELAY: *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; return (sizeof (int)); case TCP_MAXSEG: *i1 = tcp->tcp_mss; return (sizeof (int)); case TCP_NOTIFY_THRESHOLD: *i1 = (int)tcp->tcp_first_timer_threshold; return (sizeof (int)); case TCP_ABORT_THRESHOLD: *i1 = tcp->tcp_second_timer_threshold; return (sizeof (int)); case TCP_CONN_NOTIFY_THRESHOLD: *i1 = tcp->tcp_first_ctimer_threshold; return (sizeof (int)); case TCP_CONN_ABORT_THRESHOLD: *i1 = tcp->tcp_second_ctimer_threshold; return (sizeof (int)); case TCP_INIT_CWND: *i1 = tcp->tcp_init_cwnd; return (sizeof (int)); case TCP_KEEPALIVE_THRESHOLD: *i1 = tcp->tcp_ka_interval; return (sizeof (int)); case TCP_KEEPALIVE_ABORT_THRESHOLD: *i1 = tcp->tcp_ka_abort_thres; return (sizeof (int)); case TCP_CORK: *i1 = tcp->tcp_cork; return (sizeof (int)); } break; case IPPROTO_IP: if (connp->conn_family != AF_INET) return (-1); switch (name) { case IP_OPTIONS: case T_IP_OPTIONS: /* Caller ensures enough space */ return (ip_opt_get_user(connp, ptr)); default: break; } break; case IPPROTO_IPV6: /* * IPPROTO_IPV6 options are only supported for sockets * that are using IPv6 on the wire. */ if (connp->conn_ipversion != IPV6_VERSION) { return (-1); } switch (name) { case IPV6_PATHMTU: if (tcp->tcp_state < TCPS_ESTABLISHED) return (-1); break; } break; } mutex_enter(&connp->conn_lock); retval = conn_opt_get(&coas, level, name, ptr); mutex_exit(&connp->conn_lock); return (retval); } /* * TCP routine to get the values of options. */ int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) { return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); } /* returns UNIX error, the optlen is a value-result arg */ int tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, void *optvalp, socklen_t *optlen, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; squeue_t *sqp = connp->conn_sqp; int error; t_uscalar_t max_optbuf_len; void *optvalp_buf; int len; ASSERT(connp->conn_upper_handle != NULL); error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, tcp_opt_obj.odb_opt_des_arr, tcp_opt_obj.odb_opt_arr_cnt, B_FALSE, B_TRUE, cr); if (error != 0) { if (error < 0) { error = proto_tlitosyserr(-error); } return (error); } optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); error = squeue_synch_enter(sqp, connp, NULL); if (error == ENOMEM) { kmem_free(optvalp_buf, max_optbuf_len); return (ENOMEM); } len = tcp_opt_get(connp, level, option_name, optvalp_buf); squeue_synch_exit(sqp, connp); if (len == -1) { kmem_free(optvalp_buf, max_optbuf_len); return (EINVAL); } /* * update optlen and copy option value */ t_uscalar_t size = MIN(len, *optlen); bcopy(optvalp_buf, optvalp, size); bcopy(&size, optlen, sizeof (size)); kmem_free(optvalp_buf, max_optbuf_len); return (0); } /* * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. * Parameters are assumed to be verified by the caller. */ /* ARGSUSED */ int tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr) { tcp_t *tcp = connp->conn_tcp; int *i1 = (int *)invalp; boolean_t onoff = (*i1 == 0) ? 0 : 1; boolean_t checkonly; int reterr; tcp_stack_t *tcps = tcp->tcp_tcps; conn_opt_arg_t coas; coas.coa_connp = connp; coas.coa_ixa = connp->conn_ixa; coas.coa_ipp = &connp->conn_xmit_ipp; coas.coa_ancillary = B_FALSE; coas.coa_changed = 0; switch (optset_context) { case SETFN_OPTCOM_CHECKONLY: checkonly = B_TRUE; /* * Note: Implies T_CHECK semantics for T_OPTCOM_REQ * inlen != 0 implies value supplied and * we have to "pretend" to set it. * inlen == 0 implies that there is no * value part in T_CHECK request and just validation * done elsewhere should be enough, we just return here. */ if (inlen == 0) { *outlenp = 0; return (0); } break; case SETFN_OPTCOM_NEGOTIATE: checkonly = B_FALSE; break; case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ case SETFN_CONN_NEGOTIATE: checkonly = B_FALSE; /* * Negotiating local and "association-related" options * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) * primitives is allowed by XTI, but we choose * to not implement this style negotiation for Internet * protocols (We interpret it is a must for OSI world but * optional for Internet protocols) for all options. * [ Will do only for the few options that enable test * suites that our XTI implementation of this feature * works for transports that do allow it ] */ if (!tcp_allow_connopt_set(level, name)) { *outlenp = 0; return (EINVAL); } break; default: /* * We should never get here */ *outlenp = 0; return (EINVAL); } ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); /* * For TCP, we should have no ancillary data sent down * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs * has to be zero. */ ASSERT(thisdg_attrs == NULL); /* * For fixed length options, no sanity check * of passed in length is done. It is assumed *_optcom_req() * routines do the right thing. */ switch (level) { case SOL_SOCKET: switch (name) { case SO_KEEPALIVE: if (checkonly) { /* check only case */ break; } if (!onoff) { if (connp->conn_keepalive) { if (tcp->tcp_ka_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); tcp->tcp_ka_tid = 0; } connp->conn_keepalive = 0; } break; } if (!connp->conn_keepalive) { /* Crank up the keepalive timer */ tcp->tcp_ka_last_intrvl = 0; tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(tcp->tcp_ka_interval)); connp->conn_keepalive = 1; } break; case SO_SNDBUF: { if (*i1 > tcps->tcps_max_buf) { *outlenp = 0; return (ENOBUFS); } if (checkonly) break; connp->conn_sndbuf = *i1; if (tcps->tcps_snd_lowat_fraction != 0) { connp->conn_sndlowat = connp->conn_sndbuf / tcps->tcps_snd_lowat_fraction; } (void) tcp_maxpsz_set(tcp, B_TRUE); /* * If we are flow-controlled, recheck the condition. * There are apps that increase SO_SNDBUF size when * flow-controlled (EWOULDBLOCK), and expect the flow * control condition to be lifted right away. */ mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) < connp->conn_sndbuf) { tcp_clrqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); *outlenp = inlen; return (0); } case SO_RCVBUF: if (*i1 > tcps->tcps_max_buf) { *outlenp = 0; return (ENOBUFS); } /* Silently ignore zero */ if (!checkonly && *i1 != 0) { *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); (void) tcp_rwnd_set(tcp, *i1); } /* * XXX should we return the rwnd here * and tcp_opt_get ? */ *outlenp = inlen; return (0); case SO_SND_COPYAVOID: if (!checkonly) { if (tcp->tcp_loopback || (tcp->tcp_kssl_ctx != NULL) || (onoff != 1) || !tcp_zcopy_check(tcp)) { *outlenp = 0; return (EOPNOTSUPP); } tcp->tcp_snd_zcopy_aware = 1; } *outlenp = inlen; return (0); } break; case IPPROTO_TCP: switch (name) { case TCP_NODELAY: if (!checkonly) tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; break; case TCP_NOTIFY_THRESHOLD: if (!checkonly) tcp->tcp_first_timer_threshold = *i1; break; case TCP_ABORT_THRESHOLD: if (!checkonly) tcp->tcp_second_timer_threshold = *i1; break; case TCP_CONN_NOTIFY_THRESHOLD: if (!checkonly) tcp->tcp_first_ctimer_threshold = *i1; break; case TCP_CONN_ABORT_THRESHOLD: if (!checkonly) tcp->tcp_second_ctimer_threshold = *i1; break; case TCP_RECVDSTADDR: if (tcp->tcp_state > TCPS_LISTEN) { *outlenp = 0; return (EOPNOTSUPP); } /* Setting done in conn_opt_set */ break; case TCP_INIT_CWND: { uint32_t init_cwnd = *((uint32_t *)invalp); if (checkonly) break; /* * Only allow socket with network configuration * privilege to set the initial cwnd to be larger * than allowed by RFC 3390. */ if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { tcp->tcp_init_cwnd = init_cwnd; break; } if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { *outlenp = 0; return (reterr); } if (init_cwnd > TCP_MAX_INIT_CWND) { *outlenp = 0; return (EINVAL); } tcp->tcp_init_cwnd = init_cwnd; break; } case TCP_KEEPALIVE_THRESHOLD: if (checkonly) break; if (*i1 < tcps->tcps_keepalive_interval_low || *i1 > tcps->tcps_keepalive_interval_high) { *outlenp = 0; return (EINVAL); } if (*i1 != tcp->tcp_ka_interval) { tcp->tcp_ka_interval = *i1; /* * Check if we need to restart the * keepalive timer. */ if (tcp->tcp_ka_tid != 0) { ASSERT(connp->conn_keepalive); (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); tcp->tcp_ka_last_intrvl = 0; tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(tcp->tcp_ka_interval)); } } break; case TCP_KEEPALIVE_ABORT_THRESHOLD: if (!checkonly) { if (*i1 < tcps->tcps_keepalive_abort_interval_low || *i1 > tcps->tcps_keepalive_abort_interval_high) { *outlenp = 0; return (EINVAL); } tcp->tcp_ka_abort_thres = *i1; } break; case TCP_CORK: if (!checkonly) { /* * if tcp->tcp_cork was set and is now * being unset, we have to make sure that * the remaining data gets sent out. Also * unset tcp->tcp_cork so that tcp_wput_data() * can send data even if it is less than mss */ if (tcp->tcp_cork && onoff == 0 && tcp->tcp_unsent > 0) { tcp->tcp_cork = B_FALSE; tcp_wput_data(tcp, NULL, B_FALSE); } tcp->tcp_cork = onoff; } break; default: break; } break; case IPPROTO_IP: if (connp->conn_family != AF_INET) { *outlenp = 0; return (EINVAL); } switch (name) { case IP_SEC_OPT: /* * We should not allow policy setting after * we start listening for connections. */ if (tcp->tcp_state == TCPS_LISTEN) { return (EINVAL); } break; } break; case IPPROTO_IPV6: /* * IPPROTO_IPV6 options are only supported for sockets * that are using IPv6 on the wire. */ if (connp->conn_ipversion != IPV6_VERSION) { *outlenp = 0; return (EINVAL); } switch (name) { case IPV6_RECVPKTINFO: if (!checkonly) { /* Force it to be sent up with the next msg */ tcp->tcp_recvifindex = 0; } break; case IPV6_RECVTCLASS: if (!checkonly) { /* Force it to be sent up with the next msg */ tcp->tcp_recvtclass = 0xffffffffU; } break; case IPV6_RECVHOPLIMIT: if (!checkonly) { /* Force it to be sent up with the next msg */ tcp->tcp_recvhops = 0xffffffffU; } break; case IPV6_PKTINFO: /* This is an extra check for TCP */ if (inlen == sizeof (struct in6_pktinfo)) { struct in6_pktinfo *pkti; pkti = (struct in6_pktinfo *)invalp; /* * RFC 3542 states that ipi6_addr must be * the unspecified address when setting the * IPV6_PKTINFO sticky socket option on a * TCP socket. */ if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) return (EINVAL); } break; case IPV6_SEC_OPT: /* * We should not allow policy setting after * we start listening for connections. */ if (tcp->tcp_state == TCPS_LISTEN) { return (EINVAL); } break; } break; } reterr = conn_opt_set(&coas, level, name, inlen, invalp, checkonly, cr); if (reterr != 0) { *outlenp = 0; return (reterr); } /* * Common case of OK return with outval same as inval */ if (invalp != outvalp) { /* don't trust bcopy for identical src/dst */ (void) bcopy(invalp, outvalp, inlen); } *outlenp = inlen; if (coas.coa_changed & COA_HEADER_CHANGED) { reterr = tcp_build_hdrs(tcp); if (reterr != 0) return (reterr); } if (coas.coa_changed & COA_ROUTE_CHANGED) { in6_addr_t nexthop; /* * If we are connected we re-cache the information. * We ignore errors to preserve BSD behavior. * Note that we don't redo IPsec policy lookup here * since the final destination (or source) didn't change. */ ip_attr_nexthop(&connp->conn_xmit_ipp, connp->conn_ixa, &connp->conn_faddr_v6, &nexthop); if (!IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6) && !IN6_IS_ADDR_V4MAPPED_ANY(&connp->conn_faddr_v6)) { (void) ip_attr_connect(connp, connp->conn_ixa, &connp->conn_laddr_v6, &connp->conn_faddr_v6, &nexthop, connp->conn_fport, NULL, NULL, IPDF_VERIFY_DST); } } if ((coas.coa_changed & COA_SNDBUF_CHANGED) && !IPCL_IS_NONSTR(connp)) { connp->conn_wq->q_hiwat = connp->conn_sndbuf; } if (coas.coa_changed & COA_WROFF_CHANGED) { connp->conn_wroff = connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra; (void) proto_set_tx_wroff(connp->conn_rq, connp, connp->conn_wroff); } if (coas.coa_changed & COA_OOBINLINE_CHANGED) { if (IPCL_IS_NONSTR(connp)) proto_set_rx_oob_opt(connp, onoff); } return (0); } /* ARGSUSED */ int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr) { conn_t *connp = Q_TO_CONN(q); return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, outlenp, outvalp, thisdg_attrs, cr)); } int tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, const void *optvalp, socklen_t optlen, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; squeue_t *sqp = connp->conn_sqp; int error; ASSERT(connp->conn_upper_handle != NULL); /* * Entering the squeue synchronously can result in a context switch, * which can cause a rather sever performance degradation. So we try to * handle whatever options we can without entering the squeue. */ if (level == IPPROTO_TCP) { switch (option_name) { case TCP_NODELAY: if (optlen != sizeof (int32_t)) return (EINVAL); mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : connp->conn_tcp->tcp_mss; mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); return (0); default: break; } } error = squeue_synch_enter(sqp, connp, NULL); if (error == ENOMEM) { return (ENOMEM); } error = proto_opt_check(level, option_name, optlen, NULL, tcp_opt_obj.odb_opt_des_arr, tcp_opt_obj.odb_opt_arr_cnt, B_TRUE, B_FALSE, cr); if (error != 0) { if (error < 0) { error = proto_tlitosyserr(-error); } squeue_synch_exit(sqp, connp); return (error); } error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, NULL, cr); squeue_synch_exit(sqp, connp); ASSERT(error >= 0); return (error); } /* * Build/update the tcp header template (in conn_ht_iphc) based on * conn_xmit_ipp. The headers include ip6_t, any extension * headers, and the maximum size tcp header (to avoid reallocation * on the fly for additional tcp options). * * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. * Returns failure if can't allocate memory. */ static int tcp_build_hdrs(tcp_t *tcp) { tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; char buf[TCP_MAX_HDR_LENGTH]; uint_t buflen; uint_t ulplen = TCP_MIN_HEADER_LENGTH; uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; tcpha_t *tcpha; uint32_t cksum; int error; /* * We might be called after the connection is set up, and we might * have TS options already in the TCP header. Thus we save any * existing tcp header. */ buflen = connp->conn_ht_ulp_len; if (buflen != 0) { bcopy(connp->conn_ht_ulp, buf, buflen); extralen -= buflen - ulplen; ulplen = buflen; } /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ mutex_enter(&connp->conn_lock); error = conn_build_hdr_template(connp, ulplen, extralen, &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); mutex_exit(&connp->conn_lock); if (error != 0) return (error); /* * Any routing header/option has been massaged. The checksum difference * is stored in conn_sum for later use. */ tcpha = (tcpha_t *)connp->conn_ht_ulp; tcp->tcp_tcpha = tcpha; /* restore any old tcp header */ if (buflen != 0) { bcopy(buf, connp->conn_ht_ulp, buflen); } else { tcpha->tha_sum = 0; tcpha->tha_offset_and_reserved = (5 << 4); } tcpha->tha_lport = connp->conn_lport; tcpha->tha_fport = connp->conn_fport; /* * IP wants our header length in the checksum field to * allow it to perform a single pseudo-header+checksum * calculation on behalf of TCP. * Include the adjustment for a source route once IP_OPTIONS is set. */ cksum = sizeof (tcpha_t) + connp->conn_sum; cksum = (cksum >> 16) + (cksum & 0xFFFF); ASSERT(cksum < 0x10000); tcpha->tha_sum = htons(cksum); if (connp->conn_ipversion == IPV4_VERSION) tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; else tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > connp->conn_wroff) { connp->conn_wroff = connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra; (void) proto_set_tx_wroff(connp->conn_rq, connp, connp->conn_wroff); } return (0); } /* Get callback routine passed to nd_load by tcp_param_register */ /* ARGSUSED */ static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) { tcpparam_t *tcppa = (tcpparam_t *)cp; (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); return (0); } /* * Walk through the param array specified registering each element with the * named dispatch handler. */ static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) { for (; cnt-- > 0; tcppa++) { if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { if (!nd_load(ndp, tcppa->tcp_param_name, tcp_param_get, tcp_param_set, (caddr_t)tcppa)) { nd_free(ndp); return (B_FALSE); } } } tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), KM_SLEEP); bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, tcp_param_get, tcp_param_set_aligned, (caddr_t)tcps->tcps_wroff_xtra_param)) { nd_free(ndp); return (B_FALSE); } if (!nd_load(ndp, "tcp_extra_priv_ports", tcp_extra_priv_ports_get, NULL, NULL)) { nd_free(ndp); return (B_FALSE); } if (!nd_load(ndp, "tcp_extra_priv_ports_add", NULL, tcp_extra_priv_ports_add, NULL)) { nd_free(ndp); return (B_FALSE); } if (!nd_load(ndp, "tcp_extra_priv_ports_del", NULL, tcp_extra_priv_ports_del, NULL)) { nd_free(ndp); return (B_FALSE); } if (!nd_load(ndp, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, NULL)) { nd_free(ndp); return (B_FALSE); } /* * Dummy ndd variables - only to convey obsolescence information * through printing of their name (no get or set routines) * XXX Remove in future releases ? */ if (!nd_load(ndp, "tcp_close_wait_interval(obsoleted - " "use tcp_time_wait_interval)", NULL, NULL, NULL)) { nd_free(ndp); return (B_FALSE); } return (B_TRUE); } /* ndd set routine for tcp_wroff_xtra. */ /* ARGSUSED */ static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; tcpparam_t *tcppa = (tcpparam_t *)cp; if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value < tcppa->tcp_param_min || new_value > tcppa->tcp_param_max) { return (EINVAL); } /* * Need to make sure new_value is a multiple of 4. If it is not, * round it up. For future 64 bit requirement, we actually make it * a multiple of 8. */ if (new_value & 0x7) { new_value = (new_value & ~0x7) + 0x8; } tcppa->tcp_param_val = new_value; return (0); } /* Set callback routine passed to nd_load by tcp_param_register */ /* ARGSUSED */ static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { long new_value; tcpparam_t *tcppa = (tcpparam_t *)cp; if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value < tcppa->tcp_param_min || new_value > tcppa->tcp_param_max) { return (EINVAL); } tcppa->tcp_param_val = new_value; return (0); } /* * Add a new piece to the tcp reassembly queue. If the gap at the beginning * is filled, return as much as we can. The message passed in may be * multi-part, chained using b_cont. "start" is the starting sequence * number for this piece. */ static mblk_t * tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) { uint32_t end; mblk_t *mp1; mblk_t *mp2; mblk_t *next_mp; uint32_t u1; tcp_stack_t *tcps = tcp->tcp_tcps; /* Walk through all the new pieces. */ do { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); end = start + (int)(mp->b_wptr - mp->b_rptr); next_mp = mp->b_cont; if (start == end) { /* Empty. Blast it. */ freeb(mp); continue; } mp->b_cont = NULL; TCP_REASS_SET_SEQ(mp, start); TCP_REASS_SET_END(mp, end); mp1 = tcp->tcp_reass_tail; if (!mp1) { tcp->tcp_reass_tail = mp; tcp->tcp_reass_head = mp; BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataUnorderBytes, end - start); continue; } /* New stuff completely beyond tail? */ if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { /* Link it on end. */ mp1->b_cont = mp; tcp->tcp_reass_tail = mp; BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataUnorderBytes, end - start); continue; } mp1 = tcp->tcp_reass_head; u1 = TCP_REASS_SEQ(mp1); /* New stuff at the front? */ if (SEQ_LT(start, u1)) { /* Yes... Check for overlap. */ mp->b_cont = mp1; tcp->tcp_reass_head = mp; tcp_reass_elim_overlap(tcp, mp); continue; } /* * The new piece fits somewhere between the head and tail. * We find our slot, where mp1 precedes us and mp2 trails. */ for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { u1 = TCP_REASS_SEQ(mp2); if (SEQ_LEQ(start, u1)) break; } /* Link ourselves in */ mp->b_cont = mp2; mp1->b_cont = mp; /* Trim overlap with following mblk(s) first */ tcp_reass_elim_overlap(tcp, mp); /* Trim overlap with preceding mblk */ tcp_reass_elim_overlap(tcp, mp1); } while (start = end, mp = next_mp); mp1 = tcp->tcp_reass_head; /* Anything ready to go? */ if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) return (NULL); /* Eat what we can off the queue */ for (;;) { mp = mp1->b_cont; end = TCP_REASS_END(mp1); TCP_REASS_SET_SEQ(mp1, 0); TCP_REASS_SET_END(mp1, 0); if (!mp) { tcp->tcp_reass_tail = NULL; break; } if (end != TCP_REASS_SEQ(mp)) { mp1->b_cont = NULL; break; } mp1 = mp; } mp1 = tcp->tcp_reass_head; tcp->tcp_reass_head = mp; return (mp1); } /* Eliminate any overlap that mp may have over later mblks */ static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) { uint32_t end; mblk_t *mp1; uint32_t u1; tcp_stack_t *tcps = tcp->tcp_tcps; end = TCP_REASS_END(mp); while ((mp1 = mp->b_cont) != NULL) { u1 = TCP_REASS_SEQ(mp1); if (!SEQ_GT(end, u1)) break; if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { mp->b_wptr -= end - u1; TCP_REASS_SET_END(mp, u1); BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataPartDupBytes, end - u1); break; } mp->b_cont = mp1->b_cont; TCP_REASS_SET_SEQ(mp1, 0); TCP_REASS_SET_END(mp1, 0); freeb(mp1); BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); } if (!mp1) tcp->tcp_reass_tail = mp; } static uint_t tcp_rwnd_reopen(tcp_t *tcp) { uint_t ret = 0; uint_t thwin; conn_t *connp = tcp->tcp_connp; /* Learn the latest rwnd information that we sent to the other side. */ thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win)) << tcp->tcp_rcv_ws; /* This is peer's calculated send window (our receive window). */ thwin -= tcp->tcp_rnxt - tcp->tcp_rack; /* * Increase the receive window to max. But we need to do receiver * SWS avoidance. This means that we need to check the increase of * of receive window is at least 1 MSS. */ if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) { /* * If the window that the other side knows is less than max * deferred acks segments, send an update immediately. */ if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); ret = TH_ACK_NEEDED; } tcp->tcp_rwnd = connp->conn_rcvbuf; } return (ret); } /* * Send up all messages queued on tcp_rcv_list. */ static uint_t tcp_rcv_drain(tcp_t *tcp) { mblk_t *mp; uint_t ret = 0; #ifdef DEBUG uint_t cnt = 0; #endif queue_t *q = tcp->tcp_connp->conn_rq; /* Can't drain on an eager connection */ if (tcp->tcp_listener != NULL) return (ret); /* Can't be a non-STREAMS connection */ ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); /* No need for the push timer now. */ if (tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); tcp->tcp_push_tid = 0; } /* * Handle two cases here: we are currently fused or we were * previously fused and have some urgent data to be delivered * upstream. The latter happens because we either ran out of * memory or were detached and therefore sending the SIGURG was * deferred until this point. In either case we pass control * over to tcp_fuse_rcv_drain() since it may need to complete * some work. */ if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || tcp->tcp_fused_sigurg_mp != NULL); if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : &tcp->tcp_fused_sigurg_mp)) return (ret); } while ((mp = tcp->tcp_rcv_list) != NULL) { tcp->tcp_rcv_list = mp->b_next; mp->b_next = NULL; #ifdef DEBUG cnt += msgdsize(mp); #endif /* Does this need SSL processing first? */ if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, mblk_t *, mp); tcp_kssl_input(tcp, mp, NULL); continue; } putnext(q, mp); } #ifdef DEBUG ASSERT(cnt == tcp->tcp_rcv_cnt); #endif tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; if (canputnext(q)) return (tcp_rwnd_reopen(tcp)); return (ret); } /* * Queue data on tcp_rcv_list which is a b_next chain. * tcp_rcv_last_head/tail is the last element of this chain. * Each element of the chain is a b_cont chain. * * M_DATA messages are added to the current element. * Other messages are added as new (b_next) elements. */ void tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr) { ASSERT(seg_len == msgdsize(mp)); ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); if (is_system_labeled()) { ASSERT(cr != NULL || msg_getcred(mp, NULL) != NULL); /* * Provide for protocols above TCP such as RPC. NOPID leaves * db_cpid unchanged. * The cred could have already been set. */ if (cr != NULL) mblk_setcred(mp, cr, NOPID); } if (tcp->tcp_rcv_list == NULL) { ASSERT(tcp->tcp_rcv_last_head == NULL); tcp->tcp_rcv_list = mp; tcp->tcp_rcv_last_head = mp; } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { tcp->tcp_rcv_last_tail->b_cont = mp; } else { tcp->tcp_rcv_last_head->b_next = mp; tcp->tcp_rcv_last_head = mp; } while (mp->b_cont) mp = mp->b_cont; tcp->tcp_rcv_last_tail = mp; tcp->tcp_rcv_cnt += seg_len; tcp->tcp_rwnd -= seg_len; } /* The minimum of smoothed mean deviation in RTO calculation. */ #define TCP_SD_MIN 400 /* * Set RTO for this connection. The formula is from Jacobson and Karels' * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names * are the same as those in Appendix A.2 of that paper. * * m = new measurement * sa = smoothed RTT average (8 * average estimates). * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). */ static void tcp_set_rto(tcp_t *tcp, clock_t rtt) { long m = TICK_TO_MSEC(rtt); clock_t sa = tcp->tcp_rtt_sa; clock_t sv = tcp->tcp_rtt_sd; clock_t rto; tcp_stack_t *tcps = tcp->tcp_tcps; BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); tcp->tcp_rtt_update++; /* tcp_rtt_sa is not 0 means this is a new sample. */ if (sa != 0) { /* * Update average estimator: * new rtt = 7/8 old rtt + 1/8 Error */ /* m is now Error in estimate. */ m -= sa >> 3; if ((sa += m) <= 0) { /* * Don't allow the smoothed average to be negative. * We use 0 to denote reinitialization of the * variables. */ sa = 1; } /* * Update deviation estimator: * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) */ if (m < 0) m = -m; m -= sv >> 2; sv += m; } else { /* * This follows BSD's implementation. So the reinitialized * RTO is 3 * m. We cannot go less than 2 because if the * link is bandwidth dominated, doubling the window size * during slow start means doubling the RTT. We want to be * more conservative when we reinitialize our estimates. 3 * is just a convenient number. */ sa = m << 3; sv = m << 1; } if (sv < TCP_SD_MIN) { /* * We do not know that if sa captures the delay ACK * effect as in a long train of segments, a receiver * does not delay its ACKs. So set the minimum of sv * to be TCP_SD_MIN, which is default to 400 ms, twice * of BSD DATO. That means the minimum of mean * deviation is 100 ms. * */ sv = TCP_SD_MIN; } tcp->tcp_rtt_sa = sa; tcp->tcp_rtt_sd = sv; /* * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) * * Add tcp_rexmit_interval extra in case of extreme environment * where the algorithm fails to work. The default value of * tcp_rexmit_interval_extra should be 0. * * As we use a finer grained clock than BSD and update * RTO for every ACKs, add in another .25 of RTT to the * deviation of RTO to accomodate burstiness of 1/4 of * window size. */ rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); if (rto > tcps->tcps_rexmit_interval_max) { tcp->tcp_rto = tcps->tcps_rexmit_interval_max; } else if (rto < tcps->tcps_rexmit_interval_min) { tcp->tcp_rto = tcps->tcps_rexmit_interval_min; } else { tcp->tcp_rto = rto; } /* Now, we can reset tcp_timer_backoff to use the new RTO... */ tcp->tcp_timer_backoff = 0; } /* * tcp_get_seg_mp() is called to get the pointer to a segment in the * send queue which starts at the given sequence number. If the given * sequence number is equal to last valid sequence number (tcp_snxt), the * returned mblk is the last valid mblk, and off is set to the length of * that mblk. * * send queue which starts at the given seq. no. * * Parameters: * tcp_t *tcp: the tcp instance pointer. * uint32_t seq: the starting seq. no of the requested segment. * int32_t *off: after the execution, *off will be the offset to * the returned mblk which points to the requested seq no. * It is the caller's responsibility to send in a non-null off. * * Return: * A mblk_t pointer pointing to the requested segment in send queue. */ static mblk_t * tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) { int32_t cnt; mblk_t *mp; /* Defensive coding. Make sure we don't send incorrect data. */ if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) return (NULL); cnt = seq - tcp->tcp_suna; mp = tcp->tcp_xmit_head; while (cnt > 0 && mp != NULL) { cnt -= mp->b_wptr - mp->b_rptr; if (cnt <= 0) { cnt += mp->b_wptr - mp->b_rptr; break; } mp = mp->b_cont; } ASSERT(mp != NULL); *off = cnt; return (mp); } /* * This function handles all retransmissions if SACK is enabled for this * connection. First it calculates how many segments can be retransmitted * based on tcp_pipe. Then it goes thru the notsack list to find eligible * segments. A segment is eligible if sack_cnt for that segment is greater * than or equal tcp_dupack_fast_retransmit. After it has retransmitted * all eligible segments, it checks to see if TCP can send some new segments * (fast recovery). If it can, set the appropriate flag for tcp_input_data(). * * Parameters: * tcp_t *tcp: the tcp structure of the connection. * uint_t *flags: in return, appropriate value will be set for * tcp_input_data(). */ static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) { notsack_blk_t *notsack_blk; int32_t usable_swnd; int32_t mss; uint32_t seg_len; mblk_t *xmit_mp; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(tcp->tcp_sack_info != NULL); ASSERT(tcp->tcp_notsack_list != NULL); ASSERT(tcp->tcp_rexmit == B_FALSE); /* Defensive coding in case there is a bug... */ if (tcp->tcp_notsack_list == NULL) { return; } notsack_blk = tcp->tcp_notsack_list; mss = tcp->tcp_mss; /* * Limit the num of outstanding data in the network to be * tcp_cwnd_ssthresh, which is half of the original congestion wnd. */ usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; /* At least retransmit 1 MSS of data. */ if (usable_swnd <= 0) { usable_swnd = mss; } /* Make sure no new RTT samples will be taken. */ tcp->tcp_csuna = tcp->tcp_snxt; notsack_blk = tcp->tcp_notsack_list; while (usable_swnd > 0) { mblk_t *snxt_mp, *tmp_mp; tcp_seq begin = tcp->tcp_sack_snxt; tcp_seq end; int32_t off; for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { if (SEQ_GT(notsack_blk->end, begin) && (notsack_blk->sack_cnt >= tcps->tcps_dupack_fast_retransmit)) { end = notsack_blk->end; if (SEQ_LT(begin, notsack_blk->begin)) { begin = notsack_blk->begin; } break; } } /* * All holes are filled. Manipulate tcp_cwnd to send more * if we can. Note that after the SACK recovery, tcp_cwnd is * set to tcp_cwnd_ssthresh. */ if (notsack_blk == NULL) { usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; ASSERT(tcp->tcp_cwnd > 0); return; } else { usable_swnd = usable_swnd / mss; tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + MAX(usable_swnd * mss, mss); *flags |= TH_XMIT_NEEDED; return; } } /* * Note that we may send more than usable_swnd allows here * because of round off, but no more than 1 MSS of data. */ seg_len = end - begin; if (seg_len > mss) seg_len = mss; snxt_mp = tcp_get_seg_mp(tcp, begin, &off); ASSERT(snxt_mp != NULL); /* This should not happen. Defensive coding again... */ if (snxt_mp == NULL) { return; } xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); if (xmit_mp == NULL) return; usable_swnd -= seg_len; tcp->tcp_pipe += seg_len; tcp->tcp_sack_snxt = begin + seg_len; tcp_send_data(tcp, xmit_mp); /* * Update the send timestamp to avoid false retransmission. */ snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); /* * Update tcp_rexmit_max to extend this SACK recovery phase. * This happens when new data sent during fast recovery is * also lost. If TCP retransmits those new data, it needs * to extend SACK recover phase to avoid starting another * fast retransmit/recovery unnecessarily. */ if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; } } } /* * tcp_ss_rexmit() is called to do slow start retransmission after a timeout * or ICMP errors. * * To limit the number of duplicate segments, we limit the number of segment * to be sent in one time to tcp_snd_burst, the burst variable. */ static void tcp_ss_rexmit(tcp_t *tcp) { uint32_t snxt; uint32_t smax; int32_t win; int32_t mss; int32_t off; int32_t burst = tcp->tcp_snd_burst; mblk_t *snxt_mp; tcp_stack_t *tcps = tcp->tcp_tcps; /* * Note that tcp_rexmit can be set even though TCP has retransmitted * all unack'ed segments. */ if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { smax = tcp->tcp_rexmit_max; snxt = tcp->tcp_rexmit_nxt; if (SEQ_LT(snxt, tcp->tcp_suna)) { snxt = tcp->tcp_suna; } win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); win -= snxt - tcp->tcp_suna; mss = tcp->tcp_mss; snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); while (SEQ_LT(snxt, smax) && (win > 0) && (burst > 0) && (snxt_mp != NULL)) { mblk_t *xmit_mp; mblk_t *old_snxt_mp = snxt_mp; uint32_t cnt = mss; if (win < cnt) { cnt = win; } if (SEQ_GT(snxt + cnt, smax)) { cnt = smax - snxt; } xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); if (xmit_mp == NULL) return; tcp_send_data(tcp, xmit_mp); snxt += cnt; win -= cnt; /* * Update the send timestamp to avoid false * retransmission. */ old_snxt_mp->b_prev = (mblk_t *)ddi_get_lbolt(); BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); tcp->tcp_rexmit_nxt = snxt; burst--; } /* * If we have transmitted all we have at the time * we started the retranmission, we can leave * the rest of the job to tcp_wput_data(). But we * need to check the send window first. If the * win is not 0, go on with tcp_wput_data(). */ if (SEQ_LT(snxt, smax) || win == 0) { return; } } /* Only call tcp_wput_data() if there is data to be sent. */ if (tcp->tcp_unsent) { tcp_wput_data(tcp, NULL, B_FALSE); } } /* * Process all TCP option in SYN segment. Note that this function should * be called after tcp_set_destination() is called so that the necessary info * from IRE is already set in the tcp structure. * * This function sets up the correct tcp_mss value according to the * MSS option value and our header size. It also sets up the window scale * and timestamp values, and initialize SACK info blocks. But it does not * change receive window size after setting the tcp_mss value. The caller * should do the appropriate change. */ void tcp_process_options(tcp_t *tcp, tcpha_t *tcpha) { int options; tcp_opt_t tcpopt; uint32_t mss_max; char *tmp_tcph; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; tcpopt.tcp = NULL; options = tcp_parse_options(tcpha, &tcpopt); /* * Process MSS option. Note that MSS option value does not account * for IP or TCP options. This means that it is equal to MTU - minimum * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for * IPv6. */ if (!(options & TCP_OPT_MSS_PRESENT)) { if (connp->conn_ipversion == IPV4_VERSION) tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; else tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; } else { if (connp->conn_ipversion == IPV4_VERSION) mss_max = tcps->tcps_mss_max_ipv4; else mss_max = tcps->tcps_mss_max_ipv6; if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) tcpopt.tcp_opt_mss = tcps->tcps_mss_min; else if (tcpopt.tcp_opt_mss > mss_max) tcpopt.tcp_opt_mss = mss_max; } /* Process Window Scale option. */ if (options & TCP_OPT_WSCALE_PRESENT) { tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; tcp->tcp_snd_ws_ok = B_TRUE; } else { tcp->tcp_snd_ws = B_FALSE; tcp->tcp_snd_ws_ok = B_FALSE; tcp->tcp_rcv_ws = B_FALSE; } /* Process Timestamp option. */ if ((options & TCP_OPT_TSTAMP_PRESENT) && (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { tmp_tcph = (char *)tcp->tcp_tcpha; tcp->tcp_snd_ts_ok = B_TRUE; tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); ASSERT(OK_32PTR(tmp_tcph)); ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); /* Fill in our template header with basic timestamp option. */ tmp_tcph += connp->conn_ht_ulp_len; tmp_tcph[0] = TCPOPT_NOP; tmp_tcph[1] = TCPOPT_NOP; tmp_tcph[2] = TCPOPT_TSTAMP; tmp_tcph[3] = TCPOPT_TSTAMP_LEN; connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN; connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN; tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4); } else { tcp->tcp_snd_ts_ok = B_FALSE; } /* * Process SACK options. If SACK is enabled for this connection, * then allocate the SACK info structure. Note the following ways * when tcp_snd_sack_ok is set to true. * * For active connection: in tcp_set_destination() called in * tcp_connect(). * * For passive connection: in tcp_set_destination() called in * tcp_input_listener(). * * That's the reason why the extra TCP_IS_DETACHED() check is there. * That check makes sure that if we did not send a SACK OK option, * we will not enable SACK for this connection even though the other * side sends us SACK OK option. For active connection, the SACK * info structure has already been allocated. So we need to free * it if SACK is disabled. */ if ((options & TCP_OPT_SACK_OK_PRESENT) && (tcp->tcp_snd_sack_ok || (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { /* This should be true only in the passive case. */ if (tcp->tcp_sack_info == NULL) { ASSERT(TCP_IS_DETACHED(tcp)); tcp->tcp_sack_info = kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); } if (tcp->tcp_sack_info == NULL) { tcp->tcp_snd_sack_ok = B_FALSE; } else { tcp->tcp_snd_sack_ok = B_TRUE; if (tcp->tcp_snd_ts_ok) { tcp->tcp_max_sack_blk = 3; } else { tcp->tcp_max_sack_blk = 4; } } } else { /* * Resetting tcp_snd_sack_ok to B_FALSE so that * no SACK info will be used for this * connection. This assumes that SACK usage * permission is negotiated. This may need * to be changed once this is clarified. */ if (tcp->tcp_sack_info != NULL) { ASSERT(tcp->tcp_notsack_list == NULL); kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); tcp->tcp_sack_info = NULL; } tcp->tcp_snd_sack_ok = B_FALSE; } /* * Now we know the exact TCP/IP header length, subtract * that from tcp_mss to get our side's MSS. */ tcp->tcp_mss -= connp->conn_ht_iphc_len; /* * Here we assume that the other side's header size will be equal to * our header size. We calculate the real MSS accordingly. Need to * take into additional stuffs IPsec puts in. * * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) */ tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len + tcp->tcp_ipsec_overhead - ((connp->conn_ipversion == IPV4_VERSION ? IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); /* * Set MSS to the smaller one of both ends of the connection. * We should not have called tcp_mss_set() before, but our * side of the MSS should have been set to a proper value * by tcp_set_destination(). tcp_mss_set() will also set up the * STREAM head parameters properly. * * If we have a larger-than-16-bit window but the other side * didn't want to do window scale, tcp_rwnd_set() will take * care of that. */ tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); /* * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been * updated properly. */ SET_TCP_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial); } /* * Sends the T_CONN_IND to the listener. The caller calls this * functions via squeue to get inside the listener's perimeter * once the 3 way hand shake is done a T_CONN_IND needs to be * sent. As an optimization, the caller can call this directly * if listener's perimeter is same as eager's. */ /* ARGSUSED */ void tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) { conn_t *lconnp = (conn_t *)arg; tcp_t *listener = lconnp->conn_tcp; tcp_t *tcp; struct T_conn_ind *conn_ind; ipaddr_t *addr_cache; boolean_t need_send_conn_ind = B_FALSE; tcp_stack_t *tcps = listener->tcp_tcps; /* retrieve the eager */ conn_ind = (struct T_conn_ind *)mp->b_rptr; ASSERT(conn_ind->OPT_offset != 0 && conn_ind->OPT_length == sizeof (intptr_t)); bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, conn_ind->OPT_length); /* * TLI/XTI applications will get confused by * sending eager as an option since it violates * the option semantics. So remove the eager as * option since TLI/XTI app doesn't need it anyway. */ if (!TCP_IS_SOCKET(listener)) { conn_ind->OPT_length = 0; conn_ind->OPT_offset = 0; } if (listener->tcp_state != TCPS_LISTEN) { /* * If listener has closed, it would have caused a * a cleanup/blowoff to happen for the eager. We * just need to return. */ freemsg(mp); return; } /* * if the conn_req_q is full defer passing up the * T_CONN_IND until space is availabe after t_accept() * processing */ mutex_enter(&listener->tcp_eager_lock); /* * Take the eager out, if it is in the list of droppable eagers * as we are here because the 3W handshake is over. */ MAKE_UNDROPPABLE(tcp); if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { tcp_t *tail; /* * The eager already has an extra ref put in tcp_input_data * so that it stays till accept comes back even though it * might get into TCPS_CLOSED as a result of a TH_RST etc. */ ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; listener->tcp_conn_req_cnt_q++; /* Move from SYN_RCVD to ESTABLISHED list */ tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_prev_q0 = NULL; tcp->tcp_eager_next_q0 = NULL; /* * Insert at end of the queue because sockfs * sends down T_CONN_RES in chronological * order. Leaving the older conn indications * at front of the queue helps reducing search * time. */ tail = listener->tcp_eager_last_q; if (tail != NULL) tail->tcp_eager_next_q = tcp; else listener->tcp_eager_next_q = tcp; listener->tcp_eager_last_q = tcp; tcp->tcp_eager_next_q = NULL; /* * Delay sending up the T_conn_ind until we are * done with the eager. Once we have have sent up * the T_conn_ind, the accept can potentially complete * any time and release the refhold we have on the eager. */ need_send_conn_ind = B_TRUE; } else { /* * Defer connection on q0 and set deferred * connection bit true */ tcp->tcp_conn_def_q0 = B_TRUE; /* take tcp out of q0 ... */ tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; /* ... and place it at the end of q0 */ tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; tcp->tcp_eager_next_q0 = listener; listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; listener->tcp_eager_prev_q0 = tcp; tcp->tcp_conn.tcp_eager_conn_ind = mp; } /* we have timed out before */ if (tcp->tcp_syn_rcvd_timeout != 0) { tcp->tcp_syn_rcvd_timeout = 0; listener->tcp_syn_rcvd_timeout--; if (listener->tcp_syn_defense && listener->tcp_syn_rcvd_timeout <= (tcps->tcps_conn_req_max_q0 >> 5) && 10*MINUTES < TICK_TO_MSEC(ddi_get_lbolt64() - listener->tcp_last_rcv_lbolt)) { /* * Turn off the defense mode if we * believe the SYN attack is over. */ listener->tcp_syn_defense = B_FALSE; if (listener->tcp_ip_addr_cache) { kmem_free((void *)listener->tcp_ip_addr_cache, IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); listener->tcp_ip_addr_cache = NULL; } } } addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); if (addr_cache != NULL) { /* * We have finished a 3-way handshake with this * remote host. This proves the IP addr is good. * Cache it! */ addr_cache[IP_ADDR_CACHE_HASH(tcp->tcp_connp->conn_faddr_v4)] = tcp->tcp_connp->conn_faddr_v4; } mutex_exit(&listener->tcp_eager_lock); if (need_send_conn_ind) tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); } /* * Send the newconn notification to ulp. The eager is blown off if the * notification fails. */ static void tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) { if (IPCL_IS_NONSTR(lconnp)) { cred_t *cr; pid_t cpid = NOPID; ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); ASSERT(econnp->conn_tcp->tcp_saved_listener == lconnp->conn_tcp); cr = msg_getcred(mp, &cpid); /* Keep the message around in case of a fallback to TPI */ econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; /* * Notify the ULP about the newconn. It is guaranteed that no * tcp_accept() call will be made for the eager if the * notification fails, so it's safe to blow it off in that * case. * * The upper handle will be assigned when tcp_accept() is * called. */ if ((*lconnp->conn_upcalls->su_newconn) (lconnp->conn_upper_handle, (sock_lower_handle_t)econnp, &sock_tcp_downcalls, cr, cpid, &econnp->conn_upcalls) == NULL) { /* Failed to allocate a socket */ BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, tcpEstabResets); (void) tcp_eager_blowoff(lconnp->conn_tcp, econnp->conn_tcp->tcp_conn_req_seqnum); } } else { putnext(lconnp->conn_rq, mp); } } /* * Handle a packet that has been reclassified by TCP. * This function drops the ref on connp that the caller had. */ static void tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst) { ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; if (connp->conn_incoming_ifindex != 0 && connp->conn_incoming_ifindex != ira->ira_ruifindex) { freemsg(mp); CONN_DEC_REF(connp); return; } if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) || (ira->ira_flags & IRAF_IPSEC_SECURE)) { ip6_t *ip6h; ipha_t *ipha; if (ira->ira_flags & IRAF_IS_IPV4) { ipha = (ipha_t *)mp->b_rptr; ip6h = NULL; } else { ipha = NULL; ip6h = (ip6_t *)mp->b_rptr; } mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira); if (mp == NULL) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); /* Note that mp is NULL */ ip_drop_input("ipIfStatsInDiscards", mp, NULL); CONN_DEC_REF(connp); return; } } if (IPCL_IS_TCP(connp)) { /* * do not drain, certain use cases can blow * the stack */ SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, ira, SQ_NODRAIN, SQTAG_IP_TCP_INPUT); } else { /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ (connp->conn_recv)(connp, mp, NULL, ira); CONN_DEC_REF(connp); } } boolean_t tcp_outbound_squeue_switch = B_FALSE; /* * Handle M_DATA messages from IP. Its called directly from IP via * squeue for received IP packets. * * The first argument is always the connp/tcp to which the mp belongs. * There are no exceptions to this rule. The caller has already put * a reference on this connp/tcp and once tcp_input_data() returns, * the squeue will do the refrele. * * The TH_SYN for the listener directly go to tcp_input_listener via * squeue. ICMP errors go directly to tcp_icmp_input(). * * sqp: NULL = recursive, sqp != NULL means called from squeue */ void tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) { int32_t bytes_acked; int32_t gap; mblk_t *mp1; uint_t flags; uint32_t new_swnd = 0; uchar_t *iphdr; uchar_t *rptr; int32_t rgap; uint32_t seg_ack; int seg_len; uint_t ip_hdr_len; uint32_t seg_seq; tcpha_t *tcpha; int urp; tcp_opt_t tcpopt; ip_pkt_t ipp; boolean_t ofo_seg = B_FALSE; /* Out of order segment */ uint32_t cwnd; uint32_t add; int npkt; int mss; conn_t *connp = (conn_t *)arg; squeue_t *sqp = (squeue_t *)arg2; tcp_t *tcp = connp->conn_tcp; tcp_stack_t *tcps = tcp->tcp_tcps; /* * RST from fused tcp loopback peer should trigger an unfuse. */ if (tcp->tcp_fused) { TCP_STAT(tcps, tcp_fusion_aborted); tcp_unfuse(tcp); } iphdr = mp->b_rptr; rptr = mp->b_rptr; ASSERT(OK_32PTR(rptr)); ip_hdr_len = ira->ira_ip_hdr_length; if (connp->conn_recv_ancillary.crb_all != 0) { /* * Record packet information in the ip_pkt_t */ ipp.ipp_fields = 0; if (ira->ira_flags & IRAF_IS_IPV4) { (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp, B_FALSE); } else { uint8_t nexthdrp; /* * IPv6 packets can only be received by applications * that are prepared to receive IPv6 addresses. * The IP fanout must ensure this. */ ASSERT(connp->conn_family == AF_INET6); (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, B_TRUE, &ipp, &nexthdrp); ASSERT(nexthdrp == IPPROTO_TCP); /* Could have caused a pullup? */ iphdr = mp->b_rptr; rptr = mp->b_rptr; } } ASSERT(DB_TYPE(mp) == M_DATA); ASSERT(mp->b_next == NULL); tcpha = (tcpha_t *)&rptr[ip_hdr_len]; seg_seq = ntohl(tcpha->tha_seq); seg_ack = ntohl(tcpha->tha_ack); ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); seg_len = (int)(mp->b_wptr - rptr) - (ip_hdr_len + TCP_HDR_LENGTH(tcpha)); if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { do { ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); seg_len += (int)(mp1->b_wptr - mp1->b_rptr); } while ((mp1 = mp1->b_cont) != NULL && mp1->b_datap->db_type == M_DATA); } if (tcp->tcp_state == TCPS_TIME_WAIT) { tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, seg_len, tcpha, ira); return; } if (sqp != NULL) { /* * This is the correct place to update tcp_last_recv_time. Note * that it is also updated for tcp structure that belongs to * global and listener queues which do not really need updating. * But that should not cause any harm. And it is updated for * all kinds of incoming segments, not only for data segments. */ tcp->tcp_last_recv_time = LBOLT_FASTPATH; } flags = (unsigned int)tcpha->tha_flags & 0xFF; BUMP_LOCAL(tcp->tcp_ibsegs); DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); if ((flags & TH_URG) && sqp != NULL) { /* * TCP can't handle urgent pointers that arrive before * the connection has been accept()ed since it can't * buffer OOB data. Discard segment if this happens. * * We can't just rely on a non-null tcp_listener to indicate * that the accept() has completed since unlinking of the * eager and completion of the accept are not atomic. * tcp_detached, when it is not set (B_FALSE) indicates * that the accept() has completed. * * Nor can it reassemble urgent pointers, so discard * if it's not the next segment expected. * * Otherwise, collapse chain into one mblk (discard if * that fails). This makes sure the headers, retransmitted * data, and new data all are in the same mblk. */ ASSERT(mp != NULL); if (tcp->tcp_detached || !pullupmsg(mp, -1)) { freemsg(mp); return; } /* Update pointers into message */ iphdr = rptr = mp->b_rptr; tcpha = (tcpha_t *)&rptr[ip_hdr_len]; if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { /* * Since we can't handle any data with this urgent * pointer that is out of sequence, we expunge * the data. This allows us to still register * the urgent mark and generate the M_PCSIG, * which we can do. */ mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); seg_len = 0; } } switch (tcp->tcp_state) { case TCPS_SYN_SENT: if (connp->conn_final_sqp == NULL && tcp_outbound_squeue_switch && sqp != NULL) { ASSERT(connp->conn_initial_sqp == connp->conn_sqp); connp->conn_final_sqp = sqp; if (connp->conn_final_sqp != connp->conn_sqp) { DTRACE_PROBE1(conn__final__sqp__switch, conn_t *, connp); CONN_INC_REF(connp); SQUEUE_SWITCH(connp, connp->conn_final_sqp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_input_data, connp, ira, ip_squeue_flag, SQTAG_CONNECT_FINISH); return; } DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp); } if (flags & TH_ACK) { /* * Note that our stack cannot send data before a * connection is established, therefore the * following check is valid. Otherwise, it has * to be changed. */ if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || SEQ_GT(seg_ack, tcp->tcp_snxt)) { freemsg(mp); if (flags & TH_RST) return; tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", tcp, seg_ack, 0, TH_RST); return; } ASSERT(tcp->tcp_suna + 1 == seg_ack); } if (flags & TH_RST) { freemsg(mp); if (flags & TH_ACK) (void) tcp_clean_death(tcp, ECONNREFUSED, 13); return; } if (!(flags & TH_SYN)) { freemsg(mp); return; } /* Process all TCP options. */ tcp_process_options(tcp, tcpha); /* * The following changes our rwnd to be a multiple of the * MIN(peer MSS, our MSS) for performance reason. */ (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf, tcp->tcp_mss)); /* Is the other end ECN capable? */ if (tcp->tcp_ecn_ok) { if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { tcp->tcp_ecn_ok = B_FALSE; } } /* * Clear ECN flags because it may interfere with later * processing. */ flags &= ~(TH_ECE|TH_CWR); tcp->tcp_irs = seg_seq; tcp->tcp_rack = seg_seq; tcp->tcp_rnxt = seg_seq + 1; tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); if (!TCP_IS_DETACHED(tcp)) { /* Allocate room for SACK options if needed. */ connp->conn_wroff = connp->conn_ht_iphc_len; if (tcp->tcp_snd_sack_ok) connp->conn_wroff += TCPOPT_MAX_SACK_LEN; if (!tcp->tcp_loopback) connp->conn_wroff += tcps->tcps_wroff_xtra; (void) proto_set_tx_wroff(connp->conn_rq, connp, connp->conn_wroff); } if (flags & TH_ACK) { /* * If we can't get the confirmation upstream, pretend * we didn't even see this one. * * XXX: how can we pretend we didn't see it if we * have updated rnxt et. al. * * For loopback we defer sending up the T_CONN_CON * until after some checks below. */ mp1 = NULL; /* * tcp_sendmsg() checks tcp_state without entering * the squeue so tcp_state should be updated before * sending up connection confirmation */ tcp->tcp_state = TCPS_ESTABLISHED; if (!tcp_conn_con(tcp, iphdr, mp, tcp->tcp_loopback ? &mp1 : NULL, ira)) { tcp->tcp_state = TCPS_SYN_SENT; freemsg(mp); return; } /* SYN was acked - making progress */ tcp->tcp_ip_forward_progress = B_TRUE; /* One for the SYN */ tcp->tcp_suna = tcp->tcp_iss + 1; tcp->tcp_valid_bits &= ~TCP_ISS_VALID; /* * If SYN was retransmitted, need to reset all * retransmission info. This is because this * segment will be treated as a dup ACK. */ if (tcp->tcp_rexmit) { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_rexmit_max = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; tcp->tcp_ms_we_have_waited = 0; /* * Set tcp_cwnd back to 1 MSS, per * recommendation from * draft-floyd-incr-init-win-01.txt, * Increasing TCP's Initial Window. */ tcp->tcp_cwnd = tcp->tcp_mss; } tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; new_swnd = ntohs(tcpha->tha_win); tcp->tcp_swnd = new_swnd; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; /* * Always send the three-way handshake ack immediately * in order to make the connection complete as soon as * possible on the accepting host. */ flags |= TH_ACK_NEEDED; /* * Special case for loopback. At this point we have * received SYN-ACK from the remote endpoint. In * order to ensure that both endpoints reach the * fused state prior to any data exchange, the final * ACK needs to be sent before we indicate T_CONN_CON * to the module upstream. */ if (tcp->tcp_loopback) { mblk_t *ack_mp; ASSERT(!tcp->tcp_unfusable); ASSERT(mp1 != NULL); /* * For loopback, we always get a pure SYN-ACK * and only need to send back the final ACK * with no data (this is because the other * tcp is ours and we don't do T/TCP). This * final ACK triggers the passive side to * perform fusion in ESTABLISHED state. */ if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } tcp_send_data(tcp, ack_mp); BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcps->tcps_mib, tcpOutAck); if (!IPCL_IS_NONSTR(connp)) { /* Send up T_CONN_CON */ if (ira->ira_cred != NULL) { mblk_setcred(mp1, ira->ira_cred, ira->ira_cpid); } putnext(connp->conn_rq, mp1); } else { (*connp->conn_upcalls-> su_connected) (connp->conn_upper_handle, tcp->tcp_connid, ira->ira_cred, ira->ira_cpid); freemsg(mp1); } freemsg(mp); return; } /* * Forget fusion; we need to handle more * complex cases below. Send the deferred * T_CONN_CON message upstream and proceed * as usual. Mark this tcp as not capable * of fusion. */ TCP_STAT(tcps, tcp_fusion_unfusable); tcp->tcp_unfusable = B_TRUE; if (!IPCL_IS_NONSTR(connp)) { if (ira->ira_cred != NULL) { mblk_setcred(mp1, ira->ira_cred, ira->ira_cpid); } putnext(connp->conn_rq, mp1); } else { (*connp->conn_upcalls->su_connected) (connp->conn_upper_handle, tcp->tcp_connid, ira->ira_cred, ira->ira_cpid); freemsg(mp1); } } /* * Check to see if there is data to be sent. If * yes, set the transmit flag. Then check to see * if received data processing needs to be done. * If not, go straight to xmit_check. This short * cut is OK as we don't support T/TCP. */ if (tcp->tcp_unsent) flags |= TH_XMIT_NEEDED; if (seg_len == 0 && !(flags & TH_URG)) { freemsg(mp); goto xmit_check; } flags &= ~TH_SYN; seg_seq++; break; } tcp->tcp_state = TCPS_SYN_RCVD; mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); if (mp1 != NULL) { tcp_send_data(tcp, mp1); TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } freemsg(mp); return; case TCPS_SYN_RCVD: if (flags & TH_ACK) { /* * In this state, a SYN|ACK packet is either bogus * because the other side must be ACKing our SYN which * indicates it has seen the ACK for their SYN and * shouldn't retransmit it or we're crossing SYNs * on active open. */ if ((flags & TH_SYN) && !tcp->tcp_active_open) { freemsg(mp); tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", tcp, seg_ack, 0, TH_RST); return; } /* * NOTE: RFC 793 pg. 72 says this should be * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt * but that would mean we have an ack that ignored * our SYN. */ if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || SEQ_GT(seg_ack, tcp->tcp_snxt)) { freemsg(mp); tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", tcp, seg_ack, 0, TH_RST); return; } } break; case TCPS_LISTEN: /* * Only a TLI listener can come through this path when a * acceptor is going back to be a listener and a packet * for the acceptor hits the classifier. For a socket * listener, this can never happen because a listener * can never accept connection on itself and hence a * socket acceptor can not go back to being a listener. */ ASSERT(!TCP_IS_SOCKET(tcp)); /*FALLTHRU*/ case TCPS_CLOSED: case TCPS_BOUND: { conn_t *new_connp; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; /* * Don't accept any input on a closed tcp as this TCP logically * does not exist on the system. Don't proceed further with * this TCP. For instance, this packet could trigger another * close of this tcp which would be disastrous for tcp_refcnt. * tcp_close_detached / tcp_clean_death / tcp_closei_local must * be called at most once on a TCP. In this case we need to * refeed the packet into the classifier and figure out where * the packet should go. */ new_connp = ipcl_classify(mp, ira, ipst); if (new_connp != NULL) { /* Drops ref on new_connp */ tcp_reinput(new_connp, mp, ira, ipst); return; } /* We failed to classify. For now just drop the packet */ freemsg(mp); return; } case TCPS_IDLE: /* * Handle the case where the tcp_clean_death() has happened * on a connection (application hasn't closed yet) but a packet * was already queued on squeue before tcp_clean_death() * was processed. Calling tcp_clean_death() twice on same * connection can result in weird behaviour. */ freemsg(mp); return; default: break; } /* * Already on the correct queue/perimeter. * If this is a detached connection and not an eager * connection hanging off a listener then new data * (past the FIN) will cause a reset. * We do a special check here where it * is out of the main line, rather than check * if we are detached every time we see new * data down below. */ if (TCP_IS_DETACHED_NONEAGER(tcp) && (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { BUMP_MIB(&tcps->tcps_mib, tcpInClosed); DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); freemsg(mp); /* * This could be an SSL closure alert. We're detached so just * acknowledge it this last time. */ if (tcp->tcp_kssl_ctx != NULL) { kssl_release_ctx(tcp->tcp_kssl_ctx); tcp->tcp_kssl_ctx = NULL; tcp->tcp_rnxt += seg_len; tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); flags |= TH_ACK_NEEDED; goto ack_check; } tcp_xmit_ctl("new data when detached", tcp, tcp->tcp_snxt, 0, TH_RST); (void) tcp_clean_death(tcp, EPROTO, 12); return; } mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha); urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION; new_swnd = ntohs(tcpha->tha_win) << ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); if (tcp->tcp_snd_ts_ok) { if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { /* * This segment is not acceptable. * Drop it and send back an ACK. */ freemsg(mp); flags |= TH_ACK_NEEDED; goto ack_check; } } else if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); tcpopt.tcp = tcp; /* * SACK info in already updated in tcp_parse_options. Ignore * all other TCP options... */ (void) tcp_parse_options(tcpha, &tcpopt); } try_again:; mss = tcp->tcp_mss; gap = seg_seq - tcp->tcp_rnxt; rgap = tcp->tcp_rwnd - (gap + seg_len); /* * gap is the amount of sequence space between what we expect to see * and what we got for seg_seq. A positive value for gap means * something got lost. A negative value means we got some old stuff. */ if (gap < 0) { /* Old stuff present. Is the SYN in there? */ if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && (seg_len != 0)) { flags &= ~TH_SYN; seg_seq++; urp--; /* Recompute the gaps after noting the SYN. */ goto try_again; } BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, (seg_len > -gap ? -gap : seg_len)); /* Remove the old stuff from seg_len. */ seg_len += gap; /* * Anything left? * Make sure to check for unack'd FIN when rest of data * has been previously ack'd. */ if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { /* * Resets are only valid if they lie within our offered * window. If the RST bit is set, we just ignore this * segment. */ if (flags & TH_RST) { freemsg(mp); return; } /* * The arriving of dup data packets indicate that we * may have postponed an ack for too long, or the other * side's RTT estimate is out of shape. Start acking * more often. */ if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && tcp->tcp_rack_cnt >= 1 && tcp->tcp_rack_abs_max > 2) { tcp->tcp_rack_abs_max--; } tcp->tcp_rack_cur_max = 1; /* * This segment is "unacceptable". None of its * sequence space lies within our advertized window. * * Adjust seg_len to the original value for tracing. */ seg_len -= gap; if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: unacceptable, gap %d, rgap %d, " "flags 0x%x, seg_seq %u, seg_ack %u, " "seg_len %d, rnxt %u, snxt %u, %s", gap, rgap, flags, seg_seq, seg_ack, seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } /* * Arrange to send an ACK in response to the * unacceptable segment per RFC 793 page 69. There * is only one small difference between ours and the * acceptability test in the RFC - we accept ACK-only * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK * will be generated. * * Note that we have to ACK an ACK-only packet at least * for stacks that send 0-length keep-alives with * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, * section 4.2.3.6. As long as we don't ever generate * an unacceptable packet in response to an incoming * packet that is unacceptable, it should not cause * "ACK wars". */ flags |= TH_ACK_NEEDED; /* * Continue processing this segment in order to use the * ACK information it contains, but skip all other * sequence-number processing. Processing the ACK * information is necessary in order to * re-synchronize connections that may have lost * synchronization. * * We clear seg_len and flag fields related to * sequence number processing as they are not * to be trusted for an unacceptable segment. */ seg_len = 0; flags &= ~(TH_SYN | TH_FIN | TH_URG); goto process_ack; } /* Fix seg_seq, and chew the gap off the front. */ seg_seq = tcp->tcp_rnxt; urp += gap; do { mblk_t *mp2; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)UINT_MAX); gap += (uint_t)(mp->b_wptr - mp->b_rptr); if (gap > 0) { mp->b_rptr = mp->b_wptr - gap; break; } mp2 = mp; mp = mp->b_cont; freeb(mp2); } while (gap < 0); /* * If the urgent data has already been acknowledged, we * should ignore TH_URG below */ if (urp < 0) flags &= ~TH_URG; } /* * rgap is the amount of stuff received out of window. A negative * value is the amount out of window. */ if (rgap < 0) { mblk_t *mp2; if (tcp->tcp_rwnd == 0) { BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); } else { BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); } /* * seg_len does not include the FIN, so if more than * just the FIN is out of window, we act like we don't * see it. (If just the FIN is out of window, rgap * will be zero and we will go ahead and acknowledge * the FIN.) */ flags &= ~TH_FIN; /* Fix seg_len and make sure there is something left. */ seg_len += rgap; if (seg_len <= 0) { /* * Resets are only valid if they lie within our offered * window. If the RST bit is set, we just ignore this * segment. */ if (flags & TH_RST) { freemsg(mp); return; } /* Per RFC 793, we need to send back an ACK. */ flags |= TH_ACK_NEEDED; /* * Send SIGURG as soon as possible i.e. even * if the TH_URG was delivered in a window probe * packet (which will be unacceptable). * * We generate a signal if none has been generated * for this connection or if this is a new urgent * byte. Also send a zero-length "unmarked" message * to inform SIOCATMARK that this is not the mark. * * tcp_urp_last_valid is cleared when the T_exdata_ind * is sent up. This plus the check for old data * (gap >= 0) handles the wraparound of the sequence * number space without having to always track the * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks * this max in its rcv_up variable). * * This prevents duplicate SIGURGS due to a "late" * zero-window probe when the T_EXDATA_IND has already * been sent up. */ if ((flags & TH_URG) && (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, tcp->tcp_urp_last))) { if (IPCL_IS_NONSTR(connp)) { if (!TCP_IS_DETACHED(tcp)) { (*connp->conn_upcalls-> su_signal_oob) (connp->conn_upper_handle, urp); } } else { mp1 = allocb(0, BPRI_MED); if (mp1 == NULL) { freemsg(mp); return; } if (!TCP_IS_DETACHED(tcp) && !putnextctl1(connp->conn_rq, M_PCSIG, SIGURG)) { /* Try again on the rexmit. */ freemsg(mp1); freemsg(mp); return; } /* * If the next byte would be the mark * then mark with MARKNEXT else mark * with NOTMARKNEXT. */ if (gap == 0 && urp == 0) mp1->b_flag |= MSGMARKNEXT; else mp1->b_flag |= MSGNOTMARKNEXT; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = mp1; flags |= TH_SEND_URP_MARK; } tcp->tcp_urp_last_valid = B_TRUE; tcp->tcp_urp_last = urp + seg_seq; } /* * If this is a zero window probe, continue to * process the ACK part. But we need to set seg_len * to 0 to avoid data processing. Otherwise just * drop the segment and send back an ACK. */ if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { flags &= ~(TH_SYN | TH_URG); seg_len = 0; goto process_ack; } else { freemsg(mp); goto ack_check; } } /* Pitch out of window stuff off the end. */ rgap = seg_len; mp2 = mp; do { ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= (uintptr_t)INT_MAX); rgap -= (int)(mp2->b_wptr - mp2->b_rptr); if (rgap < 0) { mp2->b_wptr += rgap; if ((mp1 = mp2->b_cont) != NULL) { mp2->b_cont = NULL; freemsg(mp1); } break; } } while ((mp2 = mp2->b_cont) != NULL); } ok:; /* * TCP should check ECN info for segments inside the window only. * Therefore the check should be done here. */ if (tcp->tcp_ecn_ok) { if (flags & TH_CWR) { tcp->tcp_ecn_echo_on = B_FALSE; } /* * Note that both ECN_CE and CWR can be set in the * same segment. In this case, we once again turn * on ECN_ECHO. */ if (connp->conn_ipversion == IPV4_VERSION) { uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { tcp->tcp_ecn_echo_on = B_TRUE; } } else { uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; if ((vcf & htonl(IPH_ECN_CE << 20)) == htonl(IPH_ECN_CE << 20)) { tcp->tcp_ecn_echo_on = B_TRUE; } } } /* * Check whether we can update tcp_ts_recent. This test is * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP * Extensions for High Performance: An Update", Internet Draft. */ if (tcp->tcp_snd_ts_ok && TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && SEQ_LEQ(seg_seq, tcp->tcp_rack)) { tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64; } if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { /* * FIN in an out of order segment. We record this in * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. * Clear the FIN so that any check on FIN flag will fail. * Remember that FIN also counts in the sequence number * space. So we need to ack out of order FIN only segments. */ if (flags & TH_FIN) { tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; tcp->tcp_ofo_fin_seq = seg_seq + seg_len; flags &= ~TH_FIN; flags |= TH_ACK_NEEDED; } if (seg_len > 0) { /* Fill in the SACK blk list. */ if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); tcp_sack_insert(tcp->tcp_sack_list, seg_seq, seg_seq + seg_len, &(tcp->tcp_num_sack_blk)); } /* * Attempt reassembly and see if we have something * ready to go. */ mp = tcp_reass(tcp, mp, seg_seq); /* Always ack out of order packets */ flags |= TH_ACK_NEEDED | TH_PUSH; if (mp) { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); seg_len = mp->b_cont ? msgdsize(mp) : (int)(mp->b_wptr - mp->b_rptr); seg_seq = tcp->tcp_rnxt; /* * A gap is filled and the seq num and len * of the gap match that of a previously * received FIN, put the FIN flag back in. */ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { flags |= TH_FIN; tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; } } else { /* * Keep going even with NULL mp. * There may be a useful ACK or something else * we don't want to miss. * * But TCP should not perform fast retransmit * because of the ack number. TCP uses * seg_len == 0 to determine if it is a pure * ACK. And this is not a pure ACK. */ seg_len = 0; ofo_seg = B_TRUE; } } } else if (seg_len > 0) { BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); /* * If an out of order FIN was received before, and the seq * num and len of the new segment match that of the FIN, * put the FIN flag back in. */ if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { flags |= TH_FIN; tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; } } if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { if (flags & TH_RST) { freemsg(mp); switch (tcp->tcp_state) { case TCPS_SYN_RCVD: (void) tcp_clean_death(tcp, ECONNREFUSED, 14); break; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_FIN_WAIT_2: case TCPS_CLOSE_WAIT: (void) tcp_clean_death(tcp, ECONNRESET, 15); break; case TCPS_CLOSING: case TCPS_LAST_ACK: (void) tcp_clean_death(tcp, 0, 16); break; default: ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); (void) tcp_clean_death(tcp, ENXIO, 17); break; } return; } if (flags & TH_SYN) { /* * See RFC 793, Page 71 * * The seq number must be in the window as it should * be "fixed" above. If it is outside window, it should * be already rejected. Note that we allow seg_seq to be * rnxt + rwnd because we want to accept 0 window probe. */ ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); freemsg(mp); /* * If the ACK flag is not set, just use our snxt as the * seq number of the RST segment. */ if (!(flags & TH_ACK)) { seg_ack = tcp->tcp_snxt; } tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, TH_RST|TH_ACK); ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); (void) tcp_clean_death(tcp, ECONNRESET, 18); return; } /* * urp could be -1 when the urp field in the packet is 0 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent * byte was at seg_seq - 1, in which case we ignore the urgent flag. */ if (flags & TH_URG && urp >= 0) { if (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { /* * Non-STREAMS sockets handle the urgent data a litte * differently from STREAMS based sockets. There is no * need to mark any mblks with the MSG{NOT,}MARKNEXT * flags to keep SIOCATMARK happy. Instead a * su_signal_oob upcall is made to update the mark. * Neither is a T_EXDATA_IND mblk needed to be * prepended to the urgent data. The urgent data is * delivered using the su_recv upcall, where we set * the MSG_OOB flag to indicate that it is urg data. * * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED * are used by non-STREAMS sockets. */ if (IPCL_IS_NONSTR(connp)) { if (!TCP_IS_DETACHED(tcp)) { (*connp->conn_upcalls->su_signal_oob) (connp->conn_upper_handle, urp); } } else { /* * If we haven't generated the signal yet for * this urgent pointer value, do it now. Also, * send up a zero-length M_DATA indicating * whether or not this is the mark. The latter * is not needed when a T_EXDATA_IND is sent up. * However, if there are allocation failures * this code relies on the sender retransmitting * and the socket code for determining the mark * should not block waiting for the peer to * transmit. Thus, for simplicity we always * send up the mark indication. */ mp1 = allocb(0, BPRI_MED); if (mp1 == NULL) { freemsg(mp); return; } if (!TCP_IS_DETACHED(tcp) && !putnextctl1(connp->conn_rq, M_PCSIG, SIGURG)) { /* Try again on the rexmit. */ freemsg(mp1); freemsg(mp); return; } /* * Mark with NOTMARKNEXT for now. * The code below will change this to MARKNEXT * if we are at the mark. * * If there are allocation failures (e.g. in * dupmsg below) the next time tcp_rput_data * sees the urgent segment it will send up the * MSGMARKNEXT message. */ mp1->b_flag |= MSGNOTMARKNEXT; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = mp1; flags |= TH_SEND_URP_MARK; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sent M_PCSIG 2 seq %x urp %x " "last %x, %s", seg_seq, urp, tcp->tcp_urp_last, tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } tcp->tcp_urp_last_valid = B_TRUE; tcp->tcp_urp_last = urp + seg_seq; } else if (tcp->tcp_urp_mark_mp != NULL) { /* * An allocation failure prevented the previous * tcp_input_data from sending up the allocated * MSG*MARKNEXT message - send it up this time * around. */ flags |= TH_SEND_URP_MARK; } /* * If the urgent byte is in this segment, make sure that it is * all by itself. This makes it much easier to deal with the * possibility of an allocation failure on the T_exdata_ind. * Note that seg_len is the number of bytes in the segment, and * urp is the offset into the segment of the urgent byte. * urp < seg_len means that the urgent byte is in this segment. */ if (urp < seg_len) { if (seg_len != 1) { uint32_t tmp_rnxt; /* * Break it up and feed it back in. * Re-attach the IP header. */ mp->b_rptr = iphdr; if (urp > 0) { /* * There is stuff before the urgent * byte. */ mp1 = dupmsg(mp); if (!mp1) { /* * Trim from urgent byte on. * The rest will come back. */ (void) adjmsg(mp, urp - seg_len); tcp_input_data(connp, mp, NULL, ira); return; } (void) adjmsg(mp1, urp - seg_len); /* Feed this piece back in. */ tmp_rnxt = tcp->tcp_rnxt; tcp_input_data(connp, mp1, NULL, ira); /* * If the data passed back in was not * processed (ie: bad ACK) sending * the remainder back in will cause a * loop. In this case, drop the * packet and let the sender try * sending a good packet. */ if (tmp_rnxt == tcp->tcp_rnxt) { freemsg(mp); return; } } if (urp != seg_len - 1) { uint32_t tmp_rnxt; /* * There is stuff after the urgent * byte. */ mp1 = dupmsg(mp); if (!mp1) { /* * Trim everything beyond the * urgent byte. The rest will * come back. */ (void) adjmsg(mp, urp + 1 - seg_len); tcp_input_data(connp, mp, NULL, ira); return; } (void) adjmsg(mp1, urp + 1 - seg_len); tmp_rnxt = tcp->tcp_rnxt; tcp_input_data(connp, mp1, NULL, ira); /* * If the data passed back in was not * processed (ie: bad ACK) sending * the remainder back in will cause a * loop. In this case, drop the * packet and let the sender try * sending a good packet. */ if (tmp_rnxt == tcp->tcp_rnxt) { freemsg(mp); return; } } tcp_input_data(connp, mp, NULL, ira); return; } /* * This segment contains only the urgent byte. We * have to allocate the T_exdata_ind, if we can. */ if (IPCL_IS_NONSTR(connp)) { int error; (*connp->conn_upcalls->su_recv) (connp->conn_upper_handle, mp, seg_len, MSG_OOB, &error, NULL); /* * We should never be in middle of a * fallback, the squeue guarantees that. */ ASSERT(error != EOPNOTSUPP); mp = NULL; goto update_ack; } else if (!tcp->tcp_urp_mp) { struct T_exdata_ind *tei; mp1 = allocb(sizeof (struct T_exdata_ind), BPRI_MED); if (!mp1) { /* * Sigh... It'll be back. * Generate any MSG*MARK message now. */ freemsg(mp); seg_len = 0; if (flags & TH_SEND_URP_MARK) { ASSERT(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp->b_flag &= ~MSGNOTMARKNEXT; tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; } goto ack_check; } mp1->b_datap->db_type = M_PROTO; tei = (struct T_exdata_ind *)mp1->b_rptr; tei->PRIM_type = T_EXDATA_IND; tei->MORE_flag = 0; mp1->b_wptr = (uchar_t *)&tei[1]; tcp->tcp_urp_mp = mp1; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: allocated exdata_ind %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ /* * There is no need to send a separate MSG*MARK * message since the T_EXDATA_IND will be sent * now. */ flags &= ~TH_SEND_URP_MARK; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = NULL; } /* * Now we are all set. On the next putnext upstream, * tcp_urp_mp will be non-NULL and will get prepended * to what has to be this piece containing the urgent * byte. If for any reason we abort this segment below, * if it comes back, we will have this ready, or it * will get blown off in close. */ } else if (urp == seg_len) { /* * The urgent byte is the next byte after this sequence * number. If this endpoint is non-STREAMS, then there * is nothing to do here since the socket has already * been notified about the urg pointer by the * su_signal_oob call above. * * In case of STREAMS, some more work might be needed. * If there is data it is marked with MSGMARKNEXT and * and any tcp_urp_mark_mp is discarded since it is not * needed. Otherwise, if the code above just allocated * a zero-length tcp_urp_mark_mp message, that message * is tagged with MSGMARKNEXT. Sending up these * MSGMARKNEXT messages makes SIOCATMARK work correctly * even though the T_EXDATA_IND will not be sent up * until the urgent byte arrives. */ if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { if (seg_len != 0) { flags |= TH_MARKNEXT_NEEDED; freemsg(tcp->tcp_urp_mark_mp); tcp->tcp_urp_mark_mp = NULL; flags &= ~TH_SEND_URP_MARK; } else if (tcp->tcp_urp_mark_mp != NULL) { flags |= TH_SEND_URP_MARK; tcp->tcp_urp_mark_mp->b_flag &= ~MSGNOTMARKNEXT; tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; } } #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: AT MARK, len %d, flags 0x%x, %s", seg_len, flags, tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } #ifdef DEBUG else { /* Data left until we hit mark */ (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: URP %d bytes left, %s", urp - seg_len, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } #endif /* DEBUG */ } process_ack: if (!(flags & TH_ACK)) { freemsg(mp); goto xmit_check; } } bytes_acked = (int)(seg_ack - tcp->tcp_suna); if (bytes_acked > 0) tcp->tcp_ip_forward_progress = B_TRUE; if (tcp->tcp_state == TCPS_SYN_RCVD) { if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { /* 3-way handshake complete - pass up the T_CONN_IND */ tcp_t *listener = tcp->tcp_listener; mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; tcp->tcp_tconnind_started = B_TRUE; tcp->tcp_conn.tcp_eager_conn_ind = NULL; /* * We are here means eager is fine but it can * get a TH_RST at any point between now and till * accept completes and disappear. We need to * ensure that reference to eager is valid after * we get out of eager's perimeter. So we do * an extra refhold. */ CONN_INC_REF(connp); /* * The listener also exists because of the refhold * done in tcp_input_listener. Its possible that it * might have closed. We will check that once we * get inside listeners context. */ CONN_INC_REF(listener->tcp_connp); if (listener->tcp_connp->conn_sqp == connp->conn_sqp) { /* * We optimize by not calling an SQUEUE_ENTER * on the listener since we know that the * listener and eager squeues are the same. * We are able to make this check safely only * because neither the eager nor the listener * can change its squeue. Only an active connect * can change its squeue */ tcp_send_conn_ind(listener->tcp_connp, mp, listener->tcp_connp->conn_sqp); CONN_DEC_REF(listener->tcp_connp); } else if (!tcp->tcp_loopback) { SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp, tcp_send_conn_ind, listener->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_CONN_IND); } else { SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp, tcp_send_conn_ind, listener->tcp_connp, NULL, SQ_PROCESS, SQTAG_TCP_CONN_IND); } } /* * We are seeing the final ack in the three way * hand shake of a active open'ed connection * so we must send up a T_CONN_CON * * tcp_sendmsg() checks tcp_state without entering * the squeue so tcp_state should be updated before * sending up connection confirmation. */ tcp->tcp_state = TCPS_ESTABLISHED; if (tcp->tcp_active_open) { if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) { freemsg(mp); tcp->tcp_state = TCPS_SYN_RCVD; return; } /* * Don't fuse the loopback endpoints for * simultaneous active opens. */ if (tcp->tcp_loopback) { TCP_STAT(tcps, tcp_fusion_unfusable); tcp->tcp_unfusable = B_TRUE; } } tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ bytes_acked--; /* SYN was acked - making progress */ tcp->tcp_ip_forward_progress = B_TRUE; /* * If SYN was retransmitted, need to reset all * retransmission info as this segment will be * treated as a dup ACK. */ if (tcp->tcp_rexmit) { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_rexmit_max = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; tcp->tcp_ms_we_have_waited = 0; tcp->tcp_cwnd = mss; } /* * We set the send window to zero here. * This is needed if there is data to be * processed already on the queue. * Later (at swnd_update label), the * "new_swnd > tcp_swnd" condition is satisfied * the XMIT_NEEDED flag is set in the current * (SYN_RCVD) state. This ensures tcp_wput_data() is * called if there is already data on queue in * this state. */ tcp->tcp_swnd = 0; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; tcp->tcp_valid_bits &= ~TCP_ISS_VALID; /* Fuse when both sides are in ESTABLISHED state */ if (tcp->tcp_loopback && do_tcp_fusion) tcp_fuse(tcp, iphdr, tcpha); } /* This code follows 4.4BSD-Lite2 mostly. */ if (bytes_acked < 0) goto est; /* * If TCP is ECN capable and the congestion experience bit is * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be * done once per window (or more loosely, per RTT). */ if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) tcp->tcp_cwr = B_FALSE; if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { if (!tcp->tcp_cwr) { npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; tcp->tcp_cwnd = npkt * mss; /* * If the cwnd is 0, use the timer to clock out * new segments. This is required by the ECN spec. */ if (npkt == 0) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); /* * This makes sure that when the ACK comes * back, we will increase tcp_cwnd by 1 MSS. */ tcp->tcp_cwnd_cnt = 0; } tcp->tcp_cwr = B_TRUE; /* * This marks the end of the current window of in * flight data. That is why we don't use * tcp_suna + tcp_swnd. Only data in flight can * provide ECN info. */ tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } } mp1 = tcp->tcp_xmit_head; if (bytes_acked == 0) { if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { int dupack_cnt; BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); /* * Fast retransmit. When we have seen exactly three * identical ACKs while we have unacked data * outstanding we take it as a hint that our peer * dropped something. * * If TCP is retransmitting, don't do fast retransmit. */ if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && ! tcp->tcp_rexmit) { /* Do Limited Transmit */ if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < tcps->tcps_dupack_fast_retransmit) { /* * RFC 3042 * * What we need to do is temporarily * increase tcp_cwnd so that new * data can be sent if it is allowed * by the receive window (tcp_rwnd). * tcp_wput_data() will take care of * the rest. * * If the connection is SACK capable, * only do limited xmit when there * is SACK info. * * Note how tcp_cwnd is incremented. * The first dup ACK will increase * it by 1 MSS. The second dup ACK * will increase it by 2 MSS. This * means that only 1 new segment will * be sent for each dup ACK. */ if (tcp->tcp_unsent > 0 && (!tcp->tcp_snd_sack_ok || (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL))) { tcp->tcp_cwnd += mss << (tcp->tcp_dupack_cnt - 1); flags |= TH_LIMIT_XMIT; } } else if (dupack_cnt == tcps->tcps_dupack_fast_retransmit) { /* * If we have reduced tcp_ssthresh * because of ECN, do not reduce it again * unless it is already one window of data * away. After one window of data, tcp_cwr * should then be cleared. Note that * for non ECN capable connection, tcp_cwr * should always be false. * * Adjust cwnd since the duplicate * ack indicates that a packet was * dropped (due to congestion.) */ if (!tcp->tcp_cwr) { npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; tcp->tcp_cwnd = (npkt + tcp->tcp_dupack_cnt) * mss; } if (tcp->tcp_ecn_ok) { tcp->tcp_cwr = B_TRUE; tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } /* * We do Hoe's algorithm. Refer to her * paper "Improving the Start-up Behavior * of a Congestion Control Scheme for TCP," * appeared in SIGCOMM'96. * * Save highest seq no we have sent so far. * Be careful about the invisible FIN byte. */ if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) { tcp->tcp_rexmit_max = tcp->tcp_fss; } else { tcp->tcp_rexmit_max = tcp->tcp_snxt; } /* * Do not allow bursty traffic during. * fast recovery. Refer to Fall and Floyd's * paper "Simulation-based Comparisons of * Tahoe, Reno and SACK TCP" (in CCR?) * This is a best current practise. */ tcp->tcp_snd_burst = TCP_CWND_SS; /* * For SACK: * Calculate tcp_pipe, which is the * estimated number of bytes in * network. * * tcp_fack is the highest sack'ed seq num * TCP has received. * * tcp_pipe is explained in the above quoted * Fall and Floyd's paper. tcp_fack is * explained in Mathis and Mahdavi's * "Forward Acknowledgment: Refining TCP * Congestion Control" in SIGCOMM '96. */ if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); if (tcp->tcp_notsack_list != NULL) { tcp->tcp_pipe = tcp->tcp_snxt - tcp->tcp_fack; tcp->tcp_sack_snxt = seg_ack; flags |= TH_NEED_SACK_REXMIT; } else { /* * Always initialize tcp_pipe * even though we don't have * any SACK info. If later * we get SACK info and * tcp_pipe is not initialized, * funny things will happen. */ tcp->tcp_pipe = tcp->tcp_cwnd_ssthresh; } } else { flags |= TH_REXMIT_NEEDED; } /* tcp_snd_sack_ok */ } else { /* * Here we perform congestion * avoidance, but NOT slow start. * This is known as the Fast * Recovery Algorithm. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { flags |= TH_NEED_SACK_REXMIT; tcp->tcp_pipe -= mss; if (tcp->tcp_pipe < 0) tcp->tcp_pipe = 0; } else { /* * We know that one more packet has * left the pipe thus we can update * cwnd. */ cwnd = tcp->tcp_cwnd + mss; if (cwnd > tcp->tcp_cwnd_max) cwnd = tcp->tcp_cwnd_max; tcp->tcp_cwnd = cwnd; if (tcp->tcp_unsent > 0) flags |= TH_XMIT_NEEDED; } } } } else if (tcp->tcp_zero_win_probe) { /* * If the window has opened, need to arrange * to send additional data. */ if (new_swnd != 0) { /* tcp_suna != tcp_snxt */ /* Packet contains a window update */ BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); tcp->tcp_zero_win_probe = 0; tcp->tcp_timer_backoff = 0; tcp->tcp_ms_we_have_waited = 0; /* * Transmit starting with tcp_suna since * the one byte probe is not ack'ed. * If TCP has sent more than one identical * probe, tcp_rexmit will be set. That means * tcp_ss_rexmit() will send out the one * byte along with new data. Otherwise, * fake the retransmission. */ flags |= TH_XMIT_NEEDED; if (!tcp->tcp_rexmit) { tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_rexmit_max = tcp->tcp_suna + 1; } } } goto swnd_update; } /* * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. * If the ACK value acks something that we have not yet sent, it might * be an old duplicate segment. Send an ACK to re-synchronize the * other side. * Note: reset in response to unacceptable ACK in SYN_RECEIVE * state is handled above, so we can always just drop the segment and * send an ACK here. * * In the case where the peer shrinks the window, we see the new window * update, but all the data sent previously is queued up by the peer. * To account for this, in tcp_process_shrunk_swnd(), the sequence * number, which was already sent, and within window, is recorded. * tcp_snxt is then updated. * * If the window has previously shrunk, and an ACK for data not yet * sent, according to tcp_snxt is recieved, it may still be valid. If * the ACK is for data within the window at the time the window was * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to * the sequence number ACK'ed. * * If the ACK covers all the data sent at the time the window was * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. * * Should we send ACKs in response to ACK only segments? */ if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { if ((tcp->tcp_is_wnd_shrnk) && (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { uint32_t data_acked_ahead_snxt; data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; tcp_update_xmit_tail(tcp, seg_ack); tcp->tcp_unsent -= data_acked_ahead_snxt; } else { BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); /* drop the received segment */ freemsg(mp); /* * Send back an ACK. If tcp_drop_ack_unsent_cnt is * greater than 0, check if the number of such * bogus ACks is greater than that count. If yes, * don't send back any ACK. This prevents TCP from * getting into an ACK storm if somehow an attacker * successfully spoofs an acceptable segment to our * peer. */ if (tcp_drop_ack_unsent_cnt > 0 && ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { TCP_STAT(tcps, tcp_in_ack_unsent_drop); return; } mp = tcp_ack_mp(tcp); if (mp != NULL) { BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcps->tcps_mib, tcpOutAck); tcp_send_data(tcp, mp); } return; } } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, tcp->tcp_snxt_shrunk)) { tcp->tcp_is_wnd_shrnk = B_FALSE; } /* * TCP gets a new ACK, update the notsack'ed list to delete those * blocks that are covered by this ACK. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); } /* * If we got an ACK after fast retransmit, check to see * if it is a partial ACK. If it is not and the congestion * window was inflated to account for the other side's * cached packets, retract it. If it is, do Hoe's algorithm. */ if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { ASSERT(tcp->tcp_rexmit == B_FALSE); if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { tcp->tcp_dupack_cnt = 0; /* * Restore the orig tcp_cwnd_ssthresh after * fast retransmit phase. */ if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; } tcp->tcp_rexmit_max = seg_ack; tcp->tcp_cwnd_cnt = 0; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; /* * Remove all notsack info to avoid confusion with * the next fast retrasnmit/recovery phase. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); } } else { if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { flags |= TH_NEED_SACK_REXMIT; tcp->tcp_pipe -= mss; if (tcp->tcp_pipe < 0) tcp->tcp_pipe = 0; } else { /* * Hoe's algorithm: * * Retransmit the unack'ed segment and * restart fast recovery. Note that we * need to scale back tcp_cwnd to the * original value when we started fast * recovery. This is to prevent overly * aggressive behaviour in sending new * segments. */ tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + tcps->tcps_dupack_fast_retransmit * mss; tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; flags |= TH_REXMIT_NEEDED; } } } else { tcp->tcp_dupack_cnt = 0; if (tcp->tcp_rexmit) { /* * TCP is retranmitting. If the ACK ack's all * outstanding data, update tcp_rexmit_max and * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt * to the correct value. * * Note that SEQ_LEQ() is used. This is to avoid * unnecessary fast retransmit caused by dup ACKs * received when TCP does slow start retransmission * after a time out. During this phase, TCP may * send out segments which are already received. * This causes dup ACKs to be sent back. */ if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { tcp->tcp_rexmit_nxt = seg_ack; } if (seg_ack != tcp->tcp_rexmit_max) { flags |= TH_XMIT_NEEDED; } } else { tcp->tcp_rexmit = B_FALSE; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_snd_burst = tcp->tcp_localnet ? TCP_CWND_INFINITE : TCP_CWND_NORMAL; } tcp->tcp_ms_we_have_waited = 0; } } BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); tcp->tcp_suna = seg_ack; if (tcp->tcp_zero_win_probe != 0) { tcp->tcp_zero_win_probe = 0; tcp->tcp_timer_backoff = 0; } /* * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. * Note that it cannot be the SYN being ack'ed. The code flow * will not reach here. */ if (mp1 == NULL) { goto fin_acked; } /* * Update the congestion window. * * If TCP is not ECN capable or TCP is ECN capable but the * congestion experience bit is not set, increase the tcp_cwnd as * usual. */ if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { cwnd = tcp->tcp_cwnd; add = mss; if (cwnd >= tcp->tcp_cwnd_ssthresh) { /* * This is to prevent an increase of less than 1 MSS of * tcp_cwnd. With partial increase, tcp_wput_data() * may send out tinygrams in order to preserve mblk * boundaries. * * By initializing tcp_cwnd_cnt to new tcp_cwnd and * decrementing it by 1 MSS for every ACKs, tcp_cwnd is * increased by 1 MSS for every RTTs. */ if (tcp->tcp_cwnd_cnt <= 0) { tcp->tcp_cwnd_cnt = cwnd + add; } else { tcp->tcp_cwnd_cnt -= add; add = 0; } } tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); } /* See if the latest urgent data has been acknowledged */ if ((tcp->tcp_valid_bits & TCP_URG_VALID) && SEQ_GT(seg_ack, tcp->tcp_urg)) tcp->tcp_valid_bits &= ~TCP_URG_VALID; /* Can we update the RTT estimates? */ if (tcp->tcp_snd_ts_ok) { /* Ignore zero timestamp echo-reply. */ if (tcpopt.tcp_opt_ts_ecr != 0) { tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - (int32_t)tcpopt.tcp_opt_ts_ecr); } /* If needed, restart the timer. */ if (tcp->tcp_set_timer == 1) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_set_timer = 0; } /* * Update tcp_csuna in case the other side stops sending * us timestamps. */ tcp->tcp_csuna = tcp->tcp_snxt; } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { /* * An ACK sequence we haven't seen before, so get the RTT * and update the RTO. But first check if the timestamp is * valid to use. */ if ((mp1->b_next != NULL) && SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH - (int32_t)(intptr_t)mp1->b_prev); else BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); /* Remeber the last sequence to be ACKed */ tcp->tcp_csuna = seg_ack; if (tcp->tcp_set_timer == 1) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_set_timer = 0; } } else { BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); } /* Eat acknowledged bytes off the xmit queue. */ for (;;) { mblk_t *mp2; uchar_t *wptr; wptr = mp1->b_wptr; ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); bytes_acked -= (int)(wptr - mp1->b_rptr); if (bytes_acked < 0) { mp1->b_rptr = wptr + bytes_acked; /* * Set a new timestamp if all the bytes timed by the * old timestamp have been ack'ed. */ if (SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) { mp1->b_prev = (mblk_t *)(uintptr_t)LBOLT_FASTPATH; mp1->b_next = NULL; } break; } mp1->b_next = NULL; mp1->b_prev = NULL; mp2 = mp1; mp1 = mp1->b_cont; /* * This notification is required for some zero-copy * clients to maintain a copy semantic. After the data * is ack'ed, client is safe to modify or reuse the buffer. */ if (tcp->tcp_snd_zcopy_aware && (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) tcp_zcopy_notify(tcp); freeb(mp2); if (bytes_acked == 0) { if (mp1 == NULL) { /* Everything is ack'ed, clear the tail. */ tcp->tcp_xmit_tail = NULL; /* * Cancel the timer unless we are still * waiting for an ACK for the FIN packet. */ if (tcp->tcp_timer_tid != 0 && tcp->tcp_snxt == tcp->tcp_suna) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); tcp->tcp_timer_tid = 0; } goto pre_swnd_update; } if (mp2 != tcp->tcp_xmit_tail) break; tcp->tcp_xmit_tail = mp1; ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - mp1->b_rptr); break; } if (mp1 == NULL) { /* * More was acked but there is nothing more * outstanding. This means that the FIN was * just acked or that we're talking to a clown. */ fin_acked: ASSERT(tcp->tcp_fin_sent); tcp->tcp_xmit_tail = NULL; if (tcp->tcp_fin_sent) { /* FIN was acked - making progress */ if (!tcp->tcp_fin_acked) tcp->tcp_ip_forward_progress = B_TRUE; tcp->tcp_fin_acked = B_TRUE; if (tcp->tcp_linger_tid != 0 && TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { tcp_stop_lingering(tcp); freemsg(mp); mp = NULL; } } else { /* * We should never get here because * we have already checked that the * number of bytes ack'ed should be * smaller than or equal to what we * have sent so far (it is the * acceptability check of the ACK). * We can only get here if the send * queue is corrupted. * * Terminate the connection and * panic the system. It is better * for us to panic instead of * continuing to avoid other disaster. */ tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_RST|TH_ACK); panic("Memory corruption " "detected for connection %s.", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); /*NOTREACHED*/ } goto pre_swnd_update; } ASSERT(mp2 != tcp->tcp_xmit_tail); } if (tcp->tcp_unsent) { flags |= TH_XMIT_NEEDED; } pre_swnd_update: tcp->tcp_xmit_head = mp1; swnd_update: /* * The following check is different from most other implementations. * For bi-directional transfer, when segments are dropped, the * "normal" check will not accept a window update in those * retransmitted segemnts. Failing to do that, TCP may send out * segments which are outside receiver's window. As TCP accepts * the ack in those retransmitted segments, if the window update in * the same segment is not accepted, TCP will incorrectly calculates * that it can send more segments. This can create a deadlock * with the receiver if its window becomes zero. */ if (SEQ_LT(tcp->tcp_swl2, seg_ack) || SEQ_LT(tcp->tcp_swl1, seg_seq) || (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { /* * The criteria for update is: * * 1. the segment acknowledges some data. Or * 2. the segment is new, i.e. it has a higher seq num. Or * 3. the segment is not old and the advertised window is * larger than the previous advertised window. */ if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) flags |= TH_XMIT_NEEDED; tcp->tcp_swnd = new_swnd; if (new_swnd > tcp->tcp_max_swnd) tcp->tcp_max_swnd = new_swnd; tcp->tcp_swl1 = seg_seq; tcp->tcp_swl2 = seg_ack; } est: if (tcp->tcp_state > TCPS_ESTABLISHED) { switch (tcp->tcp_state) { case TCPS_FIN_WAIT_1: if (tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_FIN_WAIT_2; /* * We implement the non-standard BSD/SunOS * FIN_WAIT_2 flushing algorithm. * If there is no user attached to this * TCP endpoint, then this TCP struct * could hang around forever in FIN_WAIT_2 * state if the peer forgets to send us * a FIN. To prevent this, we wait only * 2*MSL (a convenient time value) for * the FIN to arrive. If it doesn't show up, * we flush the TCP endpoint. This algorithm, * though a violation of RFC-793, has worked * for over 10 years in BSD systems. * Note: SunOS 4.x waits 675 seconds before * flushing the FIN_WAIT_2 connection. */ TCP_TIMER_RESTART(tcp, tcps->tcps_fin_wait_2_flush_interval); } break; case TCPS_FIN_WAIT_2: break; /* Shutdown hook? */ case TCPS_LAST_ACK: freemsg(mp); if (tcp->tcp_fin_acked) { (void) tcp_clean_death(tcp, 0, 19); return; } goto xmit_check; case TCPS_CLOSING: if (tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_TIME_WAIT; /* * Unconditionally clear the exclusive binding * bit so this TIME-WAIT connection won't * interfere with new ones. */ connp->conn_exclbind = 0; if (!TCP_IS_DETACHED(tcp)) { TCP_TIMER_RESTART(tcp, tcps->tcps_time_wait_interval); } else { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcps, tcp_rput_time_wait); } } /*FALLTHRU*/ case TCPS_CLOSE_WAIT: freemsg(mp); goto xmit_check; default: ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); break; } } if (flags & TH_FIN) { /* Make sure we ack the fin */ flags |= TH_ACK_NEEDED; if (!tcp->tcp_fin_rcvd) { tcp->tcp_fin_rcvd = B_TRUE; tcp->tcp_rnxt++; tcpha = tcp->tcp_tcpha; tcpha->tha_ack = htonl(tcp->tcp_rnxt); /* * Generate the ordrel_ind at the end unless we * are an eager guy. * In the eager case tcp_rsrv will do this when run * after tcp_accept is done. */ if (tcp->tcp_listener == NULL && !TCP_IS_DETACHED(tcp) && !tcp->tcp_hard_binding) flags |= TH_ORDREL_NEEDED; switch (tcp->tcp_state) { case TCPS_SYN_RCVD: case TCPS_ESTABLISHED: tcp->tcp_state = TCPS_CLOSE_WAIT; /* Keepalive? */ break; case TCPS_FIN_WAIT_1: if (!tcp->tcp_fin_acked) { tcp->tcp_state = TCPS_CLOSING; break; } /* FALLTHRU */ case TCPS_FIN_WAIT_2: tcp->tcp_state = TCPS_TIME_WAIT; /* * Unconditionally clear the exclusive binding * bit so this TIME-WAIT connection won't * interfere with new ones. */ connp->conn_exclbind = 0; if (!TCP_IS_DETACHED(tcp)) { TCP_TIMER_RESTART(tcp, tcps->tcps_time_wait_interval); } else { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcps, tcp_rput_time_wait); } if (seg_len) { /* * implies data piggybacked on FIN. * break to handle data. */ break; } freemsg(mp); goto ack_check; } } } if (mp == NULL) goto xmit_check; if (seg_len == 0) { freemsg(mp); goto xmit_check; } if (mp->b_rptr == mp->b_wptr) { /* * The header has been consumed, so we remove the * zero-length mblk here. */ mp1 = mp; mp = mp->b_cont; freeb(mp1); } update_ack: tcpha = tcp->tcp_tcpha; tcp->tcp_rack_cnt++; { uint32_t cur_max; cur_max = tcp->tcp_rack_cur_max; if (tcp->tcp_rack_cnt >= cur_max) { /* * We have more unacked data than we should - send * an ACK now. */ flags |= TH_ACK_NEEDED; cur_max++; if (cur_max > tcp->tcp_rack_abs_max) tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; else tcp->tcp_rack_cur_max = cur_max; } else if (TCP_IS_DETACHED(tcp)) { /* We don't have an ACK timer for detached TCP. */ flags |= TH_ACK_NEEDED; } else if (seg_len < mss) { /* * If we get a segment that is less than an mss, and we * already have unacknowledged data, and the amount * unacknowledged is not a multiple of mss, then we * better generate an ACK now. Otherwise, this may be * the tail piece of a transaction, and we would rather * wait for the response. */ uint32_t udif; ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= (uintptr_t)INT_MAX); udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); if (udif && (udif % mss)) flags |= TH_ACK_NEEDED; else flags |= TH_ACK_TIMER_NEEDED; } else { /* Start delayed ack timer */ flags |= TH_ACK_TIMER_NEEDED; } } tcp->tcp_rnxt += seg_len; tcpha->tha_ack = htonl(tcp->tcp_rnxt); if (mp == NULL) goto xmit_check; /* Update SACK list */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, &(tcp->tcp_num_sack_blk)); } if (tcp->tcp_urp_mp) { tcp->tcp_urp_mp->b_cont = mp; mp = tcp->tcp_urp_mp; tcp->tcp_urp_mp = NULL; /* Ready for a new signal. */ tcp->tcp_urp_last_valid = B_FALSE; #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending exdata_ind %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ } /* * Check for ancillary data changes compared to last segment. */ if (connp->conn_recv_ancillary.crb_all != 0) { mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira); if (mp == NULL) return; } if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) { /* * Side queue inbound data until the accept happens. * tcp_accept/tcp_rput drains this when the accept happens. * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or * T_EXDATA_IND) it is queued on b_next. * XXX Make urgent data use this. Requires: * Removing tcp_listener check for TH_URG * Making M_PCPROTO and MARK messages skip the eager case */ if (tcp->tcp_kssl_pending) { DTRACE_PROBE1(kssl_mblk__ksslinput_pending, mblk_t *, mp); tcp_kssl_input(tcp, mp, ira->ira_cred); } else { tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); } } else if (IPCL_IS_NONSTR(connp)) { /* * Non-STREAMS socket * * Note that no KSSL processing is done here, because * KSSL is not supported for non-STREAMS sockets. */ boolean_t push = flags & (TH_PUSH|TH_FIN); int error; if ((*connp->conn_upcalls->su_recv)( connp->conn_upper_handle, mp, seg_len, 0, &error, &push) <= 0) { /* * We should never be in middle of a * fallback, the squeue guarantees that. */ ASSERT(error != EOPNOTSUPP); if (error == ENOSPC) tcp->tcp_rwnd -= seg_len; } else if (push) { /* PUSH bit set and sockfs is not flow controlled */ flags |= tcp_rwnd_reopen(tcp); } } else { /* STREAMS socket */ if (mp->b_datap->db_type != M_DATA || (flags & TH_MARKNEXT_NEEDED)) { if (tcp->tcp_rcv_list != NULL) { flags |= tcp_rcv_drain(tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); if (flags & TH_MARKNEXT_NEEDED) { #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending MSGMARKNEXT %s", tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ mp->b_flag |= MSGMARKNEXT; flags &= ~TH_MARKNEXT_NEEDED; } /* Does this need SSL processing first? */ if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { DTRACE_PROBE1(kssl_mblk__ksslinput_data1, mblk_t *, mp); tcp_kssl_input(tcp, mp, ira->ira_cred); } else { if (is_system_labeled()) tcp_setcred_data(mp, ira); putnext(connp->conn_rq, mp); if (!canputnext(connp->conn_rq)) tcp->tcp_rwnd -= seg_len; } } else if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { /* Does this need SSL processing first? */ DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); tcp_kssl_input(tcp, mp, ira->ira_cred); } else if ((flags & (TH_PUSH|TH_FIN)) || tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) { if (tcp->tcp_rcv_list != NULL) { /* * Enqueue the new segment first and then * call tcp_rcv_drain() to send all data * up. The other way to do this is to * send all queued data up and then call * putnext() to send the new segment up. * This way can remove the else part later * on. * * We don't do this to avoid one more call to * canputnext() as tcp_rcv_drain() needs to * call canputnext(). */ tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); flags |= tcp_rcv_drain(tcp); } else { if (is_system_labeled()) tcp_setcred_data(mp, ira); putnext(connp->conn_rq, mp); if (!canputnext(connp->conn_rq)) tcp->tcp_rwnd -= seg_len; } } else { /* * Enqueue all packets when processing an mblk * from the co queue and also enqueue normal packets. */ tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred); } /* * Make sure the timer is running if we have data waiting * for a push bit. This provides resiliency against * implementations that do not correctly generate push bits. */ if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { /* * The connection may be closed at this point, so don't * do anything for a detached tcp. */ if (!TCP_IS_DETACHED(tcp)) tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, MSEC_TO_TICK( tcps->tcps_push_timer_interval)); } } xmit_check: /* Is there anything left to do? */ ASSERT(!(flags & TH_MARKNEXT_NEEDED)); if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) goto done; /* Any transmit work to do and a non-zero window? */ if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { if (flags & TH_REXMIT_NEEDED) { uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); if (snd_size > mss) snd_size = mss; if (snd_size > tcp->tcp_swnd) snd_size = tcp->tcp_swnd; mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, B_TRUE); if (mp1 != NULL) { tcp->tcp_xmit_head->b_prev = (mblk_t *)LBOLT_FASTPATH; tcp->tcp_csuna = tcp->tcp_snxt; BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, snd_size); tcp_send_data(tcp, mp1); } } if (flags & TH_NEED_SACK_REXMIT) { tcp_sack_rxmit(tcp, &flags); } /* * For TH_LIMIT_XMIT, tcp_wput_data() is called to send * out new segment. Note that tcp_rexmit should not be * set, otherwise TH_LIMIT_XMIT should not be set. */ if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { if (!tcp->tcp_rexmit) { tcp_wput_data(tcp, NULL, B_FALSE); } else { tcp_ss_rexmit(tcp); } } /* * Adjust tcp_cwnd back to normal value after sending * new data segments. */ if (flags & TH_LIMIT_XMIT) { tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); /* * This will restart the timer. Restarting the * timer is used to avoid a timeout before the * limited transmitted segment's ACK gets back. */ if (tcp->tcp_xmit_head != NULL) tcp->tcp_xmit_head->b_prev = (mblk_t *)LBOLT_FASTPATH; } /* Anything more to do? */ if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) goto done; } ack_check: if (flags & TH_SEND_URP_MARK) { ASSERT(tcp->tcp_urp_mark_mp); ASSERT(!IPCL_IS_NONSTR(connp)); /* * Send up any queued data and then send the mark message */ if (tcp->tcp_rcv_list != NULL) { flags |= tcp_rcv_drain(tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); mp1 = tcp->tcp_urp_mark_mp; tcp->tcp_urp_mark_mp = NULL; if (is_system_labeled()) tcp_setcred_data(mp1, ira); putnext(connp->conn_rq, mp1); #ifdef DEBUG (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_rput: sending zero-length %s %s", ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : "MSGNOTMARKNEXT"), tcp_display(tcp, NULL, DISP_PORT_ONLY)); #endif /* DEBUG */ flags &= ~TH_SEND_URP_MARK; } if (flags & TH_ACK_NEEDED) { /* * Time to send an ack for some reason. */ mp1 = tcp_ack_mp(tcp); if (mp1 != NULL) { tcp_send_data(tcp, mp1); BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcps->tcps_mib, tcpOutAck); } if (tcp->tcp_ack_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); tcp->tcp_ack_tid = 0; } } if (flags & TH_ACK_TIMER_NEEDED) { /* * Arrange for deferred ACK or push wait timeout. * Start timer if it is not already running. */ if (tcp->tcp_ack_tid == 0) { tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, MSEC_TO_TICK(tcp->tcp_localnet ? (clock_t)tcps->tcps_local_dack_interval : (clock_t)tcps->tcps_deferred_ack_interval)); } } if (flags & TH_ORDREL_NEEDED) { /* * Send up the ordrel_ind unless we are an eager guy. * In the eager case tcp_rsrv will do this when run * after tcp_accept is done. */ ASSERT(tcp->tcp_listener == NULL); ASSERT(!tcp->tcp_detached); if (IPCL_IS_NONSTR(connp)) { ASSERT(tcp->tcp_ordrel_mp == NULL); tcp->tcp_ordrel_done = B_TRUE; (*connp->conn_upcalls->su_opctl) (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); goto done; } if (tcp->tcp_rcv_list != NULL) { /* * Push any mblk(s) enqueued from co processing. */ flags |= tcp_rcv_drain(tcp); } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); mp1 = tcp->tcp_ordrel_mp; tcp->tcp_ordrel_mp = NULL; tcp->tcp_ordrel_done = B_TRUE; putnext(connp->conn_rq, mp1); } done: ASSERT(!(flags & TH_MARKNEXT_NEEDED)); } /* * This routine adjusts next-to-send sequence number variables, in the * case where the reciever has shrunk it's window. */ static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) { mblk_t *xmit_tail; int32_t offset; tcp->tcp_snxt = snxt; /* Get the mblk, and the offset in it, as per the shrunk window */ xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); ASSERT(xmit_tail != NULL); tcp->tcp_xmit_tail = xmit_tail; tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - offset; } /* * This function does PAWS protection check. Returns B_TRUE if the * segment passes the PAWS test, else returns B_FALSE. */ boolean_t tcp_paws_check(tcp_t *tcp, tcpha_t *tcpha, tcp_opt_t *tcpoptp) { uint8_t flags; int options; uint8_t *up; conn_t *connp = tcp->tcp_connp; flags = (unsigned int)tcpha->tha_flags & 0xFF; /* * If timestamp option is aligned nicely, get values inline, * otherwise call general routine to parse. Only do that * if timestamp is the only option. */ if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH + TCPOPT_REAL_TS_LEN && OK_32PTR((up = ((uint8_t *)tcpha) + TCP_MIN_HEADER_LENGTH)) && *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); options = TCP_OPT_TSTAMP_PRESENT; } else { if (tcp->tcp_snd_sack_ok) { tcpoptp->tcp = tcp; } else { tcpoptp->tcp = NULL; } options = tcp_parse_options(tcpha, tcpoptp); } if (options & TCP_OPT_TSTAMP_PRESENT) { /* * Do PAWS per RFC 1323 section 4.2. Accept RST * regardless of the timestamp, page 18 RFC 1323.bis. */ if ((flags & TH_RST) == 0 && TSTMP_LT(tcpoptp->tcp_opt_ts_val, tcp->tcp_ts_recent)) { if (TSTMP_LT(LBOLT_FASTPATH64, tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) { /* This segment is not acceptable. */ return (B_FALSE); } else { /* * Connection has been idle for * too long. Reset the timestamp * and assume the segment is valid. */ tcp->tcp_ts_recent = tcpoptp->tcp_opt_ts_val; } } } else { /* * If we don't get a timestamp on every packet, we * figure we can't really trust 'em, so we stop sending * and parsing them. */ tcp->tcp_snd_ts_ok = B_FALSE; connp->conn_ht_iphc_len -= TCPOPT_REAL_TS_LEN; connp->conn_ht_ulp_len -= TCPOPT_REAL_TS_LEN; tcp->tcp_tcpha->tha_offset_and_reserved -= (3 << 4); /* * Adjust the tcp_mss and tcp_cwnd accordingly. We avoid * doing a slow start here so as to not to lose on the * transfer rate built up so far. */ tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); if (tcp->tcp_snd_sack_ok) { ASSERT(tcp->tcp_sack_info != NULL); tcp->tcp_max_sack_blk = 4; } } return (B_TRUE); } /* * Attach ancillary data to a received TCP segments for the * ancillary pieces requested by the application that are * different than they were in the previous data segment. * * Save the "current" values once memory allocation is ok so that * when memory allocation fails we can just wait for the next data segment. */ static mblk_t * tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp, ip_recv_attr_t *ira) { struct T_optdata_ind *todi; int optlen; uchar_t *optptr; struct T_opthdr *toh; crb_t addflag; /* Which pieces to add */ mblk_t *mp1; conn_t *connp = tcp->tcp_connp; optlen = 0; addflag.crb_all = 0; /* If app asked for pktinfo and the index has changed ... */ if (connp->conn_recv_ancillary.crb_ip_recvpktinfo && ira->ira_ruifindex != tcp->tcp_recvifindex) { optlen += sizeof (struct T_opthdr) + sizeof (struct in6_pktinfo); addflag.crb_ip_recvpktinfo = 1; } /* If app asked for hoplimit and it has changed ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit && ipp->ipp_hoplimit != tcp->tcp_recvhops) { optlen += sizeof (struct T_opthdr) + sizeof (uint_t); addflag.crb_ipv6_recvhoplimit = 1; } /* If app asked for tclass and it has changed ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvtclass && ipp->ipp_tclass != tcp->tcp_recvtclass) { optlen += sizeof (struct T_opthdr) + sizeof (uint_t); addflag.crb_ipv6_recvtclass = 1; } /* * If app asked for hopbyhop headers and it has changed ... * For security labels, note that (1) security labels can't change on * a connected socket at all, (2) we're connected to at most one peer, * (3) if anything changes, then it must be some other extra option. */ if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts && ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; addflag.crb_ipv6_recvhopopts = 1; if (!ip_allocbuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) return (mp); } /* If app asked for dst headers before routing headers ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts && ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen, (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrdstoptslen; addflag.crb_ipv6_recvrthdrdstopts = 1; if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts, &tcp->tcp_rthdrdstoptslen, (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) return (mp); } /* If app asked for routing headers and it has changed ... */ if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr && ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; addflag.crb_ipv6_recvrthdr = 1; if (!ip_allocbuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) return (mp); } /* If app asked for dest headers and it has changed ... */ if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts || connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) && ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; addflag.crb_ipv6_recvdstopts = 1; if (!ip_allocbuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) return (mp); } if (optlen == 0) { /* Nothing to add */ return (mp); } mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); if (mp1 == NULL) { /* * Defer sending ancillary data until the next TCP segment * arrives. */ return (mp); } mp1->b_cont = mp; mp = mp1; mp->b_wptr += sizeof (*todi) + optlen; mp->b_datap->db_type = M_PROTO; todi = (struct T_optdata_ind *)mp->b_rptr; todi->PRIM_type = T_OPTDATA_IND; todi->DATA_flag = 1; /* MORE data */ todi->OPT_length = optlen; todi->OPT_offset = sizeof (*todi); optptr = (uchar_t *)&todi[1]; /* * If app asked for pktinfo and the index has changed ... * Note that the local address never changes for the connection. */ if (addflag.crb_ip_recvpktinfo) { struct in6_pktinfo *pkti; uint_t ifindex; ifindex = ira->ira_ruifindex; toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_PKTINFO; toh->len = sizeof (*toh) + sizeof (*pkti); toh->status = 0; optptr += sizeof (*toh); pkti = (struct in6_pktinfo *)optptr; pkti->ipi6_addr = connp->conn_laddr_v6; pkti->ipi6_ifindex = ifindex; optptr += sizeof (*pkti); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvifindex = ifindex; } /* If app asked for hoplimit and it has changed ... */ if (addflag.crb_ipv6_recvhoplimit) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPLIMIT; toh->len = sizeof (*toh) + sizeof (uint_t); toh->status = 0; optptr += sizeof (*toh); *(uint_t *)optptr = ipp->ipp_hoplimit; optptr += sizeof (uint_t); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvhops = ipp->ipp_hoplimit; } /* If app asked for tclass and it has changed ... */ if (addflag.crb_ipv6_recvtclass) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_TCLASS; toh->len = sizeof (*toh) + sizeof (uint_t); toh->status = 0; optptr += sizeof (*toh); *(uint_t *)optptr = ipp->ipp_tclass; optptr += sizeof (uint_t); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ tcp->tcp_recvtclass = ipp->ipp_tclass; } if (addflag.crb_ipv6_recvhopopts) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_HOPOPTS; toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); optptr += ipp->ipp_hopoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen); } if (addflag.crb_ipv6_recvrthdrdstopts) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDRDSTOPTS; toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen); optptr += ipp->ipp_rthdrdstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_rthdrdstopts, &tcp->tcp_rthdrdstoptslen, (ipp->ipp_fields & IPPF_RTHDRDSTOPTS), ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); } if (addflag.crb_ipv6_recvrthdr) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_RTHDR; toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); optptr += ipp->ipp_rthdrlen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen); } if (addflag.crb_ipv6_recvdstopts) { toh = (struct T_opthdr *)optptr; toh->level = IPPROTO_IPV6; toh->name = IPV6_DSTOPTS; toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; toh->status = 0; optptr += sizeof (*toh); bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); optptr += ipp->ipp_dstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen); } ASSERT(optptr == mp->b_wptr); return (mp); } /* ARGSUSED */ static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = connp->conn_rq; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(!IPCL_IS_NONSTR(connp)); mutex_enter(&tcp->tcp_rsrv_mp_lock); tcp->tcp_rsrv_mp = mp; mutex_exit(&tcp->tcp_rsrv_mp_lock); TCP_STAT(tcps, tcp_rsrv_calls); if (TCP_IS_DETACHED(tcp) || q == NULL) { return; } if (tcp->tcp_fused) { tcp_fuse_backenable(tcp); return; } if (canputnext(q)) { /* Not flow-controlled, open rwnd */ tcp->tcp_rwnd = connp->conn_rcvbuf; /* * Send back a window update immediately if TCP is above * ESTABLISHED state and the increase of the rcv window * that the other side knows is at least 1 MSS after flow * control is lifted. */ if (tcp->tcp_state >= TCPS_ESTABLISHED && tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { tcp_xmit_ctl(NULL, tcp, (tcp->tcp_swnd == 0) ? tcp->tcp_suna : tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } } } /* * The read side service routine is called mostly when we get back-enabled as a * result of flow control relief. Since we don't actually queue anything in * TCP, we have no data to send out of here. What we do is clear the receive * window, and send out a window update. */ static void tcp_rsrv(queue_t *q) { conn_t *connp = Q_TO_CONN(q); tcp_t *tcp = connp->conn_tcp; mblk_t *mp; /* No code does a putq on the read side */ ASSERT(q->q_first == NULL); /* * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already * been run. So just return. */ mutex_enter(&tcp->tcp_rsrv_mp_lock); if ((mp = tcp->tcp_rsrv_mp) == NULL) { mutex_exit(&tcp->tcp_rsrv_mp_lock); return; } tcp->tcp_rsrv_mp = NULL; mutex_exit(&tcp->tcp_rsrv_mp_lock); CONN_INC_REF(connp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, NULL, SQ_PROCESS, SQTAG_TCP_RSRV); } /* * tcp_rwnd_set() is called to adjust the receive window to a desired value. * We do not allow the receive window to shrink. After setting rwnd, * set the flow control hiwat of the stream. * * This function is called in 2 cases: * * 1) Before data transfer begins, in tcp_input_listener() for accepting a * connection (passive open) and in tcp_input_data() for active connect. * This is called after tcp_mss_set() when the desired MSS value is known. * This makes sure that our window size is a mutiple of the other side's * MSS. * 2) Handling SO_RCVBUF option. * * It is ASSUMED that the requested size is a multiple of the current MSS. * * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the * user requests so. */ int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) { uint32_t mss = tcp->tcp_mss; uint32_t old_max_rwnd; uint32_t max_transmittable_rwnd; boolean_t tcp_detached = TCP_IS_DETACHED(tcp); tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; /* * Insist on a receive window that is at least * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid * funny TCP interactions of Nagle algorithm, SWS avoidance * and delayed acknowledgement. */ rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); if (tcp->tcp_fused) { size_t sth_hiwat; tcp_t *peer_tcp = tcp->tcp_loopback_peer; ASSERT(peer_tcp != NULL); sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); if (!tcp_detached) { (void) proto_set_rx_hiwat(connp->conn_rq, connp, sth_hiwat); tcp_set_recv_threshold(tcp, sth_hiwat >> 3); } /* * In the fusion case, the maxpsz stream head value of * our peer is set according to its send buffer size * and our receive buffer size; since the latter may * have changed we need to update the peer's maxpsz. */ (void) tcp_maxpsz_set(peer_tcp, B_TRUE); return (sth_hiwat); } if (tcp_detached) old_max_rwnd = tcp->tcp_rwnd; else old_max_rwnd = connp->conn_rcvbuf; /* * If window size info has already been exchanged, TCP should not * shrink the window. Shrinking window is doable if done carefully. * We may add that support later. But so far there is not a real * need to do that. */ if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { /* MSS may have changed, do a round up again. */ rwnd = MSS_ROUNDUP(old_max_rwnd, mss); } /* * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check * can be applied even before the window scale option is decided. */ max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; if (rwnd > max_transmittable_rwnd) { rwnd = max_transmittable_rwnd - (max_transmittable_rwnd % mss); if (rwnd < mss) rwnd = max_transmittable_rwnd; /* * If we're over the limit we may have to back down tcp_rwnd. * The increment below won't work for us. So we set all three * here and the increment below will have no effect. */ tcp->tcp_rwnd = old_max_rwnd = rwnd; } if (tcp->tcp_localnet) { tcp->tcp_rack_abs_max = MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); } else { /* * For a remote host on a different subnet (through a router), * we ack every other packet to be conforming to RFC1122. * tcp_deferred_acks_max is default to 2. */ tcp->tcp_rack_abs_max = MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); } if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; else tcp->tcp_rack_cur_max = 0; /* * Increment the current rwnd by the amount the maximum grew (we * can not overwrite it since we might be in the middle of a * connection.) */ tcp->tcp_rwnd += rwnd - old_max_rwnd; connp->conn_rcvbuf = rwnd; /* Are we already connected? */ if (tcp->tcp_tcpha != NULL) { tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); } if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) tcp->tcp_cwnd_max = rwnd; if (tcp_detached) return (rwnd); tcp_set_recv_threshold(tcp, rwnd >> 3); (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); return (rwnd); } /* * Return SNMP stuff in buffer in mpdata. */ mblk_t * tcp_snmp_get(queue_t *q, mblk_t *mpctl) { mblk_t *mpdata; mblk_t *mp_conn_ctl = NULL; mblk_t *mp_conn_tail; mblk_t *mp_attr_ctl = NULL; mblk_t *mp_attr_tail; mblk_t *mp6_conn_ctl = NULL; mblk_t *mp6_conn_tail; mblk_t *mp6_attr_ctl = NULL; mblk_t *mp6_attr_tail; struct opthdr *optp; mib2_tcpConnEntry_t tce; mib2_tcp6ConnEntry_t tce6; mib2_transportMLPEntry_t mlp; connf_t *connfp; int i; boolean_t ispriv; zoneid_t zoneid; int v4_conn_idx; int v6_conn_idx; conn_t *connp = Q_TO_CONN(q); tcp_stack_t *tcps; ip_stack_t *ipst; mblk_t *mp2ctl; /* * make a copy of the original message */ mp2ctl = copymsg(mpctl); if (mpctl == NULL || (mpdata = mpctl->b_cont) == NULL || (mp_conn_ctl = copymsg(mpctl)) == NULL || (mp_attr_ctl = copymsg(mpctl)) == NULL || (mp6_conn_ctl = copymsg(mpctl)) == NULL || (mp6_attr_ctl = copymsg(mpctl)) == NULL) { freemsg(mp_conn_ctl); freemsg(mp_attr_ctl); freemsg(mp6_conn_ctl); freemsg(mp6_attr_ctl); freemsg(mpctl); freemsg(mp2ctl); return (NULL); } ipst = connp->conn_netstack->netstack_ip; tcps = connp->conn_netstack->netstack_tcp; /* build table of connections -- need count in fixed part */ SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); ispriv = secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; zoneid = Q_TO_CONN(q)->conn_zoneid; v4_conn_idx = v6_conn_idx = 0; mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; for (i = 0; i < CONN_G_HASH_SIZE; i++) { ipst = tcps->tcps_netstack->netstack_ip; connfp = &ipst->ips_ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { tcp_t *tcp; boolean_t needattr; if (connp->conn_zoneid != zoneid) continue; /* not in this zone */ tcp = connp->conn_tcp; UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); tcp->tcp_ibsegs = 0; UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); tcp->tcp_obsegs = 0; tce6.tcp6ConnState = tce.tcpConnState = tcp_snmp_state(tcp); if (tce.tcpConnState == MIB2_TCP_established || tce.tcpConnState == MIB2_TCP_closeWait) BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); needattr = B_FALSE; bzero(&mlp, sizeof (mlp)); if (connp->conn_mlp_type != mlptSingle) { if (connp->conn_mlp_type == mlptShared || connp->conn_mlp_type == mlptBoth) mlp.tme_flags |= MIB2_TMEF_SHARED; if (connp->conn_mlp_type == mlptPrivate || connp->conn_mlp_type == mlptBoth) mlp.tme_flags |= MIB2_TMEF_PRIVATE; needattr = B_TRUE; } if (connp->conn_anon_mlp) { mlp.tme_flags |= MIB2_TMEF_ANONMLP; needattr = B_TRUE; } switch (connp->conn_mac_mode) { case CONN_MAC_DEFAULT: break; case CONN_MAC_AWARE: mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; needattr = B_TRUE; break; case CONN_MAC_IMPLICIT: mlp.tme_flags |= MIB2_TMEF_MACIMPLICIT; needattr = B_TRUE; break; } if (connp->conn_ixa->ixa_tsl != NULL) { ts_label_t *tsl; tsl = connp->conn_ixa->ixa_tsl; mlp.tme_flags |= MIB2_TMEF_IS_LABELED; mlp.tme_doi = label2doi(tsl); mlp.tme_label = *label2bslabel(tsl); needattr = B_TRUE; } /* Create a message to report on IPv6 entries */ if (connp->conn_ipversion == IPV6_VERSION) { tce6.tcp6ConnLocalAddress = connp->conn_laddr_v6; tce6.tcp6ConnRemAddress = connp->conn_faddr_v6; tce6.tcp6ConnLocalPort = ntohs(connp->conn_lport); tce6.tcp6ConnRemPort = ntohs(connp->conn_fport); if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) { tce6.tcp6ConnIfIndex = connp->conn_ixa->ixa_scopeid; } else { tce6.tcp6ConnIfIndex = connp->conn_bound_if; } /* Don't want just anybody seeing these... */ if (ispriv) { tce6.tcp6ConnEntryInfo.ce_snxt = tcp->tcp_snxt; tce6.tcp6ConnEntryInfo.ce_suna = tcp->tcp_suna; tce6.tcp6ConnEntryInfo.ce_rnxt = tcp->tcp_rnxt; tce6.tcp6ConnEntryInfo.ce_rack = tcp->tcp_rack; } else { /* * Netstat, unfortunately, uses this to * get send/receive queue sizes. How to fix? * Why not compute the difference only? */ tce6.tcp6ConnEntryInfo.ce_snxt = tcp->tcp_snxt - tcp->tcp_suna; tce6.tcp6ConnEntryInfo.ce_suna = 0; tce6.tcp6ConnEntryInfo.ce_rnxt = tcp->tcp_rnxt - tcp->tcp_rack; tce6.tcp6ConnEntryInfo.ce_rack = 0; } tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; tce6.tcp6ConnCreationProcess = (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : connp->conn_cpid; tce6.tcp6ConnCreationTime = connp->conn_open_time; (void) snmp_append_data2(mp6_conn_ctl->b_cont, &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); mlp.tme_connidx = v6_conn_idx++; if (needattr) (void) snmp_append_data2(mp6_attr_ctl->b_cont, &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); } /* * Create an IPv4 table entry for IPv4 entries and also * for IPv6 entries which are bound to in6addr_any * but don't have IPV6_V6ONLY set. * (i.e. anything an IPv4 peer could connect to) */ if (connp->conn_ipversion == IPV4_VERSION || (tcp->tcp_state <= TCPS_LISTEN && !connp->conn_ipv6_v6only && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6))) { if (connp->conn_ipversion == IPV6_VERSION) { tce.tcpConnRemAddress = INADDR_ANY; tce.tcpConnLocalAddress = INADDR_ANY; } else { tce.tcpConnRemAddress = connp->conn_faddr_v4; tce.tcpConnLocalAddress = connp->conn_laddr_v4; } tce.tcpConnLocalPort = ntohs(connp->conn_lport); tce.tcpConnRemPort = ntohs(connp->conn_fport); /* Don't want just anybody seeing these... */ if (ispriv) { tce.tcpConnEntryInfo.ce_snxt = tcp->tcp_snxt; tce.tcpConnEntryInfo.ce_suna = tcp->tcp_suna; tce.tcpConnEntryInfo.ce_rnxt = tcp->tcp_rnxt; tce.tcpConnEntryInfo.ce_rack = tcp->tcp_rack; } else { /* * Netstat, unfortunately, uses this to * get send/receive queue sizes. How * to fix? * Why not compute the difference only? */ tce.tcpConnEntryInfo.ce_snxt = tcp->tcp_snxt - tcp->tcp_suna; tce.tcpConnEntryInfo.ce_suna = 0; tce.tcpConnEntryInfo.ce_rnxt = tcp->tcp_rnxt - tcp->tcp_rack; tce.tcpConnEntryInfo.ce_rack = 0; } tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; tce.tcpConnEntryInfo.ce_state = tcp->tcp_state; tce.tcpConnCreationProcess = (connp->conn_cpid < 0) ? MIB2_UNKNOWN_PROCESS : connp->conn_cpid; tce.tcpConnCreationTime = connp->conn_open_time; (void) snmp_append_data2(mp_conn_ctl->b_cont, &mp_conn_tail, (char *)&tce, sizeof (tce)); mlp.tme_connidx = v4_conn_idx++; if (needattr) (void) snmp_append_data2( mp_attr_ctl->b_cont, &mp_attr_tail, (char *)&mlp, sizeof (mlp)); } } } /* fixed length structure for IPv4 and IPv6 counters */ SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); /* synchronize 32- and 64-bit counters */ SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP; optp->name = 0; (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, sizeof (tcps->tcps_mib)); optp->len = msgdsize(mpdata); qreply(q, mpctl); /* table of connections... */ optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP; optp->name = MIB2_TCP_CONN; optp->len = msgdsize(mp_conn_ctl->b_cont); qreply(q, mp_conn_ctl); /* table of MLP attributes... */ optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP; optp->name = EXPER_XPORT_MLP; optp->len = msgdsize(mp_attr_ctl->b_cont); if (optp->len == 0) freemsg(mp_attr_ctl); else qreply(q, mp_attr_ctl); /* table of IPv6 connections... */ optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP6; optp->name = MIB2_TCP6_CONN; optp->len = msgdsize(mp6_conn_ctl->b_cont); qreply(q, mp6_conn_ctl); /* table of IPv6 MLP attributes... */ optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ sizeof (struct T_optmgmt_ack)]; optp->level = MIB2_TCP6; optp->name = EXPER_XPORT_MLP; optp->len = msgdsize(mp6_attr_ctl->b_cont); if (optp->len == 0) freemsg(mp6_attr_ctl); else qreply(q, mp6_attr_ctl); return (mp2ctl); } /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ /* ARGSUSED */ int tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) { mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; switch (level) { case MIB2_TCP: switch (name) { case 13: if (tce->tcpConnState != MIB2_TCP_deleteTCB) return (0); /* TODO: delete entry defined by tce */ return (1); default: return (0); } default: return (1); } } /* Translate TCP state to MIB2 TCP state. */ static int tcp_snmp_state(tcp_t *tcp) { if (tcp == NULL) return (0); switch (tcp->tcp_state) { case TCPS_CLOSED: case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ case TCPS_BOUND: return (MIB2_TCP_closed); case TCPS_LISTEN: return (MIB2_TCP_listen); case TCPS_SYN_SENT: return (MIB2_TCP_synSent); case TCPS_SYN_RCVD: return (MIB2_TCP_synReceived); case TCPS_ESTABLISHED: return (MIB2_TCP_established); case TCPS_CLOSE_WAIT: return (MIB2_TCP_closeWait); case TCPS_FIN_WAIT_1: return (MIB2_TCP_finWait1); case TCPS_CLOSING: return (MIB2_TCP_closing); case TCPS_LAST_ACK: return (MIB2_TCP_lastAck); case TCPS_FIN_WAIT_2: return (MIB2_TCP_finWait2); case TCPS_TIME_WAIT: return (MIB2_TCP_timeWait); default: return (0); } } /* * tcp_timer is the timer service routine. It handles the retransmission, * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out * from the state of the tcp instance what kind of action needs to be done * at the time it is called. */ static void tcp_timer(void *arg) { mblk_t *mp; clock_t first_threshold; clock_t second_threshold; clock_t ms; uint32_t mss; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcp_stack_t *tcps = tcp->tcp_tcps; tcp->tcp_timer_tid = 0; if (tcp->tcp_fused) return; first_threshold = tcp->tcp_first_timer_threshold; second_threshold = tcp->tcp_second_timer_threshold; switch (tcp->tcp_state) { case TCPS_IDLE: case TCPS_BOUND: case TCPS_LISTEN: return; case TCPS_SYN_RCVD: { tcp_t *listener = tcp->tcp_listener; if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { /* it's our first timeout */ tcp->tcp_syn_rcvd_timeout = 1; mutex_enter(&listener->tcp_eager_lock); listener->tcp_syn_rcvd_timeout++; if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { /* * Make this eager available for drop if we * need to drop one to accomodate a new * incoming SYN request. */ MAKE_DROPPABLE(listener, tcp); } if (!listener->tcp_syn_defense && (listener->tcp_syn_rcvd_timeout > (tcps->tcps_conn_req_max_q0 >> 2)) && (tcps->tcps_conn_req_max_q0 > 200)) { /* We may be under attack. Put on a defense. */ listener->tcp_syn_defense = B_TRUE; cmn_err(CE_WARN, "High TCP connect timeout " "rate! System (port %d) may be under a " "SYN flood attack!", ntohs(listener->tcp_connp->conn_lport)); listener->tcp_ip_addr_cache = kmem_zalloc( IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), KM_NOSLEEP); } mutex_exit(&listener->tcp_eager_lock); } else if (listener != NULL) { mutex_enter(&listener->tcp_eager_lock); tcp->tcp_syn_rcvd_timeout++; if (tcp->tcp_syn_rcvd_timeout > 1 && !tcp->tcp_closemp_used) { /* * This is our second timeout. Put the tcp in * the list of droppable eagers to allow it to * be dropped, if needed. We don't check * whether tcp_dontdrop is set or not to * protect ourselve from a SYN attack where a * remote host can spoof itself as one of the * good IP source and continue to hold * resources too long. */ MAKE_DROPPABLE(listener, tcp); } mutex_exit(&listener->tcp_eager_lock); } } /* FALLTHRU */ case TCPS_SYN_SENT: first_threshold = tcp->tcp_first_ctimer_threshold; second_threshold = tcp->tcp_second_ctimer_threshold; break; case TCPS_ESTABLISHED: case TCPS_FIN_WAIT_1: case TCPS_CLOSING: case TCPS_CLOSE_WAIT: case TCPS_LAST_ACK: /* If we have data to rexmit */ if (tcp->tcp_suna != tcp->tcp_snxt) { clock_t time_to_wait; BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); if (!tcp->tcp_xmit_head) break; time_to_wait = ddi_get_lbolt() - (clock_t)tcp->tcp_xmit_head->b_prev; time_to_wait = tcp->tcp_rto - TICK_TO_MSEC(time_to_wait); /* * If the timer fires too early, 1 clock tick earlier, * restart the timer. */ if (time_to_wait > msec_per_tick) { TCP_STAT(tcps, tcp_timer_fire_early); TCP_TIMER_RESTART(tcp, time_to_wait); return; } /* * When we probe zero windows, we force the swnd open. * If our peer acks with a closed window swnd will be * set to zero by tcp_rput(). As long as we are * receiving acks tcp_rput will * reset 'tcp_ms_we_have_waited' so as not to trip the * first and second interval actions. NOTE: the timer * interval is allowed to continue its exponential * backoff. */ if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_timer: zero win"); } } else { /* * After retransmission, we need to do * slow start. Set the ssthresh to one * half of current effective window and * cwnd to one MSS. Also reset * tcp_cwnd_cnt. * * Note that if tcp_ssthresh is reduced because * of ECN, do not reduce it again unless it is * already one window of data away (tcp_cwr * should then be cleared) or this is a * timeout for a retransmitted segment. */ uint32_t npkt; if (!tcp->tcp_cwr || tcp->tcp_rexmit) { npkt = ((tcp->tcp_timer_backoff ? tcp->tcp_cwnd_ssthresh : tcp->tcp_snxt - tcp->tcp_suna) >> 1) / tcp->tcp_mss; tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; } tcp->tcp_cwnd = tcp->tcp_mss; tcp->tcp_cwnd_cnt = 0; if (tcp->tcp_ecn_ok) { tcp->tcp_cwr = B_TRUE; tcp->tcp_cwr_snd_max = tcp->tcp_snxt; tcp->tcp_ecn_cwr_sent = B_FALSE; } } break; } /* * We have something to send yet we cannot send. The * reason can be: * * 1. Zero send window: we need to do zero window probe. * 2. Zero cwnd: because of ECN, we need to "clock out * segments. * 3. SWS avoidance: receiver may have shrunk window, * reset our knowledge. * * Note that condition 2 can happen with either 1 or * 3. But 1 and 3 are exclusive. */ if (tcp->tcp_unsent != 0) { /* * Should not hold the zero-copy messages for too long. */ if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, B_TRUE); if (tcp->tcp_cwnd == 0) { /* * Set tcp_cwnd to 1 MSS so that a * new segment can be sent out. We * are "clocking out" new data when * the network is really congested. */ ASSERT(tcp->tcp_ecn_ok); tcp->tcp_cwnd = tcp->tcp_mss; } if (tcp->tcp_swnd == 0) { /* Extend window for zero window probe */ tcp->tcp_swnd++; tcp->tcp_zero_win_probe = B_TRUE; BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); } else { /* * Handle timeout from sender SWS avoidance. * Reset our knowledge of the max send window * since the receiver might have reduced its * receive buffer. Avoid setting tcp_max_swnd * to one since that will essentially disable * the SWS checks. * * Note that since we don't have a SWS * state variable, if the timeout is set * for ECN but not for SWS, this * code will also be executed. This is * fine as tcp_max_swnd is updated * constantly and it will not affect * anything. */ tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); } tcp_wput_data(tcp, NULL, B_FALSE); return; } /* Is there a FIN that needs to be to re retransmitted? */ if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && !tcp->tcp_fin_acked) break; /* Nothing to do, return without restarting timer. */ TCP_STAT(tcps, tcp_timer_fire_miss); return; case TCPS_FIN_WAIT_2: /* * User closed the TCP endpoint and peer ACK'ed our FIN. * We waited some time for for peer's FIN, but it hasn't * arrived. We flush the connection now to avoid * case where the peer has rebooted. */ if (TCP_IS_DETACHED(tcp)) { (void) tcp_clean_death(tcp, 0, 23); } else { TCP_TIMER_RESTART(tcp, tcps->tcps_fin_wait_2_flush_interval); } return; case TCPS_TIME_WAIT: (void) tcp_clean_death(tcp, 0, 24); return; default: if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_timer: strange state (%d) %s", tcp->tcp_state, tcp_display(tcp, NULL, DISP_PORT_ONLY)); } return; } if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { /* * Should not hold the zero-copy messages for too long. */ if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, B_TRUE); /* * For zero window probe, we need to send indefinitely, * unless we have not heard from the other side for some * time... */ if ((tcp->tcp_zero_win_probe == 0) || (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > second_threshold)) { BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); /* * If TCP is in SYN_RCVD state, send back a * RST|ACK as BSD does. Note that tcp_zero_win_probe * should be zero in TCPS_SYN_RCVD state. */ if (tcp->tcp_state == TCPS_SYN_RCVD) { tcp_xmit_ctl("tcp_timer: RST sent on timeout " "in SYN_RCVD", tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_RST | TH_ACK); } (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? tcp->tcp_client_errno : ETIMEDOUT, 25); return; } else { /* * Set tcp_ms_we_have_waited to second_threshold * so that in next timeout, we will do the above * check (ddi_get_lbolt() - tcp_last_recv_time). * This is also to avoid overflow. * * We don't need to decrement tcp_timer_backoff * to avoid overflow because it will be decremented * later if new timeout value is greater than * tcp_rexmit_interval_max. In the case when * tcp_rexmit_interval_max is greater than * second_threshold, it means that we will wait * longer than second_threshold to send the next * window probe. */ tcp->tcp_ms_we_have_waited = second_threshold; } } else if (ms > first_threshold) { /* * Should not hold the zero-copy messages for too long. */ if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, B_TRUE); /* * We have been retransmitting for too long... The RTT * we calculated is probably incorrect. Reinitialize it. * Need to compensate for 0 tcp_rtt_sa. Reset * tcp_rtt_update so that we won't accidentally cache a * bad value. But only do this if this is not a zero * window probe. */ if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + (tcp->tcp_rtt_sa >> 5); tcp->tcp_rtt_sa = 0; tcp_ip_notify(tcp); tcp->tcp_rtt_update = 0; } } tcp->tcp_timer_backoff++; if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < tcps->tcps_rexmit_interval_min) { /* * This means the original RTO is tcp_rexmit_interval_min. * So we will use tcp_rexmit_interval_min as the RTO value * and do the backoff. */ ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; } else { ms <<= tcp->tcp_timer_backoff; } if (ms > tcps->tcps_rexmit_interval_max) { ms = tcps->tcps_rexmit_interval_max; /* * ms is at max, decrement tcp_timer_backoff to avoid * overflow. */ tcp->tcp_timer_backoff--; } tcp->tcp_ms_we_have_waited += ms; if (tcp->tcp_zero_win_probe == 0) { tcp->tcp_rto = ms; } TCP_TIMER_RESTART(tcp, ms); /* * This is after a timeout and tcp_rto is backed off. Set * tcp_set_timer to 1 so that next time RTO is updated, we will * restart the timer with a correct value. */ tcp->tcp_set_timer = 1; mss = tcp->tcp_snxt - tcp->tcp_suna; if (mss > tcp->tcp_mss) mss = tcp->tcp_mss; if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) mss = tcp->tcp_swnd; if ((mp = tcp->tcp_xmit_head) != NULL) mp->b_prev = (mblk_t *)ddi_get_lbolt(); mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, B_TRUE); /* * When slow start after retransmission begins, start with * this seq no. tcp_rexmit_max marks the end of special slow * start phase. tcp_snd_burst controls how many segments * can be sent because of an ack. */ tcp->tcp_rexmit_nxt = tcp->tcp_suna; tcp->tcp_snd_burst = TCP_CWND_SS; if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (tcp->tcp_unsent == 0)) { tcp->tcp_rexmit_max = tcp->tcp_fss; } else { tcp->tcp_rexmit_max = tcp->tcp_snxt; } tcp->tcp_rexmit = B_TRUE; tcp->tcp_dupack_cnt = 0; /* * Remove all rexmit SACK blk to start from fresh. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); if (mp == NULL) { return; } tcp->tcp_csuna = tcp->tcp_snxt; BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); tcp_send_data(tcp, mp); } static int tcp_do_unbind(conn_t *connp) { tcp_t *tcp = connp->conn_tcp; switch (tcp->tcp_state) { case TCPS_BOUND: case TCPS_LISTEN: break; default: return (-TOUTSTATE); } /* * Need to clean up all the eagers since after the unbind, segments * will no longer be delivered to this listener stream. */ mutex_enter(&tcp->tcp_eager_lock); if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { tcp_eager_cleanup(tcp, 0); } mutex_exit(&tcp->tcp_eager_lock); connp->conn_laddr_v6 = ipv6_all_zeros; connp->conn_saddr_v6 = ipv6_all_zeros; tcp_bind_hash_remove(tcp); tcp->tcp_state = TCPS_IDLE; ip_unbind(connp); bzero(&connp->conn_ports, sizeof (connp->conn_ports)); return (0); } /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ static void tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) { conn_t *connp = tcp->tcp_connp; int error; error = tcp_do_unbind(connp); if (error > 0) { tcp_err_ack(tcp, mp, TSYSERR, error); } else if (error < 0) { tcp_err_ack(tcp, mp, -error, 0); } else { /* Send M_FLUSH according to TPI */ (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); mp = mi_tpi_ok_ack_alloc(mp); if (mp != NULL) putnext(connp->conn_rq, mp); } } /* * Don't let port fall into the privileged range. * Since the extra privileged ports can be arbitrary we also * ensure that we exclude those from consideration. * tcp_g_epriv_ports is not sorted thus we loop over it until * there are no changes. * * Note: No locks are held when inspecting tcp_g_*epriv_ports * but instead the code relies on: * - the fact that the address of the array and its size never changes * - the atomic assignment of the elements of the array * * Returns 0 if there are no more ports available. * * TS note: skip multilevel ports. */ static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) { int i; boolean_t restart = B_FALSE; tcp_stack_t *tcps = tcp->tcp_tcps; if (random && tcp_random_anon_port != 0) { (void) random_get_pseudo_bytes((uint8_t *)&port, sizeof (in_port_t)); /* * Unless changed by a sys admin, the smallest anon port * is 32768 and the largest anon port is 65535. It is * very likely (50%) for the random port to be smaller * than the smallest anon port. When that happens, * add port % (anon port range) to the smallest anon * port to get the random port. It should fall into the * valid anon port range. */ if (port < tcps->tcps_smallest_anon_port) { port = tcps->tcps_smallest_anon_port + port % (tcps->tcps_largest_anon_port - tcps->tcps_smallest_anon_port); } } retry: if (port < tcps->tcps_smallest_anon_port) port = (in_port_t)tcps->tcps_smallest_anon_port; if (port > tcps->tcps_largest_anon_port) { if (restart) return (0); restart = B_TRUE; port = (in_port_t)tcps->tcps_smallest_anon_port; } if (port < tcps->tcps_smallest_nonpriv_port) port = (in_port_t)tcps->tcps_smallest_nonpriv_port; for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { if (port == tcps->tcps_g_epriv_ports[i]) { port++; /* * Make sure whether the port is in the * valid range. */ goto retry; } } if (is_system_labeled() && (i = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), port, IPPROTO_TCP, B_TRUE)) != 0) { port = i; goto retry; } return (port); } /* * Return the next anonymous port in the privileged port range for * bind checking. It starts at IPPORT_RESERVED - 1 and goes * downwards. This is the same behavior as documented in the userland * library call rresvport(3N). * * TS note: skip multilevel ports. */ static in_port_t tcp_get_next_priv_port(const tcp_t *tcp) { static in_port_t next_priv_port = IPPORT_RESERVED - 1; in_port_t nextport; boolean_t restart = B_FALSE; tcp_stack_t *tcps = tcp->tcp_tcps; retry: if (next_priv_port < tcps->tcps_min_anonpriv_port || next_priv_port >= IPPORT_RESERVED) { next_priv_port = IPPORT_RESERVED - 1; if (restart) return (0); restart = B_TRUE; } if (is_system_labeled() && (nextport = tsol_next_port(crgetzone(tcp->tcp_connp->conn_cred), next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { next_priv_port = nextport; goto retry; } return (next_priv_port--); } /* The write side r/w procedure. */ #if CCS_STATS struct { struct { int64_t count, bytes; } tot, hit; } wrw_stats; #endif /* * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, * messages. */ /* ARGSUSED */ static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; ASSERT(DB_TYPE(mp) != M_IOCTL); /* * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. * Once the close starts, streamhead and sockfs will not let any data * packets come down (close ensures that there are no threads using the * queue and no new threads will come down) but since qprocsoff() * hasn't happened yet, a M_FLUSH or some non data message might * get reflected back (in response to our own FLUSHRW) and get * processed after tcp_close() is done. The conn would still be valid * because a ref would have added but we need to check the state * before actually processing the packet. */ if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { freemsg(mp); return; } switch (DB_TYPE(mp)) { case M_IOCDATA: tcp_wput_iocdata(tcp, mp); break; case M_FLUSH: tcp_wput_flush(tcp, mp); break; default: ip_wput_nondata(connp->conn_wq, mp); break; } } /* * The TCP fast path write put procedure. * NOTE: the logic of the fast path is duplicated from tcp_wput_data() */ /* ARGSUSED */ void tcp_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { int len; int hdrlen; int plen; mblk_t *mp1; uchar_t *rptr; uint32_t snxt; tcpha_t *tcpha; struct datab *db; uint32_t suna; uint32_t mss; ipaddr_t *dst; ipaddr_t *src; uint32_t sum; int usable; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; uint32_t msize; tcp_stack_t *tcps = tcp->tcp_tcps; ip_xmit_attr_t *ixa; clock_t now; /* * Try and ASSERT the minimum possible references on the * conn early enough. Since we are executing on write side, * the connection is obviously not detached and that means * there is a ref each for TCP and IP. Since we are behind * the squeue, the minimum references needed are 3. If the * conn is in classifier hash list, there should be an * extra ref for that (we check both the possibilities). */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); ASSERT(DB_TYPE(mp) == M_DATA); msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); mutex_enter(&tcp->tcp_non_sq_lock); tcp->tcp_squeue_bytes -= msize; mutex_exit(&tcp->tcp_non_sq_lock); /* Bypass tcp protocol for fused tcp loopback */ if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) return; mss = tcp->tcp_mss; /* * If ZEROCOPY has turned off, try not to send any zero-copy message * down. Do backoff, now. */ if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on) mp = tcp_zcopy_backoff(tcp, mp, B_FALSE); ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); len = (int)(mp->b_wptr - mp->b_rptr); /* * Criteria for fast path: * * 1. no unsent data * 2. single mblk in request * 3. connection established * 4. data in mblk * 5. len <= mss * 6. no tcp_valid bits */ if ((tcp->tcp_unsent != 0) || (tcp->tcp_cork) || (mp->b_cont != NULL) || (tcp->tcp_state != TCPS_ESTABLISHED) || (len == 0) || (len > mss) || (tcp->tcp_valid_bits != 0)) { tcp_wput_data(tcp, mp, B_FALSE); return; } ASSERT(tcp->tcp_xmit_tail_unsent == 0); ASSERT(tcp->tcp_fin_sent == 0); /* queue new packet onto retransmission queue */ if (tcp->tcp_xmit_head == NULL) { tcp->tcp_xmit_head = mp; } else { tcp->tcp_xmit_last->b_cont = mp; } tcp->tcp_xmit_last = mp; tcp->tcp_xmit_tail = mp; /* find out how much we can send */ /* BEGIN CSTYLED */ /* * un-acked usable * |--------------|-----------------| * tcp_suna tcp_snxt tcp_suna+tcp_swnd */ /* END CSTYLED */ /* start sending from tcp_snxt */ snxt = tcp->tcp_snxt; /* * Check to see if this connection has been idled for some * time and no ACK is expected. If it is, we need to slow * start again to get back the connection's "self-clock" as * described in VJ's paper. * * Reinitialize tcp_cwnd after idle. */ now = LBOLT_FASTPATH; if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); } usable = tcp->tcp_swnd; /* tcp window size */ if (usable > tcp->tcp_cwnd) usable = tcp->tcp_cwnd; /* congestion window smaller */ usable -= snxt; /* subtract stuff already sent */ suna = tcp->tcp_suna; usable += suna; /* usable can be < 0 if the congestion window is smaller */ if (len > usable) { /* Can't send complete M_DATA in one shot */ goto slow; } mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { tcp_clrqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); /* * determine if anything to send (Nagle). * * 1. len < tcp_mss (i.e. small) * 2. unacknowledged data present * 3. len < nagle limit * 4. last packet sent < nagle limit (previous packet sent) */ if ((len < mss) && (snxt != suna) && (len < (int)tcp->tcp_naglim) && (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { /* * This was the first unsent packet and normally * mss < xmit_hiwater so there is no need to worry * about flow control. The next packet will go * through the flow control check in tcp_wput_data(). */ /* leftover work from above */ tcp->tcp_unsent = len; tcp->tcp_xmit_tail_unsent = len; return; } /* len <= tcp->tcp_mss && len == unsent so no silly window */ if (snxt == suna) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* we have always sent something */ tcp->tcp_rack_cnt = 0; tcp->tcp_snxt = snxt + len; tcp->tcp_rack = tcp->tcp_rnxt; if ((mp1 = dupb(mp)) == 0) goto no_memory; mp->b_prev = (mblk_t *)(uintptr_t)now; mp->b_next = (mblk_t *)(uintptr_t)snxt; /* adjust tcp header information */ tcpha = tcp->tcp_tcpha; tcpha->tha_flags = (TH_ACK|TH_PUSH); sum = len + connp->conn_ht_ulp_len + connp->conn_sum; sum = (sum >> 16) + (sum & 0xFFFF); tcpha->tha_sum = htons(sum); tcpha->tha_seq = htonl(snxt); BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); BUMP_LOCAL(tcp->tcp_obsegs); /* Update the latest receive window size in TCP header. */ tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); tcp->tcp_last_sent_len = (ushort_t)len; plen = len + connp->conn_ht_iphc_len; ixa = connp->conn_ixa; ixa->ixa_pktlen = plen; if (ixa->ixa_flags & IXAF_IS_IPV4) { tcp->tcp_ipha->ipha_length = htons(plen); } else { tcp->tcp_ip6h->ip6_plen = htons(plen - IPV6_HDR_LEN); } /* see if we need to allocate a mblk for the headers */ hdrlen = connp->conn_ht_iphc_len; rptr = mp1->b_rptr - hdrlen; db = mp1->b_datap; if ((db->db_ref != 2) || rptr < db->db_base || (!OK_32PTR(rptr))) { /* NOTE: we assume allocb returns an OK_32PTR */ mp = allocb(hdrlen + tcps->tcps_wroff_xtra, BPRI_MED); if (!mp) { freemsg(mp1); goto no_memory; } mp->b_cont = mp1; mp1 = mp; /* Leave room for Link Level header */ rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; mp1->b_wptr = &rptr[hdrlen]; } mp1->b_rptr = rptr; /* Fill in the timestamp option. */ if (tcp->tcp_snd_ts_ok) { uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; U32_TO_BE32(llbolt, (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); } else { ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); } /* copy header into outgoing packet */ dst = (ipaddr_t *)rptr; src = (ipaddr_t *)connp->conn_ht_iphc; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; if (hdrlen -= 40) { hdrlen >>= 2; dst += 10; src += 10; do { *dst++ = *src++; } while (--hdrlen); } /* * Set the ECN info in the TCP header. Note that this * is not the template header. */ if (tcp->tcp_ecn_ok) { SET_ECT(tcp, rptr); tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); if (tcp->tcp_ecn_echo_on) tcpha->tha_flags |= TH_ECE; if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { tcpha->tha_flags |= TH_CWR; tcp->tcp_ecn_cwr_sent = B_TRUE; } } if (tcp->tcp_ip_forward_progress) { tcp->tcp_ip_forward_progress = B_FALSE; connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; } else { connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; } tcp_send_data(tcp, mp1); return; /* * If we ran out of memory, we pretend to have sent the packet * and that it was lost on the wire. */ no_memory: return; slow: /* leftover work from above */ tcp->tcp_unsent = len; tcp->tcp_xmit_tail_unsent = len; tcp_wput_data(tcp, NULL, B_FALSE); } /* * This runs at the tail end of accept processing on the squeue of the * new connection. */ /* ARGSUSED */ void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = connp->conn_rq; tcp_stack_t *tcps = tcp->tcp_tcps; /* socket options */ struct sock_proto_props sopp; /* We should just receive a single mblk that fits a T_discon_ind */ ASSERT(mp->b_cont == NULL); /* * Drop the eager's ref on the listener, that was placed when * this eager began life in tcp_input_listener. */ CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); if (IPCL_IS_NONSTR(connp)) { /* Safe to free conn_ind message */ freemsg(tcp->tcp_conn.tcp_eager_conn_ind); tcp->tcp_conn.tcp_eager_conn_ind = NULL; } tcp->tcp_detached = B_FALSE; if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { /* * Someone blewoff the eager before we could finish * the accept. * * The only reason eager exists it because we put in * a ref on it when conn ind went up. We need to send * a disconnect indication up while the last reference * on the eager will be dropped by the squeue when we * return. */ ASSERT(tcp->tcp_listener == NULL); if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { if (IPCL_IS_NONSTR(connp)) { ASSERT(tcp->tcp_issocket); (*connp->conn_upcalls->su_disconnected)( connp->conn_upper_handle, tcp->tcp_connid, ECONNREFUSED); freemsg(mp); } else { struct T_discon_ind *tdi; (void) putnextctl1(q, M_FLUSH, FLUSHRW); /* * Let us reuse the incoming mblk to avoid * memory allocation failure problems. We know * that the size of the incoming mblk i.e. * stroptions is greater than sizeof * T_discon_ind. */ ASSERT(DB_REF(mp) == 1); ASSERT(MBLKSIZE(mp) >= sizeof (struct T_discon_ind)); DB_TYPE(mp) = M_PROTO; ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; tdi = (struct T_discon_ind *)mp->b_rptr; if (tcp->tcp_issocket) { tdi->DISCON_reason = ECONNREFUSED; tdi->SEQ_number = 0; } else { tdi->DISCON_reason = ENOPROTOOPT; tdi->SEQ_number = tcp->tcp_conn_req_seqnum; } mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); putnext(q, mp); } } tcp->tcp_hard_binding = B_FALSE; return; } /* * Set max window size (conn_rcvbuf) of the acceptor. */ if (tcp->tcp_rcv_list == NULL) { /* * Recv queue is empty, tcp_rwnd should not have changed. * That means it should be equal to the listener's tcp_rwnd. */ connp->conn_rcvbuf = tcp->tcp_rwnd; } else { #ifdef DEBUG mblk_t *tmp; mblk_t *mp1; uint_t cnt = 0; mp1 = tcp->tcp_rcv_list; while ((tmp = mp1) != NULL) { mp1 = tmp->b_next; cnt += msgdsize(tmp); } ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); #endif /* There is some data, add them back to get the max. */ connp->conn_rcvbuf = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; } /* * This is the first time we run on the correct * queue after tcp_accept. So fix all the q parameters * here. */ sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; sopp.sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); sopp.sopp_rxhiwat = tcp->tcp_fused ? tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : connp->conn_rcvbuf; /* * Determine what write offset value to use depending on SACK and * whether the endpoint is fused or not. */ if (tcp->tcp_fused) { ASSERT(tcp->tcp_loopback); ASSERT(tcp->tcp_loopback_peer != NULL); /* * For fused tcp loopback, set the stream head's write * offset value to zero since we won't be needing any room * for TCP/IP headers. This would also improve performance * since it would reduce the amount of work done by kmem. * Non-fused tcp loopback case is handled separately below. */ sopp.sopp_wroff = 0; /* * Update the peer's transmit parameters according to * our recently calculated high water mark value. */ (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); } else if (tcp->tcp_snd_sack_ok) { sopp.sopp_wroff = connp->conn_ht_iphc_allocated + (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); } else { sopp.sopp_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); } /* * If this is endpoint is handling SSL, then reserve extra * offset and space at the end. * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, * overriding the previous setting. The extra cost of signing and * encrypting multiple MSS-size records (12 of them with Ethernet), * instead of a single contiguous one by the stream head * largely outweighs the statistical reduction of ACKs, when * applicable. The peer will also save on decryption and verification * costs. */ if (tcp->tcp_kssl_ctx != NULL) { sopp.sopp_wroff += SSL3_WROFFSET; sopp.sopp_flags |= SOCKOPT_TAIL; sopp.sopp_tail = SSL3_MAX_TAIL_LEN; sopp.sopp_flags |= SOCKOPT_ZCOPY; sopp.sopp_zcopyflag = ZCVMUNSAFE; sopp.sopp_maxblk = SSL3_MAX_RECORD_LEN; } /* Send the options up */ if (IPCL_IS_NONSTR(connp)) { if (sopp.sopp_flags & SOCKOPT_TAIL) { ASSERT(tcp->tcp_kssl_ctx != NULL); ASSERT(sopp.sopp_flags & SOCKOPT_ZCOPY); } if (tcp->tcp_loopback) { sopp.sopp_flags |= SOCKOPT_LOOPBACK; sopp.sopp_loopback = B_TRUE; } (*connp->conn_upcalls->su_set_proto_props) (connp->conn_upper_handle, &sopp); freemsg(mp); } else { /* * Let us reuse the incoming mblk to avoid * memory allocation failure problems. We know * that the size of the incoming mblk is at least * stroptions */ struct stroptions *stropt; ASSERT(DB_REF(mp) == 1); ASSERT(MBLKSIZE(mp) >= sizeof (struct stroptions)); DB_TYPE(mp) = M_SETOPTS; stropt = (struct stroptions *)mp->b_rptr; mp->b_wptr = mp->b_rptr + sizeof (struct stroptions); stropt = (struct stroptions *)mp->b_rptr; stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; stropt->so_hiwat = sopp.sopp_rxhiwat; stropt->so_wroff = sopp.sopp_wroff; stropt->so_maxblk = sopp.sopp_maxblk; if (sopp.sopp_flags & SOCKOPT_TAIL) { ASSERT(tcp->tcp_kssl_ctx != NULL); stropt->so_flags |= SO_TAIL | SO_COPYOPT; stropt->so_tail = sopp.sopp_tail; stropt->so_copyopt = sopp.sopp_zcopyflag; } /* Send the options up */ putnext(q, mp); } /* * Pass up any data and/or a fin that has been received. * * Adjust receive window in case it had decreased * (because there is data <=> tcp_rcv_list != NULL) * while the connection was detached. Note that * in case the eager was flow-controlled, w/o this * code, the rwnd may never open up again! */ if (tcp->tcp_rcv_list != NULL) { if (IPCL_IS_NONSTR(connp)) { mblk_t *mp; int space_left; int error; boolean_t push = B_TRUE; if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) (connp->conn_upper_handle, NULL, 0, 0, &error, &push) >= 0) { tcp->tcp_rwnd = connp->conn_rcvbuf; if (tcp->tcp_state >= TCPS_ESTABLISHED && tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { tcp_xmit_ctl(NULL, tcp, (tcp->tcp_swnd == 0) ? tcp->tcp_suna : tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } } while ((mp = tcp->tcp_rcv_list) != NULL) { push = B_TRUE; tcp->tcp_rcv_list = mp->b_next; mp->b_next = NULL; space_left = (*connp->conn_upcalls->su_recv) (connp->conn_upper_handle, mp, msgdsize(mp), 0, &error, &push); if (space_left < 0) { /* * We should never be in middle of a * fallback, the squeue guarantees that. */ ASSERT(error != EOPNOTSUPP); } } tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; } else { /* We drain directly in case of fused tcp loopback */ if (!tcp->tcp_fused && canputnext(q)) { tcp->tcp_rwnd = connp->conn_rcvbuf; if (tcp->tcp_state >= TCPS_ESTABLISHED && tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { tcp_xmit_ctl(NULL, tcp, (tcp->tcp_swnd == 0) ? tcp->tcp_suna : tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } } (void) tcp_rcv_drain(tcp); } /* * For fused tcp loopback, back-enable peer endpoint * if it's currently flow-controlled. */ if (tcp->tcp_fused) { tcp_t *peer_tcp = tcp->tcp_loopback_peer; ASSERT(peer_tcp != NULL); ASSERT(peer_tcp->tcp_fused); mutex_enter(&peer_tcp->tcp_non_sq_lock); if (peer_tcp->tcp_flow_stopped) { tcp_clrqfull(peer_tcp); TCP_STAT(tcps, tcp_fusion_backenabled); } mutex_exit(&peer_tcp->tcp_non_sq_lock); } } ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { tcp->tcp_ordrel_done = B_TRUE; if (IPCL_IS_NONSTR(connp)) { ASSERT(tcp->tcp_ordrel_mp == NULL); (*connp->conn_upcalls->su_opctl)( connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); } else { mp = tcp->tcp_ordrel_mp; tcp->tcp_ordrel_mp = NULL; putnext(q, mp); } } tcp->tcp_hard_binding = B_FALSE; if (connp->conn_keepalive) { tcp->tcp_ka_last_intrvl = 0; tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, MSEC_TO_TICK(tcp->tcp_ka_interval)); } /* * At this point, eager is fully established and will * have the following references - * * 2 references for connection to exist (1 for TCP and 1 for IP). * 1 reference for the squeue which will be dropped by the squeue as * soon as this function returns. * There will be 1 additonal reference for being in classifier * hash list provided something bad hasn't happened. */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); } /* * The function called through squeue to get behind listener's perimeter to * send a deferred conn_ind. */ /* ARGSUSED */ void tcp_send_pending(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *lconnp = (conn_t *)arg; tcp_t *listener = lconnp->conn_tcp; struct T_conn_ind *conn_ind; tcp_t *tcp; conn_ind = (struct T_conn_ind *)mp->b_rptr; bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, conn_ind->OPT_length); if (listener->tcp_state != TCPS_LISTEN) { /* * If listener has closed, it would have caused a * a cleanup/blowoff to happen for the eager, so * we don't need to do anything more. */ freemsg(mp); return; } tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); } /* * Common to TPI and sockfs accept code. */ /* ARGSUSED2 */ static int tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) { tcp_t *listener, *eager; mblk_t *discon_mp; listener = lconnp->conn_tcp; ASSERT(listener->tcp_state == TCPS_LISTEN); eager = econnp->conn_tcp; ASSERT(eager->tcp_listener != NULL); /* * Pre allocate the discon_ind mblk also. tcp_accept_finish will * use it if something failed. */ discon_mp = allocb(MAX(sizeof (struct T_discon_ind), sizeof (struct stroptions)), BPRI_HI); if (discon_mp == NULL) { return (-TPROTO); } eager->tcp_issocket = B_TRUE; econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; econnp->conn_allzones = listener->tcp_connp->conn_allzones; ASSERT(econnp->conn_netstack == listener->tcp_connp->conn_netstack); ASSERT(eager->tcp_tcps == listener->tcp_tcps); /* Put the ref for IP */ CONN_INC_REF(econnp); /* * We should have minimum of 3 references on the conn * at this point. One each for TCP and IP and one for * the T_conn_ind that was sent up when the 3-way handshake * completed. In the normal case we would also have another * reference (making a total of 4) for the conn being in the * classifier hash list. However the eager could have received * an RST subsequently and tcp_closei_local could have removed * the eager from the classifier hash list, hence we can't * assert that reference. */ ASSERT(econnp->conn_ref >= 3); mutex_enter(&listener->tcp_eager_lock); if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { tcp_t *tail; tcp_t *tcp; mblk_t *mp1; tcp = listener->tcp_eager_prev_q0; /* * listener->tcp_eager_prev_q0 points to the TAIL of the * deferred T_conn_ind queue. We need to get to the head * of the queue in order to send up T_conn_ind the same * order as how the 3WHS is completed. */ while (tcp != listener) { if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && !tcp->tcp_kssl_pending) break; else tcp = tcp->tcp_eager_prev_q0; } /* None of the pending eagers can be sent up now */ if (tcp == listener) goto no_more_eagers; mp1 = tcp->tcp_conn.tcp_eager_conn_ind; tcp->tcp_conn.tcp_eager_conn_ind = NULL; /* Move from q0 to q */ ASSERT(listener->tcp_conn_req_cnt_q0 > 0); listener->tcp_conn_req_cnt_q0--; listener->tcp_conn_req_cnt_q++; tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = tcp->tcp_eager_prev_q0; tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; tcp->tcp_eager_prev_q0 = NULL; tcp->tcp_eager_next_q0 = NULL; tcp->tcp_conn_def_q0 = B_FALSE; /* Make sure the tcp isn't in the list of droppables */ ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && tcp->tcp_eager_prev_drop_q0 == NULL); /* * Insert at end of the queue because sockfs sends * down T_CONN_RES in chronological order. Leaving * the older conn indications at front of the queue * helps reducing search time. */ tail = listener->tcp_eager_last_q; if (tail != NULL) { tail->tcp_eager_next_q = tcp; } else { listener->tcp_eager_next_q = tcp; } listener->tcp_eager_last_q = tcp; tcp->tcp_eager_next_q = NULL; /* Need to get inside the listener perimeter */ CONN_INC_REF(listener->tcp_connp); SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, tcp_send_pending, listener->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_SEND_PENDING); } no_more_eagers: tcp_eager_unlink(eager); mutex_exit(&listener->tcp_eager_lock); /* * At this point, the eager is detached from the listener * but we still have an extra refs on eager (apart from the * usual tcp references). The ref was placed in tcp_rput_data * before sending the conn_ind in tcp_send_conn_ind. * The ref will be dropped in tcp_accept_finish(). */ SQUEUE_ENTER_ONE(econnp->conn_sqp, discon_mp, tcp_accept_finish, econnp, NULL, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); return (0); } int tcp_accept(sock_lower_handle_t lproto_handle, sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, cred_t *cr) { conn_t *lconnp, *econnp; tcp_t *listener, *eager; lconnp = (conn_t *)lproto_handle; listener = lconnp->conn_tcp; ASSERT(listener->tcp_state == TCPS_LISTEN); econnp = (conn_t *)eproto_handle; eager = econnp->conn_tcp; ASSERT(eager->tcp_listener != NULL); /* * It is OK to manipulate these fields outside the eager's squeue * because they will not start being used until tcp_accept_finish * has been called. */ ASSERT(lconnp->conn_upper_handle != NULL); ASSERT(econnp->conn_upper_handle == NULL); econnp->conn_upper_handle = sock_handle; econnp->conn_upcalls = lconnp->conn_upcalls; ASSERT(IPCL_IS_NONSTR(econnp)); return (tcp_accept_common(lconnp, econnp, cr)); } /* * This is the STREAMS entry point for T_CONN_RES coming down on * Acceptor STREAM when sockfs listener does accept processing. * Read the block comment on top of tcp_input_listener(). */ void tcp_tpi_accept(queue_t *q, mblk_t *mp) { queue_t *rq = RD(q); struct T_conn_res *conn_res; tcp_t *eager; tcp_t *listener; struct T_ok_ack *ok; t_scalar_t PRIM_type; conn_t *econnp; cred_t *cr; ASSERT(DB_TYPE(mp) == M_PROTO); /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) { mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); if (mp != NULL) putnext(rq, mp); return; } conn_res = (struct T_conn_res *)mp->b_rptr; ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); if (mp != NULL) putnext(rq, mp); return; } switch (conn_res->PRIM_type) { case O_T_CONN_RES: case T_CONN_RES: /* * We pass up an err ack if allocb fails. This will * cause sockfs to issue a T_DISCON_REQ which will cause * tcp_eager_blowoff to be called. sockfs will then call * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. * we need to do the allocb up here because we have to * make sure rq->q_qinfo->qi_qclose still points to the * correct function (tcp_tpi_close_accept) in case allocb * fails. */ bcopy(mp->b_rptr + conn_res->OPT_offset, &eager, conn_res->OPT_length); PRIM_type = conn_res->PRIM_type; mp->b_datap->db_type = M_PCPROTO; mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); ok = (struct T_ok_ack *)mp->b_rptr; ok->PRIM_type = T_OK_ACK; ok->CORRECT_prim = PRIM_type; econnp = eager->tcp_connp; econnp->conn_dev = (dev_t)RD(q)->q_ptr; econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); econnp->conn_rq = rq; econnp->conn_wq = q; rq->q_ptr = econnp; rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ q->q_ptr = econnp; q->q_qinfo = &tcp_winit; listener = eager->tcp_listener; if (tcp_accept_common(listener->tcp_connp, econnp, cr) < 0) { mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); if (mp != NULL) putnext(rq, mp); return; } /* * Send the new local address also up to sockfs. There * should already be enough space in the mp that came * down from soaccept(). */ if (econnp->conn_family == AF_INET) { sin_t *sin; ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= (sizeof (struct T_ok_ack) + sizeof (sin_t))); sin = (sin_t *)mp->b_wptr; mp->b_wptr += sizeof (sin_t); sin->sin_family = AF_INET; sin->sin_port = econnp->conn_lport; sin->sin_addr.s_addr = econnp->conn_laddr_v4; } else { sin6_t *sin6; ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= sizeof (struct T_ok_ack) + sizeof (sin6_t)); sin6 = (sin6_t *)mp->b_wptr; mp->b_wptr += sizeof (sin6_t); sin6->sin6_family = AF_INET6; sin6->sin6_port = econnp->conn_lport; sin6->sin6_addr = econnp->conn_laddr_v6; if (econnp->conn_ipversion == IPV4_VERSION) { sin6->sin6_flowinfo = 0; } else { ASSERT(eager->tcp_ip6h != NULL); sin6->sin6_flowinfo = eager->tcp_ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; } if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6) && (econnp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)) { sin6->sin6_scope_id = econnp->conn_ixa->ixa_scopeid; } else { sin6->sin6_scope_id = 0; } sin6->__sin6_src_id = 0; } putnext(rq, mp); return; default: mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); if (mp != NULL) putnext(rq, mp); return; } } /* * Handle special out-of-band ioctl requests (see PSARC/2008/265). */ static void tcp_wput_cmdblk(queue_t *q, mblk_t *mp) { void *data; mblk_t *datamp = mp->b_cont; conn_t *connp = Q_TO_CONN(q); tcp_t *tcp = connp->conn_tcp; cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { cmdp->cb_error = EPROTO; qreply(q, mp); return; } data = datamp->b_rptr; switch (cmdp->cb_cmd) { case TI_GETPEERNAME: if (tcp->tcp_state < TCPS_SYN_RCVD) cmdp->cb_error = ENOTCONN; else cmdp->cb_error = conn_getpeername(connp, data, &cmdp->cb_len); break; case TI_GETMYNAME: cmdp->cb_error = conn_getsockname(connp, data, &cmdp->cb_len); break; default: cmdp->cb_error = EINVAL; break; } qreply(q, mp); } void tcp_wput(queue_t *q, mblk_t *mp) { conn_t *connp = Q_TO_CONN(q); tcp_t *tcp; void (*output_proc)(); t_scalar_t type; uchar_t *rptr; struct iocblk *iocp; size_t size; tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; ASSERT(connp->conn_ref >= 2); switch (DB_TYPE(mp)) { case M_DATA: tcp = connp->conn_tcp; ASSERT(tcp != NULL); size = msgdsize(mp); mutex_enter(&tcp->tcp_non_sq_lock); tcp->tcp_squeue_bytes += size; if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { tcp_setqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); CONN_INC_REF(connp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); return; case M_CMD: tcp_wput_cmdblk(q, mp); return; case M_PROTO: case M_PCPROTO: /* * if it is a snmp message, don't get behind the squeue */ tcp = connp->conn_tcp; rptr = mp->b_rptr; if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { type = ((union T_primitives *)rptr)->type; } else { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, dropping one..."); } freemsg(mp); return; } if (type == T_SVR4_OPTMGMT_REQ) { /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cred_t *cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) { tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, cr)) { /* * This was a SNMP request */ return; } else { output_proc = tcp_wput_proto; } } else { output_proc = tcp_wput_proto; } break; case M_IOCTL: /* * Most ioctls can be processed right away without going via * squeues - process them right here. Those that do require * squeue (currently _SIOCSOCKFALLBACK) * are processed by tcp_wput_ioctl(). */ iocp = (struct iocblk *)mp->b_rptr; tcp = connp->conn_tcp; switch (iocp->ioc_cmd) { case TCP_IOC_ABORT_CONN: tcp_ioctl_abort_conn(q, mp); return; case TI_GETPEERNAME: case TI_GETMYNAME: mi_copyin(q, mp, NULL, SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); return; case ND_SET: /* nd_getset does the necessary checks */ case ND_GET: if (nd_getset(q, tcps->tcps_g_nd, mp)) { qreply(q, mp); return; } ip_wput_nondata(q, mp); return; default: output_proc = tcp_wput_ioctl; break; } break; default: output_proc = tcp_wput_nondata; break; } CONN_INC_REF(connp); SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, NULL, tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); } /* * Initial STREAMS write side put() procedure for sockets. It tries to * handle the T_CAPABILITY_REQ which sockfs sends down while setting * up the socket without using the squeue. Non T_CAPABILITY_REQ messages * are handled by tcp_wput() as usual. * * All further messages will also be handled by tcp_wput() because we cannot * be sure that the above short cut is safe later. */ static void tcp_wput_sock(queue_t *wq, mblk_t *mp) { conn_t *connp = Q_TO_CONN(wq); tcp_t *tcp = connp->conn_tcp; struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; ASSERT(wq->q_qinfo == &tcp_sock_winit); wq->q_qinfo = &tcp_winit; ASSERT(IPCL_IS_TCP(connp)); ASSERT(TCP_IS_SOCKET(tcp)); if (DB_TYPE(mp) == M_PCPROTO && MBLKL(mp) == sizeof (struct T_capability_req) && car->PRIM_type == T_CAPABILITY_REQ) { tcp_capability_req(tcp, mp); return; } tcp_wput(wq, mp); } /* ARGSUSED */ static void tcp_wput_fallback(queue_t *wq, mblk_t *mp) { #ifdef DEBUG cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); #endif freemsg(mp); } /* * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. */ static boolean_t tcp_zcopy_check(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; ip_xmit_attr_t *ixa = connp->conn_ixa; boolean_t zc_enabled = B_FALSE; tcp_stack_t *tcps = tcp->tcp_tcps; if (do_tcpzcopy == 2) zc_enabled = B_TRUE; else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) zc_enabled = B_TRUE; tcp->tcp_snd_zcopy_on = zc_enabled; if (!TCP_IS_DETACHED(tcp)) { if (zc_enabled) { ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; (void) proto_set_tx_copyopt(connp->conn_rq, connp, ZCVMSAFE); TCP_STAT(tcps, tcp_zcopy_on); } else { ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; (void) proto_set_tx_copyopt(connp->conn_rq, connp, ZCVMUNSAFE); TCP_STAT(tcps, tcp_zcopy_off); } } return (zc_enabled); } /* * Backoff from a zero-copy message by copying data to a new allocated * message and freeing the original desballoca'ed segmapped message. * * This function is called by following two callers: * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free * the origial desballoca'ed message and notify sockfs. This is in re- * transmit state. * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need * to be copied to new message. */ static mblk_t * tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) { mblk_t *nbp; mblk_t *head = NULL; mblk_t *tail = NULL; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(bp != NULL); while (bp != NULL) { if (IS_VMLOANED_MBLK(bp)) { TCP_STAT(tcps, tcp_zcopy_backoff); if ((nbp = copyb(bp)) == NULL) { tcp->tcp_xmit_zc_clean = B_FALSE; if (tail != NULL) tail->b_cont = bp; return ((head == NULL) ? bp : head); } if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { if (fix_xmitlist) tcp_zcopy_notify(tcp); else nbp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; } nbp->b_cont = bp->b_cont; /* * Copy saved information and adjust tcp_xmit_tail * if needed. */ if (fix_xmitlist) { nbp->b_prev = bp->b_prev; nbp->b_next = bp->b_next; if (tcp->tcp_xmit_tail == bp) tcp->tcp_xmit_tail = nbp; } /* Free the original message. */ bp->b_prev = NULL; bp->b_next = NULL; freeb(bp); bp = nbp; } if (head == NULL) { head = bp; } if (tail == NULL) { tail = bp; } else { tail->b_cont = bp; tail = bp; } /* Move forward. */ bp = bp->b_cont; } if (fix_xmitlist) { tcp->tcp_xmit_last = tail; tcp->tcp_xmit_zc_clean = B_TRUE; } return (head); } static void tcp_zcopy_notify(tcp_t *tcp) { struct stdata *stp; conn_t *connp; if (tcp->tcp_detached) return; connp = tcp->tcp_connp; if (IPCL_IS_NONSTR(connp)) { (*connp->conn_upcalls->su_zcopy_notify) (connp->conn_upper_handle); return; } stp = STREAM(connp->conn_rq); mutex_enter(&stp->sd_lock); stp->sd_flag |= STZCNOTIFY; cv_broadcast(&stp->sd_zcopy_wait); mutex_exit(&stp->sd_lock); } /* * Update the TCP connection according to change of LSO capability. */ static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) { /* * We check against IPv4 header length to preserve the old behavior * of only enabling LSO when there are no IP options. * But this restriction might not be necessary at all. Before removing * it, need to verify how LSO is handled for source routing case, with * which IP does software checksum. * * For IPv6, whenever any extension header is needed, LSO is supressed. */ if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) return; /* * Either the LSO capability newly became usable, or it has changed. */ if (ixa->ixa_flags & IXAF_LSO_CAPAB) { ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; ASSERT(lsoc->ill_lso_max > 0); tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); /* * If LSO to be enabled, notify the STREAM header with larger * data block. */ if (!tcp->tcp_lso) tcp->tcp_maxpsz_multiplier = 0; tcp->tcp_lso = B_TRUE; TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); } else { /* LSO capability is not usable any more. */ DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); /* * If LSO to be disabled, notify the STREAM header with smaller * data block. And need to restore fragsize to PMTU. */ if (tcp->tcp_lso) { tcp->tcp_maxpsz_multiplier = tcp->tcp_tcps->tcps_maxpsz_multiplier; ixa->ixa_fragsize = ixa->ixa_pmtu; tcp->tcp_lso = B_FALSE; TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); } } (void) tcp_maxpsz_set(tcp, B_TRUE); } /* * Update the TCP connection according to change of ZEROCOPY capability. */ static void tcp_update_zcopy(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; if (tcp->tcp_snd_zcopy_on) { tcp->tcp_snd_zcopy_on = B_FALSE; if (!TCP_IS_DETACHED(tcp)) { (void) proto_set_tx_copyopt(connp->conn_rq, connp, ZCVMUNSAFE); TCP_STAT(tcps, tcp_zcopy_off); } } else { tcp->tcp_snd_zcopy_on = B_TRUE; if (!TCP_IS_DETACHED(tcp)) { (void) proto_set_tx_copyopt(connp->conn_rq, connp, ZCVMSAFE); TCP_STAT(tcps, tcp_zcopy_on); } } } /* * Notify function registered with ip_xmit_attr_t. It's called in the squeue * so it's safe to update the TCP connection. */ /* ARGSUSED1 */ static void tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, ixa_notify_arg_t narg) { tcp_t *tcp = (tcp_t *)arg; conn_t *connp = tcp->tcp_connp; switch (ntype) { case IXAN_LSO: tcp_update_lso(tcp, connp->conn_ixa); break; case IXAN_PMTU: tcp_update_pmtu(tcp, B_FALSE); break; case IXAN_ZCOPY: tcp_update_zcopy(tcp); break; default: break; } } static void tcp_send_data(tcp_t *tcp, mblk_t *mp) { conn_t *connp = tcp->tcp_connp; /* * Check here to avoid sending zero-copy message down to IP when * ZEROCOPY capability has turned off. We only need to deal with * the race condition between sockfs and the notification here. * Since we have tried to backoff the tcp_xmit_head when turning * zero-copy off and new messages in tcp_output(), we simply drop * the dup'ed packet here and let tcp retransmit, if tcp_xmit_zc_clean * is not true. */ if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_snd_zcopy_on && !tcp->tcp_xmit_zc_clean) { ip_drop_output("TCP ZC was disabled but not clean", mp, NULL); freemsg(mp); return; } ASSERT(connp->conn_ixa->ixa_notify_cookie == connp->conn_tcp); (void) conn_ip_output(mp, connp->conn_ixa); } /* * This handles the case when the receiver has shrunk its win. Per RFC 1122 * if the receiver shrinks the window, i.e. moves the right window to the * left, the we should not send new data, but should retransmit normally the * old unacked data between suna and suna + swnd. We might has sent data * that is now outside the new window, pretend that we didn't send it. */ static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) { uint32_t snxt = tcp->tcp_snxt; ASSERT(shrunk_count > 0); if (!tcp->tcp_is_wnd_shrnk) { tcp->tcp_snxt_shrunk = snxt; tcp->tcp_is_wnd_shrnk = B_TRUE; } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { tcp->tcp_snxt_shrunk = snxt; } /* Pretend we didn't send the data outside the window */ snxt -= shrunk_count; /* Reset all the values per the now shrunk window */ tcp_update_xmit_tail(tcp, snxt); tcp->tcp_unsent += shrunk_count; /* * If the SACK option is set, delete the entire list of * notsack'ed blocks. */ if (tcp->tcp_sack_info != NULL) { if (tcp->tcp_notsack_list != NULL) TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); } if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) /* * Make sure the timer is running so that we will probe a zero * window. */ TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* * The TCP normal data output path. * NOTE: the logic of the fast path is duplicated from this function. */ static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) { int len; mblk_t *local_time; mblk_t *mp1; uint32_t snxt; int tail_unsent; int tcpstate; int usable = 0; mblk_t *xmit_tail; int32_t mss; int32_t num_sack_blk = 0; int32_t total_hdr_len; int32_t tcp_hdr_len; int rc; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; clock_t now = LBOLT_FASTPATH; tcpstate = tcp->tcp_state; if (mp == NULL) { /* * tcp_wput_data() with NULL mp should only be called when * there is unsent data. */ ASSERT(tcp->tcp_unsent > 0); /* Really tacky... but we need this for detached closes. */ len = tcp->tcp_unsent; goto data_null; } #if CCS_STATS wrw_stats.tot.count++; wrw_stats.tot.bytes += msgdsize(mp); #endif ASSERT(mp->b_datap->db_type == M_DATA); /* * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, * or before a connection attempt has begun. */ if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { #ifdef DEBUG cmn_err(CE_WARN, "tcp_wput_data: data after ordrel, %s", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); #else if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, "tcp_wput_data: data after ordrel, %s\n", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } #endif /* DEBUG */ } if (tcp->tcp_snd_zcopy_aware && (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) tcp_zcopy_notify(tcp); freemsg(mp); mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped && TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { tcp_clrqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); return; } /* Strip empties */ for (;;) { ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); len = (int)(mp->b_wptr - mp->b_rptr); if (len > 0) break; mp1 = mp; mp = mp->b_cont; freeb(mp1); if (!mp) { return; } } /* If we are the first on the list ... */ if (tcp->tcp_xmit_head == NULL) { tcp->tcp_xmit_head = mp; tcp->tcp_xmit_tail = mp; tcp->tcp_xmit_tail_unsent = len; } else { /* If tiny tx and room in txq tail, pullup to save mblks. */ struct datab *dp; mp1 = tcp->tcp_xmit_last; if (len < tcp_tx_pull_len && (dp = mp1->b_datap)->db_ref == 1 && dp->db_lim - mp1->b_wptr >= len) { ASSERT(len > 0); ASSERT(!mp1->b_cont); if (len == 1) { *mp1->b_wptr++ = *mp->b_rptr; } else { bcopy(mp->b_rptr, mp1->b_wptr, len); mp1->b_wptr += len; } if (mp1 == tcp->tcp_xmit_tail) tcp->tcp_xmit_tail_unsent += len; mp1->b_cont = mp->b_cont; if (tcp->tcp_snd_zcopy_aware && (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; freeb(mp); mp = mp1; } else { tcp->tcp_xmit_last->b_cont = mp; } len += tcp->tcp_unsent; } /* Tack on however many more positive length mblks we have */ if ((mp1 = mp->b_cont) != NULL) { do { int tlen; ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); tlen = (int)(mp1->b_wptr - mp1->b_rptr); if (tlen <= 0) { mp->b_cont = mp1->b_cont; freeb(mp1); } else { len += tlen; mp = mp1; } } while ((mp1 = mp->b_cont) != NULL); } tcp->tcp_xmit_last = mp; tcp->tcp_unsent = len; if (urgent) usable = 1; data_null: snxt = tcp->tcp_snxt; xmit_tail = tcp->tcp_xmit_tail; tail_unsent = tcp->tcp_xmit_tail_unsent; /* * Note that tcp_mss has been adjusted to take into account the * timestamp option if applicable. Because SACK options do not * appear in every TCP segments and they are of variable lengths, * they cannot be included in tcp_mss. Thus we need to calculate * the actual segment length when we need to send a segment which * includes SACK options. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { int32_t opt_len; num_sack_blk = MIN(tcp->tcp_max_sack_blk, tcp->tcp_num_sack_blk); opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; mss = tcp->tcp_mss - opt_len; total_hdr_len = connp->conn_ht_iphc_len + opt_len; tcp_hdr_len = connp->conn_ht_ulp_len + opt_len; } else { mss = tcp->tcp_mss; total_hdr_len = connp->conn_ht_iphc_len; tcp_hdr_len = connp->conn_ht_ulp_len; } if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && (TICK_TO_MSEC(now - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); } if (tcpstate == TCPS_SYN_RCVD) { /* * The three-way connection establishment handshake is not * complete yet. We want to queue the data for transmission * after entering ESTABLISHED state (RFC793). A jump to * "done" label effectively leaves data on the queue. */ goto done; } else { int usable_r; /* * In the special case when cwnd is zero, which can only * happen if the connection is ECN capable, return now. * New segments is sent using tcp_timer(). The timer * is set in tcp_input_data(). */ if (tcp->tcp_cwnd == 0) { /* * Note that tcp_cwnd is 0 before 3-way handshake is * finished. */ ASSERT(tcp->tcp_ecn_ok || tcp->tcp_state < TCPS_ESTABLISHED); return; } /* NOTE: trouble if xmitting while SYN not acked? */ usable_r = snxt - tcp->tcp_suna; usable_r = tcp->tcp_swnd - usable_r; /* * Check if the receiver has shrunk the window. If * tcp_wput_data() with NULL mp is called, tcp_fin_sent * cannot be set as there is unsent data, so FIN cannot * be sent out. Otherwise, we need to take into account * of FIN as it consumes an "invisible" sequence number. */ ASSERT(tcp->tcp_fin_sent == 0); if (usable_r < 0) { /* * The receiver has shrunk the window and we have sent * -usable_r date beyond the window, re-adjust. * * If TCP window scaling is enabled, there can be * round down error as the advertised receive window * is actually right shifted n bits. This means that * the lower n bits info is wiped out. It will look * like the window is shrunk. Do a check here to * see if the shrunk amount is actually within the * error in window calculation. If it is, just * return. Note that this check is inside the * shrunk window check. This makes sure that even * though tcp_process_shrunk_swnd() is not called, * we will stop further processing. */ if ((-usable_r >> tcp->tcp_snd_ws) > 0) { tcp_process_shrunk_swnd(tcp, -usable_r); } return; } /* usable = MIN(swnd, cwnd) - unacked_bytes */ if (tcp->tcp_swnd > tcp->tcp_cwnd) usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; /* usable = MIN(usable, unsent) */ if (usable_r > len) usable_r = len; /* usable = MAX(usable, {1 for urgent, 0 for data}) */ if (usable_r > 0) { usable = usable_r; } else { /* Bypass all other unnecessary processing. */ goto done; } } local_time = (mblk_t *)now; /* * "Our" Nagle Algorithm. This is not the same as in the old * BSD. This is more in line with the true intent of Nagle. * * The conditions are: * 1. The amount of unsent data (or amount of data which can be * sent, whichever is smaller) is less than Nagle limit. * 2. The last sent size is also less than Nagle limit. * 3. There is unack'ed data. * 4. Urgent pointer is not set. Send urgent data ignoring the * Nagle algorithm. This reduces the probability that urgent * bytes get "merged" together. * 5. The app has not closed the connection. This eliminates the * wait time of the receiving side waiting for the last piece of * (small) data. * * If all are satisified, exit without sending anything. Note * that Nagle limit can be smaller than 1 MSS. Nagle limit is * the smaller of 1 MSS and global tcp_naglim_def (default to be * 4095). */ if (usable < (int)tcp->tcp_naglim && tcp->tcp_naglim > tcp->tcp_last_sent_len && snxt != tcp->tcp_suna && !(tcp->tcp_valid_bits & TCP_URG_VALID) && !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { goto done; } /* * If tcp_zero_win_probe is not set and the tcp->tcp_cork option * is set, then we have to force TCP not to send partial segment * (smaller than MSS bytes). We are calculating the usable now * based on full mss and will save the rest of remaining data for * later. When tcp_zero_win_probe is set, TCP needs to send out * something to do zero window probe. */ if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { if (usable < mss) goto done; usable = (usable / mss) * mss; } /* Update the latest receive window size in TCP header. */ tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); /* Send the packet. */ rc = tcp_send(tcp, mss, total_hdr_len, tcp_hdr_len, num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, local_time); /* Pretend that all we were trying to send really got sent */ if (rc < 0 && tail_unsent < 0) { do { xmit_tail = xmit_tail->b_cont; xmit_tail->b_prev = local_time; ASSERT((uintptr_t)(xmit_tail->b_wptr - xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); tail_unsent += (int)(xmit_tail->b_wptr - xmit_tail->b_rptr); } while (tail_unsent < 0); } done:; tcp->tcp_xmit_tail = xmit_tail; tcp->tcp_xmit_tail_unsent = tail_unsent; len = tcp->tcp_snxt - snxt; if (len) { /* * If new data was sent, need to update the notsack * list, which is, afterall, data blocks that have * not been sack'ed by the receiver. New data is * not sack'ed. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { /* len is a negative value. */ tcp->tcp_pipe -= len; tcp_notsack_update(&(tcp->tcp_notsack_list), tcp->tcp_snxt, snxt, &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); } tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; tcp->tcp_rack = tcp->tcp_rnxt; tcp->tcp_rack_cnt = 0; if ((snxt + len) == tcp->tcp_suna) { TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { /* * Didn't send anything. Make sure the timer is running * so that we will probe a zero window. */ TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* Note that len is the amount we just sent but with a negative sign */ tcp->tcp_unsent += len; mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped) { if (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { tcp_clrqfull(tcp); } } else if (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf) { if (!(tcp->tcp_detached)) tcp_setqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); } /* * tcp_fill_header is called by tcp_send() to fill the outgoing TCP header * with the template header, as well as other options such as time-stamp, * ECN and/or SACK. */ static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) { tcpha_t *tcp_tmpl, *tcpha; uint32_t *dst, *src; int hdrlen; conn_t *connp = tcp->tcp_connp; ASSERT(OK_32PTR(rptr)); /* Template header */ tcp_tmpl = tcp->tcp_tcpha; /* Header of outgoing packet */ tcpha = (tcpha_t *)(rptr + connp->conn_ixa->ixa_ip_hdr_length); /* dst and src are opaque 32-bit fields, used for copying */ dst = (uint32_t *)rptr; src = (uint32_t *)connp->conn_ht_iphc; hdrlen = connp->conn_ht_iphc_len; /* Fill time-stamp option if needed */ if (tcp->tcp_snd_ts_ok) { U32_TO_BE32((uint32_t)now, (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); } else { ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH); } /* * Copy the template header; is this really more efficient than * calling bcopy()? For simple IPv4/TCP, it may be the case, * but perhaps not for other scenarios. */ dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; if (hdrlen -= 40) { hdrlen >>= 2; dst += 10; src += 10; do { *dst++ = *src++; } while (--hdrlen); } /* * Set the ECN info in the TCP header if it is not a zero * window probe. Zero window probe is only sent in * tcp_wput_data() and tcp_timer(). */ if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { SET_ECT(tcp, rptr); if (tcp->tcp_ecn_echo_on) tcpha->tha_flags |= TH_ECE; if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { tcpha->tha_flags |= TH_CWR; tcp->tcp_ecn_cwr_sent = B_TRUE; } } /* Fill in SACK options */ if (num_sack_blk > 0) { uchar_t *wptr = rptr + connp->conn_ht_iphc_len; sack_blk_t *tmp; int32_t i; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK; wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * sizeof (sack_blk_t); wptr += TCPOPT_REAL_SACK_LEN; tmp = tcp->tcp_sack_list; for (i = 0; i < num_sack_blk; i++) { U32_TO_BE32(tmp[i].begin, wptr); wptr += sizeof (tcp_seq); U32_TO_BE32(tmp[i].end, wptr); wptr += sizeof (tcp_seq); } tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); } } /* * tcp_send() is called by tcp_wput_data() and returns one of the following: * * -1 = failed allocation. * 0 = success; burst count reached, or usable send window is too small, * and that we'd rather wait until later before sending again. */ static int tcp_send(tcp_t *tcp, const int mss, const int total_hdr_len, const int tcp_hdr_len, const int num_sack_blk, int *usable, uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time) { int num_burst_seg = tcp->tcp_snd_burst; int num_lso_seg = 1; uint_t lso_usable; boolean_t do_lso_send = B_FALSE; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; ip_xmit_attr_t *ixa = connp->conn_ixa; /* * Check LSO possibility. The value of tcp->tcp_lso indicates whether * the underlying connection is LSO capable. Will check whether having * enough available data to initiate LSO transmission in the for(){} * loops. */ if (tcp->tcp_lso && (tcp->tcp_valid_bits & ~TCP_FSS_VALID) == 0) do_lso_send = B_TRUE; for (;;) { struct datab *db; tcpha_t *tcpha; uint32_t sum; mblk_t *mp, *mp1; uchar_t *rptr; int len; /* * Burst count reached, return successfully. */ if (num_burst_seg == 0) break; /* * Calculate the maximum payload length we can send at one * time. */ if (do_lso_send) { /* * Check whether be able to to do LSO for the current * available data. */ if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { lso_usable = MIN(tcp->tcp_lso_max, *usable); lso_usable = MIN(lso_usable, num_burst_seg * mss); num_lso_seg = lso_usable / mss; if (lso_usable % mss) { num_lso_seg++; tcp->tcp_last_sent_len = (ushort_t) (lso_usable % mss); } else { tcp->tcp_last_sent_len = (ushort_t)mss; } } else { do_lso_send = B_FALSE; num_lso_seg = 1; lso_usable = mss; } } ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); #ifdef DEBUG DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, do_lso_send); #endif /* * Adjust num_burst_seg here. */ num_burst_seg -= num_lso_seg; len = mss; if (len > *usable) { ASSERT(do_lso_send == B_FALSE); len = *usable; if (len <= 0) { /* Terminate the loop */ break; /* success; too small */ } /* * Sender silly-window avoidance. * Ignore this if we are going to send a * zero window probe out. * * TODO: force data into microscopic window? * ==> (!pushed || (unsent > usable)) */ if (len < (tcp->tcp_max_swnd >> 1) && (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && !((tcp->tcp_valid_bits & TCP_URG_VALID) && len == 1) && (! tcp->tcp_zero_win_probe)) { /* * If the retransmit timer is not running * we start it so that we will retransmit * in the case when the receiver has * decremented the window. */ if (*snxt == tcp->tcp_snxt && *snxt == tcp->tcp_suna) { /* * We are not supposed to send * anything. So let's wait a little * bit longer before breaking SWS * avoidance. * * What should the value be? * Suggestion: MAX(init rexmit time, * tcp->tcp_rto) */ TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } break; /* success; too small */ } } tcpha = tcp->tcp_tcpha; /* * The reason to adjust len here is that we need to set flags * and calculate checksum. */ if (do_lso_send) len = lso_usable; *usable -= len; /* Approximate - can be adjusted later */ if (*usable > 0) tcpha->tha_flags = TH_ACK; else tcpha->tha_flags = (TH_ACK | TH_PUSH); /* * Prime pump for IP's checksumming on our behalf. * Include the adjustment for a source route if any. * In case of LSO, the partial pseudo-header checksum should * exclusive TCP length, so zero tha_sum before IP calculate * pseudo-header checksum for partial checksum offload. */ if (do_lso_send) { sum = 0; } else { sum = len + tcp_hdr_len + connp->conn_sum; sum = (sum >> 16) + (sum & 0xFFFF); } tcpha->tha_sum = htons(sum); tcpha->tha_seq = htonl(*snxt); /* * Branch off to tcp_xmit_mp() if any of the VALID bits is * set. For the case when TCP_FSS_VALID is the only valid * bit (normal active close), branch off only when we think * that the FIN flag needs to be set. Note for this case, * that (snxt + len) may not reflect the actual seg_len, * as len may be further reduced in tcp_xmit_mp(). If len * gets modified, we will end up here again. */ if (tcp->tcp_valid_bits != 0 && (tcp->tcp_valid_bits != TCP_FSS_VALID || ((*snxt + len) == tcp->tcp_fss))) { uchar_t *prev_rptr; uint32_t prev_snxt = tcp->tcp_snxt; if (*tail_unsent == 0) { ASSERT((*xmit_tail)->b_cont != NULL); *xmit_tail = (*xmit_tail)->b_cont; prev_rptr = (*xmit_tail)->b_rptr; *tail_unsent = (int)((*xmit_tail)->b_wptr - (*xmit_tail)->b_rptr); } else { prev_rptr = (*xmit_tail)->b_rptr; (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - *tail_unsent; } mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); /* Restore tcp_snxt so we get amount sent right. */ tcp->tcp_snxt = prev_snxt; if (prev_rptr == (*xmit_tail)->b_rptr) { /* * If the previous timestamp is still in use, * don't stomp on it. */ if ((*xmit_tail)->b_next == NULL) { (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt); } } else (*xmit_tail)->b_rptr = prev_rptr; if (mp == NULL) { return (-1); } mp1 = mp->b_cont; if (len <= mss) /* LSO is unusable (!do_lso_send) */ tcp->tcp_last_sent_len = (ushort_t)len; while (mp1->b_cont) { *xmit_tail = (*xmit_tail)->b_cont; (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt); mp1 = mp1->b_cont; } *snxt += len; *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); tcp_send_data(tcp, mp); continue; } *snxt += len; /* Adjust later if we don't send all of len */ BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); if (*tail_unsent) { /* Are the bytes above us in flight? */ rptr = (*xmit_tail)->b_wptr - *tail_unsent; if (rptr != (*xmit_tail)->b_rptr) { *tail_unsent -= len; if (len <= mss) /* LSO is unusable */ tcp->tcp_last_sent_len = (ushort_t)len; len += total_hdr_len; ixa->ixa_pktlen = len; if (ixa->ixa_flags & IXAF_IS_IPV4) { tcp->tcp_ipha->ipha_length = htons(len); } else { tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); } mp = dupb(*xmit_tail); if (mp == NULL) { return (-1); /* out_of_mem */ } mp->b_rptr = rptr; /* * If the old timestamp is no longer in use, * sample a new timestamp now. */ if ((*xmit_tail)->b_next == NULL) { (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt-len); } goto must_alloc; } } else { *xmit_tail = (*xmit_tail)->b_cont; ASSERT((uintptr_t)((*xmit_tail)->b_wptr - (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); *tail_unsent = (int)((*xmit_tail)->b_wptr - (*xmit_tail)->b_rptr); } (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); *tail_unsent -= len; if (len <= mss) /* LSO is unusable (!do_lso_send) */ tcp->tcp_last_sent_len = (ushort_t)len; len += total_hdr_len; ixa->ixa_pktlen = len; if (ixa->ixa_flags & IXAF_IS_IPV4) { tcp->tcp_ipha->ipha_length = htons(len); } else { tcp->tcp_ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); } mp = dupb(*xmit_tail); if (mp == NULL) { return (-1); /* out_of_mem */ } len = total_hdr_len; /* * There are four reasons to allocate a new hdr mblk: * 1) The bytes above us are in use by another packet * 2) We don't have good alignment * 3) The mblk is being shared * 4) We don't have enough room for a header */ rptr = mp->b_rptr - len; if (!OK_32PTR(rptr) || ((db = mp->b_datap), db->db_ref != 2) || rptr < db->db_base) { /* NOTE: we assume allocb returns an OK_32PTR */ must_alloc:; mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, BPRI_MED); if (mp1 == NULL) { freemsg(mp); return (-1); /* out_of_mem */ } mp1->b_cont = mp; mp = mp1; /* Leave room for Link Level header */ len = total_hdr_len; rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; mp->b_wptr = &rptr[len]; } /* * Fill in the header using the template header, and add * options such as time-stamp, ECN and/or SACK, as needed. */ tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); mp->b_rptr = rptr; if (*tail_unsent) { int spill = *tail_unsent; mp1 = mp->b_cont; if (mp1 == NULL) mp1 = mp; /* * If we're a little short, tack on more mblks until * there is no more spillover. */ while (spill < 0) { mblk_t *nmp; int nmpsz; nmp = (*xmit_tail)->b_cont; nmpsz = MBLKL(nmp); /* * Excess data in mblk; can we split it? * If LSO is enabled for the connection, * keep on splitting as this is a transient * send path. */ if (!do_lso_send && (spill + nmpsz > 0)) { /* * Don't split if stream head was * told to break up larger writes * into smaller ones. */ if (tcp->tcp_maxpsz_multiplier > 0) break; /* * Next mblk is less than SMSS/2 * rounded up to nearest 64-byte; * let it get sent as part of the * next segment. */ if (tcp->tcp_localnet && !tcp->tcp_cork && (nmpsz < roundup((mss >> 1), 64))) break; } *xmit_tail = nmp; ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); /* Stash for rtt use later */ (*xmit_tail)->b_prev = local_time; (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); mp1->b_cont = dupb(*xmit_tail); mp1 = mp1->b_cont; spill += nmpsz; if (mp1 == NULL) { *tail_unsent = spill; freemsg(mp); return (-1); /* out_of_mem */ } } /* Trim back any surplus on the last mblk */ if (spill >= 0) { mp1->b_wptr -= spill; *tail_unsent = spill; } else { /* * We did not send everything we could in * order to remain within the b_cont limit. */ *usable -= spill; *snxt += spill; tcp->tcp_last_sent_len += spill; UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, spill); /* * Adjust the checksum */ tcpha = (tcpha_t *)(rptr + ixa->ixa_ip_hdr_length); sum += spill; sum = (sum >> 16) + (sum & 0xFFFF); tcpha->tha_sum = htons(sum); if (connp->conn_ipversion == IPV4_VERSION) { sum = ntohs( ((ipha_t *)rptr)->ipha_length) + spill; ((ipha_t *)rptr)->ipha_length = htons(sum); } else { sum = ntohs( ((ip6_t *)rptr)->ip6_plen) + spill; ((ip6_t *)rptr)->ip6_plen = htons(sum); } ixa->ixa_pktlen += spill; *tail_unsent = 0; } } if (tcp->tcp_ip_forward_progress) { tcp->tcp_ip_forward_progress = B_FALSE; ixa->ixa_flags |= IXAF_REACH_CONF; } else { ixa->ixa_flags &= ~IXAF_REACH_CONF; } /* * Append LSO information, both flags and mss, to the mp. */ if (do_lso_send) { lso_info_set(mp, mss, HW_LSO); ixa->ixa_fragsize = IP_MAXPACKET; ixa->ixa_extra_ident = num_lso_seg - 1; DTRACE_PROBE2(tcp_send_lso, int, num_lso_seg, boolean_t, B_TRUE); tcp_send_data(tcp, mp); /* * Restore values of ixa_fragsize and ixa_extra_ident. */ ixa->ixa_fragsize = ixa->ixa_pmtu; ixa->ixa_extra_ident = 0; tcp->tcp_obsegs += num_lso_seg; TCP_STAT(tcps, tcp_lso_times); TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); } else { tcp_send_data(tcp, mp); BUMP_LOCAL(tcp->tcp_obsegs); } } return (0); } /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp) { uchar_t fval = *mp->b_rptr; mblk_t *tail; conn_t *connp = tcp->tcp_connp; queue_t *q = connp->conn_wq; /* TODO: How should flush interact with urgent data? */ if ((fval & FLUSHW) && tcp->tcp_xmit_head && !(tcp->tcp_valid_bits & TCP_URG_VALID)) { /* * Flush only data that has not yet been put on the wire. If * we flush data that we have already transmitted, life, as we * know it, may come to an end. */ tail = tcp->tcp_xmit_tail; tail->b_wptr -= tcp->tcp_xmit_tail_unsent; tcp->tcp_xmit_tail_unsent = 0; tcp->tcp_unsent = 0; if (tail->b_wptr != tail->b_rptr) tail = tail->b_cont; if (tail) { mblk_t **excess = &tcp->tcp_xmit_head; for (;;) { mblk_t *mp1 = *excess; if (mp1 == tail) break; tcp->tcp_xmit_tail = mp1; tcp->tcp_xmit_last = mp1; excess = &mp1->b_cont; } *excess = NULL; tcp_close_mpp(&tail); if (tcp->tcp_snd_zcopy_aware) tcp_zcopy_notify(tcp); } /* * We have no unsent data, so unsent must be less than * conn_sndlowat, so re-enable flow. */ mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped) { tcp_clrqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); } /* * TODO: you can't just flush these, you have to increase rwnd for one * thing. For another, how should urgent data interact? */ if (fval & FLUSHR) { *mp->b_rptr = fval & ~FLUSHW; /* XXX */ qreply(q, mp); return; } freemsg(mp); } /* * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA * messages. */ static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) { mblk_t *mp1; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; STRUCT_HANDLE(strbuf, sb); uint_t addrlen; conn_t *connp = tcp->tcp_connp; queue_t *q = connp->conn_wq; /* Make sure it is one of ours. */ switch (iocp->ioc_cmd) { case TI_GETMYNAME: case TI_GETPEERNAME: break; default: ip_wput_nondata(q, mp); return; } switch (mi_copy_state(q, mp, &mp1)) { case -1: return; case MI_COPY_CASE(MI_COPY_IN, 1): break; case MI_COPY_CASE(MI_COPY_OUT, 1): /* Copy out the strbuf. */ mi_copyout(q, mp); return; case MI_COPY_CASE(MI_COPY_OUT, 2): /* All done. */ mi_copy_done(q, mp, 0); return; default: mi_copy_done(q, mp, EPROTO); return; } /* Check alignment of the strbuf */ if (!OK_32PTR(mp1->b_rptr)) { mi_copy_done(q, mp, EINVAL); return; } STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); if (connp->conn_family == AF_INET) addrlen = sizeof (sin_t); else addrlen = sizeof (sin6_t); if (STRUCT_FGET(sb, maxlen) < addrlen) { mi_copy_done(q, mp, EINVAL); return; } switch (iocp->ioc_cmd) { case TI_GETMYNAME: break; case TI_GETPEERNAME: if (tcp->tcp_state < TCPS_SYN_RCVD) { mi_copy_done(q, mp, ENOTCONN); return; } break; } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); if (!mp1) return; STRUCT_FSET(sb, len, addrlen); switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TI_GETMYNAME: (void) conn_getsockname(connp, (struct sockaddr *)mp1->b_wptr, &addrlen); break; case TI_GETPEERNAME: (void) conn_getpeername(connp, (struct sockaddr *)mp1->b_wptr, &addrlen); break; } mp1->b_wptr += addrlen; /* Copy out the address */ mi_copyout(q, mp); } static void tcp_use_pure_tpi(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; #ifdef _ILP32 tcp->tcp_acceptor_id = (t_uscalar_t)connp->conn_rq; #else tcp->tcp_acceptor_id = connp->conn_dev; #endif /* * Insert this socket into the acceptor hash. * We might need it for T_CONN_RES message */ tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); tcp->tcp_issocket = B_FALSE; TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); } /* * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL * messages. */ /* ARGSUSED */ static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; queue_t *q = connp->conn_wq; struct iocblk *iocp; ASSERT(DB_TYPE(mp) == M_IOCTL); /* * Try and ASSERT the minimum possible references on the * conn early enough. Since we are executing on write side, * the connection is obviously not detached and that means * there is a ref each for TCP and IP. Since we are behind * the squeue, the minimum references needed are 3. If the * conn is in classifier hash list, there should be an * extra ref for that (we check both the possibilities). */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); iocp = (struct iocblk *)mp->b_rptr; switch (iocp->ioc_cmd) { case _SIOCSOCKFALLBACK: /* * Either sockmod is about to be popped and the socket * would now be treated as a plain stream, or a module * is about to be pushed so we could no longer use read- * side synchronous streams for fused loopback tcp. * Drain any queued data and disable direct sockfs * interface from now on. */ if (!tcp->tcp_issocket) { DB_TYPE(mp) = M_IOCNAK; iocp->ioc_error = EINVAL; } else { tcp_use_pure_tpi(tcp); DB_TYPE(mp) = M_IOCACK; iocp->ioc_error = 0; } iocp->ioc_count = 0; iocp->ioc_rval = 0; qreply(q, mp); return; } ip_wput_nondata(q, mp); } /* * This routine is called by tcp_wput() to handle all TPI requests. */ /* ARGSUSED */ static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; union T_primitives *tprim = (union T_primitives *)mp->b_rptr; uchar_t *rptr; t_scalar_t type; cred_t *cr; /* * Try and ASSERT the minimum possible references on the * conn early enough. Since we are executing on write side, * the connection is obviously not detached and that means * there is a ref each for TCP and IP. Since we are behind * the squeue, the minimum references needed are 3. If the * conn is in classifier hash list, there should be an * extra ref for that (we check both the possibilities). */ ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || (connp->conn_fanout == NULL && connp->conn_ref >= 3)); rptr = mp->b_rptr; ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { type = ((union T_primitives *)rptr)->type; if (type == T_EXDATA_REQ) { tcp_output_urgent(connp, mp, arg2, NULL); } else if (type != T_DATA_REQ) { goto non_urgent_data; } else { /* TODO: options, flags, ... from user */ /* Set length to zero for reclamation below */ tcp_wput_data(tcp, mp->b_cont, B_TRUE); freeb(mp); } return; } else { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, dropping one..."); } freemsg(mp); return; } non_urgent_data: switch ((int)tprim->type) { case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ /* * save the kssl_ent_t from the next block, and convert this * back to a normal bind_req. */ if (mp->b_cont != NULL) { ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); if (tcp->tcp_kssl_ent != NULL) { kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); tcp->tcp_kssl_ent = NULL; } bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, sizeof (kssl_ent_t)); kssl_hold_ent(tcp->tcp_kssl_ent); freemsg(mp->b_cont); mp->b_cont = NULL; } tprim->type = T_BIND_REQ; /* FALLTHROUGH */ case O_T_BIND_REQ: /* bind request */ case T_BIND_REQ: /* new semantics bind request */ tcp_tpi_bind(tcp, mp); break; case T_UNBIND_REQ: /* unbind request */ tcp_tpi_unbind(tcp, mp); break; case O_T_CONN_RES: /* old connection response XXX */ case T_CONN_RES: /* connection response */ tcp_tli_accept(tcp, mp); break; case T_CONN_REQ: /* connection request */ tcp_tpi_connect(tcp, mp); break; case T_DISCON_REQ: /* disconnect request */ tcp_disconnect(tcp, mp); break; case T_CAPABILITY_REQ: tcp_capability_req(tcp, mp); /* capability request */ break; case T_INFO_REQ: /* information request */ tcp_info_req(tcp, mp); break; case T_SVR4_OPTMGMT_REQ: /* manage options req */ case T_OPTMGMT_REQ: /* * Note: no support for snmpcom_req() through new * T_OPTMGMT_REQ. See comments in ip.c */ /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) { tcp_err_ack(tcp, mp, TSYSERR, EINVAL); return; } /* * If EINPROGRESS is returned, the request has been queued * for subsequent processing by ip_restart_optmgmt(), which * will do the CONN_DEC_REF(). */ if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { svr4_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); } else { tpi_optcom_req(connp->conn_wq, mp, cr, &tcp_opt_obj); } break; case T_UNITDATA_REQ: /* unitdata request */ tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); break; case T_ORDREL_REQ: /* orderly release req */ freemsg(mp); if (tcp->tcp_fused) tcp_unfuse(tcp); if (tcp_xmit_end(tcp) != 0) { /* * We were crossing FINs and got a reset from * the other side. Just ignore it. */ if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, T_ORDREL_REQ out of " "state %s", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } } break; case T_ADDR_REQ: tcp_addr_req(tcp, mp); break; default: if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_wput_proto, bogus TPI msg, type %d", tprim->type); } /* * We used to M_ERROR. Sending TNOTSUPPORT gives the user * to recover. */ tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); break; } } /* * The TCP write service routine should never be called... */ /* ARGSUSED */ static void tcp_wsrv(queue_t *q) { tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; TCP_STAT(tcps, tcp_wsrv_called); } /* * Send out a control packet on the tcp connection specified. This routine * is typically called where we need a simple ACK or RST generated. */ static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) { uchar_t *rptr; tcpha_t *tcpha; ipha_t *ipha = NULL; ip6_t *ip6h = NULL; uint32_t sum; int total_hdr_len; int ip_hdr_len; mblk_t *mp; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; ip_xmit_attr_t *ixa = connp->conn_ixa; /* * Save sum for use in source route later. */ sum = connp->conn_ht_ulp_len + connp->conn_sum; total_hdr_len = connp->conn_ht_iphc_len; ip_hdr_len = ixa->ixa_ip_hdr_length; /* If a text string is passed in with the request, pass it to strlog. */ if (str != NULL && connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", str, seq, ack, ctl); } mp = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, BPRI_MED); if (mp == NULL) { return; } rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; mp->b_rptr = rptr; mp->b_wptr = &rptr[total_hdr_len]; bcopy(connp->conn_ht_iphc, rptr, total_hdr_len); ixa->ixa_pktlen = total_hdr_len; if (ixa->ixa_flags & IXAF_IS_IPV4) { ipha = (ipha_t *)rptr; ipha->ipha_length = htons(total_hdr_len); } else { ip6h = (ip6_t *)rptr; ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); } tcpha = (tcpha_t *)&rptr[ip_hdr_len]; tcpha->tha_flags = (uint8_t)ctl; if (ctl & TH_RST) { BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); BUMP_MIB(&tcps->tcps_mib, tcpOutControl); /* * Don't send TSopt w/ TH_RST packets per RFC 1323. */ if (tcp->tcp_snd_ts_ok && tcp->tcp_state > TCPS_SYN_SENT) { mp->b_wptr = &rptr[total_hdr_len - TCPOPT_REAL_TS_LEN]; *(mp->b_wptr) = TCPOPT_EOL; ixa->ixa_pktlen = total_hdr_len - TCPOPT_REAL_TS_LEN; if (connp->conn_ipversion == IPV4_VERSION) { ipha->ipha_length = htons(total_hdr_len - TCPOPT_REAL_TS_LEN); } else { ip6h->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN - TCPOPT_REAL_TS_LEN); } tcpha->tha_offset_and_reserved -= (3 << 4); sum -= TCPOPT_REAL_TS_LEN; } } if (ctl & TH_ACK) { if (tcp->tcp_snd_ts_ok) { uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; U32_TO_BE32(llbolt, (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); } /* Update the latest receive window size in TCP header. */ tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); tcp->tcp_rack = ack; tcp->tcp_rack_cnt = 0; BUMP_MIB(&tcps->tcps_mib, tcpOutAck); } BUMP_LOCAL(tcp->tcp_obsegs); tcpha->tha_seq = htonl(seq); tcpha->tha_ack = htonl(ack); /* * Include the adjustment for a source route if any. */ sum = (sum >> 16) + (sum & 0xFFFF); tcpha->tha_sum = htons(sum); tcp_send_data(tcp, mp); } /* * If this routine returns B_TRUE, TCP can generate a RST in response * to a segment. If it returns B_FALSE, TCP should not respond. */ static boolean_t tcp_send_rst_chk(tcp_stack_t *tcps) { clock_t now; /* * TCP needs to protect itself from generating too many RSTs. * This can be a DoS attack by sending us random segments * soliciting RSTs. * * What we do here is to have a limit of tcp_rst_sent_rate RSTs * in each 1 second interval. In this way, TCP still generate * RSTs in normal cases but when under attack, the impact is * limited. */ if (tcps->tcps_rst_sent_rate_enabled != 0) { now = ddi_get_lbolt(); /* lbolt can wrap around. */ if ((tcps->tcps_last_rst_intrvl > now) || (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 1*SECONDS)) { tcps->tcps_last_rst_intrvl = now; tcps->tcps_rst_cnt = 1; } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { return (B_FALSE); } } return (B_TRUE); } /* * Generate a reset based on an inbound packet, connp is set by caller * when RST is in response to an unexpected inbound packet for which * there is active tcp state in the system. * * IPSEC NOTE : Try to send the reply with the same protection as it came * in. We have the ip_recv_attr_t which is reversed to form the ip_xmit_attr_t. * That way the packet will go out at the same level of protection as it * came in with. */ static void tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, uint32_t ack, int ctl, ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) { ipha_t *ipha = NULL; ip6_t *ip6h = NULL; ushort_t len; tcpha_t *tcpha; int i; ipaddr_t v4addr; in6_addr_t v6addr; netstack_t *ns = ipst->ips_netstack; tcp_stack_t *tcps = ns->netstack_tcp; ip_xmit_attr_t ixas, *ixa; uint_t ip_hdr_len = ira->ira_ip_hdr_length; boolean_t need_refrele = B_FALSE; /* ixa_refrele(ixa) */ ushort_t port; if (!tcp_send_rst_chk(tcps)) { tcps->tcps_rst_unsent++; freemsg(mp); return; } /* * If connp != NULL we use conn_ixa to keep IP_NEXTHOP and other * options from the listener. In that case the caller must ensure that * we are running on the listener = connp squeue. * * We get a safe copy of conn_ixa so we don't need to restore anything * we or ip_output_simple might change in the ixa. */ if (connp != NULL) { ASSERT(connp->conn_on_sqp); ixa = conn_get_ixa_exclusive(connp); if (ixa == NULL) { tcps->tcps_rst_unsent++; freemsg(mp); return; } need_refrele = B_TRUE; } else { bzero(&ixas, sizeof (ixas)); ixa = &ixas; /* * IXAF_VERIFY_SOURCE is overkill since we know the * packet was for us. */ ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE; ixa->ixa_protocol = IPPROTO_TCP; ixa->ixa_zoneid = ira->ira_zoneid; ixa->ixa_ifindex = 0; ixa->ixa_ipst = ipst; ixa->ixa_cred = kcred; ixa->ixa_cpid = NOPID; } if (str && tcps->tcps_dbg) { (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " "flags 0x%x", str, seq, ack, ctl); } if (mp->b_datap->db_ref != 1) { mblk_t *mp1 = copyb(mp); freemsg(mp); mp = mp1; if (mp == NULL) goto done; } else if (mp->b_cont) { freemsg(mp->b_cont); mp->b_cont = NULL; DB_CKSUMFLAGS(mp) = 0; } /* * We skip reversing source route here. * (for now we replace all IP options with EOL) */ if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ipha = (ipha_t *)mp->b_rptr; for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) mp->b_rptr[i] = IPOPT_EOL; /* * Make sure that src address isn't flagrantly invalid. * Not all broadcast address checking for the src address * is possible, since we don't know the netmask of the src * addr. No check for destination address is done, since * IP will not pass up a packet with a broadcast dest * address to TCP. Similar checks are done below for IPv6. */ if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || CLASSD(ipha->ipha_src)) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); ip_drop_input("ipIfStatsInDiscards", mp, NULL); freemsg(mp); goto done; } } else { ip6h = (ip6_t *)mp->b_rptr; if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); ip_drop_input("ipIfStatsInDiscards", mp, NULL); freemsg(mp); goto done; } /* Remove any extension headers assuming partial overlay */ if (ip_hdr_len > IPV6_HDR_LEN) { uint8_t *to; to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; ovbcopy(ip6h, to, IPV6_HDR_LEN); mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; ip_hdr_len = IPV6_HDR_LEN; ip6h = (ip6_t *)mp->b_rptr; ip6h->ip6_nxt = IPPROTO_TCP; } } tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len]; if (tcpha->tha_flags & TH_RST) { freemsg(mp); goto done; } tcpha->tha_offset_and_reserved = (5 << 4); len = ip_hdr_len + sizeof (tcpha_t); mp->b_wptr = &mp->b_rptr[len]; if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { ipha->ipha_length = htons(len); /* Swap addresses */ v4addr = ipha->ipha_src; ipha->ipha_src = ipha->ipha_dst; ipha->ipha_dst = v4addr; ipha->ipha_ident = 0; ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; ixa->ixa_flags |= IXAF_IS_IPV4; ixa->ixa_ip_hdr_length = ip_hdr_len; } else { ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); /* Swap addresses */ v6addr = ip6h->ip6_src; ip6h->ip6_src = ip6h->ip6_dst; ip6h->ip6_dst = v6addr; ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; ixa->ixa_flags &= ~IXAF_IS_IPV4; if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_dst)) { ixa->ixa_flags |= IXAF_SCOPEID_SET; ixa->ixa_scopeid = ira->ira_ruifindex; } ixa->ixa_ip_hdr_length = IPV6_HDR_LEN; } ixa->ixa_pktlen = len; /* Swap the ports */ port = tcpha->tha_fport; tcpha->tha_fport = tcpha->tha_lport; tcpha->tha_lport = port; tcpha->tha_ack = htonl(ack); tcpha->tha_seq = htonl(seq); tcpha->tha_win = 0; tcpha->tha_sum = htons(sizeof (tcpha_t)); tcpha->tha_flags = (uint8_t)ctl; if (ctl & TH_RST) { BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); BUMP_MIB(&tcps->tcps_mib, tcpOutControl); } /* Discard any old label */ if (ixa->ixa_free_flags & IXA_FREE_TSL) { ASSERT(ixa->ixa_tsl != NULL); label_rele(ixa->ixa_tsl); ixa->ixa_free_flags &= ~IXA_FREE_TSL; } ixa->ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ if (ira->ira_flags & IRAF_IPSEC_SECURE) { /* * Apply IPsec based on how IPsec was applied to * the packet that caused the RST. */ if (!ipsec_in_to_out(ira, ixa, mp, ipha, ip6h)) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); /* Note: mp already consumed and ip_drop_packet done */ goto done; } } else { /* * This is in clear. The RST message we are building * here should go out in clear, independent of our policy. */ ixa->ixa_flags |= IXAF_NO_IPSEC; } /* * NOTE: one might consider tracing a TCP packet here, but * this function has no active TCP state and no tcp structure * that has a trace buffer. If we traced here, we would have * to keep a local trace buffer in tcp_record_trace(). */ (void) ip_output_simple(mp, ixa); done: ixa_cleanup(ixa); if (need_refrele) { ASSERT(ixa != &ixas); ixa_refrele(ixa); } } /* * Initiate closedown sequence on an active connection. (May be called as * writer.) Return value zero for OK return, non-zero for error return. */ static int tcp_xmit_end(tcp_t *tcp) { mblk_t *mp; tcp_stack_t *tcps = tcp->tcp_tcps; iulp_t uinfo; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; conn_t *connp = tcp->tcp_connp; if (tcp->tcp_state < TCPS_SYN_RCVD || tcp->tcp_state > TCPS_CLOSE_WAIT) { /* * Invalid state, only states TCPS_SYN_RCVD, * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid */ return (-1); } tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; tcp->tcp_valid_bits |= TCP_FSS_VALID; /* * If there is nothing more unsent, send the FIN now. * Otherwise, it will go out with the last segment. */ if (tcp->tcp_unsent == 0) { mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, tcp->tcp_fss, B_FALSE, NULL, B_FALSE); if (mp) { tcp_send_data(tcp, mp); } else { /* * Couldn't allocate msg. Pretend we got it out. * Wait for rexmit timeout. */ tcp->tcp_snxt = tcp->tcp_fss + 1; TCP_TIMER_RESTART(tcp, tcp->tcp_rto); } /* * If needed, update tcp_rexmit_snxt as tcp_snxt is * changed. */ if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { tcp->tcp_rexmit_nxt = tcp->tcp_snxt; } } else { /* * If tcp->tcp_cork is set, then the data will not get sent, * so we have to check that and unset it first. */ if (tcp->tcp_cork) tcp->tcp_cork = B_FALSE; tcp_wput_data(tcp, NULL, B_FALSE); } /* * If TCP does not get enough samples of RTT or tcp_rtt_updates * is 0, don't update the cache. */ if (tcps->tcps_rtt_updates == 0 || tcp->tcp_rtt_update < tcps->tcps_rtt_updates) return (0); /* * We do not have a good algorithm to update ssthresh at this time. * So don't do any update. */ bzero(&uinfo, sizeof (uinfo)); uinfo.iulp_rtt = tcp->tcp_rtt_sa; uinfo.iulp_rtt_sd = tcp->tcp_rtt_sd; /* * Note that uinfo is kept for conn_faddr in the DCE. Could update even * if source routed but we don't. */ if (connp->conn_ipversion == IPV4_VERSION) { if (connp->conn_faddr_v4 != tcp->tcp_ipha->ipha_dst) { return (0); } (void) dce_update_uinfo_v4(connp->conn_faddr_v4, &uinfo, ipst); } else { uint_t ifindex; if (!(IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &tcp->tcp_ip6h->ip6_dst))) { return (0); } ifindex = 0; if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_faddr_v6)) { ip_xmit_attr_t *ixa = connp->conn_ixa; /* * If we are going to create a DCE we'd better have * an ifindex */ if (ixa->ixa_nce != NULL) { ifindex = ixa->ixa_nce->nce_common->ncec_ill-> ill_phyint->phyint_ifindex; } else { return (0); } } (void) dce_update_uinfo(&connp->conn_faddr_v6, ifindex, &uinfo, ipst); } return (0); } /* * Generate a "no listener here" RST in response to an "unknown" segment. * connp is set by caller when RST is in response to an unexpected * inbound packet for which there is active tcp state in the system. * Note that we are reusing the incoming mp to construct the outgoing RST. */ void tcp_xmit_listeners_reset(mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst, conn_t *connp) { uchar_t *rptr; uint32_t seg_len; tcpha_t *tcpha; uint32_t seg_seq; uint32_t seg_ack; uint_t flags; ipha_t *ipha; ip6_t *ip6h; boolean_t policy_present; netstack_t *ns = ipst->ips_netstack; tcp_stack_t *tcps = ns->netstack_tcp; ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; uint_t ip_hdr_len = ira->ira_ip_hdr_length; TCP_STAT(tcps, tcp_no_listener); if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { policy_present = ipss->ipsec_inbound_v4_policy_present; ipha = (ipha_t *)mp->b_rptr; ip6h = NULL; } else { policy_present = ipss->ipsec_inbound_v6_policy_present; ipha = NULL; ip6h = (ip6_t *)mp->b_rptr; } if (policy_present) { /* * The conn_t parameter is NULL because we already know * nobody's home. */ mp = ipsec_check_global_policy(mp, (conn_t *)NULL, ipha, ip6h, ira, ns); if (mp == NULL) return; } if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { DTRACE_PROBE2( tx__ip__log__error__nolistener__tcp, char *, "Could not reply with RST to mp(1)", mblk_t *, mp); ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); freemsg(mp); return; } rptr = mp->b_rptr; tcpha = (tcpha_t *)&rptr[ip_hdr_len]; seg_seq = ntohl(tcpha->tha_seq); seg_ack = ntohl(tcpha->tha_ack); flags = tcpha->tha_flags; seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcpha) + ip_hdr_len); if (flags & TH_RST) { freemsg(mp); } else if (flags & TH_ACK) { tcp_xmit_early_reset("no tcp, reset", mp, seg_ack, 0, TH_RST, ira, ipst, connp); } else { if (flags & TH_SYN) { seg_len++; } else { /* * Here we violate the RFC. Note that a normal * TCP will never send a segment without the ACK * flag, except for RST or SYN segment. This * segment is neither. Just drop it on the * floor. */ freemsg(mp); tcps->tcps_rst_unsent++; return; } tcp_xmit_early_reset("no tcp, reset/ack", mp, 0, seg_seq + seg_len, TH_RST | TH_ACK, ira, ipst, connp); } } /* * tcp_xmit_mp is called to return a pointer to an mblk chain complete with * ip and tcp header ready to pass down to IP. If the mp passed in is * non-NULL, then up to max_to_send bytes of data will be dup'ed off that * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary * otherwise it will dup partial mblks.) * Otherwise, an appropriate ACK packet will be generated. This * routine is not usually called to send new data for the first time. It * is mostly called out of the timer for retransmits, and to generate ACKs. * * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will * be adjusted by *offset. And after dupb(), the offset and the ending mblk * of the original mblk chain will be returned in *offset and *end_mp. */ mblk_t * tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, boolean_t rexmit) { int data_length; int32_t off = 0; uint_t flags; mblk_t *mp1; mblk_t *mp2; uchar_t *rptr; tcpha_t *tcpha; int32_t num_sack_blk = 0; int32_t sack_opt_len = 0; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; ip_xmit_attr_t *ixa = connp->conn_ixa; /* Allocate for our maximum TCP header + link-level */ mp1 = allocb(connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra, BPRI_MED); if (!mp1) return (NULL); data_length = 0; /* * Note that tcp_mss has been adjusted to take into account the * timestamp option if applicable. Because SACK options do not * appear in every TCP segments and they are of variable lengths, * they cannot be included in tcp_mss. Thus we need to calculate * the actual segment length when we need to send a segment which * includes SACK options. */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { num_sack_blk = MIN(tcp->tcp_max_sack_blk, tcp->tcp_num_sack_blk); sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; if (max_to_send + sack_opt_len > tcp->tcp_mss) max_to_send -= sack_opt_len; } if (offset != NULL) { off = *offset; /* We use offset as an indicator that end_mp is not NULL. */ *end_mp = NULL; } for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { /* This could be faster with cooperation from downstream */ if (mp2 != mp1 && !sendall && data_length + (int)(mp->b_wptr - mp->b_rptr) > max_to_send) /* * Don't send the next mblk since the whole mblk * does not fit. */ break; mp2->b_cont = dupb(mp); mp2 = mp2->b_cont; if (!mp2) { freemsg(mp1); return (NULL); } mp2->b_rptr += off; ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= (uintptr_t)INT_MAX); data_length += (int)(mp2->b_wptr - mp2->b_rptr); if (data_length > max_to_send) { mp2->b_wptr -= data_length - max_to_send; data_length = max_to_send; off = mp2->b_wptr - mp->b_rptr; break; } else { off = 0; } } if (offset != NULL) { *offset = off; *end_mp = mp; } if (seg_len != NULL) { *seg_len = data_length; } /* Update the latest receive window size in TCP header. */ tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; mp1->b_rptr = rptr; mp1->b_wptr = rptr + connp->conn_ht_iphc_len + sack_opt_len; bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; tcpha->tha_seq = htonl(seq); /* * Use tcp_unsent to determine if the PUSH bit should be used assumes * that this function was called from tcp_wput_data. Thus, when called * to retransmit data the setting of the PUSH bit may appear some * what random in that it might get set when it should not. This * should not pose any performance issues. */ if (data_length != 0 && (tcp->tcp_unsent == 0 || tcp->tcp_unsent == data_length)) { flags = TH_ACK | TH_PUSH; } else { flags = TH_ACK; } if (tcp->tcp_ecn_ok) { if (tcp->tcp_ecn_echo_on) flags |= TH_ECE; /* * Only set ECT bit and ECN_CWR if a segment contains new data. * There is no TCP flow control for non-data segments, and * only data segment is transmitted reliably. */ if (data_length > 0 && !rexmit) { SET_ECT(tcp, rptr); if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { flags |= TH_CWR; tcp->tcp_ecn_cwr_sent = B_TRUE; } } } if (tcp->tcp_valid_bits) { uint32_t u1; if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && seq == tcp->tcp_iss) { uchar_t *wptr; /* * If TCP_ISS_VALID and the seq number is tcp_iss, * TCP can only be in SYN-SENT, SYN-RCVD or * FIN-WAIT-1 state. It can be FIN-WAIT-1 if * our SYN is not ack'ed but the app closes this * TCP connection. */ ASSERT(tcp->tcp_state == TCPS_SYN_SENT || tcp->tcp_state == TCPS_SYN_RCVD || tcp->tcp_state == TCPS_FIN_WAIT_1); /* * Tack on the MSS option. It is always needed * for both active and passive open. * * MSS option value should be interface MTU - MIN * TCP/IP header according to RFC 793 as it means * the maximum segment size TCP can receive. But * to get around some broken middle boxes/end hosts * out there, we allow the option value to be the * same as the MSS option size on the peer side. * In this way, the other side will not send * anything larger than they can receive. * * Note that for SYN_SENT state, the ndd param * tcp_use_smss_as_mss_opt has no effect as we * don't know the peer's MSS option value. So * the only case we need to take care of is in * SYN_RCVD state, which is done later. */ wptr = mp1->b_wptr; wptr[0] = TCPOPT_MAXSEG; wptr[1] = TCPOPT_MAXSEG_LEN; wptr += 2; u1 = tcp->tcp_initial_pmtu - (connp->conn_ipversion == IPV4_VERSION ? IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - TCP_MIN_HEADER_LENGTH; U16_TO_BE16(u1, wptr); mp1->b_wptr = wptr + 2; /* Update the offset to cover the additional word */ tcpha->tha_offset_and_reserved += (1 << 4); /* * Note that the following way of filling in * TCP options are not optimal. Some NOPs can * be saved. But there is no need at this time * to optimize it. When it is needed, we will * do it. */ switch (tcp->tcp_state) { case TCPS_SYN_SENT: flags = TH_SYN; if (tcp->tcp_snd_ts_ok) { uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; wptr = mp1->b_wptr; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_TSTAMP; wptr[3] = TCPOPT_TSTAMP_LEN; wptr += 4; U32_TO_BE32(llbolt, wptr); wptr += 4; ASSERT(tcp->tcp_ts_recent == 0); U32_TO_BE32(0L, wptr); mp1->b_wptr += TCPOPT_REAL_TS_LEN; tcpha->tha_offset_and_reserved += (3 << 4); } /* * Set up all the bits to tell other side * we are ECN capable. */ if (tcp->tcp_ecn_ok) { flags |= (TH_ECE | TH_CWR); } break; case TCPS_SYN_RCVD: flags |= TH_SYN; /* * Reset the MSS option value to be SMSS * We should probably add back the bytes * for timestamp option and IPsec. We * don't do that as this is a workaround * for broken middle boxes/end hosts, it * is better for us to be more cautious. * They may not take these things into * account in their SMSS calculation. Thus * the peer's calculated SMSS may be smaller * than what it can be. This should be OK. */ if (tcps->tcps_use_smss_as_mss_opt) { u1 = tcp->tcp_mss; U16_TO_BE16(u1, wptr); } /* * If the other side is ECN capable, reply * that we are also ECN capable. */ if (tcp->tcp_ecn_ok) flags |= TH_ECE; break; default: /* * The above ASSERT() makes sure that this * must be FIN-WAIT-1 state. Our SYN has * not been ack'ed so retransmit it. */ flags |= TH_SYN; break; } if (tcp->tcp_snd_ws_ok) { wptr = mp1->b_wptr; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_WSCALE; wptr[2] = TCPOPT_WS_LEN; wptr[3] = (uchar_t)tcp->tcp_rcv_ws; mp1->b_wptr += TCPOPT_REAL_WS_LEN; tcpha->tha_offset_and_reserved += (1 << 4); } if (tcp->tcp_snd_sack_ok) { wptr = mp1->b_wptr; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK_PERMITTED; wptr[3] = TCPOPT_SACK_OK_LEN; mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; tcpha->tha_offset_and_reserved += (1 << 4); } /* allocb() of adequate mblk assures space */ ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); u1 = (int)(mp1->b_wptr - mp1->b_rptr); /* * Get IP set to checksum on our behalf * Include the adjustment for a source route if any. */ u1 += connp->conn_sum; u1 = (u1 >> 16) + (u1 & 0xFFFF); tcpha->tha_sum = htons(u1); BUMP_MIB(&tcps->tcps_mib, tcpOutControl); } if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && (seq + data_length) == tcp->tcp_fss) { if (!tcp->tcp_fin_acked) { flags |= TH_FIN; BUMP_MIB(&tcps->tcps_mib, tcpOutControl); } if (!tcp->tcp_fin_sent) { tcp->tcp_fin_sent = B_TRUE; switch (tcp->tcp_state) { case TCPS_SYN_RCVD: case TCPS_ESTABLISHED: tcp->tcp_state = TCPS_FIN_WAIT_1; break; case TCPS_CLOSE_WAIT: tcp->tcp_state = TCPS_LAST_ACK; break; } if (tcp->tcp_suna == tcp->tcp_snxt) TCP_TIMER_RESTART(tcp, tcp->tcp_rto); tcp->tcp_snxt = tcp->tcp_fss + 1; } } /* * Note the trick here. u1 is unsigned. When tcp_urg * is smaller than seq, u1 will become a very huge value. * So the comparison will fail. Also note that tcp_urp * should be positive, see RFC 793 page 17. */ u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && u1 < (uint32_t)(64 * 1024)) { flags |= TH_URG; BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); tcpha->tha_urp = htons(u1); } } tcpha->tha_flags = (uchar_t)flags; tcp->tcp_rack = tcp->tcp_rnxt; tcp->tcp_rack_cnt = 0; if (tcp->tcp_snd_ts_ok) { if (tcp->tcp_state != TCPS_SYN_SENT) { uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; U32_TO_BE32(llbolt, (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); } } if (num_sack_blk > 0) { uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; sack_blk_t *tmp; int32_t i; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK; wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * sizeof (sack_blk_t); wptr += TCPOPT_REAL_SACK_LEN; tmp = tcp->tcp_sack_list; for (i = 0; i < num_sack_blk; i++) { U32_TO_BE32(tmp[i].begin, wptr); wptr += sizeof (tcp_seq); U32_TO_BE32(tmp[i].end, wptr); wptr += sizeof (tcp_seq); } tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); } ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); data_length += (int)(mp1->b_wptr - rptr); ixa->ixa_pktlen = data_length; if (ixa->ixa_flags & IXAF_IS_IPV4) { ((ipha_t *)rptr)->ipha_length = htons(data_length); } else { ip6_t *ip6 = (ip6_t *)rptr; ip6->ip6_plen = htons(data_length - IPV6_HDR_LEN); } /* * Prime pump for IP * Include the adjustment for a source route if any. */ data_length -= ixa->ixa_ip_hdr_length; data_length += connp->conn_sum; data_length = (data_length >> 16) + (data_length & 0xFFFF); tcpha->tha_sum = htons(data_length); if (tcp->tcp_ip_forward_progress) { tcp->tcp_ip_forward_progress = B_FALSE; connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; } else { connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; } return (mp1); } /* This function handles the push timeout. */ void tcp_push_timer(void *arg) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); ASSERT(tcp->tcp_listener == NULL); ASSERT(!IPCL_IS_NONSTR(connp)); tcp->tcp_push_tid = 0; if (tcp->tcp_rcv_list != NULL && tcp_rcv_drain(tcp) == TH_ACK_NEEDED) tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } /* * This function handles delayed ACK timeout. */ static void tcp_ack_timer(void *arg) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; mblk_t *mp; tcp_stack_t *tcps = tcp->tcp_tcps; TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); tcp->tcp_ack_tid = 0; if (tcp->tcp_fused) return; /* * Do not send ACK if there is no outstanding unack'ed data. */ if (tcp->tcp_rnxt == tcp->tcp_rack) { return; } if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { /* * Make sure we don't allow deferred ACKs to result in * timer-based ACKing. If we have held off an ACK * when there was more than an mss here, and the timer * goes off, we have to worry about the possibility * that the sender isn't doing slow-start, or is out * of step with us for some other reason. We fall * permanently back in the direction of * ACK-every-other-packet as suggested in RFC 1122. */ if (tcp->tcp_rack_abs_max > 2) tcp->tcp_rack_abs_max--; tcp->tcp_rack_cur_max = 2; } mp = tcp_ack_mp(tcp); if (mp != NULL) { BUMP_LOCAL(tcp->tcp_obsegs); BUMP_MIB(&tcps->tcps_mib, tcpOutAck); BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); tcp_send_data(tcp, mp); } } /* Generate an ACK-only (no data) segment for a TCP endpoint */ static mblk_t * tcp_ack_mp(tcp_t *tcp) { uint32_t seq_no; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; /* * There are a few cases to be considered while setting the sequence no. * Essentially, we can come here while processing an unacceptable pkt * in the TCPS_SYN_RCVD state, in which case we set the sequence number * to snxt (per RFC 793), note the swnd wouldn't have been set yet. * If we are here for a zero window probe, stick with suna. In all * other cases, we check if suna + swnd encompasses snxt and set * the sequence number to snxt, if so. If snxt falls outside the * window (the receiver probably shrunk its window), we will go with * suna + swnd, otherwise the sequence no will be unacceptable to the * receiver. */ if (tcp->tcp_zero_win_probe) { seq_no = tcp->tcp_suna; } else if (tcp->tcp_state == TCPS_SYN_RCVD) { ASSERT(tcp->tcp_swnd == 0); seq_no = tcp->tcp_snxt; } else { seq_no = SEQ_GT(tcp->tcp_snxt, (tcp->tcp_suna + tcp->tcp_swnd)) ? (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; } if (tcp->tcp_valid_bits) { /* * For the complex case where we have to send some * controls (FIN or SYN), let tcp_xmit_mp do it. */ return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, NULL, B_FALSE)); } else { /* Generate a simple ACK */ int data_length; uchar_t *rptr; tcpha_t *tcpha; mblk_t *mp1; int32_t total_hdr_len; int32_t tcp_hdr_len; int32_t num_sack_blk = 0; int32_t sack_opt_len; ip_xmit_attr_t *ixa = connp->conn_ixa; /* * Allocate space for TCP + IP headers * and link-level header */ if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { num_sack_blk = MIN(tcp->tcp_max_sack_blk, tcp->tcp_num_sack_blk); sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len; tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len; } else { total_hdr_len = connp->conn_ht_iphc_len; tcp_hdr_len = connp->conn_ht_ulp_len; } mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); if (!mp1) return (NULL); /* Update the latest receive window size in TCP header. */ tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); /* copy in prototype TCP + IP header */ rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; mp1->b_rptr = rptr; mp1->b_wptr = rptr + total_hdr_len; bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len); tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length]; /* Set the TCP sequence number. */ tcpha->tha_seq = htonl(seq_no); /* Set up the TCP flag field. */ tcpha->tha_flags = (uchar_t)TH_ACK; if (tcp->tcp_ecn_echo_on) tcpha->tha_flags |= TH_ECE; tcp->tcp_rack = tcp->tcp_rnxt; tcp->tcp_rack_cnt = 0; /* fill in timestamp option if in use */ if (tcp->tcp_snd_ts_ok) { uint32_t llbolt = (uint32_t)LBOLT_FASTPATH; U32_TO_BE32(llbolt, (char *)tcpha + TCP_MIN_HEADER_LENGTH+4); U32_TO_BE32(tcp->tcp_ts_recent, (char *)tcpha + TCP_MIN_HEADER_LENGTH+8); } /* Fill in SACK options */ if (num_sack_blk > 0) { uchar_t *wptr = (uchar_t *)tcpha + connp->conn_ht_ulp_len; sack_blk_t *tmp; int32_t i; wptr[0] = TCPOPT_NOP; wptr[1] = TCPOPT_NOP; wptr[2] = TCPOPT_SACK; wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * sizeof (sack_blk_t); wptr += TCPOPT_REAL_SACK_LEN; tmp = tcp->tcp_sack_list; for (i = 0; i < num_sack_blk; i++) { U32_TO_BE32(tmp[i].begin, wptr); wptr += sizeof (tcp_seq); U32_TO_BE32(tmp[i].end, wptr); wptr += sizeof (tcp_seq); } tcpha->tha_offset_and_reserved += ((num_sack_blk * 2 + 1) << 4); } ixa->ixa_pktlen = total_hdr_len; if (ixa->ixa_flags & IXAF_IS_IPV4) { ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len); } else { ip6_t *ip6 = (ip6_t *)rptr; ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN); } /* * Prime pump for checksum calculation in IP. Include the * adjustment for a source route if any. */ data_length = tcp_hdr_len + connp->conn_sum; data_length = (data_length >> 16) + (data_length & 0xFFFF); tcpha->tha_sum = htons(data_length); if (tcp->tcp_ip_forward_progress) { tcp->tcp_ip_forward_progress = B_FALSE; connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF; } else { connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF; } return (mp1); } } /* * Hash list insertion routine for tcp_t structures. Each hash bucket * contains a list of tcp_t entries, and each entry is bound to a unique * port. If there are multiple tcp_t's that are bound to the same port, then * one of them will be linked into the hash bucket list, and the rest will * hang off of that one entry. For each port, entries bound to a specific IP * address will be inserted before those those bound to INADDR_ANY. */ static void tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) { tcp_t **tcpp; tcp_t *tcpnext; tcp_t *tcphash; conn_t *connp = tcp->tcp_connp; conn_t *connext; if (tcp->tcp_ptpbhn != NULL) { ASSERT(!caller_holds_lock); tcp_bind_hash_remove(tcp); } tcpp = &tbf->tf_tcp; if (!caller_holds_lock) { mutex_enter(&tbf->tf_lock); } else { ASSERT(MUTEX_HELD(&tbf->tf_lock)); } tcphash = tcpp[0]; tcpnext = NULL; if (tcphash != NULL) { /* Look for an entry using the same port */ while ((tcphash = tcpp[0]) != NULL && connp->conn_lport != tcphash->tcp_connp->conn_lport) tcpp = &(tcphash->tcp_bind_hash); /* The port was not found, just add to the end */ if (tcphash == NULL) goto insert; /* * OK, there already exists an entry bound to the * same port. * * If the new tcp bound to the INADDR_ANY address * and the first one in the list is not bound to * INADDR_ANY we skip all entries until we find the * first one bound to INADDR_ANY. * This makes sure that applications binding to a * specific address get preference over those binding to * INADDR_ANY. */ tcpnext = tcphash; connext = tcpnext->tcp_connp; tcphash = NULL; if (V6_OR_V4_INADDR_ANY(connp->conn_bound_addr_v6) && !V6_OR_V4_INADDR_ANY(connext->conn_bound_addr_v6)) { while ((tcpnext = tcpp[0]) != NULL) { connext = tcpnext->tcp_connp; if (!V6_OR_V4_INADDR_ANY( connext->conn_bound_addr_v6)) tcpp = &(tcpnext->tcp_bind_hash_port); else break; } if (tcpnext != NULL) { tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; tcphash = tcpnext->tcp_bind_hash; if (tcphash != NULL) { tcphash->tcp_ptpbhn = &(tcp->tcp_bind_hash); tcpnext->tcp_bind_hash = NULL; } } } else { tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; tcphash = tcpnext->tcp_bind_hash; if (tcphash != NULL) { tcphash->tcp_ptpbhn = &(tcp->tcp_bind_hash); tcpnext->tcp_bind_hash = NULL; } } } insert: tcp->tcp_bind_hash_port = tcpnext; tcp->tcp_bind_hash = tcphash; tcp->tcp_ptpbhn = tcpp; tcpp[0] = tcp; if (!caller_holds_lock) mutex_exit(&tbf->tf_lock); } /* * Hash list removal routine for tcp_t structures. */ static void tcp_bind_hash_remove(tcp_t *tcp) { tcp_t *tcpnext; kmutex_t *lockp; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; if (tcp->tcp_ptpbhn == NULL) return; /* * Extract the lock pointer in case there are concurrent * hash_remove's for this instance. */ ASSERT(connp->conn_lport != 0); lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH( connp->conn_lport)].tf_lock; ASSERT(lockp != NULL); mutex_enter(lockp); if (tcp->tcp_ptpbhn) { tcpnext = tcp->tcp_bind_hash_port; if (tcpnext != NULL) { tcp->tcp_bind_hash_port = NULL; tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; if (tcpnext->tcp_bind_hash != NULL) { tcpnext->tcp_bind_hash->tcp_ptpbhn = &(tcpnext->tcp_bind_hash); tcp->tcp_bind_hash = NULL; } } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; tcp->tcp_bind_hash = NULL; } *tcp->tcp_ptpbhn = tcpnext; tcp->tcp_ptpbhn = NULL; } mutex_exit(lockp); } /* * Hash list lookup routine for tcp_t structures. * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. */ static tcp_t * tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) { tf_t *tf; tcp_t *tcp; tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; mutex_enter(&tf->tf_lock); for (tcp = tf->tf_tcp; tcp != NULL; tcp = tcp->tcp_acceptor_hash) { if (tcp->tcp_acceptor_id == id) { CONN_INC_REF(tcp->tcp_connp); mutex_exit(&tf->tf_lock); return (tcp); } } mutex_exit(&tf->tf_lock); return (NULL); } /* * Hash list insertion routine for tcp_t structures. */ void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) { tf_t *tf; tcp_t **tcpp; tcp_t *tcpnext; tcp_stack_t *tcps = tcp->tcp_tcps; tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; if (tcp->tcp_ptpahn != NULL) tcp_acceptor_hash_remove(tcp); tcpp = &tf->tf_tcp; mutex_enter(&tf->tf_lock); tcpnext = tcpp[0]; if (tcpnext) tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; tcp->tcp_acceptor_hash = tcpnext; tcp->tcp_ptpahn = tcpp; tcpp[0] = tcp; tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ mutex_exit(&tf->tf_lock); } /* * Hash list removal routine for tcp_t structures. */ static void tcp_acceptor_hash_remove(tcp_t *tcp) { tcp_t *tcpnext; kmutex_t *lockp; /* * Extract the lock pointer in case there are concurrent * hash_remove's for this instance. */ lockp = tcp->tcp_acceptor_lockp; if (tcp->tcp_ptpahn == NULL) return; ASSERT(lockp != NULL); mutex_enter(lockp); if (tcp->tcp_ptpahn) { tcpnext = tcp->tcp_acceptor_hash; if (tcpnext) { tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; tcp->tcp_acceptor_hash = NULL; } *tcp->tcp_ptpahn = tcpnext; tcp->tcp_ptpahn = NULL; } mutex_exit(lockp); tcp->tcp_acceptor_lockp = NULL; } /* * Type three generator adapted from the random() function in 4.4 BSD: */ /* * Copyright (c) 1983, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Type 3 -- x**31 + x**3 + 1 */ #define DEG_3 31 #define SEP_3 3 /* Protected by tcp_random_lock */ static int tcp_randtbl[DEG_3 + 1]; static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; static int *tcp_random_rptr = &tcp_randtbl[1]; static int *tcp_random_state = &tcp_randtbl[1]; static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; kmutex_t tcp_random_lock; void tcp_random_init(void) { int i; hrtime_t hrt; time_t wallclock; uint64_t result; /* * Use high-res timer and current time for seed. Gethrtime() returns * a longlong, which may contain resolution down to nanoseconds. * The current time will either be a 32-bit or a 64-bit quantity. * XOR the two together in a 64-bit result variable. * Convert the result to a 32-bit value by multiplying the high-order * 32-bits by the low-order 32-bits. */ hrt = gethrtime(); (void) drv_getparm(TIME, &wallclock); result = (uint64_t)wallclock ^ (uint64_t)hrt; mutex_enter(&tcp_random_lock); tcp_random_state[0] = ((result >> 32) & 0xffffffff) * (result & 0xffffffff); for (i = 1; i < DEG_3; i++) tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] + 12345; tcp_random_fptr = &tcp_random_state[SEP_3]; tcp_random_rptr = &tcp_random_state[0]; mutex_exit(&tcp_random_lock); for (i = 0; i < 10 * DEG_3; i++) (void) tcp_random(); } /* * tcp_random: Return a random number in the range [1 - (128K + 1)]. * This range is selected to be approximately centered on TCP_ISS / 2, * and easy to compute. We get this value by generating a 32-bit random * number, selecting out the high-order 17 bits, and then adding one so * that we never return zero. */ int tcp_random(void) { int i; mutex_enter(&tcp_random_lock); *tcp_random_fptr += *tcp_random_rptr; /* * The high-order bits are more random than the low-order bits, * so we select out the high-order 17 bits and add one so that * we never return zero. */ i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; if (++tcp_random_fptr >= tcp_random_end_ptr) { tcp_random_fptr = tcp_random_state; ++tcp_random_rptr; } else if (++tcp_random_rptr >= tcp_random_end_ptr) tcp_random_rptr = tcp_random_state; mutex_exit(&tcp_random_lock); return (i); } static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, int *t_errorp, int *sys_errorp) { int error; int is_absreq_failure; t_scalar_t *opt_lenp; t_scalar_t opt_offset; int prim_type; struct T_conn_req *tcreqp; struct T_conn_res *tcresp; cred_t *cr; /* * All Solaris components should pass a db_credp * for this TPI message, hence we ASSERT. * But in case there is some other M_PROTO that looks * like a TPI message sent by some other kernel * component, we check and return an error. */ cr = msg_getcred(mp, NULL); ASSERT(cr != NULL); if (cr == NULL) return (-1); prim_type = ((union T_primitives *)mp->b_rptr)->type; ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || prim_type == T_CONN_RES); switch (prim_type) { case T_CONN_REQ: tcreqp = (struct T_conn_req *)mp->b_rptr; opt_offset = tcreqp->OPT_offset; opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; break; case O_T_CONN_RES: case T_CONN_RES: tcresp = (struct T_conn_res *)mp->b_rptr; opt_offset = tcresp->OPT_offset; opt_lenp = (t_scalar_t *)&tcresp->OPT_length; break; } *t_errorp = 0; *sys_errorp = 0; *do_disconnectp = 0; error = tpi_optcom_buf(tcp->tcp_connp->conn_wq, mp, opt_lenp, opt_offset, cr, &tcp_opt_obj, NULL, &is_absreq_failure); switch (error) { case 0: /* no error */ ASSERT(is_absreq_failure == 0); return (0); case ENOPROTOOPT: *t_errorp = TBADOPT; break; case EACCES: *t_errorp = TACCES; break; default: *t_errorp = TSYSERR; *sys_errorp = error; break; } if (is_absreq_failure != 0) { /* * The connection request should get the local ack * T_OK_ACK and then a T_DISCON_IND. */ *do_disconnectp = 1; } return (-1); } /* * Split this function out so that if the secret changes, I'm okay. * * Initialize the tcp_iss_cookie and tcp_iss_key. */ #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) { struct { int32_t current_time; uint32_t randnum; uint16_t pad; uint8_t ether[6]; uint8_t passwd[PASSWD_SIZE]; } tcp_iss_cookie; time_t t; /* * Start with the current absolute time. */ (void) drv_getparm(TIME, &t); tcp_iss_cookie.current_time = t; /* * XXX - Need a more random number per RFC 1750, not this crap. * OTOH, if what follows is pretty random, then I'm in better shape. */ tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ /* * The cpu_type_info is pretty non-random. Ugggh. It does serve * as a good template. */ bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); /* * The pass-phrase. Normally this is supplied by user-called NDD. */ bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); /* * See 4010593 if this section becomes a problem again, * but the local ethernet address is useful here. */ (void) localetheraddr(NULL, (struct ether_addr *)&tcp_iss_cookie.ether); /* * Hash 'em all together. The MD5Final is called per-connection. */ mutex_enter(&tcps->tcps_iss_key_lock); MD5Init(&tcps->tcps_iss_key); MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, sizeof (tcp_iss_cookie)); mutex_exit(&tcps->tcps_iss_key_lock); } /* * Set the RFC 1948 pass phrase */ /* ARGSUSED */ static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) { tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; /* * Basically, value contains a new pass phrase. Pass it along! */ tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); return (0); } /* ARGSUSED */ static int tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) { bzero(buf, sizeof (tcp_sack_info_t)); return (0); } /* * Called by IP when IP is loaded into the kernel */ void tcp_ddi_g_init(void) { tcp_timercache = kmem_cache_create("tcp_timercache", sizeof (tcp_timer_t) + sizeof (mblk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", sizeof (tcp_sack_info_t), 0, tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); /* Initialize the random number generator */ tcp_random_init(); /* A single callback independently of how many netstacks we have */ ip_squeue_init(tcp_squeue_add); tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); /* * We want to be informed each time a stack is created or * destroyed in the kernel, so we can maintain the * set of tcp_stack_t's. */ netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); } #define INET_NAME "ip" /* * Initialize the TCP stack instance. */ static void * tcp_stack_init(netstackid_t stackid, netstack_t *ns) { tcp_stack_t *tcps; tcpparam_t *pa; int i; int error = 0; major_t major; tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); tcps->tcps_netstack = ns; /* Initialize locks */ mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; tcps->tcps_g_epriv_ports[0] = 2049; tcps->tcps_g_epriv_ports[1] = 4045; tcps->tcps_min_anonpriv_port = 512; tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * TCP_BIND_FANOUT_SIZE, KM_SLEEP); tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * TCP_FANOUT_SIZE, KM_SLEEP); for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, MUTEX_DEFAULT, NULL); } for (i = 0; i < TCP_FANOUT_SIZE; i++) { mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, MUTEX_DEFAULT, NULL); } /* TCP's IPsec code calls the packet dropper. */ ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); tcps->tcps_params = pa; bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, A_CNT(lcl_tcp_param_arr), tcps); /* * Note: To really walk the device tree you need the devinfo * pointer to your device which is only available after probe/attach. * The following is safe only because it uses ddi_root_node() */ tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, tcp_opt_obj.odb_opt_arr_cnt); /* * Initialize RFC 1948 secret values. This will probably be reset once * by the boot scripts. * * Use NULL name, as the name is caught by the new lockstats. * * Initialize with some random, non-guessable string, like the global * T_INFO_ACK. */ tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, sizeof (tcp_g_t_info_ack), tcps); tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); major = mod_name_to_major(INET_NAME); error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); ASSERT(error == 0); tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL); mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); return (tcps); } /* * Called when the IP module is about to be unloaded. */ void tcp_ddi_g_destroy(void) { tcp_g_kstat_fini(tcp_g_kstat); tcp_g_kstat = NULL; bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); mutex_destroy(&tcp_random_lock); kmem_cache_destroy(tcp_timercache); kmem_cache_destroy(tcp_sack_info_cache); netstack_unregister(NS_TCP); } /* * Free the TCP stack instance. */ static void tcp_stack_fini(netstackid_t stackid, void *arg) { tcp_stack_t *tcps = (tcp_stack_t *)arg; int i; freeb(tcps->tcps_ixa_cleanup_mp); tcps->tcps_ixa_cleanup_mp = NULL; cv_destroy(&tcps->tcps_ixa_cleanup_cv); mutex_destroy(&tcps->tcps_ixa_cleanup_lock); nd_free(&tcps->tcps_g_nd); kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); tcps->tcps_params = NULL; kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); tcps->tcps_wroff_xtra_param = NULL; for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); } for (i = 0; i < TCP_FANOUT_SIZE; i++) { ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); } kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); tcps->tcps_bind_fanout = NULL; kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); tcps->tcps_acceptor_fanout = NULL; mutex_destroy(&tcps->tcps_iss_key_lock); mutex_destroy(&tcps->tcps_epriv_port_lock); ip_drop_unregister(&tcps->tcps_dropper); tcp_kstat2_fini(stackid, tcps->tcps_kstat); tcps->tcps_kstat = NULL; bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); tcp_kstat_fini(stackid, tcps->tcps_mibkp); tcps->tcps_mibkp = NULL; ldi_ident_release(tcps->tcps_ldi_ident); kmem_free(tcps, sizeof (*tcps)); } /* * Generate ISS, taking into account NDD changes may happen halfway through. * (If the iss is not zero, set it.) */ static void tcp_iss_init(tcp_t *tcp) { MD5_CTX context; struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; uint32_t answer[4]; tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); tcp->tcp_iss = tcps->tcps_iss_incr_extra; switch (tcps->tcps_strong_iss) { case 2: mutex_enter(&tcps->tcps_iss_key_lock); context = tcps->tcps_iss_key; mutex_exit(&tcps->tcps_iss_key_lock); arg.ports = connp->conn_ports; arg.src = connp->conn_laddr_v6; arg.dst = connp->conn_faddr_v6; MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); MD5Final((uchar_t *)answer, &context); tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; /* * Now that we've hashed into a unique per-connection sequence * space, add a random increment per strong_iss == 1. So I * guess we'll have to... */ /* FALLTHRU */ case 1: tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); break; default: tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; break; } tcp->tcp_valid_bits = TCP_ISS_VALID; tcp->tcp_fss = tcp->tcp_iss - 1; tcp->tcp_suna = tcp->tcp_iss; tcp->tcp_snxt = tcp->tcp_iss + 1; tcp->tcp_rexmit_nxt = tcp->tcp_snxt; tcp->tcp_csuna = tcp->tcp_snxt; } /* * Exported routine for extracting active tcp connection status. * * This is used by the Solaris Cluster Networking software to * gather a list of connections that need to be forwarded to * specific nodes in the cluster when configuration changes occur. * * The callback is invoked for each tcp_t structure from all netstacks, * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures * from the netstack with the specified stack_id. Returning * non-zero from the callback routine terminates the search. */ int cl_tcp_walk_list(netstackid_t stack_id, int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) { netstack_handle_t nh; netstack_t *ns; int ret = 0; if (stack_id >= 0) { if ((ns = netstack_find_by_stackid(stack_id)) == NULL) return (EINVAL); ret = cl_tcp_walk_list_stack(cl_callback, arg, ns->netstack_tcp); netstack_rele(ns); return (ret); } netstack_next_init(&nh); while ((ns = netstack_next(&nh)) != NULL) { ret = cl_tcp_walk_list_stack(cl_callback, arg, ns->netstack_tcp); netstack_rele(ns); } netstack_next_fini(&nh); return (ret); } static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, tcp_stack_t *tcps) { tcp_t *tcp; cl_tcp_info_t cl_tcpi; connf_t *connfp; conn_t *connp; int i; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; ASSERT(callback != NULL); for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipst->ips_ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { tcp = connp->conn_tcp; cl_tcpi.cl_tcpi_version = CL_TCPI_V1; cl_tcpi.cl_tcpi_ipversion = connp->conn_ipversion; cl_tcpi.cl_tcpi_state = tcp->tcp_state; cl_tcpi.cl_tcpi_lport = connp->conn_lport; cl_tcpi.cl_tcpi_fport = connp->conn_fport; cl_tcpi.cl_tcpi_laddr_v6 = connp->conn_laddr_v6; cl_tcpi.cl_tcpi_faddr_v6 = connp->conn_faddr_v6; /* * If the callback returns non-zero * we terminate the traversal. */ if ((*callback)(&cl_tcpi, arg) != 0) { CONN_DEC_REF(tcp->tcp_connp); return (1); } } } return (0); } /* * Macros used for accessing the different types of sockaddr * structures inside a tcp_ioc_abort_conn_t. */ #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) /* * Return the correct error code to mimic the behavior * of a connection reset. */ #define TCP_AC_GET_ERRCODE(state, err) { \ switch ((state)) { \ case TCPS_SYN_SENT: \ case TCPS_SYN_RCVD: \ (err) = ECONNREFUSED; \ break; \ case TCPS_ESTABLISHED: \ case TCPS_FIN_WAIT_1: \ case TCPS_FIN_WAIT_2: \ case TCPS_CLOSE_WAIT: \ (err) = ECONNRESET; \ break; \ case TCPS_CLOSING: \ case TCPS_LAST_ACK: \ case TCPS_TIME_WAIT: \ (err) = 0; \ break; \ default: \ (err) = ENXIO; \ } \ } /* * Check if a tcp structure matches the info in acp. */ #define TCP_AC_ADDR_MATCH(acp, connp, tcp) \ (((acp)->ac_local.ss_family == AF_INET) ? \ ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ TCP_AC_V4LOCAL((acp)) == (connp)->conn_laddr_v4) && \ (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ TCP_AC_V4REMOTE((acp)) == (connp)->conn_faddr_v4) && \ (TCP_AC_V4LPORT((acp)) == 0 || \ TCP_AC_V4LPORT((acp)) == (connp)->conn_lport) && \ (TCP_AC_V4RPORT((acp)) == 0 || \ TCP_AC_V4RPORT((acp)) == (connp)->conn_fport) && \ (acp)->ac_start <= (tcp)->tcp_state && \ (acp)->ac_end >= (tcp)->tcp_state) : \ ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ &(connp)->conn_laddr_v6)) && \ (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ &(connp)->conn_faddr_v6)) && \ (TCP_AC_V6LPORT((acp)) == 0 || \ TCP_AC_V6LPORT((acp)) == (connp)->conn_lport) && \ (TCP_AC_V6RPORT((acp)) == 0 || \ TCP_AC_V6RPORT((acp)) == (connp)->conn_fport) && \ (acp)->ac_start <= (tcp)->tcp_state && \ (acp)->ac_end >= (tcp)->tcp_state)) #define TCP_AC_MATCH(acp, connp, tcp) \ (((acp)->ac_zoneid == ALL_ZONES || \ (acp)->ac_zoneid == (connp)->conn_zoneid) ? \ TCP_AC_ADDR_MATCH(acp, connp, tcp) : 0) /* * Build a message containing a tcp_ioc_abort_conn_t structure * which is filled in with information from acp and tp. */ static mblk_t * tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) { mblk_t *mp; tcp_ioc_abort_conn_t *tacp; mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); if (mp == NULL) return (NULL); *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + sizeof (uint32_t)); tacp->ac_start = acp->ac_start; tacp->ac_end = acp->ac_end; tacp->ac_zoneid = acp->ac_zoneid; if (acp->ac_local.ss_family == AF_INET) { tacp->ac_local.ss_family = AF_INET; tacp->ac_remote.ss_family = AF_INET; TCP_AC_V4LOCAL(tacp) = tp->tcp_connp->conn_laddr_v4; TCP_AC_V4REMOTE(tacp) = tp->tcp_connp->conn_faddr_v4; TCP_AC_V4LPORT(tacp) = tp->tcp_connp->conn_lport; TCP_AC_V4RPORT(tacp) = tp->tcp_connp->conn_fport; } else { tacp->ac_local.ss_family = AF_INET6; tacp->ac_remote.ss_family = AF_INET6; TCP_AC_V6LOCAL(tacp) = tp->tcp_connp->conn_laddr_v6; TCP_AC_V6REMOTE(tacp) = tp->tcp_connp->conn_faddr_v6; TCP_AC_V6LPORT(tacp) = tp->tcp_connp->conn_lport; TCP_AC_V6RPORT(tacp) = tp->tcp_connp->conn_fport; } mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); return (mp); } /* * Print a tcp_ioc_abort_conn_t structure. */ static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) { char lbuf[128]; char rbuf[128]; sa_family_t af; in_port_t lport, rport; ushort_t logflags; af = acp->ac_local.ss_family; if (af == AF_INET) { (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), lbuf, 128); (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), rbuf, 128); lport = ntohs(TCP_AC_V4LPORT(acp)); rport = ntohs(TCP_AC_V4RPORT(acp)); } else { (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), lbuf, 128); (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), rbuf, 128); lport = ntohs(TCP_AC_V6LPORT(acp)); rport = ntohs(TCP_AC_V6RPORT(acp)); } logflags = SL_TRACE | SL_NOTE; /* * Don't print this message to the console if the operation was done * to a non-global zone. */ if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) logflags |= SL_CONSOLE; (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " "start = %d, end = %d\n", lbuf, lport, rbuf, rport, acp->ac_start, acp->ac_end); } /* * Called using SQ_FILL when a message built using * tcp_ioctl_abort_build_msg is put into a queue. * Note that when we get here there is no wildcard in acp any more. */ /* ARGSUSED2 */ static void tcp_ioctl_abort_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcp_ioc_abort_conn_t *acp; /* * Don't accept any input on a closed tcp as this TCP logically does * not exist on the system. Don't proceed further with this TCP. * For eg. this packet could trigger another close of this tcp * which would be disastrous for tcp_refcnt. tcp_close_detached / * tcp_clean_death / tcp_closei_local must be called at most once * on a TCP. */ if (tcp->tcp_state == TCPS_CLOSED || tcp->tcp_state == TCPS_BOUND) { freemsg(mp); return; } acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); if (tcp->tcp_state <= acp->ac_end) { /* * If we get here, we are already on the correct * squeue. This ioctl follows the following path * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn * ->tcp_ioctl_abort->squeue_enter (if on a * different squeue) */ int errcode; TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); (void) tcp_clean_death(tcp, errcode, 26); } freemsg(mp); } /* * Abort all matching connections on a hash chain. */ static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, boolean_t exact, tcp_stack_t *tcps) { int nmatch, err = 0; tcp_t *tcp; MBLKP mp, last, listhead = NULL; conn_t *tconnp; connf_t *connfp; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; connfp = &ipst->ips_ipcl_conn_fanout[index]; startover: nmatch = 0; mutex_enter(&connfp->connf_lock); for (tconnp = connfp->connf_head; tconnp != NULL; tconnp = tconnp->conn_next) { tcp = tconnp->conn_tcp; /* * We are missing a check on sin6_scope_id for linklocals here, * but current usage is just for aborting based on zoneid * for shared-IP zones. */ if (TCP_AC_MATCH(acp, tconnp, tcp)) { CONN_INC_REF(tconnp); mp = tcp_ioctl_abort_build_msg(acp, tcp); if (mp == NULL) { err = ENOMEM; CONN_DEC_REF(tconnp); break; } mp->b_prev = (mblk_t *)tcp; if (listhead == NULL) { listhead = mp; last = mp; } else { last->b_next = mp; last = mp; } nmatch++; if (exact) break; } /* Avoid holding lock for too long. */ if (nmatch >= 500) break; } mutex_exit(&connfp->connf_lock); /* Pass mp into the correct tcp */ while ((mp = listhead) != NULL) { listhead = listhead->b_next; tcp = (tcp_t *)mp->b_prev; mp->b_next = mp->b_prev = NULL; SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_ioctl_abort_handler, tcp->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); } *count += nmatch; if (nmatch >= 500 && err == 0) goto startover; return (err); } /* * Abort all connections that matches the attributes specified in acp. */ static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) { sa_family_t af; uint32_t ports; uint16_t *pports; int err = 0, count = 0; boolean_t exact = B_FALSE; /* set when there is no wildcard */ int index = -1; ushort_t logflags; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; af = acp->ac_local.ss_family; if (af == AF_INET) { if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { pports = (uint16_t *)&ports; pports[1] = TCP_AC_V4LPORT(acp); pports[0] = TCP_AC_V4RPORT(acp); exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); } } else { if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { pports = (uint16_t *)&ports; pports[1] = TCP_AC_V6LPORT(acp); pports[0] = TCP_AC_V6RPORT(acp); exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); } } /* * For cases where remote addr, local port, and remote port are non- * wildcards, tcp_ioctl_abort_bucket will only be called once. */ if (index != -1) { err = tcp_ioctl_abort_bucket(acp, index, &count, exact, tcps); } else { /* * loop through all entries for wildcard case */ for (index = 0; index < ipst->ips_ipcl_conn_fanout_size; index++) { err = tcp_ioctl_abort_bucket(acp, index, &count, exact, tcps); if (err != 0) break; } } logflags = SL_TRACE | SL_NOTE; /* * Don't print this message to the console if the operation was done * to a non-global zone. */ if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) logflags |= SL_CONSOLE; (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); if (err == 0 && count == 0) err = ENOENT; return (err); } /* * Process the TCP_IOC_ABORT_CONN ioctl request. */ static void tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) { int err; IOCP iocp; MBLKP mp1; sa_family_t laf, raf; tcp_ioc_abort_conn_t *acp; zone_t *zptr; conn_t *connp = Q_TO_CONN(q); zoneid_t zoneid = connp->conn_zoneid; tcp_t *tcp = connp->conn_tcp; tcp_stack_t *tcps = tcp->tcp_tcps; iocp = (IOCP)mp->b_rptr; if ((mp1 = mp->b_cont) == NULL || iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { err = EINVAL; goto out; } /* check permissions */ if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { err = EPERM; goto out; } if (mp1->b_cont != NULL) { freemsg(mp1->b_cont); mp1->b_cont = NULL; } acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; laf = acp->ac_local.ss_family; raf = acp->ac_remote.ss_family; /* check that a zone with the supplied zoneid exists */ if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { zptr = zone_find_by_id(zoneid); if (zptr != NULL) { zone_rele(zptr); } else { err = EINVAL; goto out; } } /* * For exclusive stacks we set the zoneid to zero * to make TCP operate as if in the global zone. */ if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) acp->ac_zoneid = GLOBAL_ZONEID; if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || acp->ac_start > acp->ac_end || laf != raf || (laf != AF_INET && laf != AF_INET6)) { err = EINVAL; goto out; } tcp_ioctl_abort_dump(acp); err = tcp_ioctl_abort(acp, tcps); out: if (mp1 != NULL) { freemsg(mp1); mp->b_cont = NULL; } if (err != 0) miocnak(q, mp, 0, err); else miocack(q, mp, 0, 0); } /* * tcp_time_wait_processing() handles processing of incoming packets when * the tcp is in the TIME_WAIT state. * A TIME_WAIT tcp that has an associated open TCP stream is never put * on the time wait list. */ void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, uint32_t seg_ack, int seg_len, tcpha_t *tcpha, ip_recv_attr_t *ira) { int32_t bytes_acked; int32_t gap; int32_t rgap; tcp_opt_t tcpopt; uint_t flags; uint32_t new_swnd = 0; conn_t *nconnp; conn_t *connp = tcp->tcp_connp; tcp_stack_t *tcps = tcp->tcp_tcps; BUMP_LOCAL(tcp->tcp_ibsegs); DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); flags = (unsigned int)tcpha->tha_flags & 0xFF; new_swnd = ntohs(tcpha->tha_win) << ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws); if (tcp->tcp_snd_ts_ok) { if (!tcp_paws_check(tcp, tcpha, &tcpopt)) { tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); goto done; } } gap = seg_seq - tcp->tcp_rnxt; rgap = tcp->tcp_rwnd - (gap + seg_len); if (gap < 0) { BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, (seg_len > -gap ? -gap : seg_len)); seg_len += gap; if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { if (flags & TH_RST) { goto done; } if ((flags & TH_FIN) && seg_len == -1) { /* * When TCP receives a duplicate FIN in * TIME_WAIT state, restart the 2 MSL timer. * See page 73 in RFC 793. Make sure this TCP * is already on the TIME_WAIT list. If not, * just restart the timer. */ if (TCP_IS_DETACHED(tcp)) { if (tcp_time_wait_remove(tcp, NULL) == B_TRUE) { tcp_time_wait_append(tcp); TCP_DBGSTAT(tcps, tcp_rput_time_wait); } } else { ASSERT(tcp != NULL); TCP_TIMER_RESTART(tcp, tcps->tcps_time_wait_interval); } tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); goto done; } flags |= TH_ACK_NEEDED; seg_len = 0; goto process_ack; } /* Fix seg_seq, and chew the gap off the front. */ seg_seq = tcp->tcp_rnxt; } if ((flags & TH_SYN) && gap > 0 && rgap < 0) { /* * Make sure that when we accept the connection, pick * an ISS greater than (tcp_snxt + ISS_INCR/2) for the * old connection. * * The next ISS generated is equal to tcp_iss_incr_extra * + ISS_INCR/2 + other components depending on the * value of tcp_strong_iss. We pre-calculate the new * ISS here and compare with tcp_snxt to determine if * we need to make adjustment to tcp_iss_incr_extra. * * The above calculation is ugly and is a * waste of CPU cycles... */ uint32_t new_iss = tcps->tcps_iss_incr_extra; int32_t adj; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; switch (tcps->tcps_strong_iss) { case 2: { /* Add time and MD5 components. */ uint32_t answer[4]; struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; MD5_CTX context; mutex_enter(&tcps->tcps_iss_key_lock); context = tcps->tcps_iss_key; mutex_exit(&tcps->tcps_iss_key_lock); arg.ports = connp->conn_ports; /* We use MAPPED addresses in tcp_iss_init */ arg.src = connp->conn_laddr_v6; arg.dst = connp->conn_faddr_v6; MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); MD5Final((uchar_t *)answer, &context); answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; break; } case 1: /* Add time component and min random (i.e. 1). */ new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; break; default: /* Add only time component. */ new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; break; } if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { /* * New ISS not guaranteed to be ISS_INCR/2 * ahead of the current tcp_snxt, so add the * difference to tcp_iss_incr_extra. */ tcps->tcps_iss_incr_extra += adj; } /* * If tcp_clean_death() can not perform the task now, * drop the SYN packet and let the other side re-xmit. * Otherwise pass the SYN packet back in, since the * old tcp state has been cleaned up or freed. */ if (tcp_clean_death(tcp, 0, 27) == -1) goto done; nconnp = ipcl_classify(mp, ira, ipst); if (nconnp != NULL) { TCP_STAT(tcps, tcp_time_wait_syn_success); /* Drops ref on nconnp */ tcp_reinput(nconnp, mp, ira, ipst); return; } goto done; } /* * rgap is the amount of stuff received out of window. A negative * value is the amount out of window. */ if (rgap < 0) { BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); /* Fix seg_len and make sure there is something left. */ seg_len += rgap; if (seg_len <= 0) { if (flags & TH_RST) { goto done; } flags |= TH_ACK_NEEDED; seg_len = 0; goto process_ack; } } /* * Check whether we can update tcp_ts_recent. This test is * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP * Extensions for High Performance: An Update", Internet Draft. */ if (tcp->tcp_snd_ts_ok && TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && SEQ_LEQ(seg_seq, tcp->tcp_rack)) { tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64(); } if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { /* Always ack out of order packets */ flags |= TH_ACK_NEEDED; seg_len = 0; } else if (seg_len > 0) { BUMP_MIB(&tcps->tcps_mib, tcpInClosed); BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); } if (flags & TH_RST) { (void) tcp_clean_death(tcp, 0, 28); goto done; } if (flags & TH_SYN) { tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, TH_RST|TH_ACK); /* * Do not delete the TCP structure if it is in * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. */ goto done; } process_ack: if (flags & TH_ACK) { bytes_acked = (int)(seg_ack - tcp->tcp_suna); if (bytes_acked <= 0) { if (bytes_acked == 0 && seg_len == 0 && new_swnd == tcp->tcp_swnd) BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); } else { /* Acks something not sent */ flags |= TH_ACK_NEEDED; } } if (flags & TH_ACK_NEEDED) { /* * Time to send an ack for some reason. */ tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } done: freemsg(mp); } /* * TCP Timers Implementation. */ timeout_id_t tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) { mblk_t *mp; tcp_timer_t *tcpt; tcp_t *tcp = connp->conn_tcp; ASSERT(connp->conn_sqp != NULL); TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); if (tcp->tcp_timercache == NULL) { mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); } else { TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); mp = tcp->tcp_timercache; tcp->tcp_timercache = mp->b_next; mp->b_next = NULL; ASSERT(mp->b_wptr == NULL); } CONN_INC_REF(connp); tcpt = (tcp_timer_t *)mp->b_rptr; tcpt->connp = connp; tcpt->tcpt_proc = f; /* * TCP timers are normal timeouts. Plus, they do not require more than * a 10 millisecond resolution. By choosing a coarser resolution and by * rounding up the expiration to the next resolution boundary, we can * batch timers in the callout subsystem to make TCP timers more * efficient. The roundup also protects short timers from expiring too * early before they have a chance to be cancelled. */ tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); return ((timeout_id_t)mp); } static void tcp_timer_callback(void *arg) { mblk_t *mp = (mblk_t *)arg; tcp_timer_t *tcpt; conn_t *connp; tcpt = (tcp_timer_t *)mp->b_rptr; connp = tcpt->connp; SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, NULL, SQ_FILL, SQTAG_TCP_TIMER); } /* ARGSUSED */ static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { tcp_timer_t *tcpt; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; tcpt = (tcp_timer_t *)mp->b_rptr; ASSERT(connp == tcpt->connp); ASSERT((squeue_t *)arg2 == connp->conn_sqp); /* * If the TCP has reached the closed state, don't proceed any * further. This TCP logically does not exist on the system. * tcpt_proc could for example access queues, that have already * been qprocoff'ed off. */ if (tcp->tcp_state != TCPS_CLOSED) { (*tcpt->tcpt_proc)(connp); } else { tcp->tcp_timer_tid = 0; } tcp_timer_free(connp->conn_tcp, mp); } /* * There is potential race with untimeout and the handler firing at the same * time. The mblock may be freed by the handler while we are trying to use * it. But since both should execute on the same squeue, this race should not * occur. */ clock_t tcp_timeout_cancel(conn_t *connp, timeout_id_t id) { mblk_t *mp = (mblk_t *)id; tcp_timer_t *tcpt; clock_t delta; TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); if (mp == NULL) return (-1); tcpt = (tcp_timer_t *)mp->b_rptr; ASSERT(tcpt->connp == connp); delta = untimeout_default(tcpt->tcpt_tid, 0); if (delta >= 0) { TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); tcp_timer_free(connp->conn_tcp, mp); CONN_DEC_REF(connp); } return (delta); } /* * Allocate space for the timer event. The allocation looks like mblk, but it is * not a proper mblk. To avoid confusion we set b_wptr to NULL. * * Dealing with failures: If we can't allocate from the timer cache we try * allocating from dblock caches using allocb_tryhard(). In this case b_wptr * points to b_rptr. * If we can't allocate anything using allocb_tryhard(), we perform a last * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and * save the actual allocation size in b_datap. */ mblk_t * tcp_timermp_alloc(int kmflags) { mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, kmflags & ~KM_PANIC); if (mp != NULL) { mp->b_next = mp->b_prev = NULL; mp->b_rptr = (uchar_t *)(&mp[1]); mp->b_wptr = NULL; mp->b_datap = NULL; mp->b_queue = NULL; mp->b_cont = NULL; } else if (kmflags & KM_PANIC) { /* * Failed to allocate memory for the timer. Try allocating from * dblock caches. */ /* ipclassifier calls this from a constructor - hence no tcps */ TCP_G_STAT(tcp_timermp_allocfail); mp = allocb_tryhard(sizeof (tcp_timer_t)); if (mp == NULL) { size_t size = 0; /* * Memory is really low. Try tryhard allocation. * * ipclassifier calls this from a constructor - * hence no tcps */ TCP_G_STAT(tcp_timermp_allocdblfail); mp = kmem_alloc_tryhard(sizeof (mblk_t) + sizeof (tcp_timer_t), &size, kmflags); mp->b_rptr = (uchar_t *)(&mp[1]); mp->b_next = mp->b_prev = NULL; mp->b_wptr = (uchar_t *)-1; mp->b_datap = (dblk_t *)size; mp->b_queue = NULL; mp->b_cont = NULL; } ASSERT(mp->b_wptr != NULL); } /* ipclassifier calls this from a constructor - hence no tcps */ TCP_G_DBGSTAT(tcp_timermp_alloced); return (mp); } /* * Free per-tcp timer cache. * It can only contain entries from tcp_timercache. */ void tcp_timermp_free(tcp_t *tcp) { mblk_t *mp; while ((mp = tcp->tcp_timercache) != NULL) { ASSERT(mp->b_wptr == NULL); tcp->tcp_timercache = tcp->tcp_timercache->b_next; kmem_cache_free(tcp_timercache, mp); } } /* * Free timer event. Put it on the per-tcp timer cache if there is not too many * events there already (currently at most two events are cached). * If the event is not allocated from the timer cache, free it right away. */ static void tcp_timer_free(tcp_t *tcp, mblk_t *mp) { mblk_t *mp1 = tcp->tcp_timercache; if (mp->b_wptr != NULL) { /* * This allocation is not from a timer cache, free it right * away. */ if (mp->b_wptr != (uchar_t *)-1) freeb(mp); else kmem_free(mp, (size_t)mp->b_datap); } else if (mp1 == NULL || mp1->b_next == NULL) { /* Cache this timer block for future allocations */ mp->b_rptr = (uchar_t *)(&mp[1]); mp->b_next = mp1; tcp->tcp_timercache = mp; } else { kmem_cache_free(tcp_timercache, mp); TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); } } /* * End of TCP Timers implementation. */ /* * tcp_{set,clr}qfull() functions are used to either set or clear QFULL * on the specified backing STREAMS q. Note, the caller may make the * decision to call based on the tcp_t.tcp_flow_stopped value which * when check outside the q's lock is only an advisory check ... */ void tcp_setqfull(tcp_t *tcp) { tcp_stack_t *tcps = tcp->tcp_tcps; conn_t *connp = tcp->tcp_connp; if (tcp->tcp_closed) return; conn_setqfull(connp, &tcp->tcp_flow_stopped); if (tcp->tcp_flow_stopped) TCP_STAT(tcps, tcp_flwctl_on); } void tcp_clrqfull(tcp_t *tcp) { conn_t *connp = tcp->tcp_connp; if (tcp->tcp_closed) return; conn_clrqfull(connp, &tcp->tcp_flow_stopped); } /* * kstats related to squeues i.e. not per IP instance */ static void * tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) { kstat_t *ksp; tcp_g_stat_t template = { { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, }; ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (ksp == NULL) return (NULL); bcopy(&template, tcp_g_statp, sizeof (template)); ksp->ks_data = (void *)tcp_g_statp; kstat_install(ksp); return (ksp); } static void tcp_g_kstat_fini(kstat_t *ksp) { if (ksp != NULL) { kstat_delete(ksp); } } static void * tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) { kstat_t *ksp; tcp_stat_t template = { { "tcp_time_wait", KSTAT_DATA_UINT64 }, { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, { "tcp_time_wait_syn_success", KSTAT_DATA_UINT64 }, { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, { "tcp_eager_err1", KSTAT_DATA_UINT64 }, { "tcp_eager_err2", KSTAT_DATA_UINT64 }, { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, { "tcp_no_listener", KSTAT_DATA_UINT64 }, { "tcp_found_eager", KSTAT_DATA_UINT64 }, { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, { "tcp_open_alloc", KSTAT_DATA_UINT64 }, { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, { "tcp_listendrop", KSTAT_DATA_UINT64 }, { "tcp_listendropq0", KSTAT_DATA_UINT64 }, { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, { "tcp_lso_times", KSTAT_DATA_UINT64 }, { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, }; ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL, stackid); if (ksp == NULL) return (NULL); bcopy(&template, tcps_statisticsp, sizeof (template)); ksp->ks_data = (void *)tcps_statisticsp; ksp->ks_private = (void *)(uintptr_t)stackid; kstat_install(ksp); return (ksp); } static void tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) { if (ksp != NULL) { ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); kstat_delete_netstack(ksp, stackid); } } /* * TCP Kstats implementation */ static void * tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) { kstat_t *ksp; tcp_named_kstat_t template = { { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, { "rtoMin", KSTAT_DATA_INT32, 0 }, { "rtoMax", KSTAT_DATA_INT32, 0 }, { "maxConn", KSTAT_DATA_INT32, 0 }, { "activeOpens", KSTAT_DATA_UINT32, 0 }, { "passiveOpens", KSTAT_DATA_UINT32, 0 }, { "attemptFails", KSTAT_DATA_UINT32, 0 }, { "estabResets", KSTAT_DATA_UINT32, 0 }, { "currEstab", KSTAT_DATA_UINT32, 0 }, { "inSegs", KSTAT_DATA_UINT64, 0 }, { "outSegs", KSTAT_DATA_UINT64, 0 }, { "retransSegs", KSTAT_DATA_UINT32, 0 }, { "connTableSize", KSTAT_DATA_INT32, 0 }, { "outRsts", KSTAT_DATA_UINT32, 0 }, { "outDataSegs", KSTAT_DATA_UINT32, 0 }, { "outDataBytes", KSTAT_DATA_UINT32, 0 }, { "retransBytes", KSTAT_DATA_UINT32, 0 }, { "outAck", KSTAT_DATA_UINT32, 0 }, { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, { "outUrg", KSTAT_DATA_UINT32, 0 }, { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, { "outWinProbe", KSTAT_DATA_UINT32, 0 }, { "outControl", KSTAT_DATA_UINT32, 0 }, { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, { "inAckSegs", KSTAT_DATA_UINT32, 0 }, { "inAckBytes", KSTAT_DATA_UINT32, 0 }, { "inDupAck", KSTAT_DATA_UINT32, 0 }, { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, { "inWinProbe", KSTAT_DATA_UINT32, 0 }, { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, { "inClosed", KSTAT_DATA_UINT32, 0 }, { "rttUpdate", KSTAT_DATA_UINT32, 0 }, { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, { "timRetrans", KSTAT_DATA_UINT32, 0 }, { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, { "timKeepalive", KSTAT_DATA_UINT32, 0 }, { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, { "listenDrop", KSTAT_DATA_UINT32, 0 }, { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, { "connTableSize6", KSTAT_DATA_INT32, 0 } }; ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); if (ksp == NULL) return (NULL); template.rtoAlgorithm.value.ui32 = 4; template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; template.maxConn.value.i32 = -1; bcopy(&template, ksp->ks_data, sizeof (template)); ksp->ks_update = tcp_kstat_update; ksp->ks_private = (void *)(uintptr_t)stackid; kstat_install(ksp); return (ksp); } static void tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) { if (ksp != NULL) { ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); kstat_delete_netstack(ksp, stackid); } } static int tcp_kstat_update(kstat_t *kp, int rw) { tcp_named_kstat_t *tcpkp; tcp_t *tcp; connf_t *connfp; conn_t *connp; int i; netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; netstack_t *ns; tcp_stack_t *tcps; ip_stack_t *ipst; if ((kp == NULL) || (kp->ks_data == NULL)) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); ns = netstack_find_by_stackid(stackid); if (ns == NULL) return (-1); tcps = ns->netstack_tcp; if (tcps == NULL) { netstack_rele(ns); return (-1); } tcpkp = (tcp_named_kstat_t *)kp->ks_data; tcpkp->currEstab.value.ui32 = 0; ipst = ns->netstack_ip; for (i = 0; i < CONN_G_HASH_SIZE; i++) { connfp = &ipst->ips_ipcl_globalhash_fanout[i]; connp = NULL; while ((connp = ipcl_get_next_conn(connfp, connp, IPCL_TCPCONN)) != NULL) { tcp = connp->conn_tcp; switch (tcp_snmp_state(tcp)) { case MIB2_TCP_established: case MIB2_TCP_closeWait: tcpkp->currEstab.value.ui32++; break; } } } tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; tcpkp->inDataInorderSegs.value.ui32 = tcps->tcps_mib.tcpInDataInorderSegs; tcpkp->inDataInorderBytes.value.ui32 = tcps->tcps_mib.tcpInDataInorderBytes; tcpkp->inDataUnorderSegs.value.ui32 = tcps->tcps_mib.tcpInDataUnorderSegs; tcpkp->inDataUnorderBytes.value.ui32 = tcps->tcps_mib.tcpInDataUnorderBytes; tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; tcpkp->inDataPartDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataPartDupSegs; tcpkp->inDataPartDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataPartDupBytes; tcpkp->inDataPastWinSegs.value.ui32 = tcps->tcps_mib.tcpInDataPastWinSegs; tcpkp->inDataPastWinBytes.value.ui32 = tcps->tcps_mib.tcpInDataPastWinBytes; tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; tcpkp->timKeepaliveProbe.value.ui32 = tcps->tcps_mib.tcpTimKeepaliveProbe; tcpkp->timKeepaliveDrop.value.ui32 = tcps->tcps_mib.tcpTimKeepaliveDrop; tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; tcpkp->outSackRetransSegs.value.ui32 = tcps->tcps_mib.tcpOutSackRetransSegs; tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; netstack_rele(ns); return (0); } static int tcp_squeue_switch(int val) { int rval = SQ_FILL; switch (val) { case 1: rval = SQ_NODRAIN; break; case 2: rval = SQ_PROCESS; break; default: break; } return (rval); } /* * This is called once for each squeue - globally for all stack * instances. */ static void tcp_squeue_add(squeue_t *sqp) { tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( sizeof (tcp_squeue_priv_t), KM_SLEEP); *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; tcp_time_wait->tcp_time_wait_tid = timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); if (tcp_free_list_max_cnt == 0) { int tcp_ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); /* * Limit number of entries to 1% of availble memory / tcp_ncpus */ tcp_free_list_max_cnt = (freemem * PAGESIZE) / (tcp_ncpus * sizeof (tcp_t) * 100); } tcp_time_wait->tcp_free_list_cnt = 0; } /* * On a labeled system we have some protocols above TCP, such as RPC, which * appear to assume that every mblk in a chain has a db_credp. */ static void tcp_setcred_data(mblk_t *mp, ip_recv_attr_t *ira) { ASSERT(is_system_labeled()); ASSERT(ira->ira_cred != NULL); while (mp != NULL) { mblk_setcred(mp, ira->ira_cred, NOPID); mp = mp->b_cont; } } static int tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, boolean_t bind_to_req_port_only, cred_t *cr) { in_port_t mlp_port; mlp_type_t addrtype, mlptype; boolean_t user_specified; in_port_t allocated_port; in_port_t requested_port = *requested_port_ptr; conn_t *connp = tcp->tcp_connp; zone_t *zone; tcp_stack_t *tcps = tcp->tcp_tcps; in6_addr_t v6addr = connp->conn_laddr_v6; /* * XXX It's up to the caller to specify bind_to_req_port_only or not. */ ASSERT(cr != NULL); /* * Get a valid port (within the anonymous range and should not * be a privileged one) to use if the user has not given a port. * If multiple threads are here, they may all start with * with the same initial port. But, it should be fine as long as * tcp_bindi will ensure that no two threads will be assigned * the same port. * * NOTE: XXX If a privileged process asks for an anonymous port, we * still check for ports only in the range > tcp_smallest_non_priv_port, * unless TCP_ANONPRIVBIND option is set. */ mlptype = mlptSingle; mlp_port = requested_port; if (requested_port == 0) { requested_port = connp->conn_anon_priv_bind ? tcp_get_next_priv_port(tcp) : tcp_update_next_port(tcps->tcps_next_port_to_try, tcp, B_TRUE); if (requested_port == 0) { return (-TNOADDR); } user_specified = B_FALSE; /* * If the user went through one of the RPC interfaces to create * this socket and RPC is MLP in this zone, then give him an * anonymous MLP. */ if (connp->conn_anon_mlp && is_system_labeled()) { zone = crgetzone(cr); addrtype = tsol_mlp_addr_type( connp->conn_allzones ? ALL_ZONES : zone->zone_id, IPV6_VERSION, &v6addr, tcps->tcps_netstack->netstack_ip); if (addrtype == mlptSingle) { return (-TNOADDR); } mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, PMAPPORT, addrtype); mlp_port = PMAPPORT; } } else { int i; boolean_t priv = B_FALSE; /* * If the requested_port is in the well-known privileged range, * verify that the stream was opened by a privileged user. * Note: No locks are held when inspecting tcp_g_*epriv_ports * but instead the code relies on: * - the fact that the address of the array and its size never * changes * - the atomic assignment of the elements of the array */ if (requested_port < tcps->tcps_smallest_nonpriv_port) { priv = B_TRUE; } else { for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { if (requested_port == tcps->tcps_g_epriv_ports[i]) { priv = B_TRUE; break; } } } if (priv) { if (secpolicy_net_privaddr(cr, requested_port, IPPROTO_TCP) != 0) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: no priv for port %d", requested_port); } return (-TACCES); } } user_specified = B_TRUE; connp = tcp->tcp_connp; if (is_system_labeled()) { zone = crgetzone(cr); addrtype = tsol_mlp_addr_type( connp->conn_allzones ? ALL_ZONES : zone->zone_id, IPV6_VERSION, &v6addr, tcps->tcps_netstack->netstack_ip); if (addrtype == mlptSingle) { return (-TNOADDR); } mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, requested_port, addrtype); } } if (mlptype != mlptSingle) { if (secpolicy_net_bindmlp(cr) != 0) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: no priv for multilevel port %d", requested_port); } return (-TACCES); } /* * If we're specifically binding a shared IP address and the * port is MLP on shared addresses, then check to see if this * zone actually owns the MLP. Reject if not. */ if (mlptype == mlptShared && addrtype == mlptShared) { /* * No need to handle exclusive-stack zones since * ALL_ZONES only applies to the shared stack. */ zoneid_t mlpzone; mlpzone = tsol_mlp_findzone(IPPROTO_TCP, htons(mlp_port)); if (connp->conn_zoneid != mlpzone) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: attempt to bind port " "%d on shared addr in zone %d " "(should be %d)", mlp_port, connp->conn_zoneid, mlpzone); } return (-TACCES); } } if (!user_specified) { int err; err = tsol_mlp_anon(zone, mlptype, connp->conn_proto, requested_port, B_TRUE); if (err != 0) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: cannot establish anon " "MLP for port %d", requested_port); } return (err); } connp->conn_anon_port = B_TRUE; } connp->conn_mlp_type = mlptype; } allocated_port = tcp_bindi(tcp, requested_port, &v6addr, connp->conn_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); if (allocated_port == 0) { connp->conn_mlp_type = mlptSingle; if (connp->conn_anon_port) { connp->conn_anon_port = B_FALSE; (void) tsol_mlp_anon(zone, mlptype, connp->conn_proto, requested_port, B_FALSE); } if (bind_to_req_port_only) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: requested addr busy"); } return (-TADDRBUSY); } else { /* If we are out of ports, fail the bind. */ if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: out of ports?"); } return (-TNOADDR); } } /* Pass the allocated port back */ *requested_port_ptr = allocated_port; return (0); } /* * Check the address and check/pick a local port number. */ static int tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, boolean_t bind_to_req_port_only) { tcp_t *tcp = connp->conn_tcp; sin_t *sin; sin6_t *sin6; in_port_t requested_port; ipaddr_t v4addr; in6_addr_t v6addr; ip_laddr_t laddr_type = IPVL_UNICAST_UP; /* INADDR_ANY */ zoneid_t zoneid = IPCL_ZONEID(connp); ip_stack_t *ipst = connp->conn_netstack->netstack_ip; uint_t scopeid = 0; int error = 0; ip_xmit_attr_t *ixa = connp->conn_ixa; ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); if (tcp->tcp_state == TCPS_BOUND) { return (0); } else if (tcp->tcp_state > TCPS_BOUND) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad state, %d", tcp->tcp_state); } return (-TOUTSTATE); } ASSERT(sa != NULL && len != 0); if (!OK_32PTR((char *)sa)) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad address parameter, " "address %p, len %d", (void *)sa, len); } return (-TPROTO); } error = proto_verify_ip_addr(connp->conn_family, sa, len); if (error != 0) { return (error); } switch (len) { case sizeof (sin_t): /* Complete IPv4 address */ sin = (sin_t *)sa; requested_port = ntohs(sin->sin_port); v4addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); if (v4addr != INADDR_ANY) { laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, B_FALSE); } break; case sizeof (sin6_t): /* Complete IPv6 address */ sin6 = (sin6_t *)sa; v6addr = sin6->sin6_addr; requested_port = ntohs(sin6->sin6_port); if (IN6_IS_ADDR_V4MAPPED(&v6addr)) { if (connp->conn_ipv6_v6only) return (EADDRNOTAVAIL); IN6_V4MAPPED_TO_IPADDR(&v6addr, v4addr); if (v4addr != INADDR_ANY) { laddr_type = ip_laddr_verify_v4(v4addr, zoneid, ipst, B_FALSE); } } else { if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) { if (IN6_IS_ADDR_LINKSCOPE(&v6addr)) scopeid = sin6->sin6_scope_id; laddr_type = ip_laddr_verify_v6(&v6addr, zoneid, ipst, B_FALSE, scopeid); } } break; default: if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad address length, %d", len); } return (EAFNOSUPPORT); /* return (-TBADADDR); */ } /* Is the local address a valid unicast address? */ if (laddr_type == IPVL_BAD) return (EADDRNOTAVAIL); connp->conn_bound_addr_v6 = v6addr; if (scopeid != 0) { ixa->ixa_flags |= IXAF_SCOPEID_SET; ixa->ixa_scopeid = scopeid; connp->conn_incoming_ifindex = scopeid; } else { ixa->ixa_flags &= ~IXAF_SCOPEID_SET; connp->conn_incoming_ifindex = connp->conn_bound_if; } connp->conn_laddr_v6 = v6addr; connp->conn_saddr_v6 = v6addr; bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; error = tcp_bind_select_lport(tcp, &requested_port, bind_to_req_port_only, cr); if (error != 0) { connp->conn_laddr_v6 = ipv6_all_zeros; connp->conn_saddr_v6 = ipv6_all_zeros; connp->conn_bound_addr_v6 = ipv6_all_zeros; } return (error); } /* * Return unix error is tli error is TSYSERR, otherwise return a negative * tli error. */ int tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, boolean_t bind_to_req_port_only) { int error; tcp_t *tcp = connp->conn_tcp; if (tcp->tcp_state >= TCPS_BOUND) { if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_bind: bad state, %d", tcp->tcp_state); } return (-TOUTSTATE); } error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); if (error != 0) return (error); ASSERT(tcp->tcp_state == TCPS_BOUND); tcp->tcp_conn_req_max = 0; return (0); } int tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, socklen_t len, cred_t *cr) { int error; conn_t *connp = (conn_t *)proto_handle; squeue_t *sqp = connp->conn_sqp; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); ASSERT(sqp != NULL); ASSERT(connp->conn_upper_handle != NULL); error = squeue_synch_enter(sqp, connp, NULL); if (error != 0) { /* failed to enter */ return (ENOSR); } /* binding to a NULL address really means unbind */ if (sa == NULL) { if (connp->conn_tcp->tcp_state < TCPS_LISTEN) error = tcp_do_unbind(connp); else error = EINVAL; } else { error = tcp_do_bind(connp, sa, len, cr, B_TRUE); } squeue_synch_exit(sqp, connp); if (error < 0) { if (error == -TOUTSTATE) error = EINVAL; else error = proto_tlitosyserr(-error); } return (error); } /* * If the return value from this function is positive, it's a UNIX error. * Otherwise, if it's negative, then the absolute value is a TLI error. * the TPI routine tcp_tpi_connect() is a wrapper function for this. */ int tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, cred_t *cr, pid_t pid) { tcp_t *tcp = connp->conn_tcp; sin_t *sin = (sin_t *)sa; sin6_t *sin6 = (sin6_t *)sa; ipaddr_t *dstaddrp; in_port_t dstport; uint_t srcid; int error; uint32_t mss; mblk_t *syn_mp; tcp_stack_t *tcps = tcp->tcp_tcps; int32_t oldstate; ip_xmit_attr_t *ixa = connp->conn_ixa; oldstate = tcp->tcp_state; switch (len) { default: /* * Should never happen */ return (EINVAL); case sizeof (sin_t): sin = (sin_t *)sa; if (sin->sin_port == 0) { return (-TBADADDR); } if (connp->conn_ipv6_v6only) { return (EAFNOSUPPORT); } break; case sizeof (sin6_t): sin6 = (sin6_t *)sa; if (sin6->sin6_port == 0) { return (-TBADADDR); } break; } /* * If we're connecting to an IPv4-mapped IPv6 address, we need to * make sure that the conn_ipversion is IPV4_VERSION. We * need to this before we call tcp_bindi() so that the port lookup * code will look for ports in the correct port space (IPv4 and * IPv6 have separate port spaces). */ if (connp->conn_family == AF_INET6 && connp->conn_ipversion == IPV6_VERSION && IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { if (connp->conn_ipv6_v6only) return (EADDRNOTAVAIL); connp->conn_ipversion = IPV4_VERSION; } switch (tcp->tcp_state) { case TCPS_LISTEN: /* * Listening sockets are not allowed to issue connect(). */ if (IPCL_IS_NONSTR(connp)) return (EOPNOTSUPP); /* FALLTHRU */ case TCPS_IDLE: /* * We support quick connect, refer to comments in * tcp_connect_*() */ /* FALLTHRU */ case TCPS_BOUND: break; default: return (-TOUTSTATE); } /* * We update our cred/cpid based on the caller of connect */ if (connp->conn_cred != cr) { crhold(cr); crfree(connp->conn_cred); connp->conn_cred = cr; } connp->conn_cpid = pid; /* Cache things in the ixa without any refhold */ ixa->ixa_cred = cr; ixa->ixa_cpid = pid; if (is_system_labeled()) { /* We need to restart with a label based on the cred */ ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); } if (connp->conn_family == AF_INET6) { if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, sin6->sin6_port, sin6->sin6_flowinfo, sin6->__sin6_src_id, sin6->sin6_scope_id); } else { /* * Destination adress is mapped IPv6 address. * Source bound address should be unspecified or * IPv6 mapped address as well. */ if (!IN6_IS_ADDR_UNSPECIFIED( &connp->conn_bound_addr_v6) && !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { return (EADDRNOTAVAIL); } dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); dstport = sin6->sin6_port; srcid = sin6->__sin6_src_id; error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); } } else { dstaddrp = &sin->sin_addr.s_addr; dstport = sin->sin_port; srcid = 0; error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); } if (error != 0) goto connect_failed; CL_INET_CONNECT(connp, B_TRUE, error); if (error != 0) goto connect_failed; /* connect succeeded */ BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); tcp->tcp_active_open = 1; /* * tcp_set_destination() does not adjust for TCP/IP header length. */ mss = tcp->tcp_mss - connp->conn_ht_iphc_len; /* * Just make sure our rwnd is at least rcvbuf * MSS large, and round up * to the nearest MSS. * * We do the round up here because we need to get the interface MTU * first before we can do the round up. */ tcp->tcp_rwnd = connp->conn_rcvbuf; tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), tcps->tcps_recv_hiwat_minmss * mss); connp->conn_rcvbuf = tcp->tcp_rwnd; tcp_set_ws_value(tcp); tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) tcp->tcp_snd_ws_ok = B_TRUE; /* * Set tcp_snd_ts_ok to true * so that tcp_xmit_mp will * include the timestamp * option in the SYN segment. */ if (tcps->tcps_tstamp_always || (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { tcp->tcp_snd_ts_ok = B_TRUE; } /* * tcp_snd_sack_ok can be set in * tcp_set_destination() if the sack metric * is set. So check it here also. */ if (tcps->tcps_sack_permitted == 2 || tcp->tcp_snd_sack_ok) { if (tcp->tcp_sack_info == NULL) { tcp->tcp_sack_info = kmem_cache_alloc( tcp_sack_info_cache, KM_SLEEP); } tcp->tcp_snd_sack_ok = B_TRUE; } /* * Should we use ECN? Note that the current * default value (SunOS 5.9) of tcp_ecn_permitted * is 1. The reason for doing this is that there * are equipments out there that will drop ECN * enabled IP packets. Setting it to 1 avoids * compatibility problems. */ if (tcps->tcps_ecn_permitted == 2) tcp->tcp_ecn_ok = B_TRUE; TCP_TIMER_RESTART(tcp, tcp->tcp_rto); syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); if (syn_mp != NULL) { /* * We must bump the generation before sending the syn * to ensure that we use the right generation in case * this thread issues a "connected" up call. */ SOCK_CONNID_BUMP(tcp->tcp_connid); tcp_send_data(tcp, syn_mp); } if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); return (0); connect_failed: connp->conn_faddr_v6 = ipv6_all_zeros; connp->conn_fport = 0; tcp->tcp_state = oldstate; if (tcp->tcp_conn.tcp_opts_conn_req != NULL) tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); return (error); } int tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, socklen_t len, sock_connid_t *id, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; squeue_t *sqp = connp->conn_sqp; int error; ASSERT(connp->conn_upper_handle != NULL); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); error = proto_verify_ip_addr(connp->conn_family, sa, len); if (error != 0) { return (error); } error = squeue_synch_enter(sqp, connp, NULL); if (error != 0) { /* failed to enter */ return (ENOSR); } /* * TCP supports quick connect, so no need to do an implicit bind */ error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); if (error == 0) { *id = connp->conn_tcp->tcp_connid; } else if (error < 0) { if (error == -TOUTSTATE) { switch (connp->conn_tcp->tcp_state) { case TCPS_SYN_SENT: error = EALREADY; break; case TCPS_ESTABLISHED: error = EISCONN; break; case TCPS_LISTEN: error = EOPNOTSUPP; break; default: error = EINVAL; break; } } else { error = proto_tlitosyserr(-error); } } if (connp->conn_tcp->tcp_loopback) { struct sock_proto_props sopp; sopp.sopp_flags = SOCKOPT_LOOPBACK; sopp.sopp_loopback = B_TRUE; (*connp->conn_upcalls->su_set_proto_props)( connp->conn_upper_handle, &sopp); } done: squeue_synch_exit(sqp, connp); return ((error == 0) ? EINPROGRESS : error); } /* ARGSUSED */ sock_lower_handle_t tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, uint_t *smodep, int *errorp, int flags, cred_t *credp) { conn_t *connp; boolean_t isv6 = family == AF_INET6; if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || (proto != 0 && proto != IPPROTO_TCP)) { *errorp = EPROTONOSUPPORT; return (NULL); } connp = tcp_create_common(credp, isv6, B_TRUE, errorp); if (connp == NULL) { return (NULL); } /* * Put the ref for TCP. Ref for IP was already put * by ipcl_conn_create. Also Make the conn_t globally * visible to walkers */ mutex_enter(&connp->conn_lock); CONN_INC_REF_LOCKED(connp); ASSERT(connp->conn_ref == 2); connp->conn_state_flags &= ~CONN_INCIPIENT; connp->conn_flags |= IPCL_NONSTR; mutex_exit(&connp->conn_lock); ASSERT(errorp != NULL); *errorp = 0; *sock_downcalls = &sock_tcp_downcalls; *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | SM_SENDFILESUPP; return ((sock_lower_handle_t)connp); } /* ARGSUSED */ void tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; struct sock_proto_props sopp; ASSERT(connp->conn_upper_handle == NULL); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; sopp.sopp_rxlowat = SOCKET_RECVLOWATER; sopp.sopp_maxpsz = INFPSZ; sopp.sopp_maxblk = INFPSZ; sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; sopp.sopp_maxaddrlen = sizeof (sin6_t); sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : tcp_rinfo.mi_minpsz; connp->conn_upcalls = sock_upcalls; connp->conn_upper_handle = sock_handle; ASSERT(connp->conn_rcvbuf != 0 && connp->conn_rcvbuf == connp->conn_tcp->tcp_rwnd); (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); } /* ARGSUSED */ int tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; ASSERT(connp->conn_upper_handle != NULL); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); tcp_close_common(connp, flags); ip_free_helper_stream(connp); /* * Drop IP's reference on the conn. This is the last reference * on the connp if the state was less than established. If the * connection has gone into timewait state, then we will have * one ref for the TCP and one more ref (total of two) for the * classifier connected hash list (a timewait connections stays * in connected hash till closed). * * We can't assert the references because there might be other * transient reference places because of some walkers or queued * packets in squeue for the timewait state. */ CONN_DEC_REF(connp); return (0); } /* ARGSUSED */ int tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, cred_t *cr) { tcp_t *tcp; uint32_t msize; conn_t *connp = (conn_t *)proto_handle; int32_t tcpstate; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); ASSERT(connp->conn_ref >= 2); ASSERT(connp->conn_upper_handle != NULL); if (msg->msg_controllen != 0) { freemsg(mp); return (EOPNOTSUPP); } switch (DB_TYPE(mp)) { case M_DATA: tcp = connp->conn_tcp; ASSERT(tcp != NULL); tcpstate = tcp->tcp_state; if (tcpstate < TCPS_ESTABLISHED) { freemsg(mp); /* * We return ENOTCONN if the endpoint is trying to * connect or has never been connected, and EPIPE if it * has been disconnected. The connection id helps us * distinguish between the last two cases. */ return ((tcpstate == TCPS_SYN_SENT) ? ENOTCONN : ((tcp->tcp_connid > 0) ? EPIPE : ENOTCONN)); } else if (tcpstate > TCPS_CLOSE_WAIT) { freemsg(mp); return (EPIPE); } msize = msgdsize(mp); mutex_enter(&tcp->tcp_non_sq_lock); tcp->tcp_squeue_bytes += msize; /* * Squeue Flow Control */ if (TCP_UNSENT_BYTES(tcp) > connp->conn_sndbuf) { tcp_setqfull(tcp); } mutex_exit(&tcp->tcp_non_sq_lock); /* * The application may pass in an address in the msghdr, but * we ignore the address on connection-oriented sockets. * Just like BSD this code does not generate an error for * TCP (a CONNREQUIRED socket) when sending to an address * passed in with sendto/sendmsg. Instead the data is * delivered on the connection as if no address had been * supplied. */ CONN_INC_REF(connp); if (msg->msg_flags & MSG_OOB) { SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output_urgent, connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); } else { SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, NULL, tcp_squeue_flag, SQTAG_TCP_OUTPUT); } return (0); default: ASSERT(0); } freemsg(mp); return (0); } /* ARGSUSED2 */ void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { int len; uint32_t msize; conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; msize = msgdsize(mp); len = msize - 1; if (len < 0) { freemsg(mp); return; } /* * Try to force urgent data out on the wire. Even if we have unsent * data this will at least send the urgent flag. * XXX does not handle more flag correctly. */ len += tcp->tcp_unsent; len += tcp->tcp_snxt; tcp->tcp_urg = len; tcp->tcp_valid_bits |= TCP_URG_VALID; /* Bypass tcp protocol for fused tcp loopback */ if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) return; /* Strip off the T_EXDATA_REQ if the data is from TPI */ if (DB_TYPE(mp) != M_DATA) { mblk_t *mp1 = mp; ASSERT(!IPCL_IS_NONSTR(connp)); mp = mp->b_cont; freeb(mp1); } tcp_wput_data(tcp, mp, B_TRUE); } /* ARGSUSED3 */ int tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, socklen_t *addrlenp, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; tcp_t *tcp = connp->conn_tcp; ASSERT(connp->conn_upper_handle != NULL); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); ASSERT(tcp != NULL); if (tcp->tcp_state < TCPS_SYN_RCVD) return (ENOTCONN); return (conn_getpeername(connp, addr, addrlenp)); } /* ARGSUSED3 */ int tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, socklen_t *addrlenp, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); ASSERT(connp->conn_upper_handle != NULL); return (conn_getsockname(connp, addr, addrlenp)); } /* * tcp_fallback * * A direct socket is falling back to using STREAMS. The queue * that is being passed down was created using tcp_open() with * the SO_FALLBACK flag set. As a result, the queue is not * associated with a conn, and the q_ptrs instead contain the * dev and minor area that should be used. * * The 'issocket' flag indicates whether the FireEngine * optimizations should be used. The common case would be that * optimizations are enabled, and they might be subsequently * disabled using the _SIOCSOCKFALLBACK ioctl. */ /* * An active connection is falling back to TPI. Gather all the information * required by the STREAM head and TPI sonode and send it up. */ void tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) { conn_t *connp = tcp->tcp_connp; struct stroptions *stropt; struct T_capability_ack tca; struct sockaddr_in6 laddr, faddr; socklen_t laddrlen, faddrlen; short opts; int error; mblk_t *mp; connp->conn_dev = (dev_t)RD(q)->q_ptr; connp->conn_minor_arena = WR(q)->q_ptr; RD(q)->q_ptr = WR(q)->q_ptr = connp; connp->conn_rq = RD(q); connp->conn_wq = WR(q); WR(q)->q_qinfo = &tcp_sock_winit; if (!issocket) tcp_use_pure_tpi(tcp); /* * free the helper stream */ ip_free_helper_stream(connp); /* * Notify the STREAM head about options */ DB_TYPE(stropt_mp) = M_SETOPTS; stropt = (struct stroptions *)stropt_mp->b_rptr; stropt_mp->b_wptr += sizeof (struct stroptions); stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; stropt->so_wroff = connp->conn_ht_iphc_len + (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); if (tcp->tcp_snd_sack_ok) stropt->so_wroff += TCPOPT_MAX_SACK_LEN; stropt->so_hiwat = connp->conn_rcvbuf; stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); putnext(RD(q), stropt_mp); /* * Collect the information needed to sync with the sonode */ tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); laddrlen = faddrlen = sizeof (sin6_t); (void) tcp_getsockname((sock_lower_handle_t)connp, (struct sockaddr *)&laddr, &laddrlen, CRED()); error = tcp_getpeername((sock_lower_handle_t)connp, (struct sockaddr *)&faddr, &faddrlen, CRED()); if (error != 0) faddrlen = 0; opts = 0; if (connp->conn_oobinline) opts |= SO_OOBINLINE; if (connp->conn_ixa->ixa_flags & IXAF_DONTROUTE) opts |= SO_DONTROUTE; /* * Notify the socket that the protocol is now quiescent, * and it's therefore safe move data from the socket * to the stream head. */ (*quiesced_cb)(connp->conn_upper_handle, q, &tca, (struct sockaddr *)&laddr, laddrlen, (struct sockaddr *)&faddr, faddrlen, opts); while ((mp = tcp->tcp_rcv_list) != NULL) { tcp->tcp_rcv_list = mp->b_next; mp->b_next = NULL; /* We never do fallback for kernel RPC */ putnext(q, mp); } tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; } /* * An eager is falling back to TPI. All we have to do is send * up a T_CONN_IND. */ void tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) { tcp_t *listener = eager->tcp_listener; mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; ASSERT(listener != NULL); ASSERT(mp != NULL); eager->tcp_conn.tcp_eager_conn_ind = NULL; /* * TLI/XTI applications will get confused by * sending eager as an option since it violates * the option semantics. So remove the eager as * option since TLI/XTI app doesn't need it anyway. */ if (!direct_sockfs) { struct T_conn_ind *conn_ind; conn_ind = (struct T_conn_ind *)mp->b_rptr; conn_ind->OPT_length = 0; conn_ind->OPT_offset = 0; } /* * Sockfs guarantees that the listener will not be closed * during fallback. So we can safely use the listener's queue. */ putnext(listener->tcp_connp->conn_rq, mp); } int tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) { tcp_t *tcp; conn_t *connp = (conn_t *)proto_handle; int error; mblk_t *stropt_mp; mblk_t *ordrel_mp; tcp = connp->conn_tcp; stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, NULL); /* Pre-allocate the T_ordrel_ind mblk. */ ASSERT(tcp->tcp_ordrel_mp == NULL); ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, STR_NOSIG, NULL); ordrel_mp->b_datap->db_type = M_PROTO; ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); /* * Enter the squeue so that no new packets can come in */ error = squeue_synch_enter(connp->conn_sqp, connp, NULL); if (error != 0) { /* failed to enter, free all the pre-allocated messages. */ freeb(stropt_mp); freeb(ordrel_mp); /* * We cannot process the eager, so at least send out a * RST so the peer can reconnect. */ if (tcp->tcp_listener != NULL) { (void) tcp_eager_blowoff(tcp->tcp_listener, tcp->tcp_conn_req_seqnum); } return (ENOMEM); } /* * Both endpoints must be of the same type (either STREAMS or * non-STREAMS) for fusion to be enabled. So if we are fused, * we have to unfuse. */ if (tcp->tcp_fused) tcp_unfuse(tcp); /* * No longer a direct socket */ connp->conn_flags &= ~IPCL_NONSTR; tcp->tcp_ordrel_mp = ordrel_mp; if (tcp->tcp_listener != NULL) { /* The eager will deal with opts when accept() is called */ freeb(stropt_mp); tcp_fallback_eager(tcp, direct_sockfs); } else { tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, quiesced_cb); } /* * There should be atleast two ref's (IP + TCP) */ ASSERT(connp->conn_ref >= 2); squeue_synch_exit(connp->conn_sqp, connp); return (0); } /* ARGSUSED */ static void tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) { conn_t *connp = (conn_t *)arg; tcp_t *tcp = connp->conn_tcp; freemsg(mp); if (tcp->tcp_fused) tcp_unfuse(tcp); if (tcp_xmit_end(tcp) != 0) { /* * We were crossing FINs and got a reset from * the other side. Just ignore it. */ if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_shutdown_output() out of state %s", tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); } } } /* ARGSUSED */ int tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; tcp_t *tcp = connp->conn_tcp; ASSERT(connp->conn_upper_handle != NULL); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); /* * X/Open requires that we check the connected state. */ if (tcp->tcp_state < TCPS_SYN_SENT) return (ENOTCONN); /* shutdown the send side */ if (how != SHUT_RD) { mblk_t *bp; bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); CONN_INC_REF(connp); SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, connp, NULL, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, SOCK_OPCTL_SHUT_SEND, 0); } /* shutdown the recv side */ if (how != SHUT_WR) (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); return (0); } /* * SOP_LISTEN() calls into tcp_listen(). */ /* ARGSUSED */ int tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; int error; squeue_t *sqp = connp->conn_sqp; ASSERT(connp->conn_upper_handle != NULL); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); error = squeue_synch_enter(sqp, connp, NULL); if (error != 0) { /* failed to enter */ return (ENOBUFS); } error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); if (error == 0) { (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); } else if (error < 0) { if (error == -TOUTSTATE) error = EINVAL; else error = proto_tlitosyserr(-error); } squeue_synch_exit(sqp, connp); return (error); } static int tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, int backlog, cred_t *cr, boolean_t bind_to_req_port_only) { tcp_t *tcp = connp->conn_tcp; int error = 0; tcp_stack_t *tcps = tcp->tcp_tcps; /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); if (tcp->tcp_state >= TCPS_BOUND) { if ((tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { /* * Handle listen() increasing backlog. * This is more "liberal" then what the TPI spec * requires but is needed to avoid a t_unbind * when handling listen() since the port number * might be "stolen" between the unbind and bind. */ goto do_listen; } if (connp->conn_debug) { (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, "tcp_listen: bad state, %d", tcp->tcp_state); } return (-TOUTSTATE); } else { if (sa == NULL) { sin6_t addr; sin_t *sin; sin6_t *sin6; ASSERT(IPCL_IS_NONSTR(connp)); /* Do an implicit bind: Request for a generic port. */ if (connp->conn_family == AF_INET) { len = sizeof (sin_t); sin = (sin_t *)&addr; *sin = sin_null; sin->sin_family = AF_INET; } else { ASSERT(connp->conn_family == AF_INET6); len = sizeof (sin6_t); sin6 = (sin6_t *)&addr; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; } sa = (struct sockaddr *)&addr; } error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); if (error) return (error); /* Fall through and do the fanout insertion */ } do_listen: ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); tcp->tcp_conn_req_max = backlog; if (tcp->tcp_conn_req_max) { if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; /* * If this is a listener, do not reset the eager list * and other stuffs. Note that we don't check if the * existing eager list meets the new tcp_conn_req_max * requirement. */ if (tcp->tcp_state != TCPS_LISTEN) { tcp->tcp_state = TCPS_LISTEN; /* Initialize the chain. Don't need the eager_lock */ tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; tcp->tcp_eager_next_drop_q0 = tcp; tcp->tcp_eager_prev_drop_q0 = tcp; tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_linterval; } } /* * We need to make sure that the conn_recv is set to a non-null * value before we insert the conn into the classifier table. * This is to avoid a race with an incoming packet which does an * ipcl_classify(). * We initially set it to tcp_input_listener_unbound to try to * pick a good squeue for the listener when the first SYN arrives. * tcp_input_listener_unbound sets it to tcp_input_listener on that * first SYN. */ connp->conn_recv = tcp_input_listener_unbound; /* Insert the listener in the classifier table */ error = ip_laddr_fanout_insert(connp); if (error != 0) { /* Undo the bind - release the port number */ tcp->tcp_state = TCPS_IDLE; connp->conn_bound_addr_v6 = ipv6_all_zeros; connp->conn_laddr_v6 = ipv6_all_zeros; connp->conn_saddr_v6 = ipv6_all_zeros; connp->conn_ports = 0; if (connp->conn_anon_port) { zone_t *zone; zone = crgetzone(cr); connp->conn_anon_port = B_FALSE; (void) tsol_mlp_anon(zone, connp->conn_mlp_type, connp->conn_proto, connp->conn_lport, B_FALSE); } connp->conn_mlp_type = mlptSingle; tcp_bind_hash_remove(tcp); return (error); } return (error); } void tcp_clr_flowctrl(sock_lower_handle_t proto_handle) { conn_t *connp = (conn_t *)proto_handle; tcp_t *tcp = connp->conn_tcp; mblk_t *mp; int error; ASSERT(connp->conn_upper_handle != NULL); /* * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() * is currently running. */ mutex_enter(&tcp->tcp_rsrv_mp_lock); if ((mp = tcp->tcp_rsrv_mp) == NULL) { mutex_exit(&tcp->tcp_rsrv_mp_lock); return; } tcp->tcp_rsrv_mp = NULL; mutex_exit(&tcp->tcp_rsrv_mp_lock); error = squeue_synch_enter(connp->conn_sqp, connp, mp); ASSERT(error == 0); mutex_enter(&tcp->tcp_rsrv_mp_lock); tcp->tcp_rsrv_mp = mp; mutex_exit(&tcp->tcp_rsrv_mp_lock); if (tcp->tcp_fused) { tcp_fuse_backenable(tcp); } else { tcp->tcp_rwnd = connp->conn_rcvbuf; /* * Send back a window update immediately if TCP is above * ESTABLISHED state and the increase of the rcv window * that the other side knows is at least 1 MSS after flow * control is lifted. */ if (tcp->tcp_state >= TCPS_ESTABLISHED && tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { tcp_xmit_ctl(NULL, tcp, (tcp->tcp_swnd == 0) ? tcp->tcp_suna : tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); } } squeue_synch_exit(connp->conn_sqp, connp); } /* ARGSUSED */ int tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, int mode, int32_t *rvalp, cred_t *cr) { conn_t *connp = (conn_t *)proto_handle; int error; ASSERT(connp->conn_upper_handle != NULL); /* All Solaris components should pass a cred for this operation. */ ASSERT(cr != NULL); /* * If we don't have a helper stream then create one. * ip_create_helper_stream takes care of locking the conn_t, * so this check for NULL is just a performance optimization. */ if (connp->conn_helper_info == NULL) { tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; /* * Create a helper stream for non-STREAMS socket. */ error = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); if (error != 0) { ip0dbg(("tcp_ioctl: create of IP helper stream " "failed %d\n", error)); return (error); } } switch (cmd) { case ND_SET: case ND_GET: case _SIOCSOCKFALLBACK: case TCP_IOC_ABORT_CONN: case TI_GETPEERNAME: case TI_GETMYNAME: ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", cmd)); error = EINVAL; break; default: /* * Pass on to IP using helper stream */ error = ldi_ioctl(connp->conn_helper_info->iphs_handle, cmd, arg, mode, cr, rvalp); break; } return (error); } sock_downcalls_t sock_tcp_downcalls = { tcp_activate, tcp_accept, tcp_bind, tcp_listen, tcp_connect, tcp_getpeername, tcp_getsockname, tcp_getsockopt, tcp_setsockopt, tcp_sendmsg, NULL, NULL, NULL, tcp_shutdown, tcp_clr_flowctrl, tcp_ioctl, tcp_close, };