/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sctp_impl.h" #include "sctp_addr.h" #include "sctp_asconf.h" static struct kmem_cache *sctp_kmem_faddr_cache; static void sctp_init_faddr(sctp_t *, sctp_faddr_t *, in6_addr_t *, mblk_t *); /* Set the source address. Refer to comments in sctp_get_ire(). */ void sctp_set_saddr(sctp_t *sctp, sctp_faddr_t *fp) { boolean_t v6 = !fp->isv4; boolean_t addr_set; fp->saddr = sctp_get_valid_addr(sctp, v6, &addr_set); /* * If there is no source address avaialble, mark this peer address * as unreachable for now. When the heartbeat timer fires, it will * call sctp_get_ire() to re-check if there is any source address * available. */ if (!addr_set) fp->state = SCTP_FADDRS_UNREACH; } /* * Call this function to update the cached IRE of a peer addr fp. */ void sctp_get_ire(sctp_t *sctp, sctp_faddr_t *fp) { ire_t *ire; ipaddr_t addr4; in6_addr_t laddr; sctp_saddr_ipif_t *sp; int hdrlen; ts_label_t *tsl; sctp_stack_t *sctps = sctp->sctp_sctps; ip_stack_t *ipst = sctps->sctps_netstack->netstack_ip; /* Remove the previous cache IRE */ if ((ire = fp->ire) != NULL) { IRE_REFRELE_NOTR(ire); fp->ire = NULL; } /* * If this addr is not reachable, mark it as unconfirmed for now, the * state will be changed back to unreachable later in this function * if it is still the case. */ if (fp->state == SCTP_FADDRS_UNREACH) { fp->state = SCTP_FADDRS_UNCONFIRMED; } tsl = crgetlabel(CONN_CRED(sctp->sctp_connp)); if (fp->isv4) { IN6_V4MAPPED_TO_IPADDR(&fp->faddr, addr4); ire = ire_cache_lookup(addr4, sctp->sctp_zoneid, tsl, ipst); if (ire != NULL) IN6_IPADDR_TO_V4MAPPED(ire->ire_src_addr, &laddr); } else { ire = ire_cache_lookup_v6(&fp->faddr, sctp->sctp_zoneid, tsl, ipst); if (ire != NULL) laddr = ire->ire_src_addr_v6; } if (ire == NULL) { dprint(3, ("ire2faddr: no ire for %x:%x:%x:%x\n", SCTP_PRINTADDR(fp->faddr))); /* * It is tempting to just leave the src addr * unspecified and let IP figure it out, but we * *cannot* do this, since IP may choose a src addr * that is not part of this association... unless * this sctp has bound to all addrs. So if the ire * lookup fails, try to find one in our src addr * list, unless the sctp has bound to all addrs, in * which case we change the src addr to unspec. * * Note that if this is a v6 endpoint but it does * not have any v4 address at this point (e.g. may * have been deleted), sctp_get_valid_addr() will * return mapped INADDR_ANY. In this case, this * address should be marked not reachable so that * it won't be used to send data. */ sctp_set_saddr(sctp, fp); if (fp->state == SCTP_FADDRS_UNREACH) return; goto check_current; } /* Make sure the laddr is part of this association */ if ((sp = sctp_saddr_lookup(sctp, &ire->ire_ipif->ipif_v6lcl_addr, 0)) != NULL && !sp->saddr_ipif_dontsrc) { if (sp->saddr_ipif_unconfirmed == 1) sp->saddr_ipif_unconfirmed = 0; fp->saddr = laddr; } else { dprint(2, ("ire2faddr: src addr is not part of assc\n")); /* * Set the src to the first saddr and hope for the best. * Note that we will still do the ire caching below. * Otherwise, whenever we send a packet, we need to do * the ire lookup again and still may not get the correct * source address. Note that this case should very seldomly * happen. One scenario this can happen is an app * explicitly bind() to an address. But that address is * not the preferred source address to send to the peer. */ sctp_set_saddr(sctp, fp); if (fp->state == SCTP_FADDRS_UNREACH) { IRE_REFRELE(ire); return; } } /* * Note that ire_cache_lookup_*() returns an ire with the tracing * bits enabled. This requires the thread holding the ire also * do the IRE_REFRELE(). Thus we need to do IRE_REFHOLD_NOTR() * and then IRE_REFRELE() the ire here to make the tracing bits * work. */ IRE_REFHOLD_NOTR(ire); IRE_REFRELE(ire); /* Cache the IRE */ fp->ire = ire; if (fp->ire->ire_type == IRE_LOOPBACK && !sctp->sctp_loopback) sctp->sctp_loopback = 1; /* * Pull out RTO information for this faddr and use it if we don't * have any yet. */ if (fp->srtt == -1 && ire->ire_uinfo.iulp_rtt != 0) { /* The cached value is in ms. */ fp->srtt = MSEC_TO_TICK(ire->ire_uinfo.iulp_rtt); fp->rttvar = MSEC_TO_TICK(ire->ire_uinfo.iulp_rtt_sd); fp->rto = 3 * fp->srtt; /* Bound the RTO by configured min and max values */ if (fp->rto < sctp->sctp_rto_min) { fp->rto = sctp->sctp_rto_min; } if (fp->rto > sctp->sctp_rto_max) { fp->rto = sctp->sctp_rto_max; } } /* * Record the MTU for this faddr. If the MTU for this faddr has * changed, check if the assc MTU will also change. */ if (fp->isv4) { hdrlen = sctp->sctp_hdr_len; } else { hdrlen = sctp->sctp_hdr6_len; } if ((fp->sfa_pmss + hdrlen) != ire->ire_max_frag) { /* Make sure that sfa_pmss is a multiple of SCTP_ALIGN. */ fp->sfa_pmss = (ire->ire_max_frag - hdrlen) & ~(SCTP_ALIGN - 1); if (fp->cwnd < (fp->sfa_pmss * 2)) { SET_CWND(fp, fp->sfa_pmss, sctps->sctps_slow_start_initial); } } check_current: if (fp == sctp->sctp_current) sctp_set_faddr_current(sctp, fp); } void sctp_update_ire(sctp_t *sctp) { ire_t *ire; sctp_faddr_t *fp; sctp_stack_t *sctps = sctp->sctp_sctps; for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { if ((ire = fp->ire) == NULL) continue; mutex_enter(&ire->ire_lock); /* * If the cached IRE is going away, there is no point to * update it. */ if (ire->ire_marks & IRE_MARK_CONDEMNED) { mutex_exit(&ire->ire_lock); IRE_REFRELE_NOTR(ire); fp->ire = NULL; continue; } /* * Only record the PMTU for this faddr if we actually have * done discovery. This prevents initialized default from * clobbering any real info that IP may have. */ if (fp->pmtu_discovered) { if (fp->isv4) { ire->ire_max_frag = fp->sfa_pmss + sctp->sctp_hdr_len; } else { ire->ire_max_frag = fp->sfa_pmss + sctp->sctp_hdr6_len; } } if (sctps->sctps_rtt_updates != 0 && fp->rtt_updates >= sctps->sctps_rtt_updates) { /* * If there is no old cached values, initialize them * conservatively. Set them to be (1.5 * new value). * This code copied from ip_ire_advise(). The cached * value is in ms. */ if (ire->ire_uinfo.iulp_rtt != 0) { ire->ire_uinfo.iulp_rtt = (ire->ire_uinfo.iulp_rtt + TICK_TO_MSEC(fp->srtt)) >> 1; } else { ire->ire_uinfo.iulp_rtt = TICK_TO_MSEC(fp->srtt + (fp->srtt >> 1)); } if (ire->ire_uinfo.iulp_rtt_sd != 0) { ire->ire_uinfo.iulp_rtt_sd = (ire->ire_uinfo.iulp_rtt_sd + TICK_TO_MSEC(fp->rttvar)) >> 1; } else { ire->ire_uinfo.iulp_rtt_sd = TICK_TO_MSEC(fp->rttvar + (fp->rttvar >> 1)); } fp->rtt_updates = 0; } mutex_exit(&ire->ire_lock); } } /* * The sender must set the total length in the IP header. * If sendto == NULL, the current will be used. */ mblk_t * sctp_make_mp(sctp_t *sctp, sctp_faddr_t *sendto, int trailer) { mblk_t *mp; size_t ipsctplen; int isv4; sctp_faddr_t *fp; sctp_stack_t *sctps = sctp->sctp_sctps; boolean_t src_changed = B_FALSE; ASSERT(sctp->sctp_current != NULL || sendto != NULL); if (sendto == NULL) { fp = sctp->sctp_current; } else { fp = sendto; } isv4 = fp->isv4; /* Try to look for another IRE again. */ if (fp->ire == NULL) { sctp_get_ire(sctp, fp); /* * Although we still may not get an IRE, the source address * may be changed in sctp_get_ire(). Set src_changed to * true so that the source address is copied again. */ src_changed = B_TRUE; } /* There is no suitable source address to use, return. */ if (fp->state == SCTP_FADDRS_UNREACH) return (NULL); ASSERT(!IN6_IS_ADDR_V4MAPPED_ANY(&fp->saddr)); if (isv4) { ipsctplen = sctp->sctp_hdr_len; } else { ipsctplen = sctp->sctp_hdr6_len; } mp = allocb_cred(ipsctplen + sctps->sctps_wroff_xtra + trailer, CONN_CRED(sctp->sctp_connp)); if (mp == NULL) { ip1dbg(("sctp_make_mp: error making mp..\n")); return (NULL); } mp->b_rptr += sctps->sctps_wroff_xtra; mp->b_wptr = mp->b_rptr + ipsctplen; ASSERT(OK_32PTR(mp->b_wptr)); if (isv4) { ipha_t *iph = (ipha_t *)mp->b_rptr; bcopy(sctp->sctp_iphc, mp->b_rptr, ipsctplen); if (fp != sctp->sctp_current || src_changed) { /* Fix the source and destination addresses. */ IN6_V4MAPPED_TO_IPADDR(&fp->faddr, iph->ipha_dst); IN6_V4MAPPED_TO_IPADDR(&fp->saddr, iph->ipha_src); } /* set or clear the don't fragment bit */ if (fp->df) { iph->ipha_fragment_offset_and_flags = htons(IPH_DF); } else { iph->ipha_fragment_offset_and_flags = 0; } } else { bcopy(sctp->sctp_iphc6, mp->b_rptr, ipsctplen); if (fp != sctp->sctp_current || src_changed) { /* Fix the source and destination addresses. */ ((ip6_t *)(mp->b_rptr))->ip6_dst = fp->faddr; ((ip6_t *)(mp->b_rptr))->ip6_src = fp->saddr; } } ASSERT(sctp->sctp_connp != NULL); /* * IP will not free this IRE if it is condemned. SCTP needs to * free it. */ if ((fp->ire != NULL) && (fp->ire->ire_marks & IRE_MARK_CONDEMNED)) { IRE_REFRELE_NOTR(fp->ire); fp->ire = NULL; } /* Stash the conn and ire ptr info. for IP */ SCTP_STASH_IPINFO(mp, fp->ire); return (mp); } /* * Notify upper layers about preferred write offset, write size. */ void sctp_set_ulp_prop(sctp_t *sctp) { int hdrlen; struct sock_proto_props sopp; sctp_stack_t *sctps = sctp->sctp_sctps; if (sctp->sctp_current->isv4) { hdrlen = sctp->sctp_hdr_len; } else { hdrlen = sctp->sctp_hdr6_len; } ASSERT(sctp->sctp_ulpd); ASSERT(sctp->sctp_current->sfa_pmss == sctp->sctp_mss); bzero(&sopp, sizeof (sopp)); sopp.sopp_flags = SOCKOPT_MAXBLK|SOCKOPT_WROFF; sopp.sopp_wroff = sctps->sctps_wroff_xtra + hdrlen + sizeof (sctp_data_hdr_t); sopp.sopp_maxblk = sctp->sctp_mss - sizeof (sctp_data_hdr_t); sctp->sctp_ulp_prop(sctp->sctp_ulpd, &sopp); } void sctp_set_iplen(sctp_t *sctp, mblk_t *mp) { uint16_t sum = 0; ipha_t *iph; ip6_t *ip6h; mblk_t *pmp = mp; boolean_t isv4; isv4 = (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); for (; pmp; pmp = pmp->b_cont) sum += pmp->b_wptr - pmp->b_rptr; if (isv4) { iph = (ipha_t *)mp->b_rptr; iph->ipha_length = htons(sum); } else { ip6h = (ip6_t *)mp->b_rptr; /* * If an ip6i_t is present, the real IPv6 header * immediately follows. */ if (ip6h->ip6_nxt == IPPROTO_RAW) ip6h = (ip6_t *)&ip6h[1]; ip6h->ip6_plen = htons(sum - ((char *)&sctp->sctp_ip6h[1] - sctp->sctp_iphc6)); } } int sctp_compare_faddrsets(sctp_faddr_t *a1, sctp_faddr_t *a2) { int na1 = 0; int overlap = 0; int equal = 1; int onematch; sctp_faddr_t *fp1, *fp2; for (fp1 = a1; fp1; fp1 = fp1->next) { onematch = 0; for (fp2 = a2; fp2; fp2 = fp2->next) { if (IN6_ARE_ADDR_EQUAL(&fp1->faddr, &fp2->faddr)) { overlap++; onematch = 1; break; } if (!onematch) { equal = 0; } } na1++; } if (equal) { return (SCTP_ADDR_EQUAL); } if (overlap == na1) { return (SCTP_ADDR_SUBSET); } if (overlap) { return (SCTP_ADDR_OVERLAP); } return (SCTP_ADDR_DISJOINT); } /* * Returns 0 on success, -1 on memory allocation failure. If sleep * is true, this function should never fail. The boolean parameter * first decides whether the newly created faddr structure should be * added at the beginning of the list or at the end. * * Note: caller must hold conn fanout lock. */ int sctp_add_faddr(sctp_t *sctp, in6_addr_t *addr, int sleep, boolean_t first) { sctp_faddr_t *faddr; mblk_t *timer_mp; if (is_system_labeled()) { ts_label_t *tsl; tsol_tpc_t *rhtp; int retv; tsl = crgetlabel(CONN_CRED(sctp->sctp_connp)); ASSERT(tsl != NULL); /* find_tpc automatically does the right thing with IPv4 */ rhtp = find_tpc(addr, IPV6_VERSION, B_FALSE); if (rhtp == NULL) return (EACCES); retv = EACCES; if (tsl->tsl_doi == rhtp->tpc_tp.tp_doi) { switch (rhtp->tpc_tp.host_type) { case UNLABELED: /* * Can talk to unlabeled hosts if any of the * following are true: * 1. zone's label matches the remote host's * default label, * 2. mac_exempt is on and the zone dominates * the remote host's label, or * 3. mac_exempt is on and the socket is from * the global zone. */ if (blequal(&rhtp->tpc_tp.tp_def_label, &tsl->tsl_label) || (sctp->sctp_mac_exempt && (sctp->sctp_zoneid == GLOBAL_ZONEID || bldominates(&tsl->tsl_label, &rhtp->tpc_tp.tp_def_label)))) retv = 0; break; case SUN_CIPSO: if (_blinrange(&tsl->tsl_label, &rhtp->tpc_tp.tp_sl_range_cipso) || blinlset(&tsl->tsl_label, rhtp->tpc_tp.tp_sl_set_cipso)) retv = 0; break; } } TPC_RELE(rhtp); if (retv != 0) return (retv); } if ((faddr = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep)) == NULL) return (ENOMEM); timer_mp = sctp_timer_alloc((sctp), sctp_rexmit_timer, sleep); if (timer_mp == NULL) { kmem_cache_free(sctp_kmem_faddr_cache, faddr); return (ENOMEM); } ((sctpt_t *)(timer_mp->b_rptr))->sctpt_faddr = faddr; sctp_init_faddr(sctp, faddr, addr, timer_mp); /* Check for subnet broadcast. */ if (faddr->ire != NULL && faddr->ire->ire_type & IRE_BROADCAST) { IRE_REFRELE_NOTR(faddr->ire); sctp_timer_free(timer_mp); faddr->timer_mp = NULL; kmem_cache_free(sctp_kmem_faddr_cache, faddr); return (EADDRNOTAVAIL); } ASSERT(faddr->next == NULL); if (sctp->sctp_faddrs == NULL) { ASSERT(sctp->sctp_lastfaddr == NULL); /* only element on list; first and last are same */ sctp->sctp_faddrs = sctp->sctp_lastfaddr = faddr; } else if (first) { ASSERT(sctp->sctp_lastfaddr != NULL); faddr->next = sctp->sctp_faddrs; sctp->sctp_faddrs = faddr; } else { sctp->sctp_lastfaddr->next = faddr; sctp->sctp_lastfaddr = faddr; } sctp->sctp_nfaddrs++; return (0); } sctp_faddr_t * sctp_lookup_faddr(sctp_t *sctp, in6_addr_t *addr) { sctp_faddr_t *fp; for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { if (IN6_ARE_ADDR_EQUAL(&fp->faddr, addr)) break; } return (fp); } sctp_faddr_t * sctp_lookup_faddr_nosctp(sctp_faddr_t *fp, in6_addr_t *addr) { for (; fp; fp = fp->next) { if (IN6_ARE_ADDR_EQUAL(&fp->faddr, addr)) { break; } } return (fp); } /* * To change the currently used peer address to the specified one. */ void sctp_set_faddr_current(sctp_t *sctp, sctp_faddr_t *fp) { /* Now setup the composite header. */ if (fp->isv4) { IN6_V4MAPPED_TO_IPADDR(&fp->faddr, sctp->sctp_ipha->ipha_dst); IN6_V4MAPPED_TO_IPADDR(&fp->saddr, sctp->sctp_ipha->ipha_src); /* update don't fragment bit */ if (fp->df) { sctp->sctp_ipha->ipha_fragment_offset_and_flags = htons(IPH_DF); } else { sctp->sctp_ipha->ipha_fragment_offset_and_flags = 0; } } else { sctp->sctp_ip6h->ip6_dst = fp->faddr; sctp->sctp_ip6h->ip6_src = fp->saddr; } sctp->sctp_current = fp; sctp->sctp_mss = fp->sfa_pmss; /* Update the uppper layer for the change. */ if (!SCTP_IS_DETACHED(sctp)) sctp_set_ulp_prop(sctp); } void sctp_redo_faddr_srcs(sctp_t *sctp) { sctp_faddr_t *fp; for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { sctp_get_ire(sctp, fp); } } void sctp_faddr_alive(sctp_t *sctp, sctp_faddr_t *fp) { int64_t now = lbolt64; fp->strikes = 0; sctp->sctp_strikes = 0; fp->lastactive = now; fp->hb_expiry = now + SET_HB_INTVL(fp); fp->hb_pending = B_FALSE; if (fp->state != SCTP_FADDRS_ALIVE) { fp->state = SCTP_FADDRS_ALIVE; sctp_intf_event(sctp, fp->faddr, SCTP_ADDR_AVAILABLE, 0); /* Should have a full IRE now */ sctp_get_ire(sctp, fp); /* * If this is the primary, switch back to it now. And * we probably want to reset the source addr used to reach * it. */ if (fp == sctp->sctp_primary) { ASSERT(fp->state != SCTP_FADDRS_UNREACH); sctp_set_faddr_current(sctp, fp); return; } } } int sctp_is_a_faddr_clean(sctp_t *sctp) { sctp_faddr_t *fp; for (fp = sctp->sctp_faddrs; fp; fp = fp->next) { if (fp->state == SCTP_FADDRS_ALIVE && fp->strikes == 0) { return (1); } } return (0); } /* * Returns 0 if there is at leave one other active faddr, -1 if there * are none. If there are none left, faddr_dead() will start killing the * association. * If the downed faddr was the current faddr, a new current faddr * will be chosen. */ int sctp_faddr_dead(sctp_t *sctp, sctp_faddr_t *fp, int newstate) { sctp_faddr_t *ofp; sctp_stack_t *sctps = sctp->sctp_sctps; if (fp->state == SCTP_FADDRS_ALIVE) { sctp_intf_event(sctp, fp->faddr, SCTP_ADDR_UNREACHABLE, 0); } fp->state = newstate; dprint(1, ("sctp_faddr_dead: %x:%x:%x:%x down (state=%d)\n", SCTP_PRINTADDR(fp->faddr), newstate)); if (fp == sctp->sctp_current) { /* Current faddr down; need to switch it */ sctp->sctp_current = NULL; } /* Find next alive faddr */ ofp = fp; for (fp = fp->next; fp != NULL; fp = fp->next) { if (fp->state == SCTP_FADDRS_ALIVE) { break; } } if (fp == NULL) { /* Continue from beginning of list */ for (fp = sctp->sctp_faddrs; fp != ofp; fp = fp->next) { if (fp->state == SCTP_FADDRS_ALIVE) { break; } } } /* * Find a new fp, so if the current faddr is dead, use the new fp * as the current one. */ if (fp != ofp) { if (sctp->sctp_current == NULL) { dprint(1, ("sctp_faddr_dead: failover->%x:%x:%x:%x\n", SCTP_PRINTADDR(fp->faddr))); /* * Note that we don't need to reset the source addr * of the new fp. */ sctp_set_faddr_current(sctp, fp); } return (0); } /* All faddrs are down; kill the association */ dprint(1, ("sctp_faddr_dead: all faddrs down, killing assoc\n")); BUMP_MIB(&sctps->sctps_mib, sctpAborted); sctp_assoc_event(sctp, sctp->sctp_state < SCTPS_ESTABLISHED ? SCTP_CANT_STR_ASSOC : SCTP_COMM_LOST, 0, NULL); sctp_clean_death(sctp, sctp->sctp_client_errno ? sctp->sctp_client_errno : ETIMEDOUT); return (-1); } sctp_faddr_t * sctp_rotate_faddr(sctp_t *sctp, sctp_faddr_t *ofp) { sctp_faddr_t *nfp = NULL; if (ofp == NULL) { ofp = sctp->sctp_current; } /* Find the next live one */ for (nfp = ofp->next; nfp != NULL; nfp = nfp->next) { if (nfp->state == SCTP_FADDRS_ALIVE) { break; } } if (nfp == NULL) { /* Continue from beginning of list */ for (nfp = sctp->sctp_faddrs; nfp != ofp; nfp = nfp->next) { if (nfp->state == SCTP_FADDRS_ALIVE) { break; } } } /* * nfp could only be NULL if all faddrs are down, and when * this happens, faddr_dead() should have killed the * association. Hence this assertion... */ ASSERT(nfp != NULL); return (nfp); } void sctp_unlink_faddr(sctp_t *sctp, sctp_faddr_t *fp) { sctp_faddr_t *fpp; if (!sctp->sctp_faddrs) { return; } if (fp->timer_mp != NULL) { sctp_timer_free(fp->timer_mp); fp->timer_mp = NULL; fp->timer_running = 0; } if (fp->rc_timer_mp != NULL) { sctp_timer_free(fp->rc_timer_mp); fp->rc_timer_mp = NULL; fp->rc_timer_running = 0; } if (fp->ire != NULL) { IRE_REFRELE_NOTR(fp->ire); fp->ire = NULL; } if (fp == sctp->sctp_faddrs) { goto gotit; } for (fpp = sctp->sctp_faddrs; fpp->next != fp; fpp = fpp->next) ; gotit: ASSERT(sctp->sctp_conn_tfp != NULL); mutex_enter(&sctp->sctp_conn_tfp->tf_lock); if (fp == sctp->sctp_faddrs) { sctp->sctp_faddrs = fp->next; } else { fpp->next = fp->next; } mutex_exit(&sctp->sctp_conn_tfp->tf_lock); /* XXX faddr2ire? */ kmem_cache_free(sctp_kmem_faddr_cache, fp); sctp->sctp_nfaddrs--; } void sctp_zap_faddrs(sctp_t *sctp, int caller_holds_lock) { sctp_faddr_t *fp, *fpn; if (sctp->sctp_faddrs == NULL) { ASSERT(sctp->sctp_lastfaddr == NULL); return; } ASSERT(sctp->sctp_lastfaddr != NULL); sctp->sctp_lastfaddr = NULL; sctp->sctp_current = NULL; sctp->sctp_primary = NULL; sctp_free_faddr_timers(sctp); if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) { /* in conn fanout; need to hold lock */ mutex_enter(&sctp->sctp_conn_tfp->tf_lock); } for (fp = sctp->sctp_faddrs; fp; fp = fpn) { fpn = fp->next; if (fp->ire != NULL) IRE_REFRELE_NOTR(fp->ire); kmem_cache_free(sctp_kmem_faddr_cache, fp); sctp->sctp_nfaddrs--; } sctp->sctp_faddrs = NULL; ASSERT(sctp->sctp_nfaddrs == 0); if (sctp->sctp_conn_tfp != NULL && !caller_holds_lock) { mutex_exit(&sctp->sctp_conn_tfp->tf_lock); } } void sctp_zap_addrs(sctp_t *sctp) { sctp_zap_faddrs(sctp, 0); sctp_free_saddrs(sctp); } /* * Initialize the IPv4 header. Loses any record of any IP options. */ int sctp_header_init_ipv4(sctp_t *sctp, int sleep) { sctp_hdr_t *sctph; sctp_stack_t *sctps = sctp->sctp_sctps; /* * This is a simple initialization. If there's * already a template, it should never be too small, * so reuse it. Otherwise, allocate space for the new one. */ if (sctp->sctp_iphc != NULL) { ASSERT(sctp->sctp_iphc_len >= SCTP_MAX_COMBINED_HEADER_LENGTH); bzero(sctp->sctp_iphc, sctp->sctp_iphc_len); } else { sctp->sctp_iphc_len = SCTP_MAX_COMBINED_HEADER_LENGTH; sctp->sctp_iphc = kmem_zalloc(sctp->sctp_iphc_len, sleep); if (sctp->sctp_iphc == NULL) { sctp->sctp_iphc_len = 0; return (ENOMEM); } } sctp->sctp_ipha = (ipha_t *)sctp->sctp_iphc; sctp->sctp_hdr_len = sizeof (ipha_t) + sizeof (sctp_hdr_t); sctp->sctp_ip_hdr_len = sizeof (ipha_t); sctp->sctp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (sctp_hdr_t)); sctp->sctp_ipha->ipha_version_and_hdr_length = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; /* * These two fields should be zero, and are already set above. * * sctp->sctp_ipha->ipha_ident, * sctp->sctp_ipha->ipha_fragment_offset_and_flags. */ sctp->sctp_ipha->ipha_ttl = sctps->sctps_ipv4_ttl; sctp->sctp_ipha->ipha_protocol = IPPROTO_SCTP; sctph = (sctp_hdr_t *)(sctp->sctp_iphc + sizeof (ipha_t)); sctp->sctp_sctph = sctph; return (0); } /* * Update sctp_sticky_hdrs based on sctp_sticky_ipp. * The headers include ip6i_t (if needed), ip6_t, any sticky extension * headers, and the maximum size sctp header (to avoid reallocation * on the fly for additional sctp options). * Returns failure if can't allocate memory. */ int sctp_build_hdrs(sctp_t *sctp) { char *hdrs; uint_t hdrs_len; ip6i_t *ip6i; char buf[SCTP_MAX_HDR_LENGTH]; ip6_pkt_t *ipp = &sctp->sctp_sticky_ipp; in6_addr_t src; in6_addr_t dst; sctp_stack_t *sctps = sctp->sctp_sctps; /* * save the existing sctp header and source/dest IP addresses */ bcopy(sctp->sctp_sctph6, buf, sizeof (sctp_hdr_t)); src = sctp->sctp_ip6h->ip6_src; dst = sctp->sctp_ip6h->ip6_dst; hdrs_len = ip_total_hdrs_len_v6(ipp) + SCTP_MAX_HDR_LENGTH; ASSERT(hdrs_len != 0); if (hdrs_len > sctp->sctp_iphc6_len) { /* Need to reallocate */ hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); if (hdrs == NULL) return (ENOMEM); if (sctp->sctp_iphc6_len != 0) kmem_free(sctp->sctp_iphc6, sctp->sctp_iphc6_len); sctp->sctp_iphc6 = hdrs; sctp->sctp_iphc6_len = hdrs_len; } ip_build_hdrs_v6((uchar_t *)sctp->sctp_iphc6, hdrs_len - SCTP_MAX_HDR_LENGTH, ipp, IPPROTO_SCTP); /* Set header fields not in ipp */ if (ipp->ipp_fields & IPPF_HAS_IP6I) { ip6i = (ip6i_t *)sctp->sctp_iphc6; sctp->sctp_ip6h = (ip6_t *)&ip6i[1]; } else { sctp->sctp_ip6h = (ip6_t *)sctp->sctp_iphc6; } /* * sctp->sctp_ip_hdr_len will include ip6i_t if there is one. */ sctp->sctp_ip_hdr6_len = hdrs_len - SCTP_MAX_HDR_LENGTH; sctp->sctp_sctph6 = (sctp_hdr_t *)(sctp->sctp_iphc6 + sctp->sctp_ip_hdr6_len); sctp->sctp_hdr6_len = sctp->sctp_ip_hdr6_len + sizeof (sctp_hdr_t); bcopy(buf, sctp->sctp_sctph6, sizeof (sctp_hdr_t)); sctp->sctp_ip6h->ip6_src = src; sctp->sctp_ip6h->ip6_dst = dst; /* * If the hoplimit was not set by ip_build_hdrs_v6(), we need to * set it to the default value for SCTP. */ if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) sctp->sctp_ip6h->ip6_hops = sctps->sctps_ipv6_hoplimit; /* * If we're setting extension headers after a connection * has been established, and if we have a routing header * among the extension headers, call ip_massage_options_v6 to * manipulate the routing header/ip6_dst set the checksum * difference in the sctp header template. * (This happens in sctp_connect_ipv6 if the routing header * is set prior to the connect.) */ if ((sctp->sctp_state >= SCTPS_COOKIE_WAIT) && (sctp->sctp_sticky_ipp.ipp_fields & IPPF_RTHDR)) { ip6_rthdr_t *rth; rth = ip_find_rthdr_v6(sctp->sctp_ip6h, (uint8_t *)sctp->sctp_sctph6); if (rth != NULL) { (void) ip_massage_options_v6(sctp->sctp_ip6h, rth, sctps->sctps_netstack); } } return (0); } /* * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. */ int sctp_header_init_ipv6(sctp_t *sctp, int sleep) { sctp_hdr_t *sctph; sctp_stack_t *sctps = sctp->sctp_sctps; /* * This is a simple initialization. If there's * already a template, it should never be too small, * so reuse it. Otherwise, allocate space for the new one. * Ensure that there is enough space to "downgrade" the sctp_t * to an IPv4 sctp_t. This requires having space for a full load * of IPv4 options */ if (sctp->sctp_iphc6 != NULL) { ASSERT(sctp->sctp_iphc6_len >= SCTP_MAX_COMBINED_HEADER_LENGTH); bzero(sctp->sctp_iphc6, sctp->sctp_iphc6_len); } else { sctp->sctp_iphc6_len = SCTP_MAX_COMBINED_HEADER_LENGTH; sctp->sctp_iphc6 = kmem_zalloc(sctp->sctp_iphc_len, sleep); if (sctp->sctp_iphc6 == NULL) { sctp->sctp_iphc6_len = 0; return (ENOMEM); } } sctp->sctp_hdr6_len = IPV6_HDR_LEN + sizeof (sctp_hdr_t); sctp->sctp_ip_hdr6_len = IPV6_HDR_LEN; sctp->sctp_ip6h = (ip6_t *)sctp->sctp_iphc6; /* Initialize the header template */ sctp->sctp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; sctp->sctp_ip6h->ip6_plen = ntohs(sizeof (sctp_hdr_t)); sctp->sctp_ip6h->ip6_nxt = IPPROTO_SCTP; sctp->sctp_ip6h->ip6_hops = sctps->sctps_ipv6_hoplimit; sctph = (sctp_hdr_t *)(sctp->sctp_iphc6 + IPV6_HDR_LEN); sctp->sctp_sctph6 = sctph; return (0); } static int sctp_v4_label(sctp_t *sctp) { uchar_t optbuf[IP_MAX_OPT_LENGTH]; const cred_t *cr = CONN_CRED(sctp->sctp_connp); int added; if (tsol_compute_label(cr, sctp->sctp_ipha->ipha_dst, optbuf, sctp->sctp_mac_exempt, sctp->sctp_sctps->sctps_netstack->netstack_ip) != 0) return (EACCES); added = tsol_remove_secopt(sctp->sctp_ipha, sctp->sctp_hdr_len); if (added == -1) return (EACCES); sctp->sctp_hdr_len += added; sctp->sctp_sctph = (sctp_hdr_t *)((uchar_t *)sctp->sctp_sctph + added); sctp->sctp_ip_hdr_len += added; if ((sctp->sctp_v4label_len = optbuf[IPOPT_OLEN]) != 0) { sctp->sctp_v4label_len = (sctp->sctp_v4label_len + 3) & ~3; added = tsol_prepend_option(optbuf, sctp->sctp_ipha, sctp->sctp_hdr_len); if (added == -1) return (EACCES); sctp->sctp_hdr_len += added; sctp->sctp_sctph = (sctp_hdr_t *)((uchar_t *)sctp->sctp_sctph + added); sctp->sctp_ip_hdr_len += added; } return (0); } static int sctp_v6_label(sctp_t *sctp) { uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; const cred_t *cr = CONN_CRED(sctp->sctp_connp); if (tsol_compute_label_v6(cr, &sctp->sctp_ip6h->ip6_dst, optbuf, sctp->sctp_mac_exempt, sctp->sctp_sctps->sctps_netstack->netstack_ip) != 0) return (EACCES); if (tsol_update_sticky(&sctp->sctp_sticky_ipp, &sctp->sctp_v6label_len, optbuf) != 0) return (EACCES); if (sctp_build_hdrs(sctp) != 0) return (EACCES); return (0); } /* * XXX implement more sophisticated logic */ int sctp_set_hdraddrs(sctp_t *sctp) { sctp_faddr_t *fp; int gotv4 = 0; int gotv6 = 0; ASSERT(sctp->sctp_faddrs != NULL); ASSERT(sctp->sctp_nsaddrs > 0); /* Set up using the primary first */ if (IN6_IS_ADDR_V4MAPPED(&sctp->sctp_primary->faddr)) { IN6_V4MAPPED_TO_IPADDR(&sctp->sctp_primary->faddr, sctp->sctp_ipha->ipha_dst); /* saddr may be unspec; make_mp() will handle this */ IN6_V4MAPPED_TO_IPADDR(&sctp->sctp_primary->saddr, sctp->sctp_ipha->ipha_src); if (!is_system_labeled() || sctp_v4_label(sctp) == 0) { gotv4 = 1; if (sctp->sctp_ipversion == IPV4_VERSION) { goto copyports; } } } else { sctp->sctp_ip6h->ip6_dst = sctp->sctp_primary->faddr; /* saddr may be unspec; make_mp() will handle this */ sctp->sctp_ip6h->ip6_src = sctp->sctp_primary->saddr; if (!is_system_labeled() || sctp_v6_label(sctp) == 0) gotv6 = 1; } for (fp = sctp->sctp_faddrs; fp; fp = fp->next) { if (!gotv4 && IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { IN6_V4MAPPED_TO_IPADDR(&fp->faddr, sctp->sctp_ipha->ipha_dst); /* copy in the faddr_t's saddr */ IN6_V4MAPPED_TO_IPADDR(&fp->saddr, sctp->sctp_ipha->ipha_src); if (!is_system_labeled() || sctp_v4_label(sctp) == 0) { gotv4 = 1; if (sctp->sctp_ipversion == IPV4_VERSION || gotv6) { break; } } } else if (!gotv6 && !IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { sctp->sctp_ip6h->ip6_dst = fp->faddr; /* copy in the faddr_t's saddr */ sctp->sctp_ip6h->ip6_src = fp->saddr; if (!is_system_labeled() || sctp_v6_label(sctp) == 0) { gotv6 = 1; if (gotv4) break; } } } copyports: if (!gotv4 && !gotv6) return (EACCES); /* copy in the ports for good measure */ sctp->sctp_sctph->sh_sport = sctp->sctp_lport; sctp->sctp_sctph->sh_dport = sctp->sctp_fport; sctp->sctp_sctph6->sh_sport = sctp->sctp_lport; sctp->sctp_sctph6->sh_dport = sctp->sctp_fport; return (0); } void sctp_add_unrec_parm(sctp_parm_hdr_t *uph, mblk_t **errmp) { mblk_t *mp; sctp_parm_hdr_t *ph; size_t len; int pad; sctp_chunk_hdr_t *ecp; len = sizeof (*ph) + ntohs(uph->sph_len); if ((pad = len % SCTP_ALIGN) != 0) { pad = SCTP_ALIGN - pad; len += pad; } mp = allocb(len, BPRI_MED); if (mp == NULL) { return; } ph = (sctp_parm_hdr_t *)(mp->b_rptr); ph->sph_type = htons(PARM_UNRECOGNIZED); ph->sph_len = htons(len - pad); /* copy in the unrecognized parameter */ bcopy(uph, ph + 1, ntohs(uph->sph_len)); if (pad != 0) bzero((mp->b_rptr + len - pad), pad); mp->b_wptr = mp->b_rptr + len; if (*errmp != NULL) { /* * Update total length of the ERROR chunk, then link this * cause block to the possible chain of cause blocks * attached to the ERROR chunk. */ ecp = (sctp_chunk_hdr_t *)((*errmp)->b_rptr); ecp->sch_len = htons(ntohs(ecp->sch_len) + len); linkb(*errmp, mp); } else { *errmp = mp; } } /* * o Bounds checking * o Updates remaining * o Checks alignment */ sctp_parm_hdr_t * sctp_next_parm(sctp_parm_hdr_t *current, ssize_t *remaining) { int pad; uint16_t len; len = ntohs(current->sph_len); *remaining -= len; if (*remaining < sizeof (*current) || len < sizeof (*current)) { return (NULL); } if ((pad = len & (SCTP_ALIGN - 1)) != 0) { pad = SCTP_ALIGN - pad; *remaining -= pad; } /*LINTED pointer cast may result in improper alignment*/ current = (sctp_parm_hdr_t *)((char *)current + len + pad); return (current); } /* * Sets the address parameters given in the INIT chunk into sctp's * faddrs; if psctp is non-NULL, copies psctp's saddrs. If there are * no address parameters in the INIT chunk, a single faddr is created * from the ip hdr at the beginning of pkt. * If there already are existing addresses hanging from sctp, merge * them in, if the old info contains addresses which are not present * in this new info, get rid of them, and clean the pointers if there's * messages which have this as their target address. * * We also re-adjust the source address list here since the list may * contain more than what is actually part of the association. If * we get here from sctp_send_cookie_echo(), we are on the active * side and psctp will be NULL and ich will be the INIT-ACK chunk. * If we get here from sctp_accept_comm(), ich will be the INIT chunk * and psctp will the listening endpoint. * * INIT processing: When processing the INIT we inherit the src address * list from the listener. For a loopback or linklocal association, we * delete the list and just take the address from the IP header (since * that's how we created the INIT-ACK). Additionally, for loopback we * ignore the address params in the INIT. For determining which address * types were sent in the INIT-ACK we follow the same logic as in * creating the INIT-ACK. We delete addresses of the type that are not * supported by the peer. * * INIT-ACK processing: When processing the INIT-ACK since we had not * included addr params for loopback or linklocal addresses when creating * the INIT, we just use the address from the IP header. Further, for * loopback we ignore the addr param list. We mark addresses of the * type not supported by the peer as unconfirmed. * * In case of INIT processing we look for supported address types in the * supported address param, if present. In both cases the address type in * the IP header is supported as well as types for addresses in the param * list, if any. * * Once we have the supported address types sctp_check_saddr() runs through * the source address list and deletes or marks as unconfirmed address of * types not supported by the peer. * * Returns 0 on success, sys errno on failure */ int sctp_get_addrparams(sctp_t *sctp, sctp_t *psctp, mblk_t *pkt, sctp_chunk_hdr_t *ich, uint_t *sctp_options) { sctp_init_chunk_t *init; ipha_t *iph; ip6_t *ip6h; in6_addr_t hdrsaddr[1]; in6_addr_t hdrdaddr[1]; sctp_parm_hdr_t *ph; ssize_t remaining; int isv4; int err; sctp_faddr_t *fp; int supp_af = 0; boolean_t check_saddr = B_TRUE; in6_addr_t curaddr; sctp_stack_t *sctps = sctp->sctp_sctps; if (sctp_options != NULL) *sctp_options = 0; /* extract the address from the IP header */ isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION); if (isv4) { iph = (ipha_t *)pkt->b_rptr; IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdrsaddr); IN6_IPADDR_TO_V4MAPPED(iph->ipha_dst, hdrdaddr); supp_af |= PARM_SUPP_V4; } else { ip6h = (ip6_t *)pkt->b_rptr; hdrsaddr[0] = ip6h->ip6_src; hdrdaddr[0] = ip6h->ip6_dst; supp_af |= PARM_SUPP_V6; } /* * Unfortunately, we can't delay this because adding an faddr * looks for the presence of the source address (from the ire * for the faddr) in the source address list. We could have * delayed this if, say, this was a loopback/linklocal connection. * Now, we just end up nuking this list and taking the addr from * the IP header for loopback/linklocal. */ if (psctp != NULL && psctp->sctp_nsaddrs > 0) { ASSERT(sctp->sctp_nsaddrs == 0); err = sctp_dup_saddrs(psctp, sctp, KM_NOSLEEP); if (err != 0) return (err); } /* * We will add the faddr before parsing the address list as this * might be a loopback connection and we would not have to * go through the list. * * Make sure the header's addr is in the list */ fp = sctp_lookup_faddr(sctp, hdrsaddr); if (fp == NULL) { /* not included; add it now */ err = sctp_add_faddr(sctp, hdrsaddr, KM_NOSLEEP, B_TRUE); if (err != 0) return (err); /* sctp_faddrs will be the hdr addr */ fp = sctp->sctp_faddrs; } /* make the header addr the primary */ if (cl_sctp_assoc_change != NULL && psctp == NULL) curaddr = sctp->sctp_current->faddr; sctp->sctp_primary = fp; sctp->sctp_current = fp; sctp->sctp_mss = fp->sfa_pmss; /* For loopback connections & linklocal get address from the header */ if (sctp->sctp_loopback || sctp->sctp_linklocal) { if (sctp->sctp_nsaddrs != 0) sctp_free_saddrs(sctp); if ((err = sctp_saddr_add_addr(sctp, hdrdaddr, 0)) != 0) return (err); /* For loopback ignore address list */ if (sctp->sctp_loopback) return (0); check_saddr = B_FALSE; } /* Walk the params in the INIT [ACK], pulling out addr params */ remaining = ntohs(ich->sch_len) - sizeof (*ich) - sizeof (sctp_init_chunk_t); if (remaining < sizeof (*ph)) { if (check_saddr) { sctp_check_saddr(sctp, supp_af, psctp == NULL ? B_FALSE : B_TRUE, hdrdaddr); } ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL); return (0); } init = (sctp_init_chunk_t *)(ich + 1); ph = (sctp_parm_hdr_t *)(init + 1); /* params will have already been byteordered when validating */ while (ph != NULL) { if (ph->sph_type == htons(PARM_SUPP_ADDRS)) { int plen; uint16_t *p; uint16_t addrtype; ASSERT(psctp != NULL); plen = ntohs(ph->sph_len); p = (uint16_t *)(ph + 1); while (plen > 0) { addrtype = ntohs(*p); switch (addrtype) { case PARM_ADDR6: supp_af |= PARM_SUPP_V6; break; case PARM_ADDR4: supp_af |= PARM_SUPP_V4; break; default: break; } p++; plen -= sizeof (*p); } } else if (ph->sph_type == htons(PARM_ADDR4)) { if (remaining >= PARM_ADDR4_LEN) { in6_addr_t addr; ipaddr_t ta; supp_af |= PARM_SUPP_V4; /* * Screen out broad/multicasts & loopback. * If the endpoint only accepts v6 address, * go to the next one. * * Subnet broadcast check is done in * sctp_add_faddr(). If the address is * a broadcast address, it won't be added. */ bcopy(ph + 1, &ta, sizeof (ta)); if (ta == 0 || ta == INADDR_BROADCAST || ta == htonl(INADDR_LOOPBACK) || CLASSD(ta) || sctp->sctp_connp->conn_ipv6_v6only) { goto next; } IN6_INADDR_TO_V4MAPPED((struct in_addr *) (ph + 1), &addr); /* Check for duplicate. */ if (sctp_lookup_faddr(sctp, &addr) != NULL) goto next; /* OK, add it to the faddr set */ err = sctp_add_faddr(sctp, &addr, KM_NOSLEEP, B_FALSE); /* Something is wrong... Try the next one. */ if (err != 0) goto next; } } else if (ph->sph_type == htons(PARM_ADDR6) && sctp->sctp_family == AF_INET6) { /* An v4 socket should not take v6 addresses. */ if (remaining >= PARM_ADDR6_LEN) { in6_addr_t *addr6; supp_af |= PARM_SUPP_V6; addr6 = (in6_addr_t *)(ph + 1); /* * Screen out link locals, mcast, loopback * and bogus v6 address. */ if (IN6_IS_ADDR_LINKLOCAL(addr6) || IN6_IS_ADDR_MULTICAST(addr6) || IN6_IS_ADDR_LOOPBACK(addr6) || IN6_IS_ADDR_V4MAPPED(addr6)) { goto next; } /* Check for duplicate. */ if (sctp_lookup_faddr(sctp, addr6) != NULL) goto next; err = sctp_add_faddr(sctp, (in6_addr_t *)(ph + 1), KM_NOSLEEP, B_FALSE); /* Something is wrong... Try the next one. */ if (err != 0) goto next; } } else if (ph->sph_type == htons(PARM_FORWARD_TSN)) { if (sctp_options != NULL) *sctp_options |= SCTP_PRSCTP_OPTION; } /* else; skip */ next: ph = sctp_next_parm(ph, &remaining); } if (check_saddr) { sctp_check_saddr(sctp, supp_af, psctp == NULL ? B_FALSE : B_TRUE, hdrdaddr); } ASSERT(sctp_saddr_lookup(sctp, hdrdaddr, 0) != NULL); /* * We have the right address list now, update clustering's * knowledge because when we sent the INIT we had just added * the address the INIT was sent to. */ if (psctp == NULL && cl_sctp_assoc_change != NULL) { uchar_t *alist; size_t asize; uchar_t *dlist; size_t dsize; asize = sizeof (in6_addr_t) * sctp->sctp_nfaddrs; alist = kmem_alloc(asize, KM_NOSLEEP); if (alist == NULL) { SCTP_KSTAT(sctps, sctp_cl_assoc_change); return (ENOMEM); } /* * Just include the address the INIT was sent to in the * delete list and send the entire faddr list. We could * do it differently (i.e include all the addresses in the * add list even if it contains the original address OR * remove the original address from the add list etc.), but * this seems reasonable enough. */ dsize = sizeof (in6_addr_t); dlist = kmem_alloc(dsize, KM_NOSLEEP); if (dlist == NULL) { kmem_free(alist, asize); SCTP_KSTAT(sctps, sctp_cl_assoc_change); return (ENOMEM); } bcopy(&curaddr, dlist, sizeof (curaddr)); sctp_get_faddr_list(sctp, alist, asize); (*cl_sctp_assoc_change)(sctp->sctp_family, alist, asize, sctp->sctp_nfaddrs, dlist, dsize, 1, SCTP_CL_PADDR, (cl_sctp_handle_t)sctp); /* alist and dlist will be freed by the clustering module */ } return (0); } /* * Returns 0 if the check failed and the restart should be refused, * 1 if the check succeeded. */ int sctp_secure_restart_check(mblk_t *pkt, sctp_chunk_hdr_t *ich, uint32_t ports, int sleep, sctp_stack_t *sctps) { sctp_faddr_t *fp, *fphead = NULL; sctp_parm_hdr_t *ph; ssize_t remaining; int isv4; ipha_t *iph; ip6_t *ip6h; in6_addr_t hdraddr[1]; int retval = 0; sctp_tf_t *tf; sctp_t *sctp; int compres; sctp_init_chunk_t *init; int nadded = 0; /* extract the address from the IP header */ isv4 = (IPH_HDR_VERSION(pkt->b_rptr) == IPV4_VERSION); if (isv4) { iph = (ipha_t *)pkt->b_rptr; IN6_IPADDR_TO_V4MAPPED(iph->ipha_src, hdraddr); } else { ip6h = (ip6_t *)pkt->b_rptr; hdraddr[0] = ip6h->ip6_src; } /* Walk the params in the INIT [ACK], pulling out addr params */ remaining = ntohs(ich->sch_len) - sizeof (*ich) - sizeof (sctp_init_chunk_t); if (remaining < sizeof (*ph)) { /* no parameters; restart OK */ return (1); } init = (sctp_init_chunk_t *)(ich + 1); ph = (sctp_parm_hdr_t *)(init + 1); while (ph != NULL) { sctp_faddr_t *fpa = NULL; /* params will have already been byteordered when validating */ if (ph->sph_type == htons(PARM_ADDR4)) { if (remaining >= PARM_ADDR4_LEN) { in6_addr_t addr; IN6_INADDR_TO_V4MAPPED((struct in_addr *) (ph + 1), &addr); fpa = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep); if (fpa == NULL) { goto done; } bzero(fpa, sizeof (*fpa)); fpa->faddr = addr; fpa->next = NULL; } } else if (ph->sph_type == htons(PARM_ADDR6)) { if (remaining >= PARM_ADDR6_LEN) { fpa = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep); if (fpa == NULL) { goto done; } bzero(fpa, sizeof (*fpa)); bcopy(ph + 1, &fpa->faddr, sizeof (fpa->faddr)); fpa->next = NULL; } } /* link in the new addr, if it was an addr param */ if (fpa != NULL) { if (fphead == NULL) { fphead = fpa; } else { fpa->next = fphead; fphead = fpa; } } ph = sctp_next_parm(ph, &remaining); } if (fphead == NULL) { /* no addr parameters; restart OK */ return (1); } /* * got at least one; make sure the header's addr is * in the list */ fp = sctp_lookup_faddr_nosctp(fphead, hdraddr); if (fp == NULL) { /* not included; add it now */ fp = kmem_cache_alloc(sctp_kmem_faddr_cache, sleep); if (fp == NULL) { goto done; } bzero(fp, sizeof (*fp)); fp->faddr = *hdraddr; fp->next = fphead; fphead = fp; } /* * Now, we can finally do the check: For each sctp instance * on the hash line for ports, compare its faddr set against * the new one. If the new one is a strict subset of any * existing sctp's faddrs, the restart is OK. However, if there * is an overlap, this could be an attack, so return failure. * If all sctp's faddrs are disjoint, this is a legitimate new * association. */ tf = &(sctps->sctps_conn_fanout[SCTP_CONN_HASH(sctps, ports)]); mutex_enter(&tf->tf_lock); for (sctp = tf->tf_sctp; sctp; sctp = sctp->sctp_conn_hash_next) { if (ports != sctp->sctp_ports) { continue; } compres = sctp_compare_faddrsets(fphead, sctp->sctp_faddrs); if (compres <= SCTP_ADDR_SUBSET) { retval = 1; mutex_exit(&tf->tf_lock); goto done; } if (compres == SCTP_ADDR_OVERLAP) { dprint(1, ("new assoc from %x:%x:%x:%x overlaps with %p\n", SCTP_PRINTADDR(*hdraddr), (void *)sctp)); /* * While we still hold the lock, we need to * figure out which addresses have been * added so we can include them in the abort * we will send back. Since these faddrs will * never be used, we overload the rto field * here, setting it to 0 if the address was * not added, 1 if it was added. */ for (fp = fphead; fp; fp = fp->next) { if (sctp_lookup_faddr(sctp, &fp->faddr)) { fp->rto = 0; } else { fp->rto = 1; nadded++; } } mutex_exit(&tf->tf_lock); goto done; } } mutex_exit(&tf->tf_lock); /* All faddrs are disjoint; legit new association */ retval = 1; done: /* If are attempted adds, send back an abort listing the addrs */ if (nadded > 0) { void *dtail; size_t dlen; dtail = kmem_alloc(PARM_ADDR6_LEN * nadded, KM_NOSLEEP); if (dtail == NULL) { goto cleanup; } ph = dtail; dlen = 0; for (fp = fphead; fp; fp = fp->next) { if (fp->rto == 0) { continue; } if (IN6_IS_ADDR_V4MAPPED(&fp->faddr)) { ipaddr_t addr4; ph->sph_type = htons(PARM_ADDR4); ph->sph_len = htons(PARM_ADDR4_LEN); IN6_V4MAPPED_TO_IPADDR(&fp->faddr, addr4); ph++; bcopy(&addr4, ph, sizeof (addr4)); ph = (sctp_parm_hdr_t *) ((char *)ph + sizeof (addr4)); dlen += PARM_ADDR4_LEN; } else { ph->sph_type = htons(PARM_ADDR6); ph->sph_len = htons(PARM_ADDR6_LEN); ph++; bcopy(&fp->faddr, ph, sizeof (fp->faddr)); ph = (sctp_parm_hdr_t *) ((char *)ph + sizeof (fp->faddr)); dlen += PARM_ADDR6_LEN; } } /* Send off the abort */ sctp_send_abort(sctp, sctp_init2vtag(ich), SCTP_ERR_RESTART_NEW_ADDRS, dtail, dlen, pkt, 0, B_TRUE); kmem_free(dtail, PARM_ADDR6_LEN * nadded); } cleanup: /* Clean up */ if (fphead) { sctp_faddr_t *fpn; for (fp = fphead; fp; fp = fpn) { fpn = fp->next; kmem_cache_free(sctp_kmem_faddr_cache, fp); } } return (retval); } /* * Reset any state related to transmitted chunks. */ void sctp_congest_reset(sctp_t *sctp) { sctp_faddr_t *fp; sctp_stack_t *sctps = sctp->sctp_sctps; mblk_t *mp; for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { fp->ssthresh = sctps->sctps_initial_mtu; SET_CWND(fp, fp->sfa_pmss, sctps->sctps_slow_start_initial); fp->suna = 0; fp->pba = 0; } /* * Clean up the transmit list as well since we have reset accounting * on all the fps. Send event upstream, if required. */ while ((mp = sctp->sctp_xmit_head) != NULL) { sctp->sctp_xmit_head = mp->b_next; mp->b_next = NULL; if (sctp->sctp_xmit_head != NULL) sctp->sctp_xmit_head->b_prev = NULL; sctp_sendfail_event(sctp, mp, 0, B_TRUE); } sctp->sctp_xmit_head = NULL; sctp->sctp_xmit_tail = NULL; sctp->sctp_xmit_unacked = NULL; sctp->sctp_unacked = 0; /* * Any control message as well. We will clean-up this list as well. * This contains any pending ASCONF request that we have queued/sent. * If we do get an ACK we will just drop it. However, given that * we are restarting chances are we aren't going to get any. */ if (sctp->sctp_cxmit_list != NULL) sctp_asconf_free_cxmit(sctp, NULL); sctp->sctp_cxmit_list = NULL; sctp->sctp_cchunk_pend = 0; sctp->sctp_rexmitting = B_FALSE; sctp->sctp_rxt_nxttsn = 0; sctp->sctp_rxt_maxtsn = 0; sctp->sctp_zero_win_probe = B_FALSE; } static void sctp_init_faddr(sctp_t *sctp, sctp_faddr_t *fp, in6_addr_t *addr, mblk_t *timer_mp) { sctp_stack_t *sctps = sctp->sctp_sctps; bcopy(addr, &fp->faddr, sizeof (*addr)); if (IN6_IS_ADDR_V4MAPPED(addr)) { fp->isv4 = 1; /* Make sure that sfa_pmss is a multiple of SCTP_ALIGN. */ fp->sfa_pmss = (sctps->sctps_initial_mtu - sctp->sctp_hdr_len) & ~(SCTP_ALIGN - 1); } else { fp->isv4 = 0; fp->sfa_pmss = (sctps->sctps_initial_mtu - sctp->sctp_hdr6_len) & ~(SCTP_ALIGN - 1); } fp->cwnd = sctps->sctps_slow_start_initial * fp->sfa_pmss; fp->rto = MIN(sctp->sctp_rto_initial, sctp->sctp_init_rto_max); fp->srtt = -1; fp->rtt_updates = 0; fp->strikes = 0; fp->max_retr = sctp->sctp_pp_max_rxt; /* Mark it as not confirmed. */ fp->state = SCTP_FADDRS_UNCONFIRMED; fp->hb_interval = sctp->sctp_hb_interval; fp->ssthresh = sctps->sctps_initial_ssthresh; fp->suna = 0; fp->pba = 0; fp->acked = 0; fp->lastactive = lbolt64; fp->timer_mp = timer_mp; fp->hb_pending = B_FALSE; fp->hb_enabled = B_TRUE; fp->df = 1; fp->pmtu_discovered = 0; fp->next = NULL; fp->ire = NULL; fp->T3expire = 0; (void) random_get_pseudo_bytes((uint8_t *)&fp->hb_secret, sizeof (fp->hb_secret)); fp->hb_expiry = lbolt64; fp->rxt_unacked = 0; sctp_get_ire(sctp, fp); } /*ARGSUSED*/ static int faddr_constructor(void *buf, void *arg, int flags) { sctp_faddr_t *fp = buf; fp->timer_mp = NULL; fp->timer_running = 0; fp->rc_timer_mp = NULL; fp->rc_timer_running = 0; return (0); } /*ARGSUSED*/ static void faddr_destructor(void *buf, void *arg) { sctp_faddr_t *fp = buf; ASSERT(fp->timer_mp == NULL); ASSERT(fp->timer_running == 0); ASSERT(fp->rc_timer_mp == NULL); ASSERT(fp->rc_timer_running == 0); } void sctp_faddr_init(void) { sctp_kmem_faddr_cache = kmem_cache_create("sctp_faddr_cache", sizeof (sctp_faddr_t), 0, faddr_constructor, faddr_destructor, NULL, NULL, NULL, 0); } void sctp_faddr_fini(void) { kmem_cache_destroy(sctp_kmem_faddr_cache); }