/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * * Portions Copyright 2010 Robert Milkowski * * Copyright 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2014 Integros [integros.com] */ /* * ZFS volume emulation driver. * * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. * Volumes are accessed through the symbolic links named: * * /dev/zvol/dsk/<pool_name>/<dataset_name> * /dev/zvol/rdsk/<pool_name>/<dataset_name> * * These links are created by the /dev filesystem (sdev_zvolops.c). * Volumes are persistent through reboot. No user command needs to be * run before opening and using a device. */ #include <sys/types.h> #include <sys/param.h> #include <sys/errno.h> #include <sys/uio.h> #include <sys/buf.h> #include <sys/modctl.h> #include <sys/open.h> #include <sys/kmem.h> #include <sys/conf.h> #include <sys/cmn_err.h> #include <sys/stat.h> #include <sys/zap.h> #include <sys/spa.h> #include <sys/spa_impl.h> #include <sys/zio.h> #include <sys/dmu_traverse.h> #include <sys/dnode.h> #include <sys/dsl_dataset.h> #include <sys/dsl_prop.h> #include <sys/dkio.h> #include <sys/efi_partition.h> #include <sys/byteorder.h> #include <sys/pathname.h> #include <sys/ddi.h> #include <sys/sunddi.h> #include <sys/crc32.h> #include <sys/dirent.h> #include <sys/policy.h> #include <sys/fs/zfs.h> #include <sys/zfs_ioctl.h> #include <sys/mkdev.h> #include <sys/zil.h> #include <sys/refcount.h> #include <sys/zfs_znode.h> #include <sys/zfs_rlock.h> #include <sys/vdev_disk.h> #include <sys/vdev_impl.h> #include <sys/vdev_raidz.h> #include <sys/zvol.h> #include <sys/dumphdr.h> #include <sys/zil_impl.h> #include <sys/dbuf.h> #include <sys/dmu_tx.h> #include <sys/zfeature.h> #include <sys/zio_checksum.h> #include "zfs_namecheck.h" void *zfsdev_state; static char *zvol_tag = "zvol_tag"; #define ZVOL_DUMPSIZE "dumpsize" /* * This lock protects the zfsdev_state structure from being modified * while it's being used, e.g. an open that comes in before a create * finishes. It also protects temporary opens of the dataset so that, * e.g., an open doesn't get a spurious EBUSY. */ kmutex_t zfsdev_state_lock; static uint32_t zvol_minors; typedef struct zvol_extent { list_node_t ze_node; dva_t ze_dva; /* dva associated with this extent */ uint64_t ze_nblks; /* number of blocks in extent */ } zvol_extent_t; /* * The in-core state of each volume. */ typedef struct zvol_state { char zv_name[MAXPATHLEN]; /* pool/dd name */ uint64_t zv_volsize; /* amount of space we advertise */ uint64_t zv_volblocksize; /* volume block size */ minor_t zv_minor; /* minor number */ uint8_t zv_min_bs; /* minimum addressable block shift */ uint8_t zv_flags; /* readonly, dumpified, etc. */ objset_t *zv_objset; /* objset handle */ uint32_t zv_open_count[OTYPCNT]; /* open counts */ uint32_t zv_total_opens; /* total open count */ zilog_t *zv_zilog; /* ZIL handle */ list_t zv_extents; /* List of extents for dump */ znode_t zv_znode; /* for range locking */ dmu_buf_t *zv_dbuf; /* bonus handle */ } zvol_state_t; /* * zvol specific flags */ #define ZVOL_RDONLY 0x1 #define ZVOL_DUMPIFIED 0x2 #define ZVOL_EXCL 0x4 #define ZVOL_WCE 0x8 /* * zvol maximum transfer in one DMU tx. */ int zvol_maxphys = DMU_MAX_ACCESS/2; /* * Toggle unmap functionality. */ boolean_t zvol_unmap_enabled = B_TRUE; /* * If true, unmaps requested as synchronous are executed synchronously, * otherwise all unmaps are asynchronous. */ boolean_t zvol_unmap_sync_enabled = B_FALSE; extern int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); static int zvol_remove_zv(zvol_state_t *); static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio); static int zvol_dumpify(zvol_state_t *zv); static int zvol_dump_fini(zvol_state_t *zv); static int zvol_dump_init(zvol_state_t *zv, boolean_t resize); static void zvol_size_changed(zvol_state_t *zv, uint64_t volsize) { dev_t dev = makedevice(ddi_driver_major(zfs_dip), zv->zv_minor); zv->zv_volsize = volsize; VERIFY(ddi_prop_update_int64(dev, zfs_dip, "Size", volsize) == DDI_SUCCESS); VERIFY(ddi_prop_update_int64(dev, zfs_dip, "Nblocks", lbtodb(volsize)) == DDI_SUCCESS); /* Notify specfs to invalidate the cached size */ spec_size_invalidate(dev, VBLK); spec_size_invalidate(dev, VCHR); } int zvol_check_volsize(uint64_t volsize, uint64_t blocksize) { if (volsize == 0) return (SET_ERROR(EINVAL)); if (volsize % blocksize != 0) return (SET_ERROR(EINVAL)); #ifdef _ILP32 if (volsize - 1 > SPEC_MAXOFFSET_T) return (SET_ERROR(EOVERFLOW)); #endif return (0); } int zvol_check_volblocksize(uint64_t volblocksize) { if (volblocksize < SPA_MINBLOCKSIZE || volblocksize > SPA_OLD_MAXBLOCKSIZE || !ISP2(volblocksize)) return (SET_ERROR(EDOM)); return (0); } int zvol_get_stats(objset_t *os, nvlist_t *nv) { int error; dmu_object_info_t doi; uint64_t val; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); if (error) return (error); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); error = dmu_object_info(os, ZVOL_OBJ, &doi); if (error == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, doi.doi_data_block_size); } return (error); } static zvol_state_t * zvol_minor_lookup(const char *name) { minor_t minor; zvol_state_t *zv; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); for (minor = 1; minor <= ZFSDEV_MAX_MINOR; minor++) { zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) continue; if (strcmp(zv->zv_name, name) == 0) return (zv); } return (NULL); } /* extent mapping arg */ struct maparg { zvol_state_t *ma_zv; uint64_t ma_blks; }; /*ARGSUSED*/ static int zvol_map_block(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { struct maparg *ma = arg; zvol_extent_t *ze; int bs = ma->ma_zv->zv_volblocksize; if (bp == NULL || BP_IS_HOLE(bp) || zb->zb_object != ZVOL_OBJ || zb->zb_level != 0) return (0); VERIFY(!BP_IS_EMBEDDED(bp)); VERIFY3U(ma->ma_blks, ==, zb->zb_blkid); ma->ma_blks++; /* Abort immediately if we have encountered gang blocks */ if (BP_IS_GANG(bp)) return (SET_ERROR(EFRAGS)); /* * See if the block is at the end of the previous extent. */ ze = list_tail(&ma->ma_zv->zv_extents); if (ze && DVA_GET_VDEV(BP_IDENTITY(bp)) == DVA_GET_VDEV(&ze->ze_dva) && DVA_GET_OFFSET(BP_IDENTITY(bp)) == DVA_GET_OFFSET(&ze->ze_dva) + ze->ze_nblks * bs) { ze->ze_nblks++; return (0); } dprintf_bp(bp, "%s", "next blkptr:"); /* start a new extent */ ze = kmem_zalloc(sizeof (zvol_extent_t), KM_SLEEP); ze->ze_dva = bp->blk_dva[0]; /* structure assignment */ ze->ze_nblks = 1; list_insert_tail(&ma->ma_zv->zv_extents, ze); return (0); } static void zvol_free_extents(zvol_state_t *zv) { zvol_extent_t *ze; while (ze = list_head(&zv->zv_extents)) { list_remove(&zv->zv_extents, ze); kmem_free(ze, sizeof (zvol_extent_t)); } } static int zvol_get_lbas(zvol_state_t *zv) { objset_t *os = zv->zv_objset; struct maparg ma; int err; ma.ma_zv = zv; ma.ma_blks = 0; zvol_free_extents(zv); /* commit any in-flight changes before traversing the dataset */ txg_wait_synced(dmu_objset_pool(os), 0); err = traverse_dataset(dmu_objset_ds(os), 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zvol_map_block, &ma); if (err || ma.ma_blks != (zv->zv_volsize / zv->zv_volblocksize)) { zvol_free_extents(zv); return (err ? err : EIO); } return (0); } /* ARGSUSED */ void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; nvlist_t *nvprops = zct->zct_props; int error; uint64_t volblocksize, volsize; VERIFY(nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* * These properties must be removed from the list so the generic * property setting step won't apply to them. */ VERIFY(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); (void) nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); ASSERT(error == 0); } /* * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we * implement DKIOCFREE/free-long-range. */ static int zvol_replay_truncate(zvol_state_t *zv, lr_truncate_t *lr, boolean_t byteswap) { uint64_t offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length)); } /* * Replay a TX_WRITE ZIL transaction that didn't get committed * after a system failure */ static int zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap) { objset_t *os = zv->zv_objset; char *data = (char *)(lr + 1); /* data follows lr_write_t */ uint64_t offset, length; dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, offset, length, data, tx); dmu_tx_commit(tx); } return (error); } /* ARGSUSED */ static int zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap) { return (SET_ERROR(ENOTSUP)); } /* * Callback vectors for replaying records. * Only TX_WRITE and TX_TRUNCATE are needed for zvol. */ zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = { zvol_replay_err, /* 0 no such transaction type */ zvol_replay_err, /* TX_CREATE */ zvol_replay_err, /* TX_MKDIR */ zvol_replay_err, /* TX_MKXATTR */ zvol_replay_err, /* TX_SYMLINK */ zvol_replay_err, /* TX_REMOVE */ zvol_replay_err, /* TX_RMDIR */ zvol_replay_err, /* TX_LINK */ zvol_replay_err, /* TX_RENAME */ zvol_replay_write, /* TX_WRITE */ zvol_replay_truncate, /* TX_TRUNCATE */ zvol_replay_err, /* TX_SETATTR */ zvol_replay_err, /* TX_ACL */ zvol_replay_err, /* TX_CREATE_ACL */ zvol_replay_err, /* TX_CREATE_ATTR */ zvol_replay_err, /* TX_CREATE_ACL_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL */ zvol_replay_err, /* TX_MKDIR_ATTR */ zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ zvol_replay_err, /* TX_WRITE2 */ }; int zvol_name2minor(const char *name, minor_t *minor) { zvol_state_t *zv; mutex_enter(&zfsdev_state_lock); zv = zvol_minor_lookup(name); if (minor && zv) *minor = zv->zv_minor; mutex_exit(&zfsdev_state_lock); return (zv ? 0 : -1); } /* * Create a minor node (plus a whole lot more) for the specified volume. */ int zvol_create_minor(const char *name) { zfs_soft_state_t *zs; zvol_state_t *zv; objset_t *os; dmu_object_info_t doi; minor_t minor = 0; char chrbuf[30], blkbuf[30]; int error; mutex_enter(&zfsdev_state_lock); if (zvol_minor_lookup(name) != NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EEXIST)); } /* lie and say we're read-only */ error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, FTAG, &os); if (error) { mutex_exit(&zfsdev_state_lock); return (error); } if ((minor = zfsdev_minor_alloc()) == 0) { dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } if (ddi_soft_state_zalloc(zfsdev_state, minor) != DDI_SUCCESS) { dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EAGAIN)); } (void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME, (char *)name); (void) snprintf(chrbuf, sizeof (chrbuf), "%u,raw", minor); if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR, minor, DDI_PSEUDO, 0) == DDI_FAILURE) { ddi_soft_state_free(zfsdev_state, minor); dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EAGAIN)); } (void) snprintf(blkbuf, sizeof (blkbuf), "%u", minor); if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK, minor, DDI_PSEUDO, 0) == DDI_FAILURE) { ddi_remove_minor_node(zfs_dip, chrbuf); ddi_soft_state_free(zfsdev_state, minor); dmu_objset_disown(os, FTAG); mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EAGAIN)); } zs = ddi_get_soft_state(zfsdev_state, minor); zs->zss_type = ZSST_ZVOL; zv = zs->zss_data = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); (void) strlcpy(zv->zv_name, name, MAXPATHLEN); zv->zv_min_bs = DEV_BSHIFT; zv->zv_minor = minor; zv->zv_objset = os; if (dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) zv->zv_flags |= ZVOL_RDONLY; mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare, sizeof (rl_t), offsetof(rl_t, r_node)); list_create(&zv->zv_extents, sizeof (zvol_extent_t), offsetof(zvol_extent_t, ze_node)); /* get and cache the blocksize */ error = dmu_object_info(os, ZVOL_OBJ, &doi); ASSERT(error == 0); zv->zv_volblocksize = doi.doi_data_block_size; if (spa_writeable(dmu_objset_spa(os))) { if (zil_replay_disable) zil_destroy(dmu_objset_zil(os), B_FALSE); else zil_replay(os, zv, zvol_replay_vector); } dmu_objset_disown(os, FTAG); zv->zv_objset = NULL; zvol_minors++; mutex_exit(&zfsdev_state_lock); return (0); } /* * Remove minor node for the specified volume. */ static int zvol_remove_zv(zvol_state_t *zv) { char nmbuf[20]; minor_t minor = zv->zv_minor; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); if (zv->zv_total_opens != 0) return (SET_ERROR(EBUSY)); (void) snprintf(nmbuf, sizeof (nmbuf), "%u,raw", minor); ddi_remove_minor_node(zfs_dip, nmbuf); (void) snprintf(nmbuf, sizeof (nmbuf), "%u", minor); ddi_remove_minor_node(zfs_dip, nmbuf); avl_destroy(&zv->zv_znode.z_range_avl); mutex_destroy(&zv->zv_znode.z_range_lock); kmem_free(zv, sizeof (zvol_state_t)); ddi_soft_state_free(zfsdev_state, minor); zvol_minors--; return (0); } int zvol_remove_minor(const char *name) { zvol_state_t *zv; int rc; mutex_enter(&zfsdev_state_lock); if ((zv = zvol_minor_lookup(name)) == NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } rc = zvol_remove_zv(zv); mutex_exit(&zfsdev_state_lock); return (rc); } int zvol_first_open(zvol_state_t *zv) { objset_t *os; uint64_t volsize; int error; uint64_t readonly; /* lie and say we're read-only */ error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os); if (error) return (error); zv->zv_objset = os; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) { ASSERT(error == 0); dmu_objset_disown(os, zvol_tag); return (error); } error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf); if (error) { dmu_objset_disown(os, zvol_tag); return (error); } zvol_size_changed(zv, volsize); zv->zv_zilog = zil_open(os, zvol_get_data); VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &readonly, NULL) == 0); if (readonly || dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) zv->zv_flags |= ZVOL_RDONLY; else zv->zv_flags &= ~ZVOL_RDONLY; return (error); } void zvol_last_close(zvol_state_t *zv) { zil_close(zv->zv_zilog); zv->zv_zilog = NULL; dmu_buf_rele(zv->zv_dbuf, zvol_tag); zv->zv_dbuf = NULL; /* * Evict cached data */ if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) && !(zv->zv_flags & ZVOL_RDONLY)) txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); dmu_objset_evict_dbufs(zv->zv_objset); dmu_objset_disown(zv->zv_objset, zvol_tag); zv->zv_objset = NULL; } int zvol_prealloc(zvol_state_t *zv) { objset_t *os = zv->zv_objset; dmu_tx_t *tx; uint64_t refd, avail, usedobjs, availobjs; uint64_t resid = zv->zv_volsize; uint64_t off = 0; /* Check the space usage before attempting to allocate the space */ dmu_objset_space(os, &refd, &avail, &usedobjs, &availobjs); if (avail < zv->zv_volsize) return (SET_ERROR(ENOSPC)); /* Free old extents if they exist */ zvol_free_extents(zv); while (resid != 0) { int error; uint64_t bytes = MIN(resid, SPA_OLD_MAXBLOCKSIZE); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); (void) dmu_free_long_range(os, ZVOL_OBJ, 0, off); return (error); } dmu_prealloc(os, ZVOL_OBJ, off, bytes, tx); dmu_tx_commit(tx); off += bytes; resid -= bytes; } txg_wait_synced(dmu_objset_pool(os), 0); return (0); } static int zvol_update_volsize(objset_t *os, uint64_t volsize) { dmu_tx_t *tx; int error; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); dmu_tx_commit(tx); if (error == 0) error = dmu_free_long_range(os, ZVOL_OBJ, volsize, DMU_OBJECT_END); return (error); } void zvol_remove_minors(const char *name) { zvol_state_t *zv; char *namebuf; minor_t minor; namebuf = kmem_zalloc(strlen(name) + 2, KM_SLEEP); (void) strncpy(namebuf, name, strlen(name)); (void) strcat(namebuf, "/"); mutex_enter(&zfsdev_state_lock); for (minor = 1; minor <= ZFSDEV_MAX_MINOR; minor++) { zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) continue; if (strncmp(namebuf, zv->zv_name, strlen(namebuf)) == 0) (void) zvol_remove_zv(zv); } kmem_free(namebuf, strlen(name) + 2); mutex_exit(&zfsdev_state_lock); } static int zvol_update_live_volsize(zvol_state_t *zv, uint64_t volsize) { uint64_t old_volsize = 0ULL; int error = 0; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); /* * Reinitialize the dump area to the new size. If we * failed to resize the dump area then restore it back to * its original size. We must set the new volsize prior * to calling dumpvp_resize() to ensure that the devices' * size(9P) is not visible by the dump subsystem. */ old_volsize = zv->zv_volsize; zvol_size_changed(zv, volsize); if (zv->zv_flags & ZVOL_DUMPIFIED) { if ((error = zvol_dumpify(zv)) != 0 || (error = dumpvp_resize()) != 0) { int dumpify_error; (void) zvol_update_volsize(zv->zv_objset, old_volsize); zvol_size_changed(zv, old_volsize); dumpify_error = zvol_dumpify(zv); error = dumpify_error ? dumpify_error : error; } } /* * Generate a LUN expansion event. */ if (error == 0) { sysevent_id_t eid; nvlist_t *attr; char *physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); (void) snprintf(physpath, MAXPATHLEN, "%s%u", ZVOL_PSEUDO_DEV, zv->zv_minor); VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, ESC_DEV_DLE, attr, &eid, DDI_SLEEP); nvlist_free(attr); kmem_free(physpath, MAXPATHLEN); } return (error); } int zvol_set_volsize(const char *name, uint64_t volsize) { zvol_state_t *zv = NULL; objset_t *os; int error; dmu_object_info_t doi; uint64_t readonly; boolean_t owned = B_FALSE; error = dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); if (error != 0) return (error); if (readonly) return (SET_ERROR(EROFS)); mutex_enter(&zfsdev_state_lock); zv = zvol_minor_lookup(name); if (zv == NULL || zv->zv_objset == NULL) { if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, FTAG, &os)) != 0) { mutex_exit(&zfsdev_state_lock); return (error); } owned = B_TRUE; if (zv != NULL) zv->zv_objset = os; } else { os = zv->zv_objset; } if ((error = dmu_object_info(os, ZVOL_OBJ, &doi)) != 0 || (error = zvol_check_volsize(volsize, doi.doi_data_block_size)) != 0) goto out; error = zvol_update_volsize(os, volsize); if (error == 0 && zv != NULL) error = zvol_update_live_volsize(zv, volsize); out: if (owned) { dmu_objset_disown(os, FTAG); if (zv != NULL) zv->zv_objset = NULL; } mutex_exit(&zfsdev_state_lock); return (error); } /*ARGSUSED*/ int zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr) { zvol_state_t *zv; int err = 0; mutex_enter(&zfsdev_state_lock); zv = zfsdev_get_soft_state(getminor(*devp), ZSST_ZVOL); if (zv == NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } if (zv->zv_total_opens == 0) err = zvol_first_open(zv); if (err) { mutex_exit(&zfsdev_state_lock); return (err); } if ((flag & FWRITE) && (zv->zv_flags & ZVOL_RDONLY)) { err = SET_ERROR(EROFS); goto out; } if (zv->zv_flags & ZVOL_EXCL) { err = SET_ERROR(EBUSY); goto out; } if (flag & FEXCL) { if (zv->zv_total_opens != 0) { err = SET_ERROR(EBUSY); goto out; } zv->zv_flags |= ZVOL_EXCL; } if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) { zv->zv_open_count[otyp]++; zv->zv_total_opens++; } mutex_exit(&zfsdev_state_lock); return (err); out: if (zv->zv_total_opens == 0) zvol_last_close(zv); mutex_exit(&zfsdev_state_lock); return (err); } /*ARGSUSED*/ int zvol_close(dev_t dev, int flag, int otyp, cred_t *cr) { minor_t minor = getminor(dev); zvol_state_t *zv; int error = 0; mutex_enter(&zfsdev_state_lock); zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } if (zv->zv_flags & ZVOL_EXCL) { ASSERT(zv->zv_total_opens == 1); zv->zv_flags &= ~ZVOL_EXCL; } /* * If the open count is zero, this is a spurious close. * That indicates a bug in the kernel / DDI framework. */ ASSERT(zv->zv_open_count[otyp] != 0); ASSERT(zv->zv_total_opens != 0); /* * You may get multiple opens, but only one close. */ zv->zv_open_count[otyp]--; zv->zv_total_opens--; if (zv->zv_total_opens == 0) zvol_last_close(zv); mutex_exit(&zfsdev_state_lock); return (error); } static void zvol_get_done(zgd_t *zgd, int error) { if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_range_unlock(zgd->zgd_rl); if (error == 0 && zgd->zgd_bp) zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); kmem_free(zgd, sizeof (zgd_t)); } /* * Get data to generate a TX_WRITE intent log record. */ static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) { zvol_state_t *zv = arg; objset_t *os = zv->zv_objset; uint64_t object = ZVOL_OBJ; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; /* length of user data */ blkptr_t *bp = &lr->lr_blkptr; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT(zio != NULL); ASSERT(size != 0); zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_zilog = zv->zv_zilog; zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER); /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); } else { size = zv->zv_volblocksize; offset = P2ALIGN(offset, size); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *obp = dmu_buf_get_blkptr(db); if (obp) { ASSERT(BP_IS_HOLE(bp)); *bp = *obp; } zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zvol_get_done, zgd); if (error == 0) return (0); } } zvol_get_done(zgd, error); return (error); } /* * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. * * We store data in the log buffers if it's small enough. * Otherwise we will later flush the data out via dmu_sync(). */ ssize_t zvol_immediate_write_sz = 32768; static void zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t resid, boolean_t sync) { uint32_t blocksize = zv->zv_volblocksize; zilog_t *zilog = zv->zv_zilog; itx_wr_state_t write_state; if (zil_replaying(zilog, tx)) return; if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) write_state = WR_INDIRECT; else if (!spa_has_slogs(zilog->zl_spa) && resid >= blocksize && blocksize > zvol_immediate_write_sz) write_state = WR_INDIRECT; else if (sync) write_state = WR_COPIED; else write_state = WR_NEED_COPY; while (resid) { itx_t *itx; lr_write_t *lr; itx_wr_state_t wr_state = write_state; ssize_t len = resid; if (wr_state == WR_COPIED && resid > ZIL_MAX_COPIED_DATA) wr_state = WR_NEED_COPY; else if (wr_state == WR_INDIRECT) len = MIN(blocksize - P2PHASE(off, blocksize), resid); itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (wr_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (wr_state == WR_COPIED && dmu_read(zv->zv_objset, ZVOL_OBJ, off, len, lr + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; wr_state = WR_NEED_COPY; } itx->itx_wr_state = wr_state; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zv; itx->itx_sync = sync; zil_itx_assign(zilog, itx, tx); off += len; resid -= len; } } static int zvol_dumpio_vdev(vdev_t *vd, void *addr, uint64_t offset, uint64_t origoffset, uint64_t size, boolean_t doread, boolean_t isdump) { vdev_disk_t *dvd; int c; int numerrors = 0; if (vd->vdev_ops == &vdev_mirror_ops || vd->vdev_ops == &vdev_replacing_ops || vd->vdev_ops == &vdev_spare_ops) { for (c = 0; c < vd->vdev_children; c++) { int err = zvol_dumpio_vdev(vd->vdev_child[c], addr, offset, origoffset, size, doread, isdump); if (err != 0) { numerrors++; } else if (doread) { break; } } } if (!vd->vdev_ops->vdev_op_leaf && vd->vdev_ops != &vdev_raidz_ops) return (numerrors < vd->vdev_children ? 0 : EIO); if (doread && !vdev_readable(vd)) return (SET_ERROR(EIO)); else if (!doread && !vdev_writeable(vd)) return (SET_ERROR(EIO)); if (vd->vdev_ops == &vdev_raidz_ops) { return (vdev_raidz_physio(vd, addr, size, offset, origoffset, doread, isdump)); } offset += VDEV_LABEL_START_SIZE; if (ddi_in_panic() || isdump) { ASSERT(!doread); if (doread) return (SET_ERROR(EIO)); dvd = vd->vdev_tsd; ASSERT3P(dvd, !=, NULL); return (ldi_dump(dvd->vd_lh, addr, lbtodb(offset), lbtodb(size))); } else { dvd = vd->vdev_tsd; ASSERT3P(dvd, !=, NULL); return (vdev_disk_ldi_physio(dvd->vd_lh, addr, size, offset, doread ? B_READ : B_WRITE)); } } static int zvol_dumpio(zvol_state_t *zv, void *addr, uint64_t offset, uint64_t size, boolean_t doread, boolean_t isdump) { vdev_t *vd; int error; zvol_extent_t *ze; spa_t *spa = dmu_objset_spa(zv->zv_objset); /* Must be sector aligned, and not stradle a block boundary. */ if (P2PHASE(offset, DEV_BSIZE) || P2PHASE(size, DEV_BSIZE) || P2BOUNDARY(offset, size, zv->zv_volblocksize)) { return (SET_ERROR(EINVAL)); } ASSERT(size <= zv->zv_volblocksize); /* Locate the extent this belongs to */ ze = list_head(&zv->zv_extents); while (offset >= ze->ze_nblks * zv->zv_volblocksize) { offset -= ze->ze_nblks * zv->zv_volblocksize; ze = list_next(&zv->zv_extents, ze); } if (ze == NULL) return (SET_ERROR(EINVAL)); if (!ddi_in_panic()) spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(spa, DVA_GET_VDEV(&ze->ze_dva)); offset += DVA_GET_OFFSET(&ze->ze_dva); error = zvol_dumpio_vdev(vd, addr, offset, DVA_GET_OFFSET(&ze->ze_dva), size, doread, isdump); if (!ddi_in_panic()) spa_config_exit(spa, SCL_STATE, FTAG); return (error); } int zvol_strategy(buf_t *bp) { zfs_soft_state_t *zs = NULL; zvol_state_t *zv; uint64_t off, volsize; size_t resid; char *addr; objset_t *os; rl_t *rl; int error = 0; boolean_t doread = bp->b_flags & B_READ; boolean_t is_dumpified; boolean_t sync; if (getminor(bp->b_edev) == 0) { error = SET_ERROR(EINVAL); } else { zs = ddi_get_soft_state(zfsdev_state, getminor(bp->b_edev)); if (zs == NULL) error = SET_ERROR(ENXIO); else if (zs->zss_type != ZSST_ZVOL) error = SET_ERROR(EINVAL); } if (error) { bioerror(bp, error); biodone(bp); return (0); } zv = zs->zss_data; if (!(bp->b_flags & B_READ) && (zv->zv_flags & ZVOL_RDONLY)) { bioerror(bp, EROFS); biodone(bp); return (0); } off = ldbtob(bp->b_blkno); volsize = zv->zv_volsize; os = zv->zv_objset; ASSERT(os != NULL); bp_mapin(bp); addr = bp->b_un.b_addr; resid = bp->b_bcount; if (resid > 0 && (off < 0 || off >= volsize)) { bioerror(bp, EIO); biodone(bp); return (0); } is_dumpified = zv->zv_flags & ZVOL_DUMPIFIED; sync = ((!(bp->b_flags & B_ASYNC) && !(zv->zv_flags & ZVOL_WCE)) || (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)) && !doread && !is_dumpified; /* * There must be no buffer changes when doing a dmu_sync() because * we can't change the data whilst calculating the checksum. */ rl = zfs_range_lock(&zv->zv_znode, off, resid, doread ? RL_READER : RL_WRITER); while (resid != 0 && off < volsize) { size_t size = MIN(resid, zvol_maxphys); if (is_dumpified) { size = MIN(size, P2END(off, zv->zv_volblocksize) - off); error = zvol_dumpio(zv, addr, off, size, doread, B_FALSE); } else if (doread) { error = dmu_read(os, ZVOL_OBJ, off, size, addr, DMU_READ_PREFETCH); } else { dmu_tx_t *tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, size); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, off, size, addr, tx); zvol_log_write(zv, tx, off, size, sync); dmu_tx_commit(tx); } } if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } off += size; addr += size; resid -= size; } zfs_range_unlock(rl); if ((bp->b_resid = resid) == bp->b_bcount) bioerror(bp, off > volsize ? EINVAL : error); if (sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); biodone(bp); return (0); } /* * Set the buffer count to the zvol maximum transfer. * Using our own routine instead of the default minphys() * means that for larger writes we write bigger buffers on X86 * (128K instead of 56K) and flush the disk write cache less often * (every zvol_maxphys - currently 1MB) instead of minphys (currently * 56K on X86 and 128K on sparc). */ void zvol_minphys(struct buf *bp) { if (bp->b_bcount > zvol_maxphys) bp->b_bcount = zvol_maxphys; } int zvol_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblocks) { minor_t minor = getminor(dev); zvol_state_t *zv; int error = 0; uint64_t size; uint64_t boff; uint64_t resid; zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); if ((zv->zv_flags & ZVOL_DUMPIFIED) == 0) return (SET_ERROR(EINVAL)); boff = ldbtob(blkno); resid = ldbtob(nblocks); VERIFY3U(boff + resid, <=, zv->zv_volsize); while (resid) { size = MIN(resid, P2END(boff, zv->zv_volblocksize) - boff); error = zvol_dumpio(zv, addr, boff, size, B_FALSE, B_TRUE); if (error) break; boff += size; addr += size; resid -= size; } return (error); } /*ARGSUSED*/ int zvol_read(dev_t dev, uio_t *uio, cred_t *cr) { minor_t minor = getminor(dev); zvol_state_t *zv; uint64_t volsize; rl_t *rl; int error = 0; zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); volsize = zv->zv_volsize; if (uio->uio_resid > 0 && (uio->uio_loffset < 0 || uio->uio_loffset >= volsize)) return (SET_ERROR(EIO)); if (zv->zv_flags & ZVOL_DUMPIFIED) { error = physio(zvol_strategy, NULL, dev, B_READ, zvol_minphys, uio); return (error); } rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, RL_READER); while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); /* don't read past the end */ if (bytes > volsize - uio->uio_loffset) bytes = volsize - uio->uio_loffset; error = dmu_read_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes); if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } } zfs_range_unlock(rl); return (error); } /*ARGSUSED*/ int zvol_write(dev_t dev, uio_t *uio, cred_t *cr) { minor_t minor = getminor(dev); zvol_state_t *zv; uint64_t volsize; rl_t *rl; int error = 0; boolean_t sync; zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); volsize = zv->zv_volsize; if (uio->uio_resid > 0 && (uio->uio_loffset < 0 || uio->uio_loffset >= volsize)) return (SET_ERROR(EIO)); if (zv->zv_flags & ZVOL_DUMPIFIED) { error = physio(zvol_strategy, NULL, dev, B_WRITE, zvol_minphys, uio); return (error); } sync = !(zv->zv_flags & ZVOL_WCE) || (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS); rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, RL_WRITER); while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); uint64_t off = uio->uio_loffset; dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); if (bytes > volsize - off) /* don't write past the end */ bytes = volsize - off; dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); break; } error = dmu_write_uio_dbuf(zv->zv_dbuf, uio, bytes, tx); if (error == 0) zvol_log_write(zv, tx, off, bytes, sync); dmu_tx_commit(tx); if (error) break; } zfs_range_unlock(rl); if (sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); return (error); } int zvol_getefi(void *arg, int flag, uint64_t vs, uint8_t bs) { struct uuid uuid = EFI_RESERVED; efi_gpe_t gpe = { 0 }; uint32_t crc; dk_efi_t efi; int length; char *ptr; if (ddi_copyin(arg, &efi, sizeof (dk_efi_t), flag)) return (SET_ERROR(EFAULT)); ptr = (char *)(uintptr_t)efi.dki_data_64; length = efi.dki_length; /* * Some clients may attempt to request a PMBR for the * zvol. Currently this interface will return EINVAL to * such requests. These requests could be supported by * adding a check for lba == 0 and consing up an appropriate * PMBR. */ if (efi.dki_lba < 1 || efi.dki_lba > 2 || length <= 0) return (SET_ERROR(EINVAL)); gpe.efi_gpe_StartingLBA = LE_64(34ULL); gpe.efi_gpe_EndingLBA = LE_64((vs >> bs) - 1); UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); if (efi.dki_lba == 1) { efi_gpt_t gpt = { 0 }; gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE); gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt)); gpt.efi_gpt_MyLBA = LE_64(1ULL); gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL); gpt.efi_gpt_LastUsableLBA = LE_64((vs >> bs) - 1); gpt.efi_gpt_PartitionEntryLBA = LE_64(2ULL); gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1); gpt.efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table); gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table); gpt.efi_gpt_HeaderCRC32 = LE_32(~crc); if (ddi_copyout(&gpt, ptr, MIN(sizeof (gpt), length), flag)) return (SET_ERROR(EFAULT)); ptr += sizeof (gpt); length -= sizeof (gpt); } if (length > 0 && ddi_copyout(&gpe, ptr, MIN(sizeof (gpe), length), flag)) return (SET_ERROR(EFAULT)); return (0); } /* * BEGIN entry points to allow external callers access to the volume. */ /* * Return the volume parameters needed for access from an external caller. * These values are invariant as long as the volume is held open. */ int zvol_get_volume_params(minor_t minor, uint64_t *blksize, uint64_t *max_xfer_len, void **minor_hdl, void **objset_hdl, void **zil_hdl, void **rl_hdl, void **bonus_hdl) { zvol_state_t *zv; zv = zfsdev_get_soft_state(minor, ZSST_ZVOL); if (zv == NULL) return (SET_ERROR(ENXIO)); if (zv->zv_flags & ZVOL_DUMPIFIED) return (SET_ERROR(ENXIO)); ASSERT(blksize && max_xfer_len && minor_hdl && objset_hdl && zil_hdl && rl_hdl && bonus_hdl); *blksize = zv->zv_volblocksize; *max_xfer_len = (uint64_t)zvol_maxphys; *minor_hdl = zv; *objset_hdl = zv->zv_objset; *zil_hdl = zv->zv_zilog; *rl_hdl = &zv->zv_znode; *bonus_hdl = zv->zv_dbuf; return (0); } /* * Return the current volume size to an external caller. * The size can change while the volume is open. */ uint64_t zvol_get_volume_size(void *minor_hdl) { zvol_state_t *zv = minor_hdl; return (zv->zv_volsize); } /* * Return the current WCE setting to an external caller. * The WCE setting can change while the volume is open. */ int zvol_get_volume_wce(void *minor_hdl) { zvol_state_t *zv = minor_hdl; return ((zv->zv_flags & ZVOL_WCE) ? 1 : 0); } /* * Entry point for external callers to zvol_log_write */ void zvol_log_write_minor(void *minor_hdl, dmu_tx_t *tx, offset_t off, ssize_t resid, boolean_t sync) { zvol_state_t *zv = minor_hdl; zvol_log_write(zv, tx, off, resid, sync); } /* * END entry points to allow external callers access to the volume. */ /* * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. */ static void zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, boolean_t sync) { itx_t *itx; lr_truncate_t *lr; zilog_t *zilog = zv->zv_zilog; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = sync; zil_itx_assign(zilog, itx, tx); } /* * Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I). * Also a dirtbag dkio ioctl for unmap/free-block functionality. */ /*ARGSUSED*/ int zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zvol_state_t *zv; struct dk_callback *dkc; int error = 0; rl_t *rl; mutex_enter(&zfsdev_state_lock); zv = zfsdev_get_soft_state(getminor(dev), ZSST_ZVOL); if (zv == NULL) { mutex_exit(&zfsdev_state_lock); return (SET_ERROR(ENXIO)); } ASSERT(zv->zv_total_opens > 0); switch (cmd) { case DKIOCINFO: { struct dk_cinfo dki; bzero(&dki, sizeof (dki)); (void) strcpy(dki.dki_cname, "zvol"); (void) strcpy(dki.dki_dname, "zvol"); dki.dki_ctype = DKC_UNKNOWN; dki.dki_unit = getminor(dev); dki.dki_maxtransfer = 1 << (SPA_OLD_MAXBLOCKSHIFT - zv->zv_min_bs); mutex_exit(&zfsdev_state_lock); if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag)) error = SET_ERROR(EFAULT); return (error); } case DKIOCGMEDIAINFO: { struct dk_minfo dkm; bzero(&dkm, sizeof (dkm)); dkm.dki_lbsize = 1U << zv->zv_min_bs; dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; dkm.dki_media_type = DK_UNKNOWN; mutex_exit(&zfsdev_state_lock); if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag)) error = SET_ERROR(EFAULT); return (error); } case DKIOCGMEDIAINFOEXT: { struct dk_minfo_ext dkmext; bzero(&dkmext, sizeof (dkmext)); dkmext.dki_lbsize = 1U << zv->zv_min_bs; dkmext.dki_pbsize = zv->zv_volblocksize; dkmext.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; dkmext.dki_media_type = DK_UNKNOWN; mutex_exit(&zfsdev_state_lock); if (ddi_copyout(&dkmext, (void *)arg, sizeof (dkmext), flag)) error = SET_ERROR(EFAULT); return (error); } case DKIOCGETEFI: { uint64_t vs = zv->zv_volsize; uint8_t bs = zv->zv_min_bs; mutex_exit(&zfsdev_state_lock); error = zvol_getefi((void *)arg, flag, vs, bs); return (error); } case DKIOCFLUSHWRITECACHE: dkc = (struct dk_callback *)arg; mutex_exit(&zfsdev_state_lock); zil_commit(zv->zv_zilog, ZVOL_OBJ); if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) { (*dkc->dkc_callback)(dkc->dkc_cookie, error); error = 0; } return (error); case DKIOCGETWCE: { int wce = (zv->zv_flags & ZVOL_WCE) ? 1 : 0; if (ddi_copyout(&wce, (void *)arg, sizeof (int), flag)) error = SET_ERROR(EFAULT); break; } case DKIOCSETWCE: { int wce; if (ddi_copyin((void *)arg, &wce, sizeof (int), flag)) { error = SET_ERROR(EFAULT); break; } if (wce) { zv->zv_flags |= ZVOL_WCE; mutex_exit(&zfsdev_state_lock); } else { zv->zv_flags &= ~ZVOL_WCE; mutex_exit(&zfsdev_state_lock); zil_commit(zv->zv_zilog, ZVOL_OBJ); } return (0); } case DKIOCGGEOM: case DKIOCGVTOC: /* * commands using these (like prtvtoc) expect ENOTSUP * since we're emulating an EFI label */ error = SET_ERROR(ENOTSUP); break; case DKIOCDUMPINIT: rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize, RL_WRITER); error = zvol_dumpify(zv); zfs_range_unlock(rl); break; case DKIOCDUMPFINI: if (!(zv->zv_flags & ZVOL_DUMPIFIED)) break; rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize, RL_WRITER); error = zvol_dump_fini(zv); zfs_range_unlock(rl); break; case DKIOCFREE: { dkioc_free_t df; dmu_tx_t *tx; if (!zvol_unmap_enabled) break; if (ddi_copyin((void *)arg, &df, sizeof (df), flag)) { error = SET_ERROR(EFAULT); break; } /* * Apply Postel's Law to length-checking. If they overshoot, * just blank out until the end, if there's a need to blank * out anything. */ if (df.df_start >= zv->zv_volsize) break; /* No need to do anything... */ mutex_exit(&zfsdev_state_lock); rl = zfs_range_lock(&zv->zv_znode, df.df_start, df.df_length, RL_WRITER); tx = dmu_tx_create(zv->zv_objset); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { zvol_log_truncate(zv, tx, df.df_start, df.df_length, B_TRUE); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, df.df_start, df.df_length); } zfs_range_unlock(rl); /* * If the write-cache is disabled, 'sync' property * is set to 'always', or if the caller is asking for * a synchronous free, commit this operation to the zil. * This will sync any previous uncommitted writes to the * zvol object. * Can be overridden by the zvol_unmap_sync_enabled tunable. */ if ((error == 0) && zvol_unmap_sync_enabled && (!(zv->zv_flags & ZVOL_WCE) || (zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS) || (df.df_flags & DF_WAIT_SYNC))) { zil_commit(zv->zv_zilog, ZVOL_OBJ); } return (error); } default: error = SET_ERROR(ENOTTY); break; } mutex_exit(&zfsdev_state_lock); return (error); } int zvol_busy(void) { return (zvol_minors != 0); } void zvol_init(void) { VERIFY(ddi_soft_state_init(&zfsdev_state, sizeof (zfs_soft_state_t), 1) == 0); mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); } void zvol_fini(void) { mutex_destroy(&zfsdev_state_lock); ddi_soft_state_fini(&zfsdev_state); } /*ARGSUSED*/ static int zfs_mvdev_dump_feature_check(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; if (spa_feature_is_active(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP)) return (1); return (0); } /*ARGSUSED*/ static void zfs_mvdev_dump_activate_feature_sync(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; spa_feature_incr(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP, tx); } static int zvol_dump_init(zvol_state_t *zv, boolean_t resize) { dmu_tx_t *tx; int error; objset_t *os = zv->zv_objset; spa_t *spa = dmu_objset_spa(os); vdev_t *vd = spa->spa_root_vdev; nvlist_t *nv = NULL; uint64_t version = spa_version(spa); uint64_t checksum, compress, refresrv, vbs, dedup; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); ASSERT(vd->vdev_ops == &vdev_root_ops); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, 0, DMU_OBJECT_END); if (error != 0) return (error); /* wait for dmu_free_long_range to actually free the blocks */ txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); /* * If the pool on which the dump device is being initialized has more * than one child vdev, check that the MULTI_VDEV_CRASH_DUMP feature is * enabled. If so, bump that feature's counter to indicate that the * feature is active. We also check the vdev type to handle the * following case: * # zpool create test raidz disk1 disk2 disk3 * Now have spa_root_vdev->vdev_children == 1 (the raidz vdev), * the raidz vdev itself has 3 children. */ if (vd->vdev_children > 1 || vd->vdev_ops == &vdev_raidz_ops) { if (!spa_feature_is_enabled(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP)) return (SET_ERROR(ENOTSUP)); (void) dsl_sync_task(spa_name(spa), zfs_mvdev_dump_feature_check, zfs_mvdev_dump_activate_feature_sync, NULL, 2, ZFS_SPACE_CHECK_RESERVED); } if (!resize) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_COMPRESSION), &compress, NULL); if (error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_CHECKSUM), &checksum, NULL); } if (error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &refresrv, NULL); } if (error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &vbs, NULL); } if (version >= SPA_VERSION_DEDUP && error == 0) { error = dsl_prop_get_integer(zv->zv_name, zfs_prop_to_name(ZFS_PROP_DEDUP), &dedup, NULL); } } if (error != 0) return (error); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_hold_bonus(tx, ZVOL_OBJ); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); return (error); } /* * If we are resizing the dump device then we only need to * update the refreservation to match the newly updated * zvolsize. Otherwise, we save off the original state of the * zvol so that we can restore them if the zvol is ever undumpified. */ if (resize) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &zv->zv_volsize, tx); } else { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress, tx); if (error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum, tx); } if (error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv, tx); } if (error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, &vbs, tx); } if (error == 0) { error = dmu_object_set_blocksize( os, ZVOL_OBJ, SPA_OLD_MAXBLOCKSIZE, 0, tx); } if (version >= SPA_VERSION_DEDUP && error == 0) { error = zap_update(os, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_DEDUP), 8, 1, &dedup, tx); } if (error == 0) zv->zv_volblocksize = SPA_OLD_MAXBLOCKSIZE; } dmu_tx_commit(tx); /* * We only need update the zvol's property if we are initializing * the dump area for the first time. */ if (error == 0 && !resize) { /* * If MULTI_VDEV_CRASH_DUMP is active, use the NOPARITY checksum * function. Otherwise, use the old default -- OFF. */ checksum = spa_feature_is_active(spa, SPA_FEATURE_MULTI_VDEV_CRASH_DUMP) ? ZIO_CHECKSUM_NOPARITY : ZIO_CHECKSUM_OFF; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 0) == 0); VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_COMPRESSION), ZIO_COMPRESS_OFF) == 0); VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum) == 0); if (version >= SPA_VERSION_DEDUP) { VERIFY(nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_DEDUP), ZIO_CHECKSUM_OFF) == 0); } error = zfs_set_prop_nvlist(zv->zv_name, ZPROP_SRC_LOCAL, nv, NULL); nvlist_free(nv); } /* Allocate the space for the dump */ if (error == 0) error = zvol_prealloc(zv); return (error); } static int zvol_dumpify(zvol_state_t *zv) { int error = 0; uint64_t dumpsize = 0; dmu_tx_t *tx; objset_t *os = zv->zv_objset; if (zv->zv_flags & ZVOL_RDONLY) return (SET_ERROR(EROFS)); if (zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1, &dumpsize) != 0 || dumpsize != zv->zv_volsize) { boolean_t resize = (dumpsize > 0); if ((error = zvol_dump_init(zv, resize)) != 0) { (void) zvol_dump_fini(zv); return (error); } } /* * Build up our lba mapping. */ error = zvol_get_lbas(zv); if (error) { (void) zvol_dump_fini(zv); return (error); } tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); (void) zvol_dump_fini(zv); return (error); } zv->zv_flags |= ZVOL_DUMPIFIED; error = zap_update(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1, &zv->zv_volsize, tx); dmu_tx_commit(tx); if (error) { (void) zvol_dump_fini(zv); return (error); } txg_wait_synced(dmu_objset_pool(os), 0); return (0); } static int zvol_dump_fini(zvol_state_t *zv) { dmu_tx_t *tx; objset_t *os = zv->zv_objset; nvlist_t *nv; int error = 0; uint64_t checksum, compress, refresrv, vbs, dedup; uint64_t version = spa_version(dmu_objset_spa(zv->zv_objset)); /* * Attempt to restore the zvol back to its pre-dumpified state. * This is a best-effort attempt as it's possible that not all * of these properties were initialized during the dumpify process * (i.e. error during zvol_dump_init). */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } (void) zap_remove(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, tx); dmu_tx_commit(tx); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv); (void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, &vbs); VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum); (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_COMPRESSION), compress); (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_REFRESERVATION), refresrv); if (version >= SPA_VERSION_DEDUP && zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, zfs_prop_to_name(ZFS_PROP_DEDUP), 8, 1, &dedup) == 0) { (void) nvlist_add_uint64(nv, zfs_prop_to_name(ZFS_PROP_DEDUP), dedup); } (void) zfs_set_prop_nvlist(zv->zv_name, ZPROP_SRC_LOCAL, nv, NULL); nvlist_free(nv); zvol_free_extents(zv); zv->zv_flags &= ~ZVOL_DUMPIFIED; (void) dmu_free_long_range(os, ZVOL_OBJ, 0, DMU_OBJECT_END); /* wait for dmu_free_long_range to actually free the blocks */ txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, ZVOL_OBJ); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } if (dmu_object_set_blocksize(os, ZVOL_OBJ, vbs, 0, tx) == 0) zv->zv_volblocksize = vbs; dmu_tx_commit(tx); return (0); }