/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * ZFS control directory (a.k.a. ".zfs") * * This directory provides a common location for all ZFS meta-objects. * Currently, this is only the 'snapshot' directory, but this may expand in the * future. The elements are built using the GFS primitives, as the hierarchy * does not actually exist on disk. * * For 'snapshot', we don't want to have all snapshots always mounted, because * this would take up a huge amount of space in /etc/mnttab. We have three * types of objects: * * ctldir ------> snapshotdir -------> snapshot * | * | * V * mounted fs * * The 'snapshot' node contains just enough information to lookup '..' and act * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we * perform an automount of the underlying filesystem and return the * corresponding vnode. * * All mounts are handled automatically by the kernel, but unmounts are * (currently) handled from user land. The main reason is that there is no * reliable way to auto-unmount the filesystem when it's "no longer in use". * When the user unmounts a filesystem, we call zfsctl_unmount(), which * unmounts any snapshots within the snapshot directory. */ #include #include #include #include #include #include #include #include typedef struct { char *se_name; vnode_t *se_root; avl_node_t se_node; } zfs_snapentry_t; static int snapentry_compare(const void *a, const void *b) { const zfs_snapentry_t *sa = a; const zfs_snapentry_t *sb = b; int ret = strcmp(sa->se_name, sb->se_name); if (ret < 0) return (-1); else if (ret > 0) return (1); else return (0); } vnodeops_t *zfsctl_ops_root; vnodeops_t *zfsctl_ops_snapdir; vnodeops_t *zfsctl_ops_snapshot; static const fs_operation_def_t zfsctl_tops_root[]; static const fs_operation_def_t zfsctl_tops_snapdir[]; static const fs_operation_def_t zfsctl_tops_snapshot[]; static vnode_t *zfsctl_mknode_snapdir(vnode_t *); static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); static gfs_opsvec_t zfsctl_opsvec[] = { { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, { NULL } }; typedef struct zfsctl_node { gfs_dir_t zc_gfs_private; uint64_t zc_id; } zfsctl_node_t; typedef struct zfsctl_snapdir { zfsctl_node_t sd_node; kmutex_t sd_lock; avl_tree_t sd_snaps; } zfsctl_snapdir_t; /* * Root directory elements. We have only a single static entry, 'snapshot'. */ static gfs_dirent_t zfsctl_root_entries[] = { { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, { NULL } }; /* include . and .. in the calculation */ #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ sizeof (gfs_dirent_t)) + 1) /* * Initialize the various GFS pieces we'll need to create and manipulate .zfs * directories. This is called from the ZFS init routine, and initializes the * vnode ops vectors that we'll be using. */ void zfsctl_init(void) { VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); } void zfsctl_fini(void) { /* * Remove vfsctl vnode ops */ if (zfsctl_ops_root) vn_freevnodeops(zfsctl_ops_root); if (zfsctl_ops_snapdir) vn_freevnodeops(zfsctl_ops_snapdir); if (zfsctl_ops_snapshot) vn_freevnodeops(zfsctl_ops_snapshot); zfsctl_ops_root = NULL; zfsctl_ops_snapdir = NULL; zfsctl_ops_snapshot = NULL; } /* * Return the inode number associated with the 'snapshot' directory. */ /* ARGSUSED */ static ino64_t zfsctl_root_inode_cb(vnode_t *vp, int index) { ASSERT(index == 0); return (ZFSCTL_INO_SNAPDIR); } /* * Create the '.zfs' directory. This directory is cached as part of the VFS * structure. This results in a hold on the vfs_t. The code in zfs_umount() * therefore checks against a vfs_count of 2 instead of 1. This reference * is removed when the ctldir is destroyed in the unmount. */ void zfsctl_create(zfsvfs_t *zfsvfs) { vnode_t *vp; zfsctl_node_t *zcp; ASSERT(zfsvfs->z_ctldir == NULL); vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); zcp = vp->v_data; zcp->zc_id = ZFSCTL_INO_ROOT; /* * We're only faking the fact that we have a root of a filesystem for * the sake of the GFS interfaces. Undo the flag manipulation it did * for us. */ vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); zfsvfs->z_ctldir = vp; } /* * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. * There might still be more references if we were force unmounted, but only * new zfs_inactive() calls can occur and they don't reference .zfs */ void zfsctl_destroy(zfsvfs_t *zfsvfs) { VN_RELE(zfsvfs->z_ctldir); zfsvfs->z_ctldir = NULL; } /* * Given a root znode, retrieve the associated .zfs directory. * Add a hold to the vnode and return it. */ vnode_t * zfsctl_root(znode_t *zp) { ASSERT(zfs_has_ctldir(zp)); VN_HOLD(zp->z_zfsvfs->z_ctldir); return (zp->z_zfsvfs->z_ctldir); } /* * Common open routine. Disallow any write access. */ /* ARGSUSED */ static int zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr) { if (flags & FWRITE) return (EACCES); return (0); } /* * Common close routine. Nothing to do here. */ /* ARGSUSED */ static int zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, cred_t *cr) { return (0); } /* * Common access routine. Disallow writes. */ /* ARGSUSED */ static int zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr) { if (mode & VWRITE) return (EACCES); return (0); } /* * Common getattr function. Fill in basic information. */ static void zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) { timestruc_t now; vap->va_uid = 0; vap->va_gid = 0; vap->va_rdev = 0; /* * We are a purly virtual object, so we have no * blocksize or allocated blocks. */ vap->va_blksize = 0; vap->va_nblocks = 0; vap->va_seq = 0; vap->va_fsid = vp->v_vfsp->vfs_dev; vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH; vap->va_type = VDIR; /* * We live in the now. */ gethrestime(&now); vap->va_mtime = vap->va_ctime = vap->va_atime = now; } static int zfsctl_common_fid(vnode_t *vp, fid_t *fidp) { zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; zfsctl_node_t *zcp = vp->v_data; uint64_t object = zcp->zc_id; zfid_short_t *zfid; int i; ZFS_ENTER(zfsvfs); if (fidp->fid_len < SHORT_FID_LEN) { fidp->fid_len = SHORT_FID_LEN; return (ENOSPC); } zfid = (zfid_short_t *)fidp; zfid->zf_len = SHORT_FID_LEN; for (i = 0; i < sizeof (zfid->zf_object); i++) zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); /* .zfs znodes always have a generation number of 0 */ for (i = 0; i < sizeof (zfid->zf_gen); i++) zfid->zf_gen[i] = 0; ZFS_EXIT(zfsvfs); return (0); } /* * .zfs inode namespace * * We need to generate unique inode numbers for all files and directories * within the .zfs pseudo-filesystem. We use the following scheme: * * ENTRY ZFSCTL_INODE * .zfs 1 * .zfs/snapshot 2 * .zfs/snapshot/ objectid(snap) */ #define ZFSCTL_INO_SNAP(id) (id) /* * Get root directory attributes. */ /* ARGSUSED */ static int zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) { zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; ZFS_ENTER(zfsvfs); vap->va_nodeid = ZFSCTL_INO_ROOT; vap->va_nlink = vap->va_size = NROOT_ENTRIES; zfsctl_common_getattr(vp, vap); ZFS_EXIT(zfsvfs); return (0); } /* * Special case the handling of "..". */ /* ARGSUSED */ int zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, int flags, vnode_t *rdir, cred_t *cr) { zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; int err; ZFS_ENTER(zfsvfs); if (strcmp(nm, "..") == 0) { err = VFS_ROOT(dvp->v_vfsp, vpp); } else { err = gfs_dir_lookup(dvp, nm, vpp); } ZFS_EXIT(zfsvfs); return (err); } static const fs_operation_def_t zfsctl_tops_root[] = { { VOPNAME_OPEN, zfsctl_common_open }, { VOPNAME_CLOSE, zfsctl_common_close }, { VOPNAME_IOCTL, fs_inval }, { VOPNAME_GETATTR, zfsctl_root_getattr }, { VOPNAME_ACCESS, zfsctl_common_access }, { VOPNAME_READDIR, gfs_vop_readdir }, { VOPNAME_LOOKUP, zfsctl_root_lookup }, { VOPNAME_SEEK, fs_seek }, { VOPNAME_INACTIVE, (fs_generic_func_p) gfs_vop_inactive }, { VOPNAME_FID, zfsctl_common_fid }, { NULL } }; static int zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) { objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; dmu_objset_name(os, zname); if (strlen(zname) + 1 + strlen(name) >= len) return (ENAMETOOLONG); (void) strcat(zname, "@"); (void) strcat(zname, name); return (0); } static int zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) { zfsctl_snapdir_t *sdp = dvp->v_data; zfs_snapentry_t search, *sep; avl_index_t where; int err; ASSERT(MUTEX_HELD(&sdp->sd_lock)); search.se_name = (char *)name; if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) return (ENOENT); ASSERT(vn_ismntpt(sep->se_root)); /* this will be dropped by dounmount() */ if ((err = vn_vfswlock(sep->se_root)) != 0) return (err); VN_HOLD(sep->se_root); if ((err = dounmount(vn_mountedvfs(sep->se_root), force, kcred)) != 0) return (err); ASSERT(sep->se_root->v_count == 1); gfs_vop_inactive(sep->se_root, cr); avl_remove(&sdp->sd_snaps, sep); kmem_free(sep->se_name, strlen(sep->se_name) + 1); kmem_free(sep, sizeof (zfs_snapentry_t)); return (0); } static void zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) { avl_index_t where; vfs_t *vfsp; refstr_t *pathref; char newpath[MAXNAMELEN]; const char *oldpath; char *tail; ASSERT(MUTEX_HELD(&sdp->sd_lock)); ASSERT(sep != NULL); vfsp = vn_mountedvfs(sep->se_root); ASSERT(vfsp != NULL); vfs_lock_wait(vfsp); /* * Change the name in the AVL tree. */ avl_remove(&sdp->sd_snaps, sep); kmem_free(sep->se_name, strlen(sep->se_name) + 1); sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); (void) strcpy(sep->se_name, nm); VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); avl_insert(&sdp->sd_snaps, sep, where); /* * Change the current mountpoint info: * - update the tail of the mntpoint path * - update the tail of the resource path */ pathref = vfs_getmntpoint(vfsp); oldpath = refstr_value(pathref); VERIFY((tail = strrchr(oldpath, '/')) != NULL); ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); (void) strncpy(newpath, oldpath, tail - oldpath + 1); (void) strcat(newpath, nm); refstr_rele(pathref); vfs_setmntpoint(vfsp, newpath); pathref = vfs_getresource(vfsp); oldpath = refstr_value(pathref); VERIFY((tail = strrchr(oldpath, '@')) != NULL); ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); (void) strncpy(newpath, oldpath, tail - oldpath + 1); (void) strcat(newpath, nm); refstr_rele(pathref); vfs_setresource(vfsp, newpath); vfs_unlock(vfsp); } static int zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) { zfsctl_snapdir_t *sdp = sdvp->v_data; zfs_snapentry_t search, *sep; avl_index_t where; char from[MAXNAMELEN], to[MAXNAMELEN]; int err; err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); if (err) return (err); err = zfs_secpolicy_write(from, NULL, cr); if (err) return (err); /* * Cannot move snapshots out of the snapdir. */ if (sdvp != tdvp) return (EINVAL); if (strcmp(snm, tnm) == 0) return (0); err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); if (err) return (err); mutex_enter(&sdp->sd_lock); search.se_name = (char *)snm; if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { mutex_exit(&sdp->sd_lock); return (ENOENT); } err = dmu_objset_rename(from, to); if (err == 0) zfsctl_rename_snap(sdp, sep, tnm); mutex_exit(&sdp->sd_lock); return (err); } /* ARGSUSED */ static int zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) { zfsctl_snapdir_t *sdp = dvp->v_data; char snapname[MAXNAMELEN]; int err; err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); if (err) return (err); err = zfs_secpolicy_write(snapname, NULL, cr); if (err) return (err); mutex_enter(&sdp->sd_lock); err = zfsctl_unmount_snap(dvp, name, 0, cr); if (err) { mutex_exit(&sdp->sd_lock); return (err); } err = dmu_objset_destroy(snapname); mutex_exit(&sdp->sd_lock); return (err); } /* * Lookup entry point for the 'snapshot' directory. Try to open the * snapshot if it exist, creating the pseudo filesystem vnode as necessary. * Perform a mount of the associated dataset on top of the vnode. */ /* ARGSUSED */ static int zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, int flags, vnode_t *rdir, cred_t *cr) { zfsctl_snapdir_t *sdp = dvp->v_data; objset_t *snap; char snapname[MAXNAMELEN]; char *mountpoint; zfs_snapentry_t *sep, search; struct mounta margs; vfs_t *vfsp; size_t mountpoint_len; avl_index_t where; zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; int err; ASSERT(dvp->v_type == VDIR); if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) return (0); /* * If we get a recursive call, that means we got called * from the domount() code while it was trying to look up the * spec (which looks like a local path for zfs). We need to * add some flag to domount() to tell it not to do this lookup. */ if (MUTEX_HELD(&sdp->sd_lock)) return (ENOENT); ZFS_ENTER(zfsvfs); mutex_enter(&sdp->sd_lock); search.se_name = (char *)nm; if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { *vpp = sep->se_root; VN_HOLD(*vpp); /* * If the snapshot was unmounted behind our backs, remount it. */ if (!vn_ismntpt(*vpp)) goto domount; VERIFY(traverse(vpp) == 0); mutex_exit(&sdp->sd_lock); ZFS_EXIT(zfsvfs); return (0); } /* * The requested snapshot is not currently mounted, look it up. */ err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); if (err) { mutex_exit(&sdp->sd_lock); ZFS_EXIT(zfsvfs); return (err); } if (dmu_objset_open(snapname, DMU_OST_ZFS, DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { mutex_exit(&sdp->sd_lock); ZFS_EXIT(zfsvfs); return (ENOENT); } sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); (void) strcpy(sep->se_name, nm); *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); avl_insert(&sdp->sd_snaps, sep, where); dmu_objset_close(snap); domount: mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + strlen("/.zfs/snapshot/") + strlen(nm) + 1; mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", refstr_value(dvp->v_vfsp->vfs_mntpt), nm); margs.spec = snapname; margs.dir = mountpoint; margs.flags = MS_SYSSPACE | MS_NOMNTTAB; margs.fstype = "zfs"; margs.dataptr = NULL; margs.datalen = 0; margs.optptr = NULL; margs.optlen = 0; err = domount("zfs", &margs, *vpp, kcred, &vfsp); kmem_free(mountpoint, mountpoint_len); if (err == 0) { /* * Return the mounted root rather than the covered mount point. */ VFS_RELE(vfsp); err = traverse(vpp); } if (err == 0) { /* * Fix up the root vnode. */ ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; (*vpp)->v_vfsp = zfsvfs->z_vfs; (*vpp)->v_flag &= ~VROOT; } mutex_exit(&sdp->sd_lock); ZFS_EXIT(zfsvfs); if (err) VN_RELE(*vpp); return (err); } /* ARGSUSED */ static int zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, offset_t *offp, offset_t *nextp, void *data) { zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; char snapname[MAXNAMELEN]; uint64_t id, cookie; ZFS_ENTER(zfsvfs); cookie = *offp; if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, &cookie) == ENOENT) { *eofp = 1; ZFS_EXIT(zfsvfs); return (0); } (void) strcpy(dp->d_name, snapname); dp->d_ino = ZFSCTL_INO_SNAP(id); *nextp = cookie; ZFS_EXIT(zfsvfs); return (0); } vnode_t * zfsctl_mknode_snapdir(vnode_t *pvp) { vnode_t *vp; zfsctl_snapdir_t *sdp; vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, zfsctl_snapdir_readdir_cb, NULL); sdp = vp->v_data; sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&sdp->sd_snaps, snapentry_compare, sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); return (vp); } /* ARGSUSED */ static int zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) { zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; zfsctl_snapdir_t *sdp = vp->v_data; ZFS_ENTER(zfsvfs); zfsctl_common_getattr(vp, vap); vap->va_nodeid = gfs_file_inode(vp); vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; ZFS_EXIT(zfsvfs); return (0); } static void zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr) { zfsctl_snapdir_t *sdp = vp->v_data; ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); mutex_destroy(&sdp->sd_lock); avl_destroy(&sdp->sd_snaps); gfs_vop_inactive(vp, cr); } static const fs_operation_def_t zfsctl_tops_snapdir[] = { { VOPNAME_OPEN, zfsctl_common_open }, { VOPNAME_CLOSE, zfsctl_common_close }, { VOPNAME_IOCTL, fs_inval }, { VOPNAME_GETATTR, zfsctl_snapdir_getattr }, { VOPNAME_ACCESS, zfsctl_common_access }, { VOPNAME_RENAME, zfsctl_snapdir_rename }, { VOPNAME_RMDIR, zfsctl_snapdir_remove }, { VOPNAME_READDIR, gfs_vop_readdir }, { VOPNAME_LOOKUP, zfsctl_snapdir_lookup }, { VOPNAME_SEEK, fs_seek }, { VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapdir_inactive }, { VOPNAME_FID, zfsctl_common_fid }, { NULL } }; static vnode_t * zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) { vnode_t *vp; zfsctl_node_t *zcp; vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); zcp = vp->v_data; zcp->zc_id = objset; return (vp); } static void zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr) { zfsctl_snapdir_t *sdp; zfs_snapentry_t *sep, *next; vnode_t *dvp; VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0); sdp = dvp->v_data; mutex_enter(&sdp->sd_lock); if (vp->v_count > 1) { mutex_exit(&sdp->sd_lock); return; } ASSERT(!vn_ismntpt(vp)); sep = avl_first(&sdp->sd_snaps); while (sep != NULL) { next = AVL_NEXT(&sdp->sd_snaps, sep); if (sep->se_root == vp) { avl_remove(&sdp->sd_snaps, sep); kmem_free(sep->se_name, strlen(sep->se_name) + 1); kmem_free(sep, sizeof (zfs_snapentry_t)); break; } sep = next; } ASSERT(sep != NULL); mutex_exit(&sdp->sd_lock); VN_RELE(dvp); gfs_vop_inactive(vp, cr); } /* * These VP's should never see the light of day. They should always * be covered. */ static const fs_operation_def_t zfsctl_tops_snapshot[] = { VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapshot_inactive, NULL, NULL }; int zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; vnode_t *dvp, *vp; zfsctl_snapdir_t *sdp; zfsctl_node_t *zcp; zfs_snapentry_t *sep; int error; ASSERT(zfsvfs->z_ctldir != NULL); error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, NULL, 0, NULL, kcred); if (error != 0) return (error); sdp = dvp->v_data; mutex_enter(&sdp->sd_lock); sep = avl_first(&sdp->sd_snaps); while (sep != NULL) { vp = sep->se_root; zcp = vp->v_data; if (zcp->zc_id == objsetid) break; sep = AVL_NEXT(&sdp->sd_snaps, sep); } if (sep != NULL) { VN_HOLD(vp); error = traverse(&vp); if (error == 0) *zfsvfsp = VTOZ(vp)->z_zfsvfs; VN_RELE(vp); } else { error = EINVAL; } mutex_exit(&sdp->sd_lock); VN_RELE(dvp); return (error); } /* * Unmount any snapshots for the given filesystem. This is called from * zfs_umount() - if we have a ctldir, then go through and unmount all the * snapshots. */ int zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) { zfsvfs_t *zfsvfs = vfsp->vfs_data; vnode_t *dvp, *svp; zfsctl_snapdir_t *sdp; zfs_snapentry_t *sep, *next; int error; ASSERT(zfsvfs->z_ctldir != NULL); error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, NULL, 0, NULL, cr); if (error != 0) return (error); sdp = dvp->v_data; mutex_enter(&sdp->sd_lock); sep = avl_first(&sdp->sd_snaps); while (sep != NULL) { svp = sep->se_root; next = AVL_NEXT(&sdp->sd_snaps, sep); /* * If this snapshot is not mounted, then it must * have just been unmounted by somebody else, and * will be cleaned up by zfsctl_snapdir_inactive(). */ if (vn_ismntpt(svp)) { if ((error = vn_vfswlock(svp)) != 0) goto out; VN_HOLD(svp); error = dounmount(vn_mountedvfs(svp), fflags, cr); if (error) { VN_RELE(svp); goto out; } avl_remove(&sdp->sd_snaps, sep); kmem_free(sep->se_name, strlen(sep->se_name) + 1); kmem_free(sep, sizeof (zfs_snapentry_t)); /* * We can't use VN_RELE(), as that will try to * invoke zfsctl_snapdir_inactive(), and that * would lead to an attempt to re-grab the sd_lock. */ ASSERT3U(svp->v_count, ==, 1); gfs_vop_inactive(svp, cr); } sep = next; } out: mutex_exit(&sdp->sd_lock); VN_RELE(dvp); return (error); }