/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ #include #include #include #include #include /* * These tunables are for performance analysis. */ /* * zfs_vdev_max_pending is the maximum number of i/os concurrently * pending to each device. zfs_vdev_min_pending is the initial number * of i/os pending to each device (before it starts ramping up to * max_pending). */ int zfs_vdev_max_pending = 10; int zfs_vdev_min_pending = 4; /* * The deadlines are grouped into buckets based on zfs_vdev_time_shift: * deadline = pri + gethrtime() >> time_shift) */ int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */ /* exponential I/O issue ramp-up rate */ int zfs_vdev_ramp_rate = 2; /* * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. * For read I/Os, we also aggregate across small adjacency gaps; for writes * we include spans of optional I/Os to aid aggregation at the disk even when * they aren't able to help us aggregate at this level. */ int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; int zfs_vdev_read_gap_limit = 32 << 10; int zfs_vdev_write_gap_limit = 4 << 10; /* * Virtual device vector for disk I/O scheduling. */ int vdev_queue_deadline_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_deadline < z2->io_deadline) return (-1); if (z1->io_deadline > z2->io_deadline) return (1); if (z1->io_offset < z2->io_offset) return (-1); if (z1->io_offset > z2->io_offset) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } int vdev_queue_offset_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_offset < z2->io_offset) return (-1); if (z1->io_offset > z2->io_offset) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } void vdev_queue_init(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare, sizeof (zio_t), offsetof(struct zio, io_deadline_node)); avl_create(&vq->vq_read_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); avl_create(&vq->vq_write_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); } void vdev_queue_fini(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; avl_destroy(&vq->vq_deadline_tree); avl_destroy(&vq->vq_read_tree); avl_destroy(&vq->vq_write_tree); avl_destroy(&vq->vq_pending_tree); mutex_destroy(&vq->vq_lock); } static void vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; avl_add(&vq->vq_deadline_tree, zio); avl_add(zio->io_vdev_tree, zio); if (spa->spa_iokstat != NULL) { mutex_enter(&spa->spa_iokstat_lock); kstat_waitq_enter(spa->spa_iokstat->ks_data); mutex_exit(&spa->spa_iokstat_lock); } } static void vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; avl_remove(&vq->vq_deadline_tree, zio); avl_remove(zio->io_vdev_tree, zio); if (spa->spa_iokstat != NULL) { mutex_enter(&spa->spa_iokstat_lock); kstat_waitq_exit(spa->spa_iokstat->ks_data); mutex_exit(&spa->spa_iokstat_lock); } } static void vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; avl_add(&vq->vq_pending_tree, zio); if (spa->spa_iokstat != NULL) { mutex_enter(&spa->spa_iokstat_lock); kstat_runq_enter(spa->spa_iokstat->ks_data); mutex_exit(&spa->spa_iokstat_lock); } } static void vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) { spa_t *spa = zio->io_spa; avl_remove(&vq->vq_pending_tree, zio); if (spa->spa_iokstat != NULL) { kstat_io_t *ksio = spa->spa_iokstat->ks_data; mutex_enter(&spa->spa_iokstat_lock); kstat_runq_exit(spa->spa_iokstat->ks_data); if (zio->io_type == ZIO_TYPE_READ) { ksio->reads++; ksio->nread += zio->io_size; } else if (zio->io_type == ZIO_TYPE_WRITE) { ksio->writes++; ksio->nwritten += zio->io_size; } mutex_exit(&spa->spa_iokstat_lock); } } static void vdev_queue_agg_io_done(zio_t *aio) { zio_t *pio; while ((pio = zio_walk_parents(aio)) != NULL) if (aio->io_type == ZIO_TYPE_READ) bcopy((char *)aio->io_data + (pio->io_offset - aio->io_offset), pio->io_data, pio->io_size); zio_buf_free(aio->io_data, aio->io_size); } /* * Compute the range spanned by two i/os, which is the endpoint of the last * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. */ #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) static zio_t * vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit) { zio_t *fio, *lio, *aio, *dio, *nio, *mio; avl_tree_t *t; int flags; uint64_t maxspan = zfs_vdev_aggregation_limit; uint64_t maxgap; int stretch; again: ASSERT(MUTEX_HELD(&vq->vq_lock)); if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit || avl_numnodes(&vq->vq_deadline_tree) == 0) return (NULL); fio = lio = avl_first(&vq->vq_deadline_tree); t = fio->io_vdev_tree; flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT; maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0; if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) { /* * We can aggregate I/Os that are sufficiently adjacent and of * the same flavor, as expressed by the AGG_INHERIT flags. * The latter requirement is necessary so that certain * attributes of the I/O, such as whether it's a normal I/O * or a scrub/resilver, can be preserved in the aggregate. * We can include optional I/Os, but don't allow them * to begin a range as they add no benefit in that situation. */ /* * We keep track of the last non-optional I/O. */ mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio; /* * Walk backwards through sufficiently contiguous I/Os * recording the last non-option I/O. */ while ((dio = AVL_PREV(t, fio)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && IO_SPAN(dio, lio) <= maxspan && IO_GAP(dio, fio) <= maxgap) { fio = dio; if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL)) mio = fio; } /* * Skip any initial optional I/Os. */ while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) { fio = AVL_NEXT(t, fio); ASSERT(fio != NULL); } /* * Walk forward through sufficiently contiguous I/Os. */ while ((dio = AVL_NEXT(t, lio)) != NULL && (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && IO_SPAN(fio, dio) <= maxspan && IO_GAP(lio, dio) <= maxgap) { lio = dio; if (!(lio->io_flags & ZIO_FLAG_OPTIONAL)) mio = lio; } /* * Now that we've established the range of the I/O aggregation * we must decide what to do with trailing optional I/Os. * For reads, there's nothing to do. While we are unable to * aggregate further, it's possible that a trailing optional * I/O would allow the underlying device to aggregate with * subsequent I/Os. We must therefore determine if the next * non-optional I/O is close enough to make aggregation * worthwhile. */ stretch = B_FALSE; if (t != &vq->vq_read_tree && mio != NULL) { nio = lio; while ((dio = AVL_NEXT(t, nio)) != NULL && IO_GAP(nio, dio) == 0 && IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) { nio = dio; if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { stretch = B_TRUE; break; } } } if (stretch) { /* This may be a no-op. */ VERIFY((dio = AVL_NEXT(t, lio)) != NULL); dio->io_flags &= ~ZIO_FLAG_OPTIONAL; } else { while (lio != mio && lio != fio) { ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL); lio = AVL_PREV(t, lio); ASSERT(lio != NULL); } } } if (fio != lio) { uint64_t size = IO_SPAN(fio, lio); ASSERT(size <= zfs_vdev_aggregation_limit); aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset, zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL); aio->io_timestamp = fio->io_timestamp; nio = fio; do { dio = nio; nio = AVL_NEXT(t, dio); ASSERT(dio->io_type == aio->io_type); ASSERT(dio->io_vdev_tree == t); if (dio->io_flags & ZIO_FLAG_NODATA) { ASSERT(dio->io_type == ZIO_TYPE_WRITE); bzero((char *)aio->io_data + (dio->io_offset - aio->io_offset), dio->io_size); } else if (dio->io_type == ZIO_TYPE_WRITE) { bcopy(dio->io_data, (char *)aio->io_data + (dio->io_offset - aio->io_offset), dio->io_size); } zio_add_child(dio, aio); vdev_queue_io_remove(vq, dio); zio_vdev_io_bypass(dio); zio_execute(dio); } while (dio != lio); vdev_queue_pending_add(vq, aio); return (aio); } ASSERT(fio->io_vdev_tree == t); vdev_queue_io_remove(vq, fio); /* * If the I/O is or was optional and therefore has no data, we need to * simply discard it. We need to drop the vdev queue's lock to avoid a * deadlock that we could encounter since this I/O will complete * immediately. */ if (fio->io_flags & ZIO_FLAG_NODATA) { mutex_exit(&vq->vq_lock); zio_vdev_io_bypass(fio); zio_execute(fio); mutex_enter(&vq->vq_lock); goto again; } vdev_queue_pending_add(vq, fio); return (fio); } zio_t * vdev_queue_io(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *nio; ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) return (zio); zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; if (zio->io_type == ZIO_TYPE_READ) zio->io_vdev_tree = &vq->vq_read_tree; else zio->io_vdev_tree = &vq->vq_write_tree; mutex_enter(&vq->vq_lock); zio->io_timestamp = gethrtime(); zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) + zio->io_priority; vdev_queue_io_add(vq, zio); nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending); mutex_exit(&vq->vq_lock); if (nio == NULL) return (NULL); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); return (NULL); } return (nio); } void vdev_queue_io_done(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; if (zio_injection_enabled) delay(SEC_TO_TICK(zio_handle_io_delay(zio))); mutex_enter(&vq->vq_lock); vdev_queue_pending_remove(vq, zio); vq->vq_io_complete_ts = gethrtime(); for (int i = 0; i < zfs_vdev_ramp_rate; i++) { zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending); if (nio == NULL) break; mutex_exit(&vq->vq_lock); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); } else { zio_vdev_io_reissue(nio); zio_execute(nio); } mutex_enter(&vq->vq_lock); } mutex_exit(&vq->vq_lock); }