/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int zio_taskq_threads = 8; /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { spa_error_entry_t *sa = (spa_error_entry_t *)a; spa_error_entry_t *sb = (spa_error_entry_t *)b; int ret; ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_t)); if (ret < 0) return (-1); else if (ret > 0) return (1); else return (0); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa) { int t; ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_normal_class = metaslab_class_create(); for (t = 0; t < ZIO_TYPES; t++) { spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", zio_taskq_threads, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", zio_taskq_threads, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); } rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL); mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&spa->spa_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { int t; ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_dirty_list); rw_destroy(&spa->spa_traverse_lock); for (t = 0; t < ZIO_TYPES; t++) { taskq_destroy(spa->spa_zio_issue_taskq[t]); taskq_destroy(spa->spa_zio_intr_taskq[t]); spa->spa_zio_issue_taskq[t] = NULL; spa->spa_zio_intr_taskq[t] = NULL; } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); spa->spa_state = POOL_STATE_UNINITIALIZED; } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ static int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t c, children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { vdev_free(*vdp); *vdp = NULL; return (EINVAL); } for (c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { int i; /* * Stop async tasks. */ spa_async_suspend(spa); /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * Wait for any outstanding prefetch I/O to complete. */ spa_config_enter(spa, RW_WRITER, FTAG); spa_config_exit(spa, FTAG); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; } /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); for (i = 0; i < spa->spa_nspares; i++) vdev_free(spa->spa_spares[i]); if (spa->spa_spares) { kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *)); spa->spa_spares = NULL; } if (spa->spa_sparelist) { nvlist_free(spa->spa_sparelist); spa->spa_sparelist = NULL; } spa->spa_async_suspended = 0; } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_sparelist'. We parse this into vdevs, try to open them, and then * re-generate a more complete list including status information. */ static void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; /* * First, close and free any existing spare vdevs. */ for (i = 0; i < spa->spa_nspares; i++) { vd = spa->spa_spares[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } if (spa->spa_spares) kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *)); if (spa->spa_sparelist == NULL) nspares = 0; else VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); spa->spa_nspares = (int)nspares; spa->spa_spares = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_nspares; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } if (vdev_open(vd) != 0) continue; vd->vdev_top = vd; (void) vdev_validate_spare(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_nspares; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares[i], B_TRUE, B_TRUE); VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, spares, spa->spa_nspares) == 0); for (i = 0; i < spa->spa_nspares; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_nspares * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = kmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); kmem_free(packed, nvsize); return (error); } /* * Load an existing storage pool, using the pool's builtin spa_config as a * source of configuration information. */ static int spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) { int error = 0; nvlist_t *nvroot = NULL; vdev_t *rvd; uberblock_t *ub = &spa->spa_uberblock; uint64_t config_cache_txg = spa->spa_config_txg; uint64_t pool_guid; uint64_t version; zio_t *zio; spa->spa_load_state = state; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { error = EINVAL; goto out; } /* * Versioning wasn't explicitly added to the label until later, so if * it's not present treat it as the initial version. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) version = ZFS_VERSION_INITIAL; (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { error = EEXIST; goto out; } spa->spa_load_guid = pool_guid; /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, RW_WRITER, FTAG); spa->spa_ubsync.ub_version = version; error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); spa_config_exit(spa, FTAG); if (error != 0) goto out; ASSERT(spa->spa_root_vdev == rvd); ASSERT(spa_guid(spa) == pool_guid); /* * Try to open all vdevs, loading each label in the process. */ error = vdev_open(rvd); if (error != 0) goto out; /* * Validate the labels for all leaf vdevs. We need to grab the config * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD * flag. */ spa_config_enter(spa, RW_READER, FTAG); error = vdev_validate(rvd); spa_config_exit(spa, FTAG); if (error != 0) goto out; if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { error = ENXIO; goto out; } /* * Find the best uberblock. */ bzero(ub, sizeof (uberblock_t)); zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); vdev_uberblock_load(zio, rvd, ub); error = zio_wait(zio); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = ENXIO; goto out; } /* * If the pool is newer than the code, we can't open it. */ if (ub->ub_version > ZFS_VERSION) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_VERSION_NEWER); error = ENOTSUP; goto out; } /* * If the vdev guid sum doesn't match the uberblock, we have an * incomplete configuration. */ if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_GUID_SUM); error = ENXIO; goto out; } /* * Initialize internal SPA structures. */ spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_first_txg = spa_last_synced_txg(spa) + 1; error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); goto out; } spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; if (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (!mosconfig) { nvlist_t *newconfig; uint64_t hostid; if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { char *hostname; unsigned long myhostid = 0; VERIFY(nvlist_lookup_string(newconfig, ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); if ((unsigned long)hostid != myhostid) { cmn_err(CE_WARN, "pool '%s' could not be " "loaded as it was last accessed by " "another system (host: %s hostid: 0x%lx). " "See: http://www.sun.com/msg/ZFS-8000-EY", spa->spa_name, hostname, (unsigned long)hostid); error = EBADF; goto out; } } spa_config_set(spa, newconfig); spa_unload(spa); spa_deactivate(spa); spa_activate(spa); return (spa_load(spa, newconfig, state, B_TRUE)); } if (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, sizeof (uint64_t), 1, &spa->spa_errlog_last); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, sizeof (uint64_t), 1, &spa->spa_errlog_scrub); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load the history object. If we have an older pool, this * will not be present. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, sizeof (uint64_t), 1, &spa->spa_history); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load any hot spares for this pool. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (error == 0) { ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares_object, &spa->spa_sparelist) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } spa_config_enter(spa, RW_WRITER, FTAG); spa_load_spares(spa); spa_config_exit(spa, FTAG); } error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); if (error && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (error == 0) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZFS_PROP_BOOTFS), sizeof (uint64_t), 1, &spa->spa_bootfs); } /* * Load the vdev state for all toplevel vdevs. */ vdev_load(rvd); /* * Propagate the leaf DTLs we just loaded all the way up the tree. */ spa_config_enter(spa, RW_WRITER, FTAG); vdev_dtl_reassess(rvd, 0, 0, B_FALSE); spa_config_exit(spa, FTAG); /* * Check the state of the root vdev. If it can't be opened, it * indicates one or more toplevel vdevs are faulted. */ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { error = ENXIO; goto out; } if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) { dmu_tx_t *tx; int need_update = B_FALSE; int c; /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. */ tx = dmu_tx_create_assigned(spa_get_dsl(spa), spa_first_txg(spa)); (void) dmu_objset_find(spa->spa_name, zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * Wait for all claims to sync. */ txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. */ if (config_cache_txg != spa->spa_config_txg || state == SPA_LOAD_IMPORT) need_update = B_TRUE; for (c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asychronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } error = 0; out: if (error && error != EBADF) zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0); spa->spa_load_state = SPA_LOAD_NONE; spa->spa_ena = 0; return (error); } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) { spa_t *spa; int error; int loaded = B_FALSE; int locked = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (mutex_owner(&spa_namespace_lock) != curthread) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (ENOENT); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { spa_activate(spa); error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ zfs_post_ok(spa, NULL); spa_unload(spa); spa_deactivate(spa); spa_remove(spa); spa_config_sync(); if (locked) mutex_exit(&spa_namespace_lock); return (ENOENT); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_root_vdev != NULL) { spa_config_enter(spa, RW_READER, FTAG); *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa, FTAG); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = B_TRUE; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } else { zfs_post_ok(spa, NULL); spa->spa_last_open_failed = B_FALSE; } loaded = B_TRUE; } spa_open_ref(spa, tag); if (locked) mutex_exit(&spa_namespace_lock); *spapp = spa; if (config != NULL) { spa_config_enter(spa, RW_READER, FTAG); *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa, FTAG); } /* * If we just loaded the pool, resilver anything that's out of date. */ if (loaded && (spa_mode & FWRITE)) VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); return (0); } int spa_open(const char *name, spa_t **spapp, void *tag) { return (spa_open_common(name, spapp, tag, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; if (spa->spa_nspares == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); if (nspares != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (spa_spare_exists(guid, &pool) && pool != 0ULL) { VERIFY(nvlist_lookup_uint64_array( spares[i], ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, config); if (spa && *config != NULL) { VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_get_errlog_size(spa)) == 0); spa_add_spares(spa, *config); } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) spa_close(spa, FTAG); return (error); } /* * Validate that the 'spares' array is well formed. We must have an array of * nvlists, each which describes a valid leaf vdev. If this is an import (mode * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long * as they are well-formed. */ static int spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { nvlist_t **spares; uint_t i, nspares; vdev_t *vd; int error; /* * It's acceptable to have no spares specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) return (0); if (nspares == 0) return (EINVAL); /* * Make sure the pool is formatted with a version that supports hot * spares. */ if (spa_version(spa) < ZFS_VERSION_SPARES) return (ENOTSUP); /* * Set the pending spare list so we correctly handle device in-use * checking. */ spa->spa_pending_spares = spares; spa->spa_pending_nspares = nspares; for (i = 0; i < nspares; i++) { if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = EINVAL; goto out; } vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, VDEV_LABEL_SPARE)) == 0) { VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } vdev_free(vd); if (error && mode != VDEV_ALLOC_SPARE) goto out; else error = 0; } out: spa->spa_pending_spares = NULL; spa->spa_pending_nspares = 0; return (error); } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, const char *altroot) { spa_t *spa; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int c, error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares; uint_t nspares; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (EEXIST); } /* * Allocate a new spa_t structure. */ spa = spa_add(pool, altroot); spa_activate(spa); spa->spa_uberblock.ub_txg = txg - 1; spa->spa_uberblock.ub_version = ZFS_VERSION; spa->spa_ubsync = spa->spa_uberblock; /* * Create the root vdev. */ spa_config_enter(spa, RW_WRITER, FTAG); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && rvd->vdev_children == 0) error = EINVAL; if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = spa_validate_spares(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { for (c = 0; c < rvd->vdev_children; c++) vdev_init(rvd->vdev_child[c], txg); vdev_config_dirty(rvd); } spa_config_exit(spa, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, RW_WRITER, FTAG); spa_load_spares(spa); spa_config_exit(spa, FTAG); spa->spa_sync_spares = B_TRUE; } spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg); spa->spa_meta_objset = dp->dp_meta_objset; tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } /* Newly created pools are always deflated. */ spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } /* * Create the deferred-free bplist object. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bplist"); } /* * Create the pool's history object. */ spa_history_create_obj(spa, tx); dmu_tx_commit(tx); spa->spa_bootfs = zfs_prop_default_numeric(ZFS_PROP_BOOTFS); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * We explicitly wait for the first transaction to complete so that our * bean counters are appropriately updated. */ txg_wait_synced(spa->spa_dsl_pool, txg); spa_config_sync(); mutex_exit(&spa_namespace_lock); return (0); } /* * Import the given pool into the system. We set up the necessary spa_t and * then call spa_load() to do the dirty work. */ int spa_import(const char *pool, nvlist_t *config, const char *altroot) { spa_t *spa; int error; nvlist_t *nvroot; nvlist_t **spares; uint_t nspares; if (!(spa_mode & FWRITE)) return (EROFS); /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (EEXIST); } /* * Create and initialize the spa structure. */ spa = spa_add(pool, altroot); spa_activate(spa); /* * Pass off the heavy lifting to spa_load(). * Pass TRUE for mosconfig because the user-supplied config * is actually the one to trust when doing an import. */ error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE); spa_config_enter(spa, RW_WRITER, FTAG); /* * Toss any existing sparelist, as it doesn't have any validity anymore, * and conflicts with spa_has_spare(). */ if (spa->spa_sparelist) { nvlist_free(spa->spa_sparelist); spa->spa_sparelist = NULL; spa_load_spares(spa); } VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (error == 0) error = spa_validate_spares(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); spa_config_exit(spa, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Override any spares as specified by the user, as these may have * correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_sparelist) VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, RW_WRITER, FTAG); spa_load_spares(spa); spa_config_exit(spa, FTAG); spa->spa_sync_spares = B_TRUE; } /* * Update the config cache to include the newly-imported pool. */ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); mutex_exit(&spa_namespace_lock); /* * Resilver anything that's out of date. */ if (spa_mode & FWRITE) VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); return (0); } /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname; spa_t *spa; uint64_t state; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, NULL); spa_activate(spa); /* * Pass off the heavy lifting to spa_load(). * Pass TRUE for mosconfig because the user-supplied config * is actually the one to trust when doing an import. */ (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { spa_config_enter(spa, RW_READER, FTAG); config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa, FTAG); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp) == 0); /* * Add the list of hot spares. */ spa_add_spares(spa, config); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. */ static int spa_export_common(char *pool, int new_state, nvlist_t **oldconfig) { spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode & FWRITE)) return (EROFS); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (ENOENT); } /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); /* * The pool will be in core if it's openable, * in which case we can modify its state. */ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { /* * Objsets may be open only because they're dirty, so we * have to force it to sync before checking spa_refcnt. */ spa_scrub_suspend(spa); txg_wait_synced(spa->spa_dsl_pool, 0); /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0 && new_state != POOL_STATE_UNINITIALIZED)) { spa_scrub_resume(spa); spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (EBUSY); } spa_scrub_resume(spa); VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED) { spa_config_enter(spa, RW_WRITER, FTAG); spa->spa_state = new_state; spa->spa_final_txg = spa_last_synced_txg(spa) + 1; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, FTAG); } } if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); if (new_state != POOL_STATE_UNINITIALIZED) { spa_remove(spa); spa_config_sync(); } mutex_exit(&spa_namespace_lock); return (0); } /* * Destroy a storage pool. */ int spa_destroy(char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL)); } /* * Export a storage pool. */ int spa_export(char *pool, nvlist_t **oldconfig) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * Add capacity to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg; int c, error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares; uint_t i, nspares; txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (vd->vdev_children == 0 && nspares == 0) { spa->spa_pending_vdev = NULL; return (spa_vdev_exit(spa, vd, txg, EINVAL)); } if (vd->vdev_children != 0) { if ((error = vdev_create(vd, txg, B_FALSE)) != 0) { spa->spa_pending_vdev = NULL; return (spa_vdev_exit(spa, vd, txg, error)); } } /* * We must validate the spares after checking the children. Otherwise, * vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_spares(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) { spa->spa_pending_vdev = NULL; return (spa_vdev_exit(spa, vd, txg, error)); } spa->spa_pending_vdev = NULL; /* * Transfer each new top-level vdev from vd to rvd. */ for (c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = rvd->vdev_children; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { if (spa->spa_sparelist != NULL) { nvlist_t **oldspares; uint_t oldnspares; nvlist_t **newspares; VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0); newspares = kmem_alloc(sizeof (void *) * (nspares + oldnspares), KM_SLEEP); for (i = 0; i < oldnspares; i++) VERIFY(nvlist_dup(oldspares[i], &newspares[i], KM_SLEEP) == 0); for (i = 0; i < nspares; i++) VERIFY(nvlist_dup(spares[i], &newspares[i + oldnspares], KM_SLEEP) == 0); VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, newspares, nspares + oldnspares) == 0); for (i = 0; i < oldnspares + nspares; i++) nvlist_free(newspares[i]); kmem_free(newspares, (oldnspares + nspares) * sizeof (void *)); } else { VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); } spa_load_spares(spa); spa->spa_sync_spares = B_TRUE; } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally idendical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) { uint64_t txg, open_txg; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; txg = spa_vdev_enter(spa); oldvd = vdev_lookup_by_guid(rvd, guid); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && pvd->vdev_child[1] == oldvd && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); else if (pvd->vdev_ops != &vdev_spare_ops && newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Compare the new device size with the replaceable/attachable * device size. */ if (newvd->vdev_psize < vdev_get_rsize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) sprintf(oldvd->vdev_path, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; vdev_add_child(pvd, newvd); /* * If newvd is smaller than oldvd, but larger than its rsize, * the addition of newvd may have decreased our parent's asize. */ pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate * upward when spa_vdev_exit() calls vdev_dtl_reassess(). */ open_txg = txg + TXG_CONCURRENT_STATES - 1; mutex_enter(&newvd->vdev_dtl_lock); space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, open_txg - TXG_INITIAL + 1); mutex_exit(&newvd->vdev_dtl_lock); if (newvd->vdev_isspare) spa_spare_activate(newvd); /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); /* * Kick off a resilver to update newvd. */ VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); return (0); } /* * Detach a device from a mirror or replacing vdev. * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done) { uint64_t txg; int c, t, error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid; txg = spa_vdev_enter(spa); vd = vdev_lookup_by_guid(rvd, guid); if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If replace_done is specified, only remove this device if it's * the first child of a replacing vdev. For the 'spare' vdev, either * disk can be removed. */ if (replace_done) { if (pvd->vdev_ops == &vdev_replacing_ops) { if (vd->vdev_id != 0) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); } else if (pvd->vdev_ops != &vdev_spare_ops) { return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); } } ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= ZFS_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If there's only one replica, you can't detach it. */ if (pvd->vdev_children <= 1) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * If all siblings have non-empty DTLs, this device may have the only * valid copy of the data, which means we cannot safely detach it. * * XXX -- as in the vdev_offline() case, we really want a more * precise DTL check. */ for (c = 0; c < pvd->vdev_children; c++) { uint64_t dirty; cvd = pvd->vdev_child[c]; if (cvd == vd) continue; if (vdev_is_dead(cvd)) continue; mutex_enter(&cvd->vdev_dtl_lock); dirty = cvd->vdev_dtl_map.sm_space | cvd->vdev_dtl_scrub.sm_space; mutex_exit(&cvd->vdev_dtl_lock); if (!dirty) break; } /* * If we are a replacing or spare vdev, then we can always detach the * latter child, as that is how one cancels the operation. */ if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) && c == pvd->vdev_children) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * If we are detaching the original disk from a spare, then it implies * that the spare should become a real disk, and be removed from the * active spare list for the pool. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) unspare = B_TRUE; /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[0]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. We * must do this before vdev_remove_parent(), because that can change the * GUID if it creates a new toplevel GUID. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) vdev_remove_parent(cvd); /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd->vdev_parent); /* * If the device we just detached was smaller than the others, it may be * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init() * can't fail because the existing metaslabs are already in core, so * there's nothing to read from disk. */ VERIFY(vdev_metaslab_init(tvd, txg) == 0); vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ for (t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); error = spa_vdev_exit(spa, vd, txg, 0); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa->spa_state != POOL_STATE_ACTIVE) continue; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); } mutex_exit(&spa_namespace_lock); } return (error); } /* * Remove a device from the pool. Currently, this supports removing only hot * spares. */ int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) { vdev_t *vd; nvlist_t **spares, *nv, **newspares; uint_t i, j, nspares; int ret = 0; spa_config_enter(spa, RW_WRITER, FTAG); vd = spa_lookup_by_guid(spa, guid); nv = NULL; if (spa->spa_spares != NULL && nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { for (i = 0; i < nspares; i++) { uint64_t theguid; VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &theguid) == 0); if (theguid == guid) { nv = spares[i]; break; } } } /* * We only support removing a hot spare, and only if it's not currently * in use in this pool. */ if (nv == NULL && vd == NULL) { ret = ENOENT; goto out; } if (nv == NULL && vd != NULL) { ret = ENOTSUP; goto out; } if (!unspare && nv != NULL && vd != NULL) { ret = EBUSY; goto out; } if (nspares == 1) { newspares = NULL; } else { newspares = kmem_alloc((nspares - 1) * sizeof (void *), KM_SLEEP); for (i = 0, j = 0; i < nspares; i++) { if (spares[i] != nv) VERIFY(nvlist_dup(spares[i], &newspares[j++], KM_SLEEP) == 0); } } VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0); for (i = 0; i < nspares - 1; i++) nvlist_free(newspares[i]); kmem_free(newspares, (nspares - 1) * sizeof (void *)); spa_load_spares(spa); spa->spa_sync_spares = B_TRUE; out: spa_config_exit(spa, FTAG); return (ret); } /* * Find any device that's done replacing, so we can detach it. */ static vdev_t * spa_vdev_replace_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; int c; for (c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { oldvd = vd->vdev_child[0]; newvd = vd->vdev_child[1]; mutex_enter(&newvd->vdev_dtl_lock); if (newvd->vdev_dtl_map.sm_space == 0 && newvd->vdev_dtl_scrub.sm_space == 0) { mutex_exit(&newvd->vdev_dtl_lock); return (oldvd); } mutex_exit(&newvd->vdev_dtl_lock); } return (NULL); } static void spa_vdev_replace_done(spa_t *spa) { vdev_t *vd; vdev_t *pvd; uint64_t guid; uint64_t pguid = 0; spa_config_enter(spa, RW_READER, FTAG); while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) { guid = vd->vdev_guid; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ pvd = vd->vdev_parent; if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); ASSERT(pvd->vdev_parent->vdev_children == 2); pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid; } spa_config_exit(spa, FTAG); if (spa_vdev_detach(spa, guid, B_TRUE) != 0) return; if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0) return; spa_config_enter(spa, RW_READER, FTAG); } spa_config_exit(spa, FTAG); } /* * Update the stored path for this vdev. Dirty the vdev configuration, relying * on spa_vdev_enter/exit() to synchronize the labels and cache. */ int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { vdev_t *rvd, *vd; uint64_t txg; rvd = spa->spa_root_vdev; txg = spa_vdev_enter(spa); if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) { /* * Determine if this is a reference to a hot spare. In that * case, update the path as stored in the spare list. */ nvlist_t **spares; uint_t i, nspares; if (spa->spa_sparelist != NULL) { VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); for (i = 0; i < nspares; i++) { uint64_t theguid; VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &theguid) == 0); if (theguid == guid) break; } if (i == nspares) return (spa_vdev_exit(spa, NULL, txg, ENOENT)); VERIFY(nvlist_add_string(spares[i], ZPOOL_CONFIG_PATH, newpath) == 0); spa_load_spares(spa); spa->spa_sync_spares = B_TRUE; return (spa_vdev_exit(spa, NULL, txg, 0)); } else { return (spa_vdev_exit(spa, NULL, txg, ENOENT)); } } if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(newpath); vdev_config_dirty(vd->vdev_top); return (spa_vdev_exit(spa, NULL, txg, 0)); } /* * ========================================================================== * SPA Scrubbing * ========================================================================== */ static void spa_scrub_io_done(zio_t *zio) { spa_t *spa = zio->io_spa; zio_data_buf_free(zio->io_data, zio->io_size); mutex_enter(&spa->spa_scrub_lock); if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev; spa->spa_scrub_errors++; mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_scrub_errors++; mutex_exit(&vd->vdev_stat_lock); } if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight) cv_broadcast(&spa->spa_scrub_io_cv); ASSERT(spa->spa_scrub_inflight >= 0); mutex_exit(&spa->spa_scrub_lock); } static void spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags, zbookmark_t *zb) { size_t size = BP_GET_LSIZE(bp); void *data; mutex_enter(&spa->spa_scrub_lock); /* * Do not give too much work to vdev(s). */ while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) { cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); } spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); data = zio_data_buf_alloc(size); if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET) flags |= ZIO_FLAG_SPECULATIVE; /* intent log block */ flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL; zio_nowait(zio_read(NULL, spa, bp, data, size, spa_scrub_io_done, NULL, priority, flags, zb)); } /* ARGSUSED */ static int spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a) { blkptr_t *bp = &bc->bc_blkptr; vdev_t *vd = spa->spa_root_vdev; dva_t *dva = bp->blk_dva; int needs_resilver = B_FALSE; int d; if (bc->bc_errno) { /* * We can't scrub this block, but we can continue to scrub * the rest of the pool. Note the error and move along. */ mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_errors++; mutex_exit(&spa->spa_scrub_lock); mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_scrub_errors++; mutex_exit(&vd->vdev_stat_lock); return (ERESTART); } ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg); for (d = 0; d < BP_GET_NDVAS(bp); d++) { vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d])); ASSERT(vd != NULL); /* * Keep track of how much data we've examined so that * zpool(1M) status can make useful progress reports. */ mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]); mutex_exit(&vd->vdev_stat_lock); if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) { if (DVA_GET_GANG(&dva[d])) { /* * Gang members may be spread across multiple * vdevs, so the best we can do is look at the * pool-wide DTL. * XXX -- it would be better to change our * allocation policy to ensure that this can't * happen. */ vd = spa->spa_root_vdev; } if (vdev_dtl_contains(&vd->vdev_dtl_map, bp->blk_birth, 1)) needs_resilver = B_TRUE; } } if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING) spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB, ZIO_FLAG_SCRUB, &bc->bc_bookmark); else if (needs_resilver) spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER, ZIO_FLAG_RESILVER, &bc->bc_bookmark); return (0); } static void spa_scrub_thread(spa_t *spa) { callb_cpr_t cprinfo; traverse_handle_t *th = spa->spa_scrub_th; vdev_t *rvd = spa->spa_root_vdev; pool_scrub_type_t scrub_type = spa->spa_scrub_type; int error = 0; boolean_t complete; CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG); /* * If we're restarting due to a snapshot create/delete, * wait for that to complete. */ txg_wait_synced(spa_get_dsl(spa), 0); dprintf("start %s mintxg=%llu maxtxg=%llu\n", scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg); spa_config_enter(spa, RW_WRITER, FTAG); vdev_reopen(rvd); /* purge all vdev caches */ vdev_config_dirty(rvd); /* rewrite all disk labels */ vdev_scrub_stat_update(rvd, scrub_type, B_FALSE); spa_config_exit(spa, FTAG); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_errors = 0; spa->spa_scrub_active = 1; ASSERT(spa->spa_scrub_inflight == 0); while (!spa->spa_scrub_stop) { CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_scrub_suspended) { spa->spa_scrub_active = 0; cv_broadcast(&spa->spa_scrub_cv); cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); spa->spa_scrub_active = 1; } CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock); if (spa->spa_scrub_restart_txg != 0) break; mutex_exit(&spa->spa_scrub_lock); error = traverse_more(th); mutex_enter(&spa->spa_scrub_lock); if (error != EAGAIN) break; } while (spa->spa_scrub_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_active = 0; cv_broadcast(&spa->spa_scrub_cv); mutex_exit(&spa->spa_scrub_lock); spa_config_enter(spa, RW_WRITER, FTAG); mutex_enter(&spa->spa_scrub_lock); /* * Note: we check spa_scrub_restart_txg under both spa_scrub_lock * AND the spa config lock to synchronize with any config changes * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit(). */ if (spa->spa_scrub_restart_txg != 0) error = ERESTART; if (spa->spa_scrub_stop) error = EINTR; /* * Even if there were uncorrectable errors, we consider the scrub * completed. The downside is that if there is a transient error during * a resilver, we won't resilver the data properly to the target. But * if the damage is permanent (more likely) we will resilver forever, * which isn't really acceptable. Since there is enough information for * the user to know what has failed and why, this seems like a more * tractable approach. */ complete = (error == 0); dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n", scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", spa->spa_scrub_maxtxg, complete ? "done" : "FAILED", error, spa->spa_scrub_errors, spa->spa_scrub_stop); mutex_exit(&spa->spa_scrub_lock); /* * If the scrub/resilver completed, update all DTLs to reflect this. * Whether it succeeded or not, vacate all temporary scrub DTLs. */ vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1, complete ? spa->spa_scrub_maxtxg : 0, B_TRUE); vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete); spa_errlog_rotate(spa); spa_config_exit(spa, FTAG); mutex_enter(&spa->spa_scrub_lock); /* * We may have finished replacing a device. * Let the async thread assess this and handle the detach. */ spa_async_request(spa, SPA_ASYNC_REPLACE_DONE); /* * If we were told to restart, our final act is to start a new scrub. */ if (error == ERESTART) spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ? SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB); spa->spa_scrub_type = POOL_SCRUB_NONE; spa->spa_scrub_active = 0; spa->spa_scrub_thread = NULL; cv_broadcast(&spa->spa_scrub_cv); CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */ thread_exit(); } void spa_scrub_suspend(spa_t *spa) { mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_suspended++; while (spa->spa_scrub_active) { cv_broadcast(&spa->spa_scrub_cv); cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); } while (spa->spa_scrub_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); mutex_exit(&spa->spa_scrub_lock); } void spa_scrub_resume(spa_t *spa) { mutex_enter(&spa->spa_scrub_lock); ASSERT(spa->spa_scrub_suspended != 0); if (--spa->spa_scrub_suspended == 0) cv_broadcast(&spa->spa_scrub_cv); mutex_exit(&spa->spa_scrub_lock); } void spa_scrub_restart(spa_t *spa, uint64_t txg) { /* * Something happened (e.g. snapshot create/delete) that means * we must restart any in-progress scrubs. The itinerary will * fix this properly. */ mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_restart_txg = txg; mutex_exit(&spa->spa_scrub_lock); } int spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force) { space_seg_t *ss; uint64_t mintxg, maxtxg; vdev_t *rvd = spa->spa_root_vdev; if ((uint_t)type >= POOL_SCRUB_TYPES) return (ENOTSUP); mutex_enter(&spa->spa_scrub_lock); /* * If there's a scrub or resilver already in progress, stop it. */ while (spa->spa_scrub_thread != NULL) { /* * Don't stop a resilver unless forced. */ if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) { mutex_exit(&spa->spa_scrub_lock); return (EBUSY); } spa->spa_scrub_stop = 1; cv_broadcast(&spa->spa_scrub_cv); cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); } /* * Terminate the previous traverse. */ if (spa->spa_scrub_th != NULL) { traverse_fini(spa->spa_scrub_th); spa->spa_scrub_th = NULL; } if (rvd == NULL) { ASSERT(spa->spa_scrub_stop == 0); ASSERT(spa->spa_scrub_type == type); ASSERT(spa->spa_scrub_restart_txg == 0); mutex_exit(&spa->spa_scrub_lock); return (0); } mintxg = TXG_INITIAL - 1; maxtxg = spa_last_synced_txg(spa) + 1; mutex_enter(&rvd->vdev_dtl_lock); if (rvd->vdev_dtl_map.sm_space == 0) { /* * The pool-wide DTL is empty. * If this is a resilver, there's nothing to do except * check whether any in-progress replacements have completed. */ if (type == POOL_SCRUB_RESILVER) { type = POOL_SCRUB_NONE; spa_async_request(spa, SPA_ASYNC_REPLACE_DONE); } } else { /* * The pool-wide DTL is non-empty. * If this is a normal scrub, upgrade to a resilver instead. */ if (type == POOL_SCRUB_EVERYTHING) type = POOL_SCRUB_RESILVER; } if (type == POOL_SCRUB_RESILVER) { /* * Determine the resilvering boundaries. * * Note: (mintxg, maxtxg) is an open interval, * i.e. mintxg and maxtxg themselves are not included. * * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1 * so we don't claim to resilver a txg that's still changing. */ ss = avl_first(&rvd->vdev_dtl_map.sm_root); mintxg = ss->ss_start - 1; ss = avl_last(&rvd->vdev_dtl_map.sm_root); maxtxg = MIN(ss->ss_end, maxtxg); } mutex_exit(&rvd->vdev_dtl_lock); spa->spa_scrub_stop = 0; spa->spa_scrub_type = type; spa->spa_scrub_restart_txg = 0; if (type != POOL_SCRUB_NONE) { spa->spa_scrub_mintxg = mintxg; spa->spa_scrub_maxtxg = maxtxg; spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL, ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL, ZIO_FLAG_CANFAIL); traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg); spa->spa_scrub_thread = thread_create(NULL, 0, spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri); } mutex_exit(&spa->spa_scrub_lock); return (0); } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_reopen(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd; int c; spa_config_enter(spa, RW_WRITER, FTAG); for (c = 0; c < rvd->vdev_children; c++) { tvd = rvd->vdev_child[c]; if (tvd->vdev_reopen_wanted) { tvd->vdev_reopen_wanted = 0; vdev_reopen(tvd); } } spa_config_exit(spa, FTAG); } static void spa_async_thread(spa_t *spa) { int tasks; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks = 0; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); mutex_exit(&spa_namespace_lock); } /* * See if any devices need to be reopened. */ if (tasks & SPA_ASYNC_REOPEN) spa_async_reopen(spa); /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_REPLACE_DONE) spa_vdev_replace_done(spa); /* * Kick off a scrub. */ if (tasks & SPA_ASYNC_SCRUB) VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0); /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER) VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa->spa_async_tasks && !spa->spa_async_suspended && spa->spa_async_thread == NULL && rootdir != NULL && !vn_is_readonly(rootdir)) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static void spa_sync_deferred_frees(spa_t *spa, uint64_t txg) { bplist_t *bpl = &spa->spa_sync_bplist; dmu_tx_t *tx; blkptr_t blk; uint64_t itor = 0; zio_t *zio; int error; uint8_t c = 1; zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); while (bplist_iterate(bpl, &itor, &blk) == 0) zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); error = zio_wait(zio); ASSERT3U(error, ==, 0); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); bplist_vacate(bpl, tx); /* * Pre-dirty the first block so we sync to convergence faster. * (Usually only the first block is needed.) */ dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); dmu_tx_commit(tx); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); packed = kmem_alloc(nvsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx); kmem_free(packed, nvsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_spares(spa_t *spa, dmu_tx_t *tx) { nvlist_t *nvroot; nvlist_t **spares; int i; if (!spa->spa_sync_spares) return; /* * Update the MOS nvlist describing the list of available spares. * spa_validate_spares() will have already made sure this nvlist is * valid and the vdevs are labelled appropriately. */ if (spa->spa_spares_object == 0) { spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0); } VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (spa->spa_nspares == 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, NULL, 0) == 0); } else { spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_nspares; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares[i], B_FALSE, B_TRUE); VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, spa->spa_nspares) == 0); for (i = 0; i < spa->spa_nspares; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_nspares * sizeof (void *)); } spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx); nvlist_free(nvroot); spa->spa_sync_spares = B_FALSE; } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; if (list_is_empty(&spa->spa_dirty_list)) return; config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); if (spa->spa_config_syncing) nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } static void spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) { spa_t *spa = arg1; nvlist_t *nvp = arg2; nvpair_t *nvpair; objset_t *mos = spa->spa_meta_objset; uint64_t zapobj; mutex_enter(&spa->spa_props_lock); if (spa->spa_pool_props_object == 0) { zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx); VERIFY(zapobj > 0); spa->spa_pool_props_object = zapobj; VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8, 1, &spa->spa_pool_props_object, tx) == 0); } mutex_exit(&spa->spa_props_lock); nvpair = NULL; while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) { switch (zpool_name_to_prop(nvpair_name(nvpair))) { case ZFS_PROP_BOOTFS: VERIFY(nvlist_lookup_uint64(nvp, nvpair_name(nvpair), &spa->spa_bootfs) == 0); VERIFY(zap_update(mos, spa->spa_pool_props_object, zpool_prop_to_name(ZFS_PROP_BOOTFS), 8, 1, &spa->spa_bootfs, tx) == 0); break; } } } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { dsl_pool_t *dp = spa->spa_dsl_pool; objset_t *mos = spa->spa_meta_objset; bplist_t *bpl = &spa->spa_sync_bplist; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd; dmu_tx_t *tx; int dirty_vdevs; /* * Lock out configuration changes. */ spa_config_enter(spa, RW_READER, FTAG); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); tx = dmu_tx_create_assigned(dp, txg); /* * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) { int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY(0 == zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } /* * If anything has changed in this txg, push the deferred frees * from the previous txg. If not, leave them alone so that we * don't generate work on an otherwise idle system. */ if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || !txg_list_empty(&dp->dp_dirty_dirs, txg) || !txg_list_empty(&dp->dp_sync_tasks, txg)) spa_sync_deferred_frees(spa, txg); /* * Iterate to convergence. */ do { spa->spa_sync_pass++; spa_sync_config_object(spa, tx); spa_sync_spares(spa, tx); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); dirty_vdevs = 0; while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { vdev_sync(vd, txg); dirty_vdevs++; } bplist_sync(bpl, tx); } while (dirty_vdevs); bplist_close(bpl); dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); /* * Rewrite the vdev configuration (which includes the uberblock) * to commit the transaction group. * * If there are any dirty vdevs, sync the uberblock to all vdevs. * Otherwise, pick a random top-level vdev that's known to be * visible in the config cache (see spa_vdev_add() for details). * If the write fails, try the next vdev until we're tried them all. */ if (!list_is_empty(&spa->spa_dirty_list)) { VERIFY(vdev_config_sync(rvd, txg) == 0); } else { int children = rvd->vdev_children; int c0 = spa_get_random(children); int c; for (c = 0; c < children; c++) { vd = rvd->vdev_child[(c0 + c) % children]; if (vd->vdev_ms_array == 0) continue; if (vdev_config_sync(vd, txg) == 0) break; } if (c == children) VERIFY(vdev_config_sync(rvd, txg) == 0); } dmu_tx_commit(tx); /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } /* * Make a stable copy of the fully synced uberblock. * We use this as the root for pool traversals. */ spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */ spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */ rw_enter(&spa->spa_traverse_lock, RW_WRITER); spa->spa_traverse_wanted = 0; spa->spa_ubsync = spa->spa_uberblock; rw_exit(&spa->spa_traverse_lock); spa_scrub_resume(spa); /* resume scrub with new ubsync */ /* * Clean up the ZIL records for the synced txg. */ dsl_pool_zil_clean(dp); /* * Update usable space statistics. */ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) vdev_sync_done(vd, txg); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); ASSERT(bpl->bpl_queue == NULL); spa_config_exit(spa, FTAG); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid) { return (vdev_lookup_by_guid(spa->spa_root_vdev, guid)); } void spa_upgrade(spa_t *spa) { spa_config_enter(spa, RW_WRITER, FTAG); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION); spa->spa_uberblock.ub_version = ZFS_VERSION; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { int i; uint64_t spareguid; for (i = 0; i < spa->spa_nspares; i++) if (spa->spa_spares[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < spa->spa_pending_nspares; i++) { if (nvlist_lookup_uint64(spa->spa_pending_spares[i], ZPOOL_CONFIG_GUID, &spareguid) == 0 && spareguid == guid) return (B_TRUE); } return (B_FALSE); } int spa_set_props(spa_t *spa, nvlist_t *nvp) { return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, spa, nvp, 3)); } int spa_get_props(spa_t *spa, nvlist_t **nvp) { zap_cursor_t zc; zap_attribute_t za; objset_t *mos = spa->spa_meta_objset; zfs_source_t src; zfs_prop_t prop; nvlist_t *propval; uint64_t value; int err; VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); mutex_enter(&spa->spa_props_lock); /* If no props object, then just return empty nvlist */ if (spa->spa_pool_props_object == 0) { mutex_exit(&spa->spa_props_lock); return (0); } for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL) continue; VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); switch (za.za_integer_length) { case 8: if (zfs_prop_default_numeric(prop) == za.za_first_integer) src = ZFS_SRC_DEFAULT; else src = ZFS_SRC_LOCAL; value = za.za_first_integer; if (prop == ZFS_PROP_BOOTFS) { dsl_pool_t *dp; dsl_dataset_t *ds = NULL; char strval[MAXPATHLEN]; dp = spa_get_dsl(spa); rw_enter(&dp->dp_config_rwlock, RW_READER); if ((err = dsl_dataset_open_obj(dp, za.za_first_integer, NULL, DS_MODE_NONE, FTAG, &ds)) != 0) { rw_exit(&dp->dp_config_rwlock); break; } dsl_dataset_name(ds, strval); dsl_dataset_close(ds, DS_MODE_NONE, FTAG); rw_exit(&dp->dp_config_rwlock); VERIFY(nvlist_add_uint64(propval, ZFS_PROP_SOURCE, src) == 0); VERIFY(nvlist_add_string(propval, ZFS_PROP_VALUE, strval) == 0); } else { VERIFY(nvlist_add_uint64(propval, ZFS_PROP_SOURCE, src) == 0); VERIFY(nvlist_add_uint64(propval, ZFS_PROP_VALUE, value) == 0); } VERIFY(nvlist_add_nvlist(*nvp, za.za_name, propval) == 0); break; } nvlist_free(propval); } zap_cursor_fini(&zc); mutex_exit(&spa->spa_props_lock); if (err && err != ENOENT) { nvlist_free(*nvp); return (err); } return (0); } /* * If the bootfs property value is dsobj, clear it. */ void spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZFS_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } }