/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { { byteswap_uint8_array, TRUE, "unallocated" }, { zap_byteswap, TRUE, "object directory" }, { byteswap_uint64_array, TRUE, "object array" }, { byteswap_uint8_array, TRUE, "packed nvlist" }, { byteswap_uint64_array, TRUE, "packed nvlist size" }, { byteswap_uint64_array, TRUE, "bplist" }, { byteswap_uint64_array, TRUE, "bplist header" }, { byteswap_uint64_array, TRUE, "SPA space map header" }, { byteswap_uint64_array, TRUE, "SPA space map" }, { byteswap_uint64_array, TRUE, "ZIL intent log" }, { dnode_buf_byteswap, TRUE, "DMU dnode" }, { dmu_objset_byteswap, TRUE, "DMU objset" }, { byteswap_uint64_array, TRUE, "DSL directory" }, { zap_byteswap, TRUE, "DSL directory child map"}, { zap_byteswap, TRUE, "DSL dataset snap map" }, { zap_byteswap, TRUE, "DSL props" }, { byteswap_uint64_array, TRUE, "DSL dataset" }, { zfs_znode_byteswap, TRUE, "ZFS znode" }, { zfs_acl_byteswap, TRUE, "ZFS ACL" }, { byteswap_uint8_array, FALSE, "ZFS plain file" }, { zap_byteswap, TRUE, "ZFS directory" }, { zap_byteswap, TRUE, "ZFS master node" }, { zap_byteswap, TRUE, "ZFS delete queue" }, { byteswap_uint8_array, FALSE, "zvol object" }, { zap_byteswap, TRUE, "zvol prop" }, { byteswap_uint8_array, FALSE, "other uint8[]" }, { byteswap_uint64_array, FALSE, "other uint64[]" }, { zap_byteswap, TRUE, "other ZAP" }, { zap_byteswap, TRUE, "persistent error log" }, }; int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, void *tag, dmu_buf_t **dbp) { dnode_t *dn; uint64_t blkid; dmu_buf_impl_t *db; int err; err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); blkid = dbuf_whichblock(dn, offset); rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold(dn, blkid, tag); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) { err = EIO; } else { err = dbuf_read(db, NULL, DB_RF_CANFAIL); if (err) { dbuf_rele(db, tag); db = NULL; } } dnode_rele(dn, FTAG); *dbp = &db->db; return (err); } int dmu_bonus_max(void) { return (DN_MAX_BONUSLEN); } /* * returns ENOENT, EIO, or 0. */ int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) { dnode_t *dn; int err, count; dmu_buf_impl_t *db; err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_bonus == NULL) { rw_exit(&dn->dn_struct_rwlock); rw_enter(&dn->dn_struct_rwlock, RW_WRITER); if (dn->dn_bonus == NULL) dn->dn_bonus = dbuf_create_bonus(dn); } db = dn->dn_bonus; rw_exit(&dn->dn_struct_rwlock); mutex_enter(&db->db_mtx); count = refcount_add(&db->db_holds, tag); mutex_exit(&db->db_mtx); if (count == 1) dnode_add_ref(dn, db); dnode_rele(dn, FTAG); VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); *dbp = &db->db; return (0); } /* * Note: longer-term, we should modify all of the dmu_buf_*() interfaces * to take a held dnode rather than -- the lookup is wasteful, * and can induce severe lock contention when writing to several files * whose dnodes are in the same block. */ static int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dmu_buf_t **dbp; uint64_t blkid, nblks, i; uint32_t flags; int err; zio_t *zio; ASSERT(length <= DMU_MAX_ACCESS); flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT; if (length > zfetch_array_rd_sz) flags |= DB_RF_NOPREFETCH; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_datablkshift) { int blkshift = dn->dn_datablkshift; nblks = (P2ROUNDUP(offset+length, 1ULL<> blkshift; } else { ASSERT3U(offset + length, <=, dn->dn_datablksz); nblks = 1; } dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, TRUE); blkid = dbuf_whichblock(dn, offset); for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); if (db == NULL) { rw_exit(&dn->dn_struct_rwlock); dmu_buf_rele_array(dbp, nblks, tag); zio_nowait(zio); return (EIO); } /* initiate async i/o */ if (read) { rw_exit(&dn->dn_struct_rwlock); (void) dbuf_read(db, zio, flags); rw_enter(&dn->dn_struct_rwlock, RW_READER); } dbp[i] = &db->db; } rw_exit(&dn->dn_struct_rwlock); /* wait for async i/o */ err = zio_wait(zio); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } /* wait for other io to complete */ if (read) { for (i = 0; i < nblks; i++) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; mutex_enter(&db->db_mtx); while (db->db_state == DB_READ || db->db_state == DB_FILL) cv_wait(&db->db_changed, &db->db_mtx); if (db->db_state == DB_UNCACHED) err = EIO; mutex_exit(&db->db_mtx); if (err) { dmu_buf_rele_array(dbp, nblks, tag); return (err); } } } *numbufsp = nblks; *dbpp = dbp; return (0); } int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dnode_t *dn; int err; err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp); dnode_rele(dn, FTAG); return (err); } int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) { dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; int err; err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, numbufsp, dbpp); return (err); } void dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) { int i; dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; if (numbufs == 0) return; for (i = 0; i < numbufs; i++) { if (dbp[i]) dbuf_rele(dbp[i], tag); } kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); } void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) { dnode_t *dn; uint64_t blkid; int nblks, i, err; if (len == 0) { /* they're interested in the bonus buffer */ dn = os->os->os_meta_dnode; if (object == 0 || object >= DN_MAX_OBJECT) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); dbuf_prefetch(dn, blkid); rw_exit(&dn->dn_struct_rwlock); return; } /* * XXX - Note, if the dnode for the requested object is not * already cached, we will do a *synchronous* read in the * dnode_hold() call. The same is true for any indirects. */ err = dnode_hold(os->os, object, FTAG, &dn); if (err != 0) return; rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_datablkshift) { int blkshift = dn->dn_datablkshift; nblks = (P2ROUNDUP(offset+len, 1<> blkshift; } else { nblks = (offset < dn->dn_datablksz); } if (nblks != 0) { blkid = dbuf_whichblock(dn, offset); for (i = 0; i < nblks; i++) dbuf_prefetch(dn, blkid+i); } rw_exit(&dn->dn_struct_rwlock); dnode_rele(dn, FTAG); } int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, dmu_tx_t *tx) { dnode_t *dn; int err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); ASSERT(offset < UINT64_MAX); ASSERT(size == -1ULL || size <= UINT64_MAX - offset); dnode_free_range(dn, offset, size, tx); dnode_rele(dn, FTAG); return (0); } int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, void *buf) { dnode_t *dn; dmu_buf_t **dbp; int numbufs, i, err; /* * Deal with odd block sizes, where there can't be data past the * first block. */ err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); if (dn->dn_datablkshift == 0) { int newsz = offset > dn->dn_datablksz ? 0 : MIN(size, dn->dn_datablksz - offset); bzero((char *)buf + newsz, size - newsz); size = newsz; } dnode_rele(dn, FTAG); while (size > 0) { uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); int err; /* * NB: we could do this block-at-a-time, but it's nice * to be reading in parallel. */ err = dmu_buf_hold_array(os, object, offset, mylen, TRUE, FTAG, &numbufs, &dbp); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); bcopy((char *)db->db_data + bufoff, buf, tocpy); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } return (0); } void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, const void *buf, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; if (size == 0) return; VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp)); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); bcopy(buf, (char *)db->db_data + bufoff, tocpy); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); offset += tocpy; size -= tocpy; buf = (char *)buf + tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); } #ifdef _KERNEL int dmu_write_uio(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, uio_t *uio, dmu_tx_t *tx) { dmu_buf_t **dbp; int numbufs, i; int err = 0; if (size == 0) return (0); err = dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, &numbufs, &dbp); if (err) return (err); for (i = 0; i < numbufs; i++) { int tocpy; int bufoff; dmu_buf_t *db = dbp[i]; ASSERT(size > 0); bufoff = offset - db->db_offset; tocpy = (int)MIN(db->db_size - bufoff, size); ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); if (tocpy == db->db_size) dmu_buf_will_fill(db, tx); else dmu_buf_will_dirty(db, tx); /* * XXX uiomove could block forever (eg. nfs-backed * pages). There needs to be a uiolockdown() function * to lock the pages in memory, so that uiomove won't * block. */ err = uiomove((char *)db->db_data + bufoff, tocpy, UIO_WRITE, uio); if (tocpy == db->db_size) dmu_buf_fill_done(db, tx); if (err) break; offset += tocpy; size -= tocpy; } dmu_buf_rele_array(dbp, numbufs, FTAG); return (err); } #endif /* * XXX move send/recv stuff to its own new file! */ struct backuparg { dmu_replay_record_t *drr; vnode_t *vp; objset_t *os; zio_cksum_t zc; int err; }; static int dump_bytes(struct backuparg *ba, void *buf, int len) { ssize_t resid; /* have to get resid to get detailed errno */ ASSERT3U(len % 8, ==, 0); fletcher_4_incremental_native(buf, len, &ba->zc); ba->err = vn_rdwr(UIO_WRITE, ba->vp, (caddr_t)buf, len, 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); return (ba->err); } static int dump_free(struct backuparg *ba, uint64_t object, uint64_t offset, uint64_t length) { /* write a FREE record */ bzero(ba->drr, sizeof (dmu_replay_record_t)); ba->drr->drr_type = DRR_FREE; ba->drr->drr_u.drr_free.drr_object = object; ba->drr->drr_u.drr_free.drr_offset = offset; ba->drr->drr_u.drr_free.drr_length = length; if (dump_bytes(ba, ba->drr, sizeof (dmu_replay_record_t))) return (EINTR); return (0); } static int dump_data(struct backuparg *ba, dmu_object_type_t type, uint64_t object, uint64_t offset, int blksz, void *data) { /* write a DATA record */ bzero(ba->drr, sizeof (dmu_replay_record_t)); ba->drr->drr_type = DRR_WRITE; ba->drr->drr_u.drr_write.drr_object = object; ba->drr->drr_u.drr_write.drr_type = type; ba->drr->drr_u.drr_write.drr_offset = offset; ba->drr->drr_u.drr_write.drr_length = blksz; if (dump_bytes(ba, ba->drr, sizeof (dmu_replay_record_t))) return (EINTR); if (dump_bytes(ba, data, blksz)) return (EINTR); return (0); } static int dump_freeobjects(struct backuparg *ba, uint64_t firstobj, uint64_t numobjs) { /* write a FREEOBJECTS record */ bzero(ba->drr, sizeof (dmu_replay_record_t)); ba->drr->drr_type = DRR_FREEOBJECTS; ba->drr->drr_u.drr_freeobjects.drr_firstobj = firstobj; ba->drr->drr_u.drr_freeobjects.drr_numobjs = numobjs; if (dump_bytes(ba, ba->drr, sizeof (dmu_replay_record_t))) return (EINTR); return (0); } static int dump_dnode(struct backuparg *ba, uint64_t object, dnode_phys_t *dnp) { if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) return (dump_freeobjects(ba, object, 1)); /* write an OBJECT record */ bzero(ba->drr, sizeof (dmu_replay_record_t)); ba->drr->drr_type = DRR_OBJECT; ba->drr->drr_u.drr_object.drr_object = object; ba->drr->drr_u.drr_object.drr_type = dnp->dn_type; ba->drr->drr_u.drr_object.drr_bonustype = dnp->dn_bonustype; ba->drr->drr_u.drr_object.drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; ba->drr->drr_u.drr_object.drr_bonuslen = dnp->dn_bonuslen; ba->drr->drr_u.drr_object.drr_checksum = dnp->dn_checksum; ba->drr->drr_u.drr_object.drr_compress = dnp->dn_compress; if (dump_bytes(ba, ba->drr, sizeof (dmu_replay_record_t))) return (EINTR); if (dump_bytes(ba, DN_BONUS(dnp), P2ROUNDUP(dnp->dn_bonuslen, 8))) return (EINTR); /* free anything past the end of the file */ if (dump_free(ba, object, (dnp->dn_maxblkid + 1) * (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL)) return (EINTR); if (ba->err) return (EINTR); return (0); } #define BP_SPAN(dnp, level) \ (((uint64_t)dnp->dn_datablkszsec) << (SPA_MINBLOCKSHIFT + \ (level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) static int backup_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg) { struct backuparg *ba = arg; uint64_t object = bc->bc_bookmark.zb_object; int level = bc->bc_bookmark.zb_level; uint64_t blkid = bc->bc_bookmark.zb_blkid; blkptr_t *bp = bc->bc_blkptr.blk_birth ? &bc->bc_blkptr : NULL; dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; void *data = bc->bc_data; int err = 0; if (issig(JUSTLOOKING) && issig(FORREAL)) return (EINTR); ASSERT(data || bp == NULL); if (bp == NULL && object == 0) { uint64_t span = BP_SPAN(bc->bc_dnode, level); uint64_t dnobj = (blkid * span) >> DNODE_SHIFT; err = dump_freeobjects(ba, dnobj, span >> DNODE_SHIFT); } else if (bp == NULL) { uint64_t span = BP_SPAN(bc->bc_dnode, level); err = dump_free(ba, object, blkid * span, span); } else if (data && level == 0 && type == DMU_OT_DNODE) { dnode_phys_t *blk = data; int i; int blksz = BP_GET_LSIZE(bp); for (i = 0; i < blksz >> DNODE_SHIFT; i++) { uint64_t dnobj = (blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)) + i; err = dump_dnode(ba, dnobj, blk+i); if (err) break; } } else if (level == 0 && type != DMU_OT_DNODE && type != DMU_OT_OBJSET) { int blksz = BP_GET_LSIZE(bp); if (data == NULL) { uint32_t aflags = ARC_WAIT; arc_buf_t *abuf; zbookmark_t zb; zb.zb_objset = ba->os->os->os_dsl_dataset->ds_object; zb.zb_object = object; zb.zb_level = level; zb.zb_blkid = blkid; (void) arc_read(NULL, spa, bp, dmu_ot[type].ot_byteswap, arc_getbuf_func, &abuf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_MUSTSUCCEED, &aflags, &zb); if (abuf) { err = dump_data(ba, type, object, blkid * blksz, blksz, abuf->b_data); (void) arc_buf_remove_ref(abuf, &abuf); } } else { err = dump_data(ba, type, object, blkid * blksz, blksz, data); } } ASSERT(err == 0 || err == EINTR); return (err); } int dmu_sendbackup(objset_t *tosnap, objset_t *fromsnap, vnode_t *vp) { dsl_dataset_t *ds = tosnap->os->os_dsl_dataset; dsl_dataset_t *fromds = fromsnap ? fromsnap->os->os_dsl_dataset : NULL; dmu_replay_record_t *drr; struct backuparg ba; int err; /* tosnap must be a snapshot */ if (ds->ds_phys->ds_next_snap_obj == 0) return (EINVAL); /* fromsnap must be an earlier snapshot from the same fs as tosnap */ if (fromds && (ds->ds_dir != fromds->ds_dir || fromds->ds_phys->ds_creation_txg >= ds->ds_phys->ds_creation_txg)) return (EXDEV); drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); drr->drr_type = DRR_BEGIN; drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; drr->drr_u.drr_begin.drr_version = DMU_BACKUP_VERSION; drr->drr_u.drr_begin.drr_creation_time = ds->ds_phys->ds_creation_time; drr->drr_u.drr_begin.drr_type = tosnap->os->os_phys->os_type; drr->drr_u.drr_begin.drr_toguid = ds->ds_phys->ds_guid; if (fromds) drr->drr_u.drr_begin.drr_fromguid = fromds->ds_phys->ds_guid; dsl_dataset_name(ds, drr->drr_u.drr_begin.drr_toname); ba.drr = drr; ba.vp = vp; ba.os = tosnap; ZIO_SET_CHECKSUM(&ba.zc, 0, 0, 0, 0); if (dump_bytes(&ba, drr, sizeof (dmu_replay_record_t))) { kmem_free(drr, sizeof (dmu_replay_record_t)); return (ba.err); } err = traverse_dsl_dataset(ds, fromds ? fromds->ds_phys->ds_creation_txg : 0, ADVANCE_PRE | ADVANCE_HOLES | ADVANCE_DATA | ADVANCE_NOLOCK, backup_cb, &ba); if (err) { if (err == EINTR && ba.err) err = ba.err; return (err); } bzero(drr, sizeof (dmu_replay_record_t)); drr->drr_type = DRR_END; drr->drr_u.drr_end.drr_checksum = ba.zc; if (dump_bytes(&ba, drr, sizeof (dmu_replay_record_t))) return (ba.err); kmem_free(drr, sizeof (dmu_replay_record_t)); return (0); } struct restorearg { int err; int byteswap; vnode_t *vp; char *buf; uint64_t voff; int buflen; /* number of valid bytes in buf */ int bufoff; /* next offset to read */ int bufsize; /* amount of memory allocated for buf */ zio_cksum_t zc; }; /* ARGSUSED */ static int replay_incremental_check(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; struct drr_begin *drrb = arg2; const char *snapname; int err; uint64_t val; /* must already be a snapshot of this fs */ if (ds->ds_phys->ds_prev_snap_obj == 0) return (ENODEV); /* most recent snapshot must match fromguid */ if (ds->ds_prev->ds_phys->ds_guid != drrb->drr_fromguid) return (ENODEV); /* must not have any changes since most recent snapshot */ if (ds->ds_phys->ds_bp.blk_birth > ds->ds_prev->ds_phys->ds_creation_txg) return (ETXTBSY); /* new snapshot name must not exist */ snapname = strrchr(drrb->drr_toname, '@'); if (snapname == NULL) return (EEXIST); snapname++; err = zap_lookup(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_phys->ds_snapnames_zapobj, snapname, 8, 1, &val); if (err == 0) return (EEXIST); if (err != ENOENT) return (err); return (0); } /* ARGSUSED */ static void replay_incremental_sync(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dataset_t *ds = arg1; dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_flags |= DS_FLAG_INCONSISTENT; } /* ARGSUSED */ static int replay_full_check(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dir_t *dd = arg1; struct drr_begin *drrb = arg2; objset_t *mos = dd->dd_pool->dp_meta_objset; char *cp; uint64_t val; int err; cp = strchr(drrb->drr_toname, '@'); *cp = '\0'; err = zap_lookup(mos, dd->dd_phys->dd_child_dir_zapobj, strrchr(drrb->drr_toname, '/') + 1, sizeof (uint64_t), 1, &val); *cp = '@'; if (err != ENOENT) return (err ? err : EEXIST); return (0); } static void replay_full_sync(void *arg1, void *arg2, dmu_tx_t *tx) { dsl_dir_t *dd = arg1; struct drr_begin *drrb = arg2; char *cp; dsl_dataset_t *ds; uint64_t dsobj; cp = strchr(drrb->drr_toname, '@'); *cp = '\0'; dsobj = dsl_dataset_create_sync(dd, strrchr(drrb->drr_toname, '/') + 1, NULL, tx); *cp = '@'; VERIFY(0 == dsl_dataset_open_obj(dd->dd_pool, dsobj, NULL, DS_MODE_EXCLUSIVE, FTAG, &ds)); (void) dmu_objset_create_impl(dsl_dataset_get_spa(ds), ds, drrb->drr_type, tx); dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_flags |= DS_FLAG_INCONSISTENT; dsl_dataset_close(ds, DS_MODE_EXCLUSIVE, FTAG); } static int replay_end_check(void *arg1, void *arg2, dmu_tx_t *tx) { objset_t *os = arg1; struct drr_begin *drrb = arg2; char *snapname; /* XXX verify that drr_toname is in dd */ snapname = strchr(drrb->drr_toname, '@'); if (snapname == NULL) return (EINVAL); snapname++; return (dsl_dataset_snapshot_check(os, snapname, tx)); } static void replay_end_sync(void *arg1, void *arg2, dmu_tx_t *tx) { objset_t *os = arg1; struct drr_begin *drrb = arg2; char *snapname; dsl_dataset_t *ds, *hds; snapname = strchr(drrb->drr_toname, '@') + 1; dsl_dataset_snapshot_sync(os, snapname, tx); /* set snapshot's creation time and guid */ hds = os->os->os_dsl_dataset; VERIFY(0 == dsl_dataset_open_obj(hds->ds_dir->dd_pool, hds->ds_phys->ds_prev_snap_obj, NULL, DS_MODE_PRIMARY | DS_MODE_READONLY | DS_MODE_INCONSISTENT, FTAG, &ds)); dmu_buf_will_dirty(ds->ds_dbuf, tx); ds->ds_phys->ds_creation_time = drrb->drr_creation_time; ds->ds_phys->ds_guid = drrb->drr_toguid; ds->ds_phys->ds_flags &= ~DS_FLAG_INCONSISTENT; dsl_dataset_close(ds, DS_MODE_PRIMARY, FTAG); dmu_buf_will_dirty(hds->ds_dbuf, tx); hds->ds_phys->ds_flags &= ~DS_FLAG_INCONSISTENT; } void * restore_read(struct restorearg *ra, int len) { void *rv; /* some things will require 8-byte alignment, so everything must */ ASSERT3U(len % 8, ==, 0); while (ra->buflen - ra->bufoff < len) { ssize_t resid; int leftover = ra->buflen - ra->bufoff; (void) memmove(ra->buf, ra->buf + ra->bufoff, leftover); ra->err = vn_rdwr(UIO_READ, ra->vp, (caddr_t)ra->buf + leftover, ra->bufsize - leftover, ra->voff, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); ra->voff += ra->bufsize - leftover - resid; ra->buflen = ra->bufsize - resid; ra->bufoff = 0; if (resid == ra->bufsize - leftover) ra->err = EINVAL; if (ra->err) return (NULL); /* Could compute checksum here? */ } ASSERT3U(ra->bufoff % 8, ==, 0); ASSERT3U(ra->buflen - ra->bufoff, >=, len); rv = ra->buf + ra->bufoff; ra->bufoff += len; if (ra->byteswap) fletcher_4_incremental_byteswap(rv, len, &ra->zc); else fletcher_4_incremental_native(rv, len, &ra->zc); return (rv); } static void backup_byteswap(dmu_replay_record_t *drr) { #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) drr->drr_type = BSWAP_32(drr->drr_type); switch (drr->drr_type) { case DRR_BEGIN: DO64(drr_begin.drr_magic); DO64(drr_begin.drr_version); DO64(drr_begin.drr_creation_time); DO32(drr_begin.drr_type); DO64(drr_begin.drr_toguid); DO64(drr_begin.drr_fromguid); break; case DRR_OBJECT: DO64(drr_object.drr_object); /* DO64(drr_object.drr_allocation_txg); */ DO32(drr_object.drr_type); DO32(drr_object.drr_bonustype); DO32(drr_object.drr_blksz); DO32(drr_object.drr_bonuslen); break; case DRR_FREEOBJECTS: DO64(drr_freeobjects.drr_firstobj); DO64(drr_freeobjects.drr_numobjs); break; case DRR_WRITE: DO64(drr_write.drr_object); DO32(drr_write.drr_type); DO64(drr_write.drr_offset); DO64(drr_write.drr_length); break; case DRR_FREE: DO64(drr_free.drr_object); DO64(drr_free.drr_offset); DO64(drr_free.drr_length); break; case DRR_END: DO64(drr_end.drr_checksum.zc_word[0]); DO64(drr_end.drr_checksum.zc_word[1]); DO64(drr_end.drr_checksum.zc_word[2]); DO64(drr_end.drr_checksum.zc_word[3]); break; } #undef DO64 #undef DO32 } static int restore_object(struct restorearg *ra, objset_t *os, struct drr_object *drro) { int err; dmu_tx_t *tx; err = dmu_object_info(os, drro->drr_object, NULL); if (err != 0 && err != ENOENT) return (EINVAL); if (drro->drr_type == DMU_OT_NONE || drro->drr_type >= DMU_OT_NUMTYPES || drro->drr_bonustype >= DMU_OT_NUMTYPES || drro->drr_checksum >= ZIO_CHECKSUM_FUNCTIONS || drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || drro->drr_blksz < SPA_MINBLOCKSIZE || drro->drr_blksz > SPA_MAXBLOCKSIZE || drro->drr_bonuslen > DN_MAX_BONUSLEN) { return (EINVAL); } tx = dmu_tx_create(os); if (err == ENOENT) { /* currently free, want to be allocated */ dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } err = dmu_object_claim(os, drro->drr_object, drro->drr_type, drro->drr_blksz, drro->drr_bonustype, drro->drr_bonuslen, tx); } else { /* currently allocated, want to be allocated */ dmu_tx_hold_bonus(tx, drro->drr_object); /* * We may change blocksize, so need to * hold_write */ dmu_tx_hold_write(tx, drro->drr_object, 0, 1); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } err = dmu_object_reclaim(os, drro->drr_object, drro->drr_type, drro->drr_blksz, drro->drr_bonustype, drro->drr_bonuslen, tx); } if (err) { dmu_tx_commit(tx); return (EINVAL); } dmu_object_set_checksum(os, drro->drr_object, drro->drr_checksum, tx); dmu_object_set_compress(os, drro->drr_object, drro->drr_compress, tx); if (drro->drr_bonuslen) { dmu_buf_t *db; void *data; VERIFY(0 == dmu_bonus_hold(os, drro->drr_object, FTAG, &db)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, ==, drro->drr_bonuslen); data = restore_read(ra, P2ROUNDUP(db->db_size, 8)); if (data == NULL) { dmu_tx_commit(tx); return (ra->err); } bcopy(data, db->db_data, db->db_size); if (ra->byteswap) { dmu_ot[drro->drr_bonustype].ot_byteswap(db->db_data, drro->drr_bonuslen); } dmu_buf_rele(db, FTAG); } dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int restore_freeobjects(struct restorearg *ra, objset_t *os, struct drr_freeobjects *drrfo) { uint64_t obj; if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) return (EINVAL); for (obj = drrfo->drr_firstobj; obj < drrfo->drr_firstobj + drrfo->drr_numobjs; obj++) { dmu_tx_t *tx; int err; if (dmu_object_info(os, obj, NULL) != 0) continue; tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, obj); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } err = dmu_object_free(os, obj, tx); dmu_tx_commit(tx); if (err && err != ENOENT) return (EINVAL); } return (0); } static int restore_write(struct restorearg *ra, objset_t *os, struct drr_write *drrw) { dmu_tx_t *tx; void *data; int err; if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || drrw->drr_type >= DMU_OT_NUMTYPES) return (EINVAL); data = restore_read(ra, drrw->drr_length); if (data == NULL) return (ra->err); if (dmu_object_info(os, drrw->drr_object, NULL) != 0) return (EINVAL); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, drrw->drr_object, drrw->drr_offset, drrw->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } if (ra->byteswap) dmu_ot[drrw->drr_type].ot_byteswap(data, drrw->drr_length); dmu_write(os, drrw->drr_object, drrw->drr_offset, drrw->drr_length, data, tx); dmu_tx_commit(tx); return (0); } /* ARGSUSED */ static int restore_free(struct restorearg *ra, objset_t *os, struct drr_free *drrf) { dmu_tx_t *tx; int err; if (drrf->drr_length != -1ULL && drrf->drr_offset + drrf->drr_length < drrf->drr_offset) return (EINVAL); if (dmu_object_info(os, drrf->drr_object, NULL) != 0) return (EINVAL); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, drrf->drr_object, drrf->drr_offset, drrf->drr_length); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } err = dmu_free_range(os, drrf->drr_object, drrf->drr_offset, drrf->drr_length, tx); dmu_tx_commit(tx); return (err); } int dmu_recvbackup(char *tosnap, struct drr_begin *drrb, uint64_t *sizep, vnode_t *vp, uint64_t voffset) { struct restorearg ra; dmu_replay_record_t *drr; char *cp; objset_t *os = NULL; zio_cksum_t pzc; bzero(&ra, sizeof (ra)); ra.vp = vp; ra.voff = voffset; ra.bufsize = 1<<20; ra.buf = kmem_alloc(ra.bufsize, KM_SLEEP); if (drrb->drr_magic == DMU_BACKUP_MAGIC) { ra.byteswap = FALSE; } else if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { ra.byteswap = TRUE; } else { ra.err = EINVAL; goto out; } /* * NB: this assumes that struct drr_begin will be the largest in * dmu_replay_record_t's drr_u, and thus we don't need to pad it * with zeros to make it the same length as we wrote out. */ ((dmu_replay_record_t *)ra.buf)->drr_type = DRR_BEGIN; ((dmu_replay_record_t *)ra.buf)->drr_pad = 0; ((dmu_replay_record_t *)ra.buf)->drr_u.drr_begin = *drrb; if (ra.byteswap) { fletcher_4_incremental_byteswap(ra.buf, sizeof (dmu_replay_record_t), &ra.zc); } else { fletcher_4_incremental_native(ra.buf, sizeof (dmu_replay_record_t), &ra.zc); } (void) strcpy(drrb->drr_toname, tosnap); /* for the sync funcs */ if (ra.byteswap) { drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_version = BSWAP_64(drrb->drr_version); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); if (drrb->drr_version != DMU_BACKUP_VERSION || drrb->drr_type >= DMU_OST_NUMTYPES || strchr(drrb->drr_toname, '@') == NULL) { ra.err = EINVAL; goto out; } /* * Process the begin in syncing context. */ if (drrb->drr_fromguid) { /* incremental backup */ dsl_dataset_t *ds = NULL; cp = strchr(tosnap, '@'); *cp = '\0'; ra.err = dsl_dataset_open(tosnap, DS_MODE_EXCLUSIVE, FTAG, &ds); *cp = '@'; if (ra.err) goto out; ra.err = dsl_sync_task_do(ds->ds_dir->dd_pool, replay_incremental_check, replay_incremental_sync, ds, drrb, 1); dsl_dataset_close(ds, DS_MODE_EXCLUSIVE, FTAG); } else { /* full backup */ dsl_dir_t *dd = NULL; const char *tail; /* can't restore full backup into topmost fs, for now */ if (strrchr(drrb->drr_toname, '/') == NULL) { ra.err = EINVAL; goto out; } cp = strchr(tosnap, '@'); *cp = '\0'; ra.err = dsl_dir_open(tosnap, FTAG, &dd, &tail); *cp = '@'; if (ra.err) goto out; if (tail == NULL) { ra.err = EEXIST; goto out; } ra.err = dsl_sync_task_do(dd->dd_pool, replay_full_check, replay_full_sync, dd, drrb, 5); dsl_dir_close(dd, FTAG); } if (ra.err) goto out; /* * Open the objset we are modifying. */ cp = strchr(tosnap, '@'); *cp = '\0'; ra.err = dmu_objset_open(tosnap, DMU_OST_ANY, DS_MODE_PRIMARY | DS_MODE_INCONSISTENT, &os); *cp = '@'; ASSERT3U(ra.err, ==, 0); /* * Read records and process them. */ pzc = ra.zc; while (ra.err == 0 && NULL != (drr = restore_read(&ra, sizeof (*drr)))) { if (issig(JUSTLOOKING) && issig(FORREAL)) { ra.err = EINTR; goto out; } if (ra.byteswap) backup_byteswap(drr); switch (drr->drr_type) { case DRR_OBJECT: { /* * We need to make a copy of the record header, * because restore_{object,write} may need to * restore_read(), which will invalidate drr. */ struct drr_object drro = drr->drr_u.drr_object; ra.err = restore_object(&ra, os, &drro); break; } case DRR_FREEOBJECTS: { struct drr_freeobjects drrfo = drr->drr_u.drr_freeobjects; ra.err = restore_freeobjects(&ra, os, &drrfo); break; } case DRR_WRITE: { struct drr_write drrw = drr->drr_u.drr_write; ra.err = restore_write(&ra, os, &drrw); break; } case DRR_FREE: { struct drr_free drrf = drr->drr_u.drr_free; ra.err = restore_free(&ra, os, &drrf); break; } case DRR_END: { struct drr_end drre = drr->drr_u.drr_end; /* * We compare against the *previous* checksum * value, because the stored checksum is of * everything before the DRR_END record. */ if (drre.drr_checksum.zc_word[0] != 0 && ((drre.drr_checksum.zc_word[0] - pzc.zc_word[0]) | (drre.drr_checksum.zc_word[1] - pzc.zc_word[1]) | (drre.drr_checksum.zc_word[2] - pzc.zc_word[2]) | (drre.drr_checksum.zc_word[3] - pzc.zc_word[3]))) { ra.err = ECKSUM; goto out; } ra.err = dsl_sync_task_do(dmu_objset_ds(os)-> ds_dir->dd_pool, replay_end_check, replay_end_sync, os, drrb, 3); goto out; } default: ra.err = EINVAL; goto out; } pzc = ra.zc; } out: if (os) dmu_objset_close(os); /* * Make sure we don't rollback/destroy unless we actually * processed the begin properly. 'os' will only be set if this * is the case. */ if (ra.err && os && tosnap && strchr(tosnap, '@')) { /* * rollback or destroy what we created, so we don't * leave it in the restoring state. */ dsl_dataset_t *ds; int err; cp = strchr(tosnap, '@'); *cp = '\0'; err = dsl_dataset_open(tosnap, DS_MODE_EXCLUSIVE | DS_MODE_INCONSISTENT, FTAG, &ds); if (err == 0) { txg_wait_synced(ds->ds_dir->dd_pool, 0); if (drrb->drr_fromguid) { /* incremental: rollback to most recent snap */ (void) dsl_dataset_rollback(ds); dsl_dataset_close(ds, DS_MODE_EXCLUSIVE, FTAG); } else { /* full: destroy whole fs */ dsl_dataset_close(ds, DS_MODE_EXCLUSIVE, FTAG); (void) dsl_dataset_destroy(tosnap); } } *cp = '@'; } kmem_free(ra.buf, ra.bufsize); if (sizep) *sizep = ra.voff; return (ra.err); } typedef struct { uint64_t txg; dmu_buf_impl_t *db; dmu_sync_cb_t *done; void *arg; } dmu_sync_cbin_t; typedef union { dmu_sync_cbin_t data; blkptr_t blk; } dmu_sync_cbarg_t; /* ARGSUSED */ static void dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) { dmu_sync_cbin_t *in = (dmu_sync_cbin_t *)varg; dmu_buf_impl_t *db = in->db; uint64_t txg = in->txg; dmu_sync_cb_t *done = in->done; void *arg = in->arg; blkptr_t *blk = (blkptr_t *)varg; if (!BP_IS_HOLE(zio->io_bp)) { zio->io_bp->blk_fill = 1; BP_SET_TYPE(zio->io_bp, db->db_dnode->dn_type); BP_SET_LEVEL(zio->io_bp, 0); } *blk = *zio->io_bp; /* structure assignment */ mutex_enter(&db->db_mtx); ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] == IN_DMU_SYNC); db->db_d.db_overridden_by[txg&TXG_MASK] = blk; cv_broadcast(&db->db_changed); mutex_exit(&db->db_mtx); if (done) done(&(db->db), arg); } /* * Intent log support: sync the block associated with db to disk. * N.B. and XXX: the caller is responsible for making sure that the * data isn't changing while dmu_sync() is writing it. * * Return values: * * EEXIST: this txg has already been synced, so there's nothing to to. * The caller should not log the write. * * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. * The caller should not log the write. * * EALREADY: this block is already in the process of being synced. * The caller should track its progress (somehow). * * EINPROGRESS: the IO has been initiated. * The caller should log this blkptr in the callback. * * 0: completed. Sets *bp to the blkptr just written. * The caller should log this blkptr immediately. */ int dmu_sync(zio_t *pio, dmu_buf_t *db_fake, blkptr_t *bp, uint64_t txg, dmu_sync_cb_t *done, void *arg) { dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; objset_impl_t *os = db->db_objset; dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool; tx_state_t *tx = &dp->dp_tx; dmu_sync_cbin_t *in; blkptr_t *blk; zbookmark_t zb; uint32_t arc_flag; int err; ASSERT(BP_IS_HOLE(bp)); ASSERT(txg != 0); dprintf("dmu_sync txg=%llu, s,o,q %llu %llu %llu\n", txg, tx->tx_synced_txg, tx->tx_open_txg, tx->tx_quiesced_txg); /* * XXX - would be nice if we could do this without suspending... */ txg_suspend(dp); /* * If this txg already synced, there's nothing to do. */ if (txg <= tx->tx_synced_txg) { txg_resume(dp); /* * If we're running ziltest, we need the blkptr regardless. */ if (txg > spa_freeze_txg(dp->dp_spa)) { /* if db_blkptr == NULL, this was an empty write */ if (db->db_blkptr) *bp = *db->db_blkptr; /* structure assignment */ return (0); } return (EEXIST); } mutex_enter(&db->db_mtx); blk = db->db_d.db_overridden_by[txg&TXG_MASK]; if (blk == IN_DMU_SYNC) { /* * We have already issued a sync write for this buffer. */ mutex_exit(&db->db_mtx); txg_resume(dp); return (EALREADY); } else if (blk != NULL) { /* * This buffer had already been synced. It could not * have been dirtied since, or we would have cleared blk. */ *bp = *blk; /* structure assignment */ mutex_exit(&db->db_mtx); txg_resume(dp); return (0); } if (txg == tx->tx_syncing_txg) { while (db->db_data_pending) { /* * IO is in-progress. Wait for it to finish. * XXX - would be nice to be able to somehow "attach" * this zio to the parent zio passed in. */ cv_wait(&db->db_changed, &db->db_mtx); if (!db->db_data_pending && db->db_blkptr && BP_IS_HOLE(db->db_blkptr)) { /* * IO was compressed away */ *bp = *db->db_blkptr; /* structure assignment */ mutex_exit(&db->db_mtx); txg_resume(dp); return (0); } ASSERT(db->db_data_pending || (db->db_blkptr && db->db_blkptr->blk_birth == txg)); } if (db->db_blkptr && db->db_blkptr->blk_birth == txg) { /* * IO is already completed. */ *bp = *db->db_blkptr; /* structure assignment */ mutex_exit(&db->db_mtx); txg_resume(dp); return (0); } } if (db->db_d.db_data_old[txg&TXG_MASK] == NULL) { /* * This dbuf isn't dirty, must have been free_range'd. * There's no need to log writes to freed blocks, so we're done. */ mutex_exit(&db->db_mtx); txg_resume(dp); return (ENOENT); } ASSERT(db->db_d.db_overridden_by[txg&TXG_MASK] == NULL); db->db_d.db_overridden_by[txg&TXG_MASK] = IN_DMU_SYNC; /* * XXX - a little ugly to stash the blkptr in the callback * buffer. We always need to make sure the following is true: * ASSERT(sizeof(blkptr_t) >= sizeof(dmu_sync_cbin_t)); */ in = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); in->db = db; in->txg = txg; in->done = done; in->arg = arg; mutex_exit(&db->db_mtx); txg_resume(dp); arc_flag = pio == NULL ? ARC_WAIT : ARC_NOWAIT; zb.zb_objset = os->os_dsl_dataset->ds_object; zb.zb_object = db->db.db_object; zb.zb_level = db->db_level; zb.zb_blkid = db->db_blkid; err = arc_write(pio, os->os_spa, zio_checksum_select(db->db_dnode->dn_checksum, os->os_checksum), zio_compress_select(db->db_dnode->dn_compress, os->os_compress), dmu_get_replication_level(os->os_spa, &zb, db->db_dnode->dn_type), txg, bp, db->db_d.db_data_old[txg&TXG_MASK], dmu_sync_done, in, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, arc_flag, &zb); ASSERT(err == 0); return (arc_flag == ARC_NOWAIT ? EINPROGRESS : 0); } uint64_t dmu_object_max_nonzero_offset(objset_t *os, uint64_t object) { dnode_t *dn; /* XXX assumes dnode_hold will not get an i/o error */ (void) dnode_hold(os->os, object, FTAG, &dn); uint64_t rv = dnode_max_nonzero_offset(dn); dnode_rele(dn, FTAG); return (rv); } int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, dmu_tx_t *tx) { dnode_t *dn; int err; err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); err = dnode_set_blksz(dn, size, ibs, tx); dnode_rele(dn, FTAG); return (err); } void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, dmu_tx_t *tx) { dnode_t *dn; /* XXX assumes dnode_hold will not get an i/o error */ (void) dnode_hold(os->os, object, FTAG, &dn); ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); dn->dn_checksum = checksum; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, dmu_tx_t *tx) { dnode_t *dn; /* XXX assumes dnode_hold will not get an i/o error */ (void) dnode_hold(os->os, object, FTAG, &dn); ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); dn->dn_compress = compress; dnode_setdirty(dn, tx); dnode_rele(dn, FTAG); } /* * XXX - eventually, this should take into account per-dataset (or * even per-object?) user requests for higher levels of replication. */ int dmu_get_replication_level(spa_t *spa, zbookmark_t *zb, dmu_object_type_t ot) { int ncopies = 1; if (dmu_ot[ot].ot_metadata) ncopies++; if (zb->zb_level != 0) ncopies++; if (zb->zb_objset == 0 && zb->zb_object == 0) ncopies++; return (MIN(ncopies, spa_max_replication(spa))); } int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) { dnode_t *dn; int i, err; err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); /* * Sync any current changes before * we go trundling through the block pointers. */ for (i = 0; i < TXG_SIZE; i++) { if (list_link_active(&dn->dn_dirty_link[i])) break; } if (i != TXG_SIZE) { dnode_rele(dn, FTAG); txg_wait_synced(dmu_objset_pool(os), 0); err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); } err = dnode_next_offset(dn, hole, off, 1, 1); dnode_rele(dn, FTAG); return (err); } void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) { rw_enter(&dn->dn_struct_rwlock, RW_READER); mutex_enter(&dn->dn_mtx); doi->doi_data_block_size = dn->dn_datablksz; doi->doi_metadata_block_size = dn->dn_indblkshift ? 1ULL << dn->dn_indblkshift : 0; doi->doi_indirection = dn->dn_nlevels; doi->doi_checksum = dn->dn_checksum; doi->doi_compress = dn->dn_compress; doi->doi_physical_blks = (DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT; doi->doi_max_block_offset = dn->dn_phys->dn_maxblkid; doi->doi_type = dn->dn_type; doi->doi_bonus_size = dn->dn_bonuslen; doi->doi_bonus_type = dn->dn_bonustype; mutex_exit(&dn->dn_mtx); rw_exit(&dn->dn_struct_rwlock); } /* * Get information on a DMU object. * If doi is NULL, just indicates whether the object exists. */ int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) { dnode_t *dn; int err = dnode_hold(os->os, object, FTAG, &dn); if (err) return (err); if (doi != NULL) dmu_object_info_from_dnode(dn, doi); dnode_rele(dn, FTAG); return (0); } /* * As above, but faster; can be used when you have a held dbuf in hand. */ void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) { dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); } /* * Faster still when you only care about the size. * This is specifically optimized for zfs_getattr(). */ void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) { dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; *blksize = dn->dn_datablksz; /* add 1 for dnode space */ *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> SPA_MINBLOCKSHIFT) + 1; } /* * Given a bookmark, return the name of the dataset, object, and range in * human-readable format. */ int spa_bookmark_name(spa_t *spa, zbookmark_t *zb, char *dsname, size_t dslen, char *objname, size_t objlen, char *range, size_t rangelen) { dsl_pool_t *dp; dsl_dataset_t *ds = NULL; objset_t *os = NULL; dnode_t *dn = NULL; int err, shift; if (dslen < MAXNAMELEN || objlen < 32 || rangelen < 64) return (ENOSPC); dp = spa_get_dsl(spa); if (zb->zb_objset != 0) { rw_enter(&dp->dp_config_rwlock, RW_READER); err = dsl_dataset_open_obj(dp, zb->zb_objset, NULL, DS_MODE_NONE, FTAG, &ds); if (err) { rw_exit(&dp->dp_config_rwlock); return (err); } dsl_dataset_name(ds, dsname); dsl_dataset_close(ds, DS_MODE_NONE, FTAG); rw_exit(&dp->dp_config_rwlock); err = dmu_objset_open(dsname, DMU_OST_ANY, DS_MODE_NONE, &os); if (err) goto out; } else { dsl_dataset_name(NULL, dsname); os = dp->dp_meta_objset; } if (zb->zb_object == DMU_META_DNODE_OBJECT) { (void) strncpy(objname, "mdn", objlen); } else { (void) snprintf(objname, objlen, "%lld", (longlong_t)zb->zb_object); } err = dnode_hold(os->os, zb->zb_object, FTAG, &dn); if (err) goto out; shift = (dn->dn_datablkshift?dn->dn_datablkshift:SPA_MAXBLOCKSHIFT) + zb->zb_level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); (void) snprintf(range, rangelen, "%llu-%llu", (u_longlong_t)(zb->zb_blkid << shift), (u_longlong_t)((zb->zb_blkid+1) << shift)); out: if (dn) dnode_rele(dn, FTAG); if (os && os != dp->dp_meta_objset) dmu_objset_close(os); return (err); } void byteswap_uint64_array(void *vbuf, size_t size) { uint64_t *buf = vbuf; size_t count = size >> 3; int i; ASSERT((size & 7) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_64(buf[i]); } void byteswap_uint32_array(void *vbuf, size_t size) { uint32_t *buf = vbuf; size_t count = size >> 2; int i; ASSERT((size & 3) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_32(buf[i]); } void byteswap_uint16_array(void *vbuf, size_t size) { uint16_t *buf = vbuf; size_t count = size >> 1; int i; ASSERT((size & 1) == 0); for (i = 0; i < count; i++) buf[i] = BSWAP_16(buf[i]); } /* ARGSUSED */ void byteswap_uint8_array(void *vbuf, size_t size) { } void dmu_init(void) { dbuf_init(); dnode_init(); arc_init(); } void dmu_fini(void) { arc_fini(); dnode_fini(); dbuf_fini(); }