/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, Joyent, Inc. All rights reserved. * Copyright (c) 2011, 2015 by Delphix. All rights reserved. * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. * Copyright 2014 Nexenta Systems, Inc. All rights reserved. */ /* * DVA-based Adjustable Replacement Cache * * While much of the theory of operation used here is * based on the self-tuning, low overhead replacement cache * presented by Megiddo and Modha at FAST 2003, there are some * significant differences: * * 1. The Megiddo and Modha model assumes any page is evictable. * Pages in its cache cannot be "locked" into memory. This makes * the eviction algorithm simple: evict the last page in the list. * This also make the performance characteristics easy to reason * about. Our cache is not so simple. At any given moment, some * subset of the blocks in the cache are un-evictable because we * have handed out a reference to them. Blocks are only evictable * when there are no external references active. This makes * eviction far more problematic: we choose to evict the evictable * blocks that are the "lowest" in the list. * * There are times when it is not possible to evict the requested * space. In these circumstances we are unable to adjust the cache * size. To prevent the cache growing unbounded at these times we * implement a "cache throttle" that slows the flow of new data * into the cache until we can make space available. * * 2. The Megiddo and Modha model assumes a fixed cache size. * Pages are evicted when the cache is full and there is a cache * miss. Our model has a variable sized cache. It grows with * high use, but also tries to react to memory pressure from the * operating system: decreasing its size when system memory is * tight. * * 3. The Megiddo and Modha model assumes a fixed page size. All * elements of the cache are therefore exactly the same size. So * when adjusting the cache size following a cache miss, its simply * a matter of choosing a single page to evict. In our model, we * have variable sized cache blocks (rangeing from 512 bytes to * 128K bytes). We therefore choose a set of blocks to evict to make * space for a cache miss that approximates as closely as possible * the space used by the new block. * * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" * by N. Megiddo & D. Modha, FAST 2003 */ /* * The locking model: * * A new reference to a cache buffer can be obtained in two * ways: 1) via a hash table lookup using the DVA as a key, * or 2) via one of the ARC lists. The arc_read() interface * uses method 1, while the internal arc algorithms for * adjusting the cache use method 2. We therefore provide two * types of locks: 1) the hash table lock array, and 2) the * arc list locks. * * Buffers do not have their own mutexes, rather they rely on the * hash table mutexes for the bulk of their protection (i.e. most * fields in the arc_buf_hdr_t are protected by these mutexes). * * buf_hash_find() returns the appropriate mutex (held) when it * locates the requested buffer in the hash table. It returns * NULL for the mutex if the buffer was not in the table. * * buf_hash_remove() expects the appropriate hash mutex to be * already held before it is invoked. * * Each arc state also has a mutex which is used to protect the * buffer list associated with the state. When attempting to * obtain a hash table lock while holding an arc list lock you * must use: mutex_tryenter() to avoid deadlock. Also note that * the active state mutex must be held before the ghost state mutex. * * Arc buffers may have an associated eviction callback function. * This function will be invoked prior to removing the buffer (e.g. * in arc_do_user_evicts()). Note however that the data associated * with the buffer may be evicted prior to the callback. The callback * must be made with *no locks held* (to prevent deadlock). Additionally, * the users of callbacks must ensure that their private data is * protected from simultaneous callbacks from arc_clear_callback() * and arc_do_user_evicts(). * * Note that the majority of the performance stats are manipulated * with atomic operations. * * The L2ARC uses the l2ad_mtx on each vdev for the following: * * - L2ARC buflist creation * - L2ARC buflist eviction * - L2ARC write completion, which walks L2ARC buflists * - ARC header destruction, as it removes from L2ARC buflists * - ARC header release, as it removes from L2ARC buflists */ #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #endif #include #include #include #ifndef _KERNEL /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ boolean_t arc_watch = B_FALSE; int arc_procfd; #endif static kmutex_t arc_reclaim_lock; static kcondvar_t arc_reclaim_thread_cv; static boolean_t arc_reclaim_thread_exit; static kcondvar_t arc_reclaim_waiters_cv; static kmutex_t arc_user_evicts_lock; static kcondvar_t arc_user_evicts_cv; static boolean_t arc_user_evicts_thread_exit; uint_t arc_reduce_dnlc_percent = 3; /* * The number of headers to evict in arc_evict_state_impl() before * dropping the sublist lock and evicting from another sublist. A lower * value means we're more likely to evict the "correct" header (i.e. the * oldest header in the arc state), but comes with higher overhead * (i.e. more invocations of arc_evict_state_impl()). */ int zfs_arc_evict_batch_limit = 10; /* * The number of sublists used for each of the arc state lists. If this * is not set to a suitable value by the user, it will be configured to * the number of CPUs on the system in arc_init(). */ int zfs_arc_num_sublists_per_state = 0; /* number of seconds before growing cache again */ static int arc_grow_retry = 60; /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ int zfs_arc_overflow_shift = 8; /* shift of arc_c for calculating both min and max arc_p */ static int arc_p_min_shift = 4; /* log2(fraction of arc to reclaim) */ static int arc_shrink_shift = 7; /* * log2(fraction of ARC which must be free to allow growing). * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, * when reading a new block into the ARC, we will evict an equal-sized block * from the ARC. * * This must be less than arc_shrink_shift, so that when we shrink the ARC, * we will still not allow it to grow. */ int arc_no_grow_shift = 5; /* * minimum lifespan of a prefetch block in clock ticks * (initialized in arc_init()) */ static int arc_min_prefetch_lifespan; /* * If this percent of memory is free, don't throttle. */ int arc_lotsfree_percent = 10; static int arc_dead; /* * The arc has filled available memory and has now warmed up. */ static boolean_t arc_warm; /* * These tunables are for performance analysis. */ uint64_t zfs_arc_max; uint64_t zfs_arc_min; uint64_t zfs_arc_meta_limit = 0; uint64_t zfs_arc_meta_min = 0; int zfs_arc_grow_retry = 0; int zfs_arc_shrink_shift = 0; int zfs_arc_p_min_shift = 0; int zfs_disable_dup_eviction = 0; int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ /* * Note that buffers can be in one of 6 states: * ARC_anon - anonymous (discussed below) * ARC_mru - recently used, currently cached * ARC_mru_ghost - recentely used, no longer in cache * ARC_mfu - frequently used, currently cached * ARC_mfu_ghost - frequently used, no longer in cache * ARC_l2c_only - exists in L2ARC but not other states * When there are no active references to the buffer, they are * are linked onto a list in one of these arc states. These are * the only buffers that can be evicted or deleted. Within each * state there are multiple lists, one for meta-data and one for * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, * etc.) is tracked separately so that it can be managed more * explicitly: favored over data, limited explicitly. * * Anonymous buffers are buffers that are not associated with * a DVA. These are buffers that hold dirty block copies * before they are written to stable storage. By definition, * they are "ref'd" and are considered part of arc_mru * that cannot be freed. Generally, they will aquire a DVA * as they are written and migrate onto the arc_mru list. * * The ARC_l2c_only state is for buffers that are in the second * level ARC but no longer in any of the ARC_m* lists. The second * level ARC itself may also contain buffers that are in any of * the ARC_m* states - meaning that a buffer can exist in two * places. The reason for the ARC_l2c_only state is to keep the * buffer header in the hash table, so that reads that hit the * second level ARC benefit from these fast lookups. */ typedef struct arc_state { /* * list of evictable buffers */ multilist_t arcs_list[ARC_BUFC_NUMTYPES]; /* * total amount of evictable data in this state */ uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* * total amount of data in this state; this includes: evictable, * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. */ refcount_t arcs_size; } arc_state_t; /* The 6 states: */ static arc_state_t ARC_anon; static arc_state_t ARC_mru; static arc_state_t ARC_mru_ghost; static arc_state_t ARC_mfu; static arc_state_t ARC_mfu_ghost; static arc_state_t ARC_l2c_only; typedef struct arc_stats { kstat_named_t arcstat_hits; kstat_named_t arcstat_misses; kstat_named_t arcstat_demand_data_hits; kstat_named_t arcstat_demand_data_misses; kstat_named_t arcstat_demand_metadata_hits; kstat_named_t arcstat_demand_metadata_misses; kstat_named_t arcstat_prefetch_data_hits; kstat_named_t arcstat_prefetch_data_misses; kstat_named_t arcstat_prefetch_metadata_hits; kstat_named_t arcstat_prefetch_metadata_misses; kstat_named_t arcstat_mru_hits; kstat_named_t arcstat_mru_ghost_hits; kstat_named_t arcstat_mfu_hits; kstat_named_t arcstat_mfu_ghost_hits; kstat_named_t arcstat_deleted; /* * Number of buffers that could not be evicted because the hash lock * was held by another thread. The lock may not necessarily be held * by something using the same buffer, since hash locks are shared * by multiple buffers. */ kstat_named_t arcstat_mutex_miss; /* * Number of buffers skipped because they have I/O in progress, are * indrect prefetch buffers that have not lived long enough, or are * not from the spa we're trying to evict from. */ kstat_named_t arcstat_evict_skip; /* * Number of times arc_evict_state() was unable to evict enough * buffers to reach it's target amount. */ kstat_named_t arcstat_evict_not_enough; kstat_named_t arcstat_evict_l2_cached; kstat_named_t arcstat_evict_l2_eligible; kstat_named_t arcstat_evict_l2_ineligible; kstat_named_t arcstat_evict_l2_skip; kstat_named_t arcstat_hash_elements; kstat_named_t arcstat_hash_elements_max; kstat_named_t arcstat_hash_collisions; kstat_named_t arcstat_hash_chains; kstat_named_t arcstat_hash_chain_max; kstat_named_t arcstat_p; kstat_named_t arcstat_c; kstat_named_t arcstat_c_min; kstat_named_t arcstat_c_max; kstat_named_t arcstat_size; /* * Number of bytes consumed by internal ARC structures necessary * for tracking purposes; these structures are not actually * backed by ARC buffers. This includes arc_buf_hdr_t structures * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only * caches), and arc_buf_t structures (allocated via arc_buf_t * cache). */ kstat_named_t arcstat_hdr_size; /* * Number of bytes consumed by ARC buffers of type equal to * ARC_BUFC_DATA. This is generally consumed by buffers backing * on disk user data (e.g. plain file contents). */ kstat_named_t arcstat_data_size; /* * Number of bytes consumed by ARC buffers of type equal to * ARC_BUFC_METADATA. This is generally consumed by buffers * backing on disk data that is used for internal ZFS * structures (e.g. ZAP, dnode, indirect blocks, etc). */ kstat_named_t arcstat_metadata_size; /* * Number of bytes consumed by various buffers and structures * not actually backed with ARC buffers. This includes bonus * buffers (allocated directly via zio_buf_* functions), * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t * cache), and dnode_t structures (allocated via dnode_t cache). */ kstat_named_t arcstat_other_size; /* * Total number of bytes consumed by ARC buffers residing in the * arc_anon state. This includes *all* buffers in the arc_anon * state; e.g. data, metadata, evictable, and unevictable buffers * are all included in this value. */ kstat_named_t arcstat_anon_size; /* * Number of bytes consumed by ARC buffers that meet the * following criteria: backing buffers of type ARC_BUFC_DATA, * residing in the arc_anon state, and are eligible for eviction * (e.g. have no outstanding holds on the buffer). */ kstat_named_t arcstat_anon_evictable_data; /* * Number of bytes consumed by ARC buffers that meet the * following criteria: backing buffers of type ARC_BUFC_METADATA, * residing in the arc_anon state, and are eligible for eviction * (e.g. have no outstanding holds on the buffer). */ kstat_named_t arcstat_anon_evictable_metadata; /* * Total number of bytes consumed by ARC buffers residing in the * arc_mru state. This includes *all* buffers in the arc_mru * state; e.g. data, metadata, evictable, and unevictable buffers * are all included in this value. */ kstat_named_t arcstat_mru_size; /* * Number of bytes consumed by ARC buffers that meet the * following criteria: backing buffers of type ARC_BUFC_DATA, * residing in the arc_mru state, and are eligible for eviction * (e.g. have no outstanding holds on the buffer). */ kstat_named_t arcstat_mru_evictable_data; /* * Number of bytes consumed by ARC buffers that meet the * following criteria: backing buffers of type ARC_BUFC_METADATA, * residing in the arc_mru state, and are eligible for eviction * (e.g. have no outstanding holds on the buffer). */ kstat_named_t arcstat_mru_evictable_metadata; /* * Total number of bytes that *would have been* consumed by ARC * buffers in the arc_mru_ghost state. The key thing to note * here, is the fact that this size doesn't actually indicate * RAM consumption. The ghost lists only consist of headers and * don't actually have ARC buffers linked off of these headers. * Thus, *if* the headers had associated ARC buffers, these * buffers *would have* consumed this number of bytes. */ kstat_named_t arcstat_mru_ghost_size; /* * Number of bytes that *would have been* consumed by ARC * buffers that are eligible for eviction, of type * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. */ kstat_named_t arcstat_mru_ghost_evictable_data; /* * Number of bytes that *would have been* consumed by ARC * buffers that are eligible for eviction, of type * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. */ kstat_named_t arcstat_mru_ghost_evictable_metadata; /* * Total number of bytes consumed by ARC buffers residing in the * arc_mfu state. This includes *all* buffers in the arc_mfu * state; e.g. data, metadata, evictable, and unevictable buffers * are all included in this value. */ kstat_named_t arcstat_mfu_size; /* * Number of bytes consumed by ARC buffers that are eligible for * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu * state. */ kstat_named_t arcstat_mfu_evictable_data; /* * Number of bytes consumed by ARC buffers that are eligible for * eviction, of type ARC_BUFC_METADATA, and reside in the * arc_mfu state. */ kstat_named_t arcstat_mfu_evictable_metadata; /* * Total number of bytes that *would have been* consumed by ARC * buffers in the arc_mfu_ghost state. See the comment above * arcstat_mru_ghost_size for more details. */ kstat_named_t arcstat_mfu_ghost_size; /* * Number of bytes that *would have been* consumed by ARC * buffers that are eligible for eviction, of type * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. */ kstat_named_t arcstat_mfu_ghost_evictable_data; /* * Number of bytes that *would have been* consumed by ARC * buffers that are eligible for eviction, of type * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. */ kstat_named_t arcstat_mfu_ghost_evictable_metadata; kstat_named_t arcstat_l2_hits; kstat_named_t arcstat_l2_misses; kstat_named_t arcstat_l2_feeds; kstat_named_t arcstat_l2_rw_clash; kstat_named_t arcstat_l2_read_bytes; kstat_named_t arcstat_l2_write_bytes; kstat_named_t arcstat_l2_writes_sent; kstat_named_t arcstat_l2_writes_done; kstat_named_t arcstat_l2_writes_error; kstat_named_t arcstat_l2_writes_lock_retry; kstat_named_t arcstat_l2_evict_lock_retry; kstat_named_t arcstat_l2_evict_reading; kstat_named_t arcstat_l2_evict_l1cached; kstat_named_t arcstat_l2_free_on_write; kstat_named_t arcstat_l2_cdata_free_on_write; kstat_named_t arcstat_l2_abort_lowmem; kstat_named_t arcstat_l2_cksum_bad; kstat_named_t arcstat_l2_io_error; kstat_named_t arcstat_l2_size; kstat_named_t arcstat_l2_asize; kstat_named_t arcstat_l2_hdr_size; kstat_named_t arcstat_l2_compress_successes; kstat_named_t arcstat_l2_compress_zeros; kstat_named_t arcstat_l2_compress_failures; kstat_named_t arcstat_memory_throttle_count; kstat_named_t arcstat_duplicate_buffers; kstat_named_t arcstat_duplicate_buffers_size; kstat_named_t arcstat_duplicate_reads; kstat_named_t arcstat_meta_used; kstat_named_t arcstat_meta_limit; kstat_named_t arcstat_meta_max; kstat_named_t arcstat_meta_min; } arc_stats_t; static arc_stats_t arc_stats = { { "hits", KSTAT_DATA_UINT64 }, { "misses", KSTAT_DATA_UINT64 }, { "demand_data_hits", KSTAT_DATA_UINT64 }, { "demand_data_misses", KSTAT_DATA_UINT64 }, { "demand_metadata_hits", KSTAT_DATA_UINT64 }, { "demand_metadata_misses", KSTAT_DATA_UINT64 }, { "prefetch_data_hits", KSTAT_DATA_UINT64 }, { "prefetch_data_misses", KSTAT_DATA_UINT64 }, { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, { "mru_hits", KSTAT_DATA_UINT64 }, { "mru_ghost_hits", KSTAT_DATA_UINT64 }, { "mfu_hits", KSTAT_DATA_UINT64 }, { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, { "deleted", KSTAT_DATA_UINT64 }, { "mutex_miss", KSTAT_DATA_UINT64 }, { "evict_skip", KSTAT_DATA_UINT64 }, { "evict_not_enough", KSTAT_DATA_UINT64 }, { "evict_l2_cached", KSTAT_DATA_UINT64 }, { "evict_l2_eligible", KSTAT_DATA_UINT64 }, { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, { "evict_l2_skip", KSTAT_DATA_UINT64 }, { "hash_elements", KSTAT_DATA_UINT64 }, { "hash_elements_max", KSTAT_DATA_UINT64 }, { "hash_collisions", KSTAT_DATA_UINT64 }, { "hash_chains", KSTAT_DATA_UINT64 }, { "hash_chain_max", KSTAT_DATA_UINT64 }, { "p", KSTAT_DATA_UINT64 }, { "c", KSTAT_DATA_UINT64 }, { "c_min", KSTAT_DATA_UINT64 }, { "c_max", KSTAT_DATA_UINT64 }, { "size", KSTAT_DATA_UINT64 }, { "hdr_size", KSTAT_DATA_UINT64 }, { "data_size", KSTAT_DATA_UINT64 }, { "metadata_size", KSTAT_DATA_UINT64 }, { "other_size", KSTAT_DATA_UINT64 }, { "anon_size", KSTAT_DATA_UINT64 }, { "anon_evictable_data", KSTAT_DATA_UINT64 }, { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, { "mru_size", KSTAT_DATA_UINT64 }, { "mru_evictable_data", KSTAT_DATA_UINT64 }, { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, { "mru_ghost_size", KSTAT_DATA_UINT64 }, { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, { "mfu_size", KSTAT_DATA_UINT64 }, { "mfu_evictable_data", KSTAT_DATA_UINT64 }, { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, { "mfu_ghost_size", KSTAT_DATA_UINT64 }, { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, { "l2_hits", KSTAT_DATA_UINT64 }, { "l2_misses", KSTAT_DATA_UINT64 }, { "l2_feeds", KSTAT_DATA_UINT64 }, { "l2_rw_clash", KSTAT_DATA_UINT64 }, { "l2_read_bytes", KSTAT_DATA_UINT64 }, { "l2_write_bytes", KSTAT_DATA_UINT64 }, { "l2_writes_sent", KSTAT_DATA_UINT64 }, { "l2_writes_done", KSTAT_DATA_UINT64 }, { "l2_writes_error", KSTAT_DATA_UINT64 }, { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, { "l2_evict_reading", KSTAT_DATA_UINT64 }, { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, { "l2_free_on_write", KSTAT_DATA_UINT64 }, { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 }, { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, { "l2_cksum_bad", KSTAT_DATA_UINT64 }, { "l2_io_error", KSTAT_DATA_UINT64 }, { "l2_size", KSTAT_DATA_UINT64 }, { "l2_asize", KSTAT_DATA_UINT64 }, { "l2_hdr_size", KSTAT_DATA_UINT64 }, { "l2_compress_successes", KSTAT_DATA_UINT64 }, { "l2_compress_zeros", KSTAT_DATA_UINT64 }, { "l2_compress_failures", KSTAT_DATA_UINT64 }, { "memory_throttle_count", KSTAT_DATA_UINT64 }, { "duplicate_buffers", KSTAT_DATA_UINT64 }, { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, { "duplicate_reads", KSTAT_DATA_UINT64 }, { "arc_meta_used", KSTAT_DATA_UINT64 }, { "arc_meta_limit", KSTAT_DATA_UINT64 }, { "arc_meta_max", KSTAT_DATA_UINT64 }, { "arc_meta_min", KSTAT_DATA_UINT64 } }; #define ARCSTAT(stat) (arc_stats.stat.value.ui64) #define ARCSTAT_INCR(stat, val) \ atomic_add_64(&arc_stats.stat.value.ui64, (val)) #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) #define ARCSTAT_MAX(stat, val) { \ uint64_t m; \ while ((val) > (m = arc_stats.stat.value.ui64) && \ (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ continue; \ } #define ARCSTAT_MAXSTAT(stat) \ ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) /* * We define a macro to allow ARC hits/misses to be easily broken down by * two separate conditions, giving a total of four different subtypes for * each of hits and misses (so eight statistics total). */ #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ if (cond1) { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ } \ } else { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ } \ } kstat_t *arc_ksp; static arc_state_t *arc_anon; static arc_state_t *arc_mru; static arc_state_t *arc_mru_ghost; static arc_state_t *arc_mfu; static arc_state_t *arc_mfu_ghost; static arc_state_t *arc_l2c_only; /* * There are several ARC variables that are critical to export as kstats -- * but we don't want to have to grovel around in the kstat whenever we wish to * manipulate them. For these variables, we therefore define them to be in * terms of the statistic variable. This assures that we are not introducing * the possibility of inconsistency by having shadow copies of the variables, * while still allowing the code to be readable. */ #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ #define L2ARC_IS_VALID_COMPRESS(_c_) \ ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) static int arc_no_grow; /* Don't try to grow cache size */ static uint64_t arc_tempreserve; static uint64_t arc_loaned_bytes; typedef struct arc_callback arc_callback_t; struct arc_callback { void *acb_private; arc_done_func_t *acb_done; arc_buf_t *acb_buf; zio_t *acb_zio_dummy; arc_callback_t *acb_next; }; typedef struct arc_write_callback arc_write_callback_t; struct arc_write_callback { void *awcb_private; arc_done_func_t *awcb_ready; arc_done_func_t *awcb_physdone; arc_done_func_t *awcb_done; arc_buf_t *awcb_buf; }; /* * ARC buffers are separated into multiple structs as a memory saving measure: * - Common fields struct, always defined, and embedded within it: * - L2-only fields, always allocated but undefined when not in L2ARC * - L1-only fields, only allocated when in L1ARC * * Buffer in L1 Buffer only in L2 * +------------------------+ +------------------------+ * | arc_buf_hdr_t | | arc_buf_hdr_t | * | | | | * | | | | * | | | | * +------------------------+ +------------------------+ * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | * | (undefined if L1-only) | | | * +------------------------+ +------------------------+ * | l1arc_buf_hdr_t | * | | * | | * | | * | | * +------------------------+ * * Because it's possible for the L2ARC to become extremely large, we can wind * up eating a lot of memory in L2ARC buffer headers, so the size of a header * is minimized by only allocating the fields necessary for an L1-cached buffer * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple * words in pointers. arc_hdr_realloc() is used to switch a header between * these two allocation states. */ typedef struct l1arc_buf_hdr { kmutex_t b_freeze_lock; #ifdef ZFS_DEBUG /* * used for debugging wtih kmem_flags - by allocating and freeing * b_thawed when the buffer is thawed, we get a record of the stack * trace that thawed it. */ void *b_thawed; #endif arc_buf_t *b_buf; uint32_t b_datacnt; /* for waiting on writes to complete */ kcondvar_t b_cv; /* protected by arc state mutex */ arc_state_t *b_state; multilist_node_t b_arc_node; /* updated atomically */ clock_t b_arc_access; /* self protecting */ refcount_t b_refcnt; arc_callback_t *b_acb; /* temporary buffer holder for in-flight compressed data */ void *b_tmp_cdata; } l1arc_buf_hdr_t; typedef struct l2arc_dev l2arc_dev_t; typedef struct l2arc_buf_hdr { /* protected by arc_buf_hdr mutex */ l2arc_dev_t *b_dev; /* L2ARC device */ uint64_t b_daddr; /* disk address, offset byte */ /* real alloc'd buffer size depending on b_compress applied */ int32_t b_asize; list_node_t b_l2node; } l2arc_buf_hdr_t; struct arc_buf_hdr { /* protected by hash lock */ dva_t b_dva; uint64_t b_birth; /* * Even though this checksum is only set/verified when a buffer is in * the L1 cache, it needs to be in the set of common fields because it * must be preserved from the time before a buffer is written out to * L2ARC until after it is read back in. */ zio_cksum_t *b_freeze_cksum; arc_buf_hdr_t *b_hash_next; arc_flags_t b_flags; /* immutable */ int32_t b_size; uint64_t b_spa; /* L2ARC fields. Undefined when not in L2ARC. */ l2arc_buf_hdr_t b_l2hdr; /* L1ARC fields. Undefined when in l2arc_only state */ l1arc_buf_hdr_t b_l1hdr; }; static arc_buf_t *arc_eviction_list; static arc_buf_hdr_t arc_eviction_hdr; #define GHOST_STATE(state) \ ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ (state) == arc_l2c_only) #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ) #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE) #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS) #define HDR_L2_READING(hdr) \ (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) #define HDR_ISTYPE_METADATA(hdr) \ ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) /* For storing compression mode in b_flags */ #define HDR_COMPRESS_OFFSET 24 #define HDR_COMPRESS_NBITS 7 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET(hdr->b_flags, \ HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS)) #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \ HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp)) /* * Other sizes */ #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) /* * Hash table routines */ #define HT_LOCK_PAD 64 struct ht_lock { kmutex_t ht_lock; #ifdef _KERNEL unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; #endif }; #define BUF_LOCKS 256 typedef struct buf_hash_table { uint64_t ht_mask; arc_buf_hdr_t **ht_table; struct ht_lock ht_locks[BUF_LOCKS]; } buf_hash_table_t; static buf_hash_table_t buf_hash_table; #define BUF_HASH_INDEX(spa, dva, birth) \ (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) #define HDR_LOCK(hdr) \ (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) uint64_t zfs_crc64_table[256]; /* * Level 2 ARC */ #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ #define L2ARC_HEADROOM 2 /* num of writes */ /* * If we discover during ARC scan any buffers to be compressed, we boost * our headroom for the next scanning cycle by this percentage multiple. */ #define L2ARC_HEADROOM_BOOST 200 #define L2ARC_FEED_SECS 1 /* caching interval secs */ #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ /* * Used to distinguish headers that are being process by * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk * address. This can happen when the header is added to the l2arc's list * of buffers to write in the first stage of l2arc_write_buffers(), but * has not yet been written out which happens in the second stage of * l2arc_write_buffers(). */ #define L2ARC_ADDR_UNSET ((uint64_t)(-1)) #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) /* L2ARC Performance Tunables */ uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ /* * L2ARC Internals */ struct l2arc_dev { vdev_t *l2ad_vdev; /* vdev */ spa_t *l2ad_spa; /* spa */ uint64_t l2ad_hand; /* next write location */ uint64_t l2ad_start; /* first addr on device */ uint64_t l2ad_end; /* last addr on device */ boolean_t l2ad_first; /* first sweep through */ boolean_t l2ad_writing; /* currently writing */ kmutex_t l2ad_mtx; /* lock for buffer list */ list_t l2ad_buflist; /* buffer list */ list_node_t l2ad_node; /* device list node */ refcount_t l2ad_alloc; /* allocated bytes */ }; static list_t L2ARC_dev_list; /* device list */ static list_t *l2arc_dev_list; /* device list pointer */ static kmutex_t l2arc_dev_mtx; /* device list mutex */ static l2arc_dev_t *l2arc_dev_last; /* last device used */ static list_t L2ARC_free_on_write; /* free after write buf list */ static list_t *l2arc_free_on_write; /* free after write list ptr */ static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ static uint64_t l2arc_ndev; /* number of devices */ typedef struct l2arc_read_callback { arc_buf_t *l2rcb_buf; /* read buffer */ spa_t *l2rcb_spa; /* spa */ blkptr_t l2rcb_bp; /* original blkptr */ zbookmark_phys_t l2rcb_zb; /* original bookmark */ int l2rcb_flags; /* original flags */ enum zio_compress l2rcb_compress; /* applied compress */ } l2arc_read_callback_t; typedef struct l2arc_write_callback { l2arc_dev_t *l2wcb_dev; /* device info */ arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ } l2arc_write_callback_t; typedef struct l2arc_data_free { /* protected by l2arc_free_on_write_mtx */ void *l2df_data; size_t l2df_size; void (*l2df_func)(void *, size_t); list_node_t l2df_list_node; } l2arc_data_free_t; static kmutex_t l2arc_feed_thr_lock; static kcondvar_t l2arc_feed_thr_cv; static uint8_t l2arc_thread_exit; static void arc_get_data_buf(arc_buf_t *); static void arc_access(arc_buf_hdr_t *, kmutex_t *); static boolean_t arc_is_overflowing(); static void arc_buf_watch(arc_buf_t *); static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); static uint32_t arc_bufc_to_flags(arc_buf_contents_t); static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); static void l2arc_read_done(zio_t *); static boolean_t l2arc_compress_buf(arc_buf_hdr_t *); static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress); static void l2arc_release_cdata_buf(arc_buf_hdr_t *); static uint64_t buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) { uint8_t *vdva = (uint8_t *)dva; uint64_t crc = -1ULL; int i; ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); for (i = 0; i < sizeof (dva_t); i++) crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; crc ^= (spa>>8) ^ birth; return (crc); } #define BUF_EMPTY(buf) \ ((buf)->b_dva.dva_word[0] == 0 && \ (buf)->b_dva.dva_word[1] == 0) #define BUF_EQUAL(spa, dva, birth, buf) \ ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ ((buf)->b_birth == birth) && ((buf)->b_spa == spa) static void buf_discard_identity(arc_buf_hdr_t *hdr) { hdr->b_dva.dva_word[0] = 0; hdr->b_dva.dva_word[1] = 0; hdr->b_birth = 0; } static arc_buf_hdr_t * buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) { const dva_t *dva = BP_IDENTITY(bp); uint64_t birth = BP_PHYSICAL_BIRTH(bp); uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *hdr; mutex_enter(hash_lock); for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; hdr = hdr->b_hash_next) { if (BUF_EQUAL(spa, dva, birth, hdr)) { *lockp = hash_lock; return (hdr); } } mutex_exit(hash_lock); *lockp = NULL; return (NULL); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. * If lockp == NULL, the caller is assumed to already hold the hash lock. */ static arc_buf_hdr_t * buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) { uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *fhdr; uint32_t i; ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); ASSERT(hdr->b_birth != 0); ASSERT(!HDR_IN_HASH_TABLE(hdr)); if (lockp != NULL) { *lockp = hash_lock; mutex_enter(hash_lock); } else { ASSERT(MUTEX_HELD(hash_lock)); } for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; fhdr = fhdr->b_hash_next, i++) { if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) return (fhdr); } hdr->b_hash_next = buf_hash_table.ht_table[idx]; buf_hash_table.ht_table[idx] = hdr; hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; /* collect some hash table performance data */ if (i > 0) { ARCSTAT_BUMP(arcstat_hash_collisions); if (i == 1) ARCSTAT_BUMP(arcstat_hash_chains); ARCSTAT_MAX(arcstat_hash_chain_max, i); } ARCSTAT_BUMP(arcstat_hash_elements); ARCSTAT_MAXSTAT(arcstat_hash_elements); return (NULL); } static void buf_hash_remove(arc_buf_hdr_t *hdr) { arc_buf_hdr_t *fhdr, **hdrp; uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); ASSERT(HDR_IN_HASH_TABLE(hdr)); hdrp = &buf_hash_table.ht_table[idx]; while ((fhdr = *hdrp) != hdr) { ASSERT(fhdr != NULL); hdrp = &fhdr->b_hash_next; } *hdrp = hdr->b_hash_next; hdr->b_hash_next = NULL; hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE; /* collect some hash table performance data */ ARCSTAT_BUMPDOWN(arcstat_hash_elements); if (buf_hash_table.ht_table[idx] && buf_hash_table.ht_table[idx]->b_hash_next == NULL) ARCSTAT_BUMPDOWN(arcstat_hash_chains); } /* * Global data structures and functions for the buf kmem cache. */ static kmem_cache_t *hdr_full_cache; static kmem_cache_t *hdr_l2only_cache; static kmem_cache_t *buf_cache; static void buf_fini(void) { int i; kmem_free(buf_hash_table.ht_table, (buf_hash_table.ht_mask + 1) * sizeof (void *)); for (i = 0; i < BUF_LOCKS; i++) mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); kmem_cache_destroy(hdr_full_cache); kmem_cache_destroy(hdr_l2only_cache); kmem_cache_destroy(buf_cache); } /* * Constructor callback - called when the cache is empty * and a new buf is requested. */ /* ARGSUSED */ static int hdr_full_cons(void *vbuf, void *unused, int kmflag) { arc_buf_hdr_t *hdr = vbuf; bzero(hdr, HDR_FULL_SIZE); cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); refcount_create(&hdr->b_l1hdr.b_refcnt); mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); multilist_link_init(&hdr->b_l1hdr.b_arc_node); arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); return (0); } /* ARGSUSED */ static int hdr_l2only_cons(void *vbuf, void *unused, int kmflag) { arc_buf_hdr_t *hdr = vbuf; bzero(hdr, HDR_L2ONLY_SIZE); arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); return (0); } /* ARGSUSED */ static int buf_cons(void *vbuf, void *unused, int kmflag) { arc_buf_t *buf = vbuf; bzero(buf, sizeof (arc_buf_t)); mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); return (0); } /* * Destructor callback - called when a cached buf is * no longer required. */ /* ARGSUSED */ static void hdr_full_dest(void *vbuf, void *unused) { arc_buf_hdr_t *hdr = vbuf; ASSERT(BUF_EMPTY(hdr)); cv_destroy(&hdr->b_l1hdr.b_cv); refcount_destroy(&hdr->b_l1hdr.b_refcnt); mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); } /* ARGSUSED */ static void hdr_l2only_dest(void *vbuf, void *unused) { arc_buf_hdr_t *hdr = vbuf; ASSERT(BUF_EMPTY(hdr)); arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); } /* ARGSUSED */ static void buf_dest(void *vbuf, void *unused) { arc_buf_t *buf = vbuf; mutex_destroy(&buf->b_evict_lock); arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); } /* * Reclaim callback -- invoked when memory is low. */ /* ARGSUSED */ static void hdr_recl(void *unused) { dprintf("hdr_recl called\n"); /* * umem calls the reclaim func when we destroy the buf cache, * which is after we do arc_fini(). */ if (!arc_dead) cv_signal(&arc_reclaim_thread_cv); } static void buf_init(void) { uint64_t *ct; uint64_t hsize = 1ULL << 12; int i, j; /* * The hash table is big enough to fill all of physical memory * with an average block size of zfs_arc_average_blocksize (default 8K). * By default, the table will take up * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). */ while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) hsize <<= 1; retry: buf_hash_table.ht_mask = hsize - 1; buf_hash_table.ht_table = kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); if (buf_hash_table.ht_table == NULL) { ASSERT(hsize > (1ULL << 8)); hsize >>= 1; goto retry; } hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, NULL, NULL, 0); buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); for (i = 0; i < 256; i++) for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); for (i = 0; i < BUF_LOCKS; i++) { mutex_init(&buf_hash_table.ht_locks[i].ht_lock, NULL, MUTEX_DEFAULT, NULL); } } /* * Transition between the two allocation states for the arc_buf_hdr struct. * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller * version is used when a cache buffer is only in the L2ARC in order to reduce * memory usage. */ static arc_buf_hdr_t * arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) { ASSERT(HDR_HAS_L2HDR(hdr)); arc_buf_hdr_t *nhdr; l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || (old == hdr_l2only_cache && new == hdr_full_cache)); nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); buf_hash_remove(hdr); bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); if (new == hdr_full_cache) { nhdr->b_flags |= ARC_FLAG_HAS_L1HDR; /* * arc_access and arc_change_state need to be aware that a * header has just come out of L2ARC, so we set its state to * l2c_only even though it's about to change. */ nhdr->b_l1hdr.b_state = arc_l2c_only; /* Verify previous threads set to NULL before freeing */ ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL); } else { ASSERT(hdr->b_l1hdr.b_buf == NULL); ASSERT0(hdr->b_l1hdr.b_datacnt); /* * If we've reached here, We must have been called from * arc_evict_hdr(), as such we should have already been * removed from any ghost list we were previously on * (which protects us from racing with arc_evict_state), * thus no locking is needed during this check. */ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); /* * A buffer must not be moved into the arc_l2c_only * state if it's not finished being written out to the * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field * might try to be accessed, even though it was removed. */ VERIFY(!HDR_L2_WRITING(hdr)); VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR; } /* * The header has been reallocated so we need to re-insert it into any * lists it was on. */ (void) buf_hash_insert(nhdr, NULL); ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); mutex_enter(&dev->l2ad_mtx); /* * We must place the realloc'ed header back into the list at * the same spot. Otherwise, if it's placed earlier in the list, * l2arc_write_buffers() could find it during the function's * write phase, and try to write it out to the l2arc. */ list_insert_after(&dev->l2ad_buflist, hdr, nhdr); list_remove(&dev->l2ad_buflist, hdr); mutex_exit(&dev->l2ad_mtx); /* * Since we're using the pointer address as the tag when * incrementing and decrementing the l2ad_alloc refcount, we * must remove the old pointer (that we're about to destroy) and * add the new pointer to the refcount. Otherwise we'd remove * the wrong pointer address when calling arc_hdr_destroy() later. */ (void) refcount_remove_many(&dev->l2ad_alloc, hdr->b_l2hdr.b_asize, hdr); (void) refcount_add_many(&dev->l2ad_alloc, nhdr->b_l2hdr.b_asize, nhdr); buf_discard_identity(hdr); hdr->b_freeze_cksum = NULL; kmem_cache_free(old, hdr); return (nhdr); } #define ARC_MINTIME (hz>>4) /* 62 ms */ static void arc_cksum_verify(arc_buf_t *buf) { zio_cksum_t zc; if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) { mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); return; } fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) panic("buffer modified while frozen!"); mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); } static int arc_cksum_equal(arc_buf_t *buf) { zio_cksum_t zc; int equal; mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); return (equal); } static void arc_cksum_compute(arc_buf_t *buf, boolean_t force) { if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) return; mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); if (buf->b_hdr->b_freeze_cksum != NULL) { mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); return; } buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); fletcher_2_native(buf->b_data, buf->b_hdr->b_size, buf->b_hdr->b_freeze_cksum); mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); arc_buf_watch(buf); } #ifndef _KERNEL typedef struct procctl { long cmd; prwatch_t prwatch; } procctl_t; #endif /* ARGSUSED */ static void arc_buf_unwatch(arc_buf_t *buf) { #ifndef _KERNEL if (arc_watch) { int result; procctl_t ctl; ctl.cmd = PCWATCH; ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; ctl.prwatch.pr_size = 0; ctl.prwatch.pr_wflags = 0; result = write(arc_procfd, &ctl, sizeof (ctl)); ASSERT3U(result, ==, sizeof (ctl)); } #endif } /* ARGSUSED */ static void arc_buf_watch(arc_buf_t *buf) { #ifndef _KERNEL if (arc_watch) { int result; procctl_t ctl; ctl.cmd = PCWATCH; ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; ctl.prwatch.pr_size = buf->b_hdr->b_size; ctl.prwatch.pr_wflags = WA_WRITE; result = write(arc_procfd, &ctl, sizeof (ctl)); ASSERT3U(result, ==, sizeof (ctl)); } #endif } static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *hdr) { if (HDR_ISTYPE_METADATA(hdr)) { return (ARC_BUFC_METADATA); } else { return (ARC_BUFC_DATA); } } static uint32_t arc_bufc_to_flags(arc_buf_contents_t type) { switch (type) { case ARC_BUFC_DATA: /* metadata field is 0 if buffer contains normal data */ return (0); case ARC_BUFC_METADATA: return (ARC_FLAG_BUFC_METADATA); default: break; } panic("undefined ARC buffer type!"); return ((uint32_t)-1); } void arc_buf_thaw(arc_buf_t *buf) { if (zfs_flags & ZFS_DEBUG_MODIFY) { if (buf->b_hdr->b_l1hdr.b_state != arc_anon) panic("modifying non-anon buffer!"); if (HDR_IO_IN_PROGRESS(buf->b_hdr)) panic("modifying buffer while i/o in progress!"); arc_cksum_verify(buf); } mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); if (buf->b_hdr->b_freeze_cksum != NULL) { kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); buf->b_hdr->b_freeze_cksum = NULL; } #ifdef ZFS_DEBUG if (zfs_flags & ZFS_DEBUG_MODIFY) { if (buf->b_hdr->b_l1hdr.b_thawed != NULL) kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1); buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); } #endif mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock); arc_buf_unwatch(buf); } void arc_buf_freeze(arc_buf_t *buf) { kmutex_t *hash_lock; if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); ASSERT(buf->b_hdr->b_freeze_cksum != NULL || buf->b_hdr->b_l1hdr.b_state == arc_anon); arc_cksum_compute(buf, B_FALSE); mutex_exit(hash_lock); } static void add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) { ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(MUTEX_HELD(hash_lock)); arc_state_t *state = hdr->b_l1hdr.b_state; if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && (state != arc_anon)) { /* We don't use the L2-only state list. */ if (state != arc_l2c_only) { arc_buf_contents_t type = arc_buf_type(hdr); uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt; multilist_t *list = &state->arcs_list[type]; uint64_t *size = &state->arcs_lsize[type]; multilist_remove(list, hdr); if (GHOST_STATE(state)) { ASSERT0(hdr->b_l1hdr.b_datacnt); ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); delta = hdr->b_size; } ASSERT(delta > 0); ASSERT3U(*size, >=, delta); atomic_add_64(size, -delta); } /* remove the prefetch flag if we get a reference */ hdr->b_flags &= ~ARC_FLAG_PREFETCH; } } static int remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) { int cnt; arc_state_t *state = hdr->b_l1hdr.b_state; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); ASSERT(!GHOST_STATE(state)); /* * arc_l2c_only counts as a ghost state so we don't need to explicitly * check to prevent usage of the arc_l2c_only list. */ if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && (state != arc_anon)) { arc_buf_contents_t type = arc_buf_type(hdr); multilist_t *list = &state->arcs_list[type]; uint64_t *size = &state->arcs_lsize[type]; multilist_insert(list, hdr); ASSERT(hdr->b_l1hdr.b_datacnt > 0); atomic_add_64(size, hdr->b_size * hdr->b_l1hdr.b_datacnt); } return (cnt); } /* * Move the supplied buffer to the indicated state. The hash lock * for the buffer must be held by the caller. */ static void arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, kmutex_t *hash_lock) { arc_state_t *old_state; int64_t refcnt; uint32_t datacnt; uint64_t from_delta, to_delta; arc_buf_contents_t buftype = arc_buf_type(hdr); /* * We almost always have an L1 hdr here, since we call arc_hdr_realloc() * in arc_read() when bringing a buffer out of the L2ARC. However, the * L1 hdr doesn't always exist when we change state to arc_anon before * destroying a header, in which case reallocating to add the L1 hdr is * pointless. */ if (HDR_HAS_L1HDR(hdr)) { old_state = hdr->b_l1hdr.b_state; refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); datacnt = hdr->b_l1hdr.b_datacnt; } else { old_state = arc_l2c_only; refcnt = 0; datacnt = 0; } ASSERT(MUTEX_HELD(hash_lock)); ASSERT3P(new_state, !=, old_state); ASSERT(refcnt == 0 || datacnt > 0); ASSERT(!GHOST_STATE(new_state) || datacnt == 0); ASSERT(old_state != arc_anon || datacnt <= 1); from_delta = to_delta = datacnt * hdr->b_size; /* * If this buffer is evictable, transfer it from the * old state list to the new state list. */ if (refcnt == 0) { if (old_state != arc_anon && old_state != arc_l2c_only) { uint64_t *size = &old_state->arcs_lsize[buftype]; ASSERT(HDR_HAS_L1HDR(hdr)); multilist_remove(&old_state->arcs_list[buftype], hdr); /* * If prefetching out of the ghost cache, * we will have a non-zero datacnt. */ if (GHOST_STATE(old_state) && datacnt == 0) { /* ghost elements have a ghost size */ ASSERT(hdr->b_l1hdr.b_buf == NULL); from_delta = hdr->b_size; } ASSERT3U(*size, >=, from_delta); atomic_add_64(size, -from_delta); } if (new_state != arc_anon && new_state != arc_l2c_only) { uint64_t *size = &new_state->arcs_lsize[buftype]; /* * An L1 header always exists here, since if we're * moving to some L1-cached state (i.e. not l2c_only or * anonymous), we realloc the header to add an L1hdr * beforehand. */ ASSERT(HDR_HAS_L1HDR(hdr)); multilist_insert(&new_state->arcs_list[buftype], hdr); /* ghost elements have a ghost size */ if (GHOST_STATE(new_state)) { ASSERT0(datacnt); ASSERT(hdr->b_l1hdr.b_buf == NULL); to_delta = hdr->b_size; } atomic_add_64(size, to_delta); } } ASSERT(!BUF_EMPTY(hdr)); if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) buf_hash_remove(hdr); /* adjust state sizes (ignore arc_l2c_only) */ if (to_delta && new_state != arc_l2c_only) { ASSERT(HDR_HAS_L1HDR(hdr)); if (GHOST_STATE(new_state)) { ASSERT0(datacnt); /* * We moving a header to a ghost state, we first * remove all arc buffers. Thus, we'll have a * datacnt of zero, and no arc buffer to use for * the reference. As a result, we use the arc * header pointer for the reference. */ (void) refcount_add_many(&new_state->arcs_size, hdr->b_size, hdr); } else { ASSERT3U(datacnt, !=, 0); /* * Each individual buffer holds a unique reference, * thus we must remove each of these references one * at a time. */ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { (void) refcount_add_many(&new_state->arcs_size, hdr->b_size, buf); } } } if (from_delta && old_state != arc_l2c_only) { ASSERT(HDR_HAS_L1HDR(hdr)); if (GHOST_STATE(old_state)) { /* * When moving a header off of a ghost state, * there's the possibility for datacnt to be * non-zero. This is because we first add the * arc buffer to the header prior to changing * the header's state. Since we used the header * for the reference when putting the header on * the ghost state, we must balance that and use * the header when removing off the ghost state * (even though datacnt is non zero). */ IMPLY(datacnt == 0, new_state == arc_anon || new_state == arc_l2c_only); (void) refcount_remove_many(&old_state->arcs_size, hdr->b_size, hdr); } else { ASSERT3P(datacnt, !=, 0); /* * Each individual buffer holds a unique reference, * thus we must remove each of these references one * at a time. */ for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { (void) refcount_remove_many( &old_state->arcs_size, hdr->b_size, buf); } } } if (HDR_HAS_L1HDR(hdr)) hdr->b_l1hdr.b_state = new_state; /* * L2 headers should never be on the L2 state list since they don't * have L1 headers allocated. */ ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); } void arc_space_consume(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, space); break; case ARC_SPACE_META: ARCSTAT_INCR(arcstat_metadata_size, space); break; case ARC_SPACE_OTHER: ARCSTAT_INCR(arcstat_other_size, space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, space); break; case ARC_SPACE_L2HDRS: ARCSTAT_INCR(arcstat_l2_hdr_size, space); break; } if (type != ARC_SPACE_DATA) ARCSTAT_INCR(arcstat_meta_used, space); atomic_add_64(&arc_size, space); } void arc_space_return(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, -space); break; case ARC_SPACE_META: ARCSTAT_INCR(arcstat_metadata_size, -space); break; case ARC_SPACE_OTHER: ARCSTAT_INCR(arcstat_other_size, -space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, -space); break; case ARC_SPACE_L2HDRS: ARCSTAT_INCR(arcstat_l2_hdr_size, -space); break; } if (type != ARC_SPACE_DATA) { ASSERT(arc_meta_used >= space); if (arc_meta_max < arc_meta_used) arc_meta_max = arc_meta_used; ARCSTAT_INCR(arcstat_meta_used, -space); } ASSERT(arc_size >= space); atomic_add_64(&arc_size, -space); } arc_buf_t * arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type) { arc_buf_hdr_t *hdr; arc_buf_t *buf; ASSERT3U(size, >, 0); hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); ASSERT(BUF_EMPTY(hdr)); ASSERT3P(hdr->b_freeze_cksum, ==, NULL); hdr->b_size = size; hdr->b_spa = spa_load_guid(spa); buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = NULL; hdr->b_flags = arc_bufc_to_flags(type); hdr->b_flags |= ARC_FLAG_HAS_L1HDR; hdr->b_l1hdr.b_buf = buf; hdr->b_l1hdr.b_state = arc_anon; hdr->b_l1hdr.b_arc_access = 0; hdr->b_l1hdr.b_datacnt = 1; hdr->b_l1hdr.b_tmp_cdata = NULL; arc_get_data_buf(buf); ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); return (buf); } static char *arc_onloan_tag = "onloan"; /* * Loan out an anonymous arc buffer. Loaned buffers are not counted as in * flight data by arc_tempreserve_space() until they are "returned". Loaned * buffers must be returned to the arc before they can be used by the DMU or * freed. */ arc_buf_t * arc_loan_buf(spa_t *spa, int size) { arc_buf_t *buf; buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); atomic_add_64(&arc_loaned_bytes, size); return (buf); } /* * Return a loaned arc buffer to the arc. */ void arc_return_buf(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(buf->b_data != NULL); ASSERT(HDR_HAS_L1HDR(hdr)); (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); atomic_add_64(&arc_loaned_bytes, -hdr->b_size); } /* Detach an arc_buf from a dbuf (tag) */ void arc_loan_inuse_buf(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(buf->b_data != NULL); ASSERT(HDR_HAS_L1HDR(hdr)); (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); buf->b_efunc = NULL; buf->b_private = NULL; atomic_add_64(&arc_loaned_bytes, hdr->b_size); } static arc_buf_t * arc_buf_clone(arc_buf_t *from) { arc_buf_t *buf; arc_buf_hdr_t *hdr = from->b_hdr; uint64_t size = hdr->b_size; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(hdr->b_l1hdr.b_state != arc_anon); buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = hdr->b_l1hdr.b_buf; hdr->b_l1hdr.b_buf = buf; arc_get_data_buf(buf); bcopy(from->b_data, buf->b_data, size); /* * This buffer already exists in the arc so create a duplicate * copy for the caller. If the buffer is associated with user data * then track the size and number of duplicates. These stats will be * updated as duplicate buffers are created and destroyed. */ if (HDR_ISTYPE_DATA(hdr)) { ARCSTAT_BUMP(arcstat_duplicate_buffers); ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); } hdr->b_l1hdr.b_datacnt += 1; return (buf); } void arc_buf_add_ref(arc_buf_t *buf, void* tag) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; /* * Check to see if this buffer is evicted. Callers * must verify b_data != NULL to know if the add_ref * was successful. */ mutex_enter(&buf->b_evict_lock); if (buf->b_data == NULL) { mutex_exit(&buf->b_evict_lock); return; } hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); mutex_exit(&buf->b_evict_lock); ASSERT(hdr->b_l1hdr.b_state == arc_mru || hdr->b_l1hdr.b_state == arc_mfu); add_reference(hdr, hash_lock, tag); DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, hash_lock); mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); } static void arc_buf_free_on_write(void *data, size_t size, void (*free_func)(void *, size_t)) { l2arc_data_free_t *df; df = kmem_alloc(sizeof (*df), KM_SLEEP); df->l2df_data = data; df->l2df_size = size; df->l2df_func = free_func; mutex_enter(&l2arc_free_on_write_mtx); list_insert_head(l2arc_free_on_write, df); mutex_exit(&l2arc_free_on_write_mtx); } /* * Free the arc data buffer. If it is an l2arc write in progress, * the buffer is placed on l2arc_free_on_write to be freed later. */ static void arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) { arc_buf_hdr_t *hdr = buf->b_hdr; if (HDR_L2_WRITING(hdr)) { arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func); ARCSTAT_BUMP(arcstat_l2_free_on_write); } else { free_func(buf->b_data, hdr->b_size); } } static void arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr) { ASSERT(HDR_HAS_L2HDR(hdr)); ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx)); /* * The b_tmp_cdata field is linked off of the b_l1hdr, so if * that doesn't exist, the header is in the arc_l2c_only state, * and there isn't anything to free (it's already been freed). */ if (!HDR_HAS_L1HDR(hdr)) return; /* * The header isn't being written to the l2arc device, thus it * shouldn't have a b_tmp_cdata to free. */ if (!HDR_L2_WRITING(hdr)) { ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); return; } /* * The header does not have compression enabled. This can be due * to the buffer not being compressible, or because we're * freeing the buffer before the second phase of * l2arc_write_buffer() has started (which does the compression * step). In either case, b_tmp_cdata does not point to a * separately compressed buffer, so there's nothing to free (it * points to the same buffer as the arc_buf_t's b_data field). */ if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) { hdr->b_l1hdr.b_tmp_cdata = NULL; return; } /* * There's nothing to free since the buffer was all zero's and * compressed to a zero length buffer. */ if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) { ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); return; } ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr))); arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata, hdr->b_size, zio_data_buf_free); ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write); hdr->b_l1hdr.b_tmp_cdata = NULL; } /* * Free up buf->b_data and if 'remove' is set, then pull the * arc_buf_t off of the the arc_buf_hdr_t's list and free it. */ static void arc_buf_destroy(arc_buf_t *buf, boolean_t remove) { arc_buf_t **bufp; /* free up data associated with the buf */ if (buf->b_data != NULL) { arc_state_t *state = buf->b_hdr->b_l1hdr.b_state; uint64_t size = buf->b_hdr->b_size; arc_buf_contents_t type = arc_buf_type(buf->b_hdr); arc_cksum_verify(buf); arc_buf_unwatch(buf); if (type == ARC_BUFC_METADATA) { arc_buf_data_free(buf, zio_buf_free); arc_space_return(size, ARC_SPACE_META); } else { ASSERT(type == ARC_BUFC_DATA); arc_buf_data_free(buf, zio_data_buf_free); arc_space_return(size, ARC_SPACE_DATA); } /* protected by hash lock, if in the hash table */ if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) { uint64_t *cnt = &state->arcs_lsize[type]; ASSERT(refcount_is_zero( &buf->b_hdr->b_l1hdr.b_refcnt)); ASSERT(state != arc_anon && state != arc_l2c_only); ASSERT3U(*cnt, >=, size); atomic_add_64(cnt, -size); } (void) refcount_remove_many(&state->arcs_size, size, buf); buf->b_data = NULL; /* * If we're destroying a duplicate buffer make sure * that the appropriate statistics are updated. */ if (buf->b_hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(buf->b_hdr)) { ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); } ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0); buf->b_hdr->b_l1hdr.b_datacnt -= 1; } /* only remove the buf if requested */ if (!remove) return; /* remove the buf from the hdr list */ for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf; bufp = &(*bufp)->b_next) continue; *bufp = buf->b_next; buf->b_next = NULL; ASSERT(buf->b_efunc == NULL); /* clean up the buf */ buf->b_hdr = NULL; kmem_cache_free(buf_cache, buf); } static void arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) { l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; l2arc_dev_t *dev = l2hdr->b_dev; ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); ASSERT(HDR_HAS_L2HDR(hdr)); list_remove(&dev->l2ad_buflist, hdr); /* * We don't want to leak the b_tmp_cdata buffer that was * allocated in l2arc_write_buffers() */ arc_buf_l2_cdata_free(hdr); /* * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then * this header is being processed by l2arc_write_buffers() (i.e. * it's in the first stage of l2arc_write_buffers()). * Re-affirming that truth here, just to serve as a reminder. If * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or * may not have its HDR_L2_WRITING flag set. (the write may have * completed, in which case HDR_L2_WRITING will be false and the * b_daddr field will point to the address of the buffer on disk). */ IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr)); /* * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with * l2arc_write_buffers(). Since we've just removed this header * from the l2arc buffer list, this header will never reach the * second stage of l2arc_write_buffers(), which increments the * accounting stats for this header. Thus, we must be careful * not to decrement them for this header either. */ if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) { ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); vdev_space_update(dev->l2ad_vdev, -l2hdr->b_asize, 0, 0); (void) refcount_remove_many(&dev->l2ad_alloc, l2hdr->b_asize, hdr); } hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR; } static void arc_hdr_destroy(arc_buf_hdr_t *hdr) { if (HDR_HAS_L1HDR(hdr)) { ASSERT(hdr->b_l1hdr.b_buf == NULL || hdr->b_l1hdr.b_datacnt > 0); ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); } ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT(!HDR_IN_HASH_TABLE(hdr)); if (HDR_HAS_L2HDR(hdr)) { l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); if (!buflist_held) mutex_enter(&dev->l2ad_mtx); /* * Even though we checked this conditional above, we * need to check this again now that we have the * l2ad_mtx. This is because we could be racing with * another thread calling l2arc_evict() which might have * destroyed this header's L2 portion as we were waiting * to acquire the l2ad_mtx. If that happens, we don't * want to re-destroy the header's L2 portion. */ if (HDR_HAS_L2HDR(hdr)) arc_hdr_l2hdr_destroy(hdr); if (!buflist_held) mutex_exit(&dev->l2ad_mtx); } if (!BUF_EMPTY(hdr)) buf_discard_identity(hdr); if (hdr->b_freeze_cksum != NULL) { kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); hdr->b_freeze_cksum = NULL; } if (HDR_HAS_L1HDR(hdr)) { while (hdr->b_l1hdr.b_buf) { arc_buf_t *buf = hdr->b_l1hdr.b_buf; if (buf->b_efunc != NULL) { mutex_enter(&arc_user_evicts_lock); mutex_enter(&buf->b_evict_lock); ASSERT(buf->b_hdr != NULL); arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE); hdr->b_l1hdr.b_buf = buf->b_next; buf->b_hdr = &arc_eviction_hdr; buf->b_next = arc_eviction_list; arc_eviction_list = buf; mutex_exit(&buf->b_evict_lock); cv_signal(&arc_user_evicts_cv); mutex_exit(&arc_user_evicts_lock); } else { arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE); } } #ifdef ZFS_DEBUG if (hdr->b_l1hdr.b_thawed != NULL) { kmem_free(hdr->b_l1hdr.b_thawed, 1); hdr->b_l1hdr.b_thawed = NULL; } #endif } ASSERT3P(hdr->b_hash_next, ==, NULL); if (HDR_HAS_L1HDR(hdr)) { ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); kmem_cache_free(hdr_full_cache, hdr); } else { kmem_cache_free(hdr_l2only_cache, hdr); } } void arc_buf_free(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; int hashed = hdr->b_l1hdr.b_state != arc_anon; ASSERT(buf->b_efunc == NULL); ASSERT(buf->b_data != NULL); if (hashed) { kmutex_t *hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); (void) remove_reference(hdr, hash_lock, tag); if (hdr->b_l1hdr.b_datacnt > 1) { arc_buf_destroy(buf, TRUE); } else { ASSERT(buf == hdr->b_l1hdr.b_buf); ASSERT(buf->b_efunc == NULL); hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; } mutex_exit(hash_lock); } else if (HDR_IO_IN_PROGRESS(hdr)) { int destroy_hdr; /* * We are in the middle of an async write. Don't destroy * this buffer unless the write completes before we finish * decrementing the reference count. */ mutex_enter(&arc_user_evicts_lock); (void) remove_reference(hdr, NULL, tag); ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); mutex_exit(&arc_user_evicts_lock); if (destroy_hdr) arc_hdr_destroy(hdr); } else { if (remove_reference(hdr, NULL, tag) > 0) arc_buf_destroy(buf, TRUE); else arc_hdr_destroy(hdr); } } boolean_t arc_buf_remove_ref(arc_buf_t *buf, void* tag) { arc_buf_hdr_t *hdr = buf->b_hdr; kmutex_t *hash_lock = HDR_LOCK(hdr); boolean_t no_callback = (buf->b_efunc == NULL); if (hdr->b_l1hdr.b_state == arc_anon) { ASSERT(hdr->b_l1hdr.b_datacnt == 1); arc_buf_free(buf, tag); return (no_callback); } mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT(hdr->b_l1hdr.b_datacnt > 0); ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT(hdr->b_l1hdr.b_state != arc_anon); ASSERT(buf->b_data != NULL); (void) remove_reference(hdr, hash_lock, tag); if (hdr->b_l1hdr.b_datacnt > 1) { if (no_callback) arc_buf_destroy(buf, TRUE); } else if (no_callback) { ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL); ASSERT(buf->b_efunc == NULL); hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; } ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 || refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); mutex_exit(hash_lock); return (no_callback); } int32_t arc_buf_size(arc_buf_t *buf) { return (buf->b_hdr->b_size); } /* * Called from the DMU to determine if the current buffer should be * evicted. In order to ensure proper locking, the eviction must be initiated * from the DMU. Return true if the buffer is associated with user data and * duplicate buffers still exist. */ boolean_t arc_buf_eviction_needed(arc_buf_t *buf) { arc_buf_hdr_t *hdr; boolean_t evict_needed = B_FALSE; if (zfs_disable_dup_eviction) return (B_FALSE); mutex_enter(&buf->b_evict_lock); hdr = buf->b_hdr; if (hdr == NULL) { /* * We are in arc_do_user_evicts(); let that function * perform the eviction. */ ASSERT(buf->b_data == NULL); mutex_exit(&buf->b_evict_lock); return (B_FALSE); } else if (buf->b_data == NULL) { /* * We have already been added to the arc eviction list; * recommend eviction. */ ASSERT3P(hdr, ==, &arc_eviction_hdr); mutex_exit(&buf->b_evict_lock); return (B_TRUE); } if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr)) evict_needed = B_TRUE; mutex_exit(&buf->b_evict_lock); return (evict_needed); } /* * Evict the arc_buf_hdr that is provided as a parameter. The resultant * state of the header is dependent on it's state prior to entering this * function. The following transitions are possible: * * - arc_mru -> arc_mru_ghost * - arc_mfu -> arc_mfu_ghost * - arc_mru_ghost -> arc_l2c_only * - arc_mru_ghost -> deleted * - arc_mfu_ghost -> arc_l2c_only * - arc_mfu_ghost -> deleted */ static int64_t arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) { arc_state_t *evicted_state, *state; int64_t bytes_evicted = 0; ASSERT(MUTEX_HELD(hash_lock)); ASSERT(HDR_HAS_L1HDR(hdr)); state = hdr->b_l1hdr.b_state; if (GHOST_STATE(state)) { ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT(hdr->b_l1hdr.b_buf == NULL); /* * l2arc_write_buffers() relies on a header's L1 portion * (i.e. it's b_tmp_cdata field) during it's write phase. * Thus, we cannot push a header onto the arc_l2c_only * state (removing it's L1 piece) until the header is * done being written to the l2arc. */ if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { ARCSTAT_BUMP(arcstat_evict_l2_skip); return (bytes_evicted); } ARCSTAT_BUMP(arcstat_deleted); bytes_evicted += hdr->b_size; DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); if (HDR_HAS_L2HDR(hdr)) { /* * This buffer is cached on the 2nd Level ARC; * don't destroy the header. */ arc_change_state(arc_l2c_only, hdr, hash_lock); /* * dropping from L1+L2 cached to L2-only, * realloc to remove the L1 header. */ hdr = arc_hdr_realloc(hdr, hdr_full_cache, hdr_l2only_cache); } else { arc_change_state(arc_anon, hdr, hash_lock); arc_hdr_destroy(hdr); } return (bytes_evicted); } ASSERT(state == arc_mru || state == arc_mfu); evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; /* prefetch buffers have a minimum lifespan */ if (HDR_IO_IN_PROGRESS(hdr) || ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < arc_min_prefetch_lifespan)) { ARCSTAT_BUMP(arcstat_evict_skip); return (bytes_evicted); } ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0); while (hdr->b_l1hdr.b_buf) { arc_buf_t *buf = hdr->b_l1hdr.b_buf; if (!mutex_tryenter(&buf->b_evict_lock)) { ARCSTAT_BUMP(arcstat_mutex_miss); break; } if (buf->b_data != NULL) bytes_evicted += hdr->b_size; if (buf->b_efunc != NULL) { mutex_enter(&arc_user_evicts_lock); arc_buf_destroy(buf, FALSE); hdr->b_l1hdr.b_buf = buf->b_next; buf->b_hdr = &arc_eviction_hdr; buf->b_next = arc_eviction_list; arc_eviction_list = buf; cv_signal(&arc_user_evicts_cv); mutex_exit(&arc_user_evicts_lock); mutex_exit(&buf->b_evict_lock); } else { mutex_exit(&buf->b_evict_lock); arc_buf_destroy(buf, TRUE); } } if (HDR_HAS_L2HDR(hdr)) { ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size); } else { if (l2arc_write_eligible(hdr->b_spa, hdr)) ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size); else ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size); } if (hdr->b_l1hdr.b_datacnt == 0) { arc_change_state(evicted_state, hdr, hash_lock); ASSERT(HDR_IN_HASH_TABLE(hdr)); hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); } return (bytes_evicted); } static uint64_t arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, uint64_t spa, int64_t bytes) { multilist_sublist_t *mls; uint64_t bytes_evicted = 0; arc_buf_hdr_t *hdr; kmutex_t *hash_lock; int evict_count = 0; ASSERT3P(marker, !=, NULL); IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); mls = multilist_sublist_lock(ml, idx); for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; hdr = multilist_sublist_prev(mls, marker)) { if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || (evict_count >= zfs_arc_evict_batch_limit)) break; /* * To keep our iteration location, move the marker * forward. Since we're not holding hdr's hash lock, we * must be very careful and not remove 'hdr' from the * sublist. Otherwise, other consumers might mistake the * 'hdr' as not being on a sublist when they call the * multilist_link_active() function (they all rely on * the hash lock protecting concurrent insertions and * removals). multilist_sublist_move_forward() was * specifically implemented to ensure this is the case * (only 'marker' will be removed and re-inserted). */ multilist_sublist_move_forward(mls, marker); /* * The only case where the b_spa field should ever be * zero, is the marker headers inserted by * arc_evict_state(). It's possible for multiple threads * to be calling arc_evict_state() concurrently (e.g. * dsl_pool_close() and zio_inject_fault()), so we must * skip any markers we see from these other threads. */ if (hdr->b_spa == 0) continue; /* we're only interested in evicting buffers of a certain spa */ if (spa != 0 && hdr->b_spa != spa) { ARCSTAT_BUMP(arcstat_evict_skip); continue; } hash_lock = HDR_LOCK(hdr); /* * We aren't calling this function from any code path * that would already be holding a hash lock, so we're * asserting on this assumption to be defensive in case * this ever changes. Without this check, it would be * possible to incorrectly increment arcstat_mutex_miss * below (e.g. if the code changed such that we called * this function with a hash lock held). */ ASSERT(!MUTEX_HELD(hash_lock)); if (mutex_tryenter(hash_lock)) { uint64_t evicted = arc_evict_hdr(hdr, hash_lock); mutex_exit(hash_lock); bytes_evicted += evicted; /* * If evicted is zero, arc_evict_hdr() must have * decided to skip this header, don't increment * evict_count in this case. */ if (evicted != 0) evict_count++; /* * If arc_size isn't overflowing, signal any * threads that might happen to be waiting. * * For each header evicted, we wake up a single * thread. If we used cv_broadcast, we could * wake up "too many" threads causing arc_size * to significantly overflow arc_c; since * arc_get_data_buf() doesn't check for overflow * when it's woken up (it doesn't because it's * possible for the ARC to be overflowing while * full of un-evictable buffers, and the * function should proceed in this case). * * If threads are left sleeping, due to not * using cv_broadcast, they will be woken up * just before arc_reclaim_thread() sleeps. */ mutex_enter(&arc_reclaim_lock); if (!arc_is_overflowing()) cv_signal(&arc_reclaim_waiters_cv); mutex_exit(&arc_reclaim_lock); } else { ARCSTAT_BUMP(arcstat_mutex_miss); } } multilist_sublist_unlock(mls); return (bytes_evicted); } /* * Evict buffers from the given arc state, until we've removed the * specified number of bytes. Move the removed buffers to the * appropriate evict state. * * This function makes a "best effort". It skips over any buffers * it can't get a hash_lock on, and so, may not catch all candidates. * It may also return without evicting as much space as requested. * * If bytes is specified using the special value ARC_EVICT_ALL, this * will evict all available (i.e. unlocked and evictable) buffers from * the given arc state; which is used by arc_flush(). */ static uint64_t arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, arc_buf_contents_t type) { uint64_t total_evicted = 0; multilist_t *ml = &state->arcs_list[type]; int num_sublists; arc_buf_hdr_t **markers; IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); num_sublists = multilist_get_num_sublists(ml); /* * If we've tried to evict from each sublist, made some * progress, but still have not hit the target number of bytes * to evict, we want to keep trying. The markers allow us to * pick up where we left off for each individual sublist, rather * than starting from the tail each time. */ markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); for (int i = 0; i < num_sublists; i++) { markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); /* * A b_spa of 0 is used to indicate that this header is * a marker. This fact is used in arc_adjust_type() and * arc_evict_state_impl(). */ markers[i]->b_spa = 0; multilist_sublist_t *mls = multilist_sublist_lock(ml, i); multilist_sublist_insert_tail(mls, markers[i]); multilist_sublist_unlock(mls); } /* * While we haven't hit our target number of bytes to evict, or * we're evicting all available buffers. */ while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { /* * Start eviction using a randomly selected sublist, * this is to try and evenly balance eviction across all * sublists. Always starting at the same sublist * (e.g. index 0) would cause evictions to favor certain * sublists over others. */ int sublist_idx = multilist_get_random_index(ml); uint64_t scan_evicted = 0; for (int i = 0; i < num_sublists; i++) { uint64_t bytes_remaining; uint64_t bytes_evicted; if (bytes == ARC_EVICT_ALL) bytes_remaining = ARC_EVICT_ALL; else if (total_evicted < bytes) bytes_remaining = bytes - total_evicted; else break; bytes_evicted = arc_evict_state_impl(ml, sublist_idx, markers[sublist_idx], spa, bytes_remaining); scan_evicted += bytes_evicted; total_evicted += bytes_evicted; /* we've reached the end, wrap to the beginning */ if (++sublist_idx >= num_sublists) sublist_idx = 0; } /* * If we didn't evict anything during this scan, we have * no reason to believe we'll evict more during another * scan, so break the loop. */ if (scan_evicted == 0) { /* This isn't possible, let's make that obvious */ ASSERT3S(bytes, !=, 0); /* * When bytes is ARC_EVICT_ALL, the only way to * break the loop is when scan_evicted is zero. * In that case, we actually have evicted enough, * so we don't want to increment the kstat. */ if (bytes != ARC_EVICT_ALL) { ASSERT3S(total_evicted, <, bytes); ARCSTAT_BUMP(arcstat_evict_not_enough); } break; } } for (int i = 0; i < num_sublists; i++) { multilist_sublist_t *mls = multilist_sublist_lock(ml, i); multilist_sublist_remove(mls, markers[i]); multilist_sublist_unlock(mls); kmem_cache_free(hdr_full_cache, markers[i]); } kmem_free(markers, sizeof (*markers) * num_sublists); return (total_evicted); } /* * Flush all "evictable" data of the given type from the arc state * specified. This will not evict any "active" buffers (i.e. referenced). * * When 'retry' is set to FALSE, the function will make a single pass * over the state and evict any buffers that it can. Since it doesn't * continually retry the eviction, it might end up leaving some buffers * in the ARC due to lock misses. * * When 'retry' is set to TRUE, the function will continually retry the * eviction until *all* evictable buffers have been removed from the * state. As a result, if concurrent insertions into the state are * allowed (e.g. if the ARC isn't shutting down), this function might * wind up in an infinite loop, continually trying to evict buffers. */ static uint64_t arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, boolean_t retry) { uint64_t evicted = 0; while (state->arcs_lsize[type] != 0) { evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); if (!retry) break; } return (evicted); } /* * Evict the specified number of bytes from the state specified, * restricting eviction to the spa and type given. This function * prevents us from trying to evict more from a state's list than * is "evictable", and to skip evicting altogether when passed a * negative value for "bytes". In contrast, arc_evict_state() will * evict everything it can, when passed a negative value for "bytes". */ static uint64_t arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, arc_buf_contents_t type) { int64_t delta; if (bytes > 0 && state->arcs_lsize[type] > 0) { delta = MIN(state->arcs_lsize[type], bytes); return (arc_evict_state(state, spa, delta, type)); } return (0); } /* * Evict metadata buffers from the cache, such that arc_meta_used is * capped by the arc_meta_limit tunable. */ static uint64_t arc_adjust_meta(void) { uint64_t total_evicted = 0; int64_t target; /* * If we're over the meta limit, we want to evict enough * metadata to get back under the meta limit. We don't want to * evict so much that we drop the MRU below arc_p, though. If * we're over the meta limit more than we're over arc_p, we * evict some from the MRU here, and some from the MFU below. */ target = MIN((int64_t)(arc_meta_used - arc_meta_limit), (int64_t)(refcount_count(&arc_anon->arcs_size) + refcount_count(&arc_mru->arcs_size) - arc_p)); total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); /* * Similar to the above, we want to evict enough bytes to get us * below the meta limit, but not so much as to drop us below the * space alloted to the MFU (which is defined as arc_c - arc_p). */ target = MIN((int64_t)(arc_meta_used - arc_meta_limit), (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); return (total_evicted); } /* * Return the type of the oldest buffer in the given arc state * * This function will select a random sublist of type ARC_BUFC_DATA and * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist * is compared, and the type which contains the "older" buffer will be * returned. */ static arc_buf_contents_t arc_adjust_type(arc_state_t *state) { multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; int data_idx = multilist_get_random_index(data_ml); int meta_idx = multilist_get_random_index(meta_ml); multilist_sublist_t *data_mls; multilist_sublist_t *meta_mls; arc_buf_contents_t type; arc_buf_hdr_t *data_hdr; arc_buf_hdr_t *meta_hdr; /* * We keep the sublist lock until we're finished, to prevent * the headers from being destroyed via arc_evict_state(). */ data_mls = multilist_sublist_lock(data_ml, data_idx); meta_mls = multilist_sublist_lock(meta_ml, meta_idx); /* * These two loops are to ensure we skip any markers that * might be at the tail of the lists due to arc_evict_state(). */ for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { if (data_hdr->b_spa != 0) break; } for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { if (meta_hdr->b_spa != 0) break; } if (data_hdr == NULL && meta_hdr == NULL) { type = ARC_BUFC_DATA; } else if (data_hdr == NULL) { ASSERT3P(meta_hdr, !=, NULL); type = ARC_BUFC_METADATA; } else if (meta_hdr == NULL) { ASSERT3P(data_hdr, !=, NULL); type = ARC_BUFC_DATA; } else { ASSERT3P(data_hdr, !=, NULL); ASSERT3P(meta_hdr, !=, NULL); /* The headers can't be on the sublist without an L1 header */ ASSERT(HDR_HAS_L1HDR(data_hdr)); ASSERT(HDR_HAS_L1HDR(meta_hdr)); if (data_hdr->b_l1hdr.b_arc_access < meta_hdr->b_l1hdr.b_arc_access) { type = ARC_BUFC_DATA; } else { type = ARC_BUFC_METADATA; } } multilist_sublist_unlock(meta_mls); multilist_sublist_unlock(data_mls); return (type); } /* * Evict buffers from the cache, such that arc_size is capped by arc_c. */ static uint64_t arc_adjust(void) { uint64_t total_evicted = 0; uint64_t bytes; int64_t target; /* * If we're over arc_meta_limit, we want to correct that before * potentially evicting data buffers below. */ total_evicted += arc_adjust_meta(); /* * Adjust MRU size * * If we're over the target cache size, we want to evict enough * from the list to get back to our target size. We don't want * to evict too much from the MRU, such that it drops below * arc_p. So, if we're over our target cache size more than * the MRU is over arc_p, we'll evict enough to get back to * arc_p here, and then evict more from the MFU below. */ target = MIN((int64_t)(arc_size - arc_c), (int64_t)(refcount_count(&arc_anon->arcs_size) + refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); /* * If we're below arc_meta_min, always prefer to evict data. * Otherwise, try to satisfy the requested number of bytes to * evict from the type which contains older buffers; in an * effort to keep newer buffers in the cache regardless of their * type. If we cannot satisfy the number of bytes from this * type, spill over into the next type. */ if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && arc_meta_used > arc_meta_min) { bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); total_evicted += bytes; /* * If we couldn't evict our target number of bytes from * metadata, we try to get the rest from data. */ target -= bytes; total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); } else { bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); total_evicted += bytes; /* * If we couldn't evict our target number of bytes from * data, we try to get the rest from metadata. */ target -= bytes; total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); } /* * Adjust MFU size * * Now that we've tried to evict enough from the MRU to get its * size back to arc_p, if we're still above the target cache * size, we evict the rest from the MFU. */ target = arc_size - arc_c; if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && arc_meta_used > arc_meta_min) { bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); total_evicted += bytes; /* * If we couldn't evict our target number of bytes from * metadata, we try to get the rest from data. */ target -= bytes; total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); } else { bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); total_evicted += bytes; /* * If we couldn't evict our target number of bytes from * data, we try to get the rest from data. */ target -= bytes; total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); } /* * Adjust ghost lists * * In addition to the above, the ARC also defines target values * for the ghost lists. The sum of the mru list and mru ghost * list should never exceed the target size of the cache, and * the sum of the mru list, mfu list, mru ghost list, and mfu * ghost list should never exceed twice the target size of the * cache. The following logic enforces these limits on the ghost * caches, and evicts from them as needed. */ target = refcount_count(&arc_mru->arcs_size) + refcount_count(&arc_mru_ghost->arcs_size) - arc_c; bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); total_evicted += bytes; target -= bytes; total_evicted += arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); /* * We assume the sum of the mru list and mfu list is less than * or equal to arc_c (we enforced this above), which means we * can use the simpler of the two equations below: * * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c * mru ghost + mfu ghost <= arc_c */ target = refcount_count(&arc_mru_ghost->arcs_size) + refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); total_evicted += bytes; target -= bytes; total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); return (total_evicted); } static void arc_do_user_evicts(void) { mutex_enter(&arc_user_evicts_lock); while (arc_eviction_list != NULL) { arc_buf_t *buf = arc_eviction_list; arc_eviction_list = buf->b_next; mutex_enter(&buf->b_evict_lock); buf->b_hdr = NULL; mutex_exit(&buf->b_evict_lock); mutex_exit(&arc_user_evicts_lock); if (buf->b_efunc != NULL) VERIFY0(buf->b_efunc(buf->b_private)); buf->b_efunc = NULL; buf->b_private = NULL; kmem_cache_free(buf_cache, buf); mutex_enter(&arc_user_evicts_lock); } mutex_exit(&arc_user_evicts_lock); } void arc_flush(spa_t *spa, boolean_t retry) { uint64_t guid = 0; /* * If retry is TRUE, a spa must not be specified since we have * no good way to determine if all of a spa's buffers have been * evicted from an arc state. */ ASSERT(!retry || spa == 0); if (spa != NULL) guid = spa_load_guid(spa); (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); arc_do_user_evicts(); ASSERT(spa || arc_eviction_list == NULL); } void arc_shrink(int64_t to_free) { if (arc_c > arc_c_min) { if (arc_c > arc_c_min + to_free) atomic_add_64(&arc_c, -to_free); else arc_c = arc_c_min; atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); if (arc_c > arc_size) arc_c = MAX(arc_size, arc_c_min); if (arc_p > arc_c) arc_p = (arc_c >> 1); ASSERT(arc_c >= arc_c_min); ASSERT((int64_t)arc_p >= 0); } if (arc_size > arc_c) (void) arc_adjust(); } typedef enum free_memory_reason_t { FMR_UNKNOWN, FMR_NEEDFREE, FMR_LOTSFREE, FMR_SWAPFS_MINFREE, FMR_PAGES_PP_MAXIMUM, FMR_HEAP_ARENA, FMR_ZIO_ARENA, } free_memory_reason_t; int64_t last_free_memory; free_memory_reason_t last_free_reason; /* * Additional reserve of pages for pp_reserve. */ int64_t arc_pages_pp_reserve = 64; /* * Additional reserve of pages for swapfs. */ int64_t arc_swapfs_reserve = 64; /* * Return the amount of memory that can be consumed before reclaim will be * needed. Positive if there is sufficient free memory, negative indicates * the amount of memory that needs to be freed up. */ static int64_t arc_available_memory(void) { int64_t lowest = INT64_MAX; int64_t n; free_memory_reason_t r = FMR_UNKNOWN; #ifdef _KERNEL if (needfree > 0) { n = PAGESIZE * (-needfree); if (n < lowest) { lowest = n; r = FMR_NEEDFREE; } } /* * check that we're out of range of the pageout scanner. It starts to * schedule paging if freemem is less than lotsfree and needfree. * lotsfree is the high-water mark for pageout, and needfree is the * number of needed free pages. We add extra pages here to make sure * the scanner doesn't start up while we're freeing memory. */ n = PAGESIZE * (freemem - lotsfree - needfree - desfree); if (n < lowest) { lowest = n; r = FMR_LOTSFREE; } /* * check to make sure that swapfs has enough space so that anon * reservations can still succeed. anon_resvmem() checks that the * availrmem is greater than swapfs_minfree, and the number of reserved * swap pages. We also add a bit of extra here just to prevent * circumstances from getting really dire. */ n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - desfree - arc_swapfs_reserve); if (n < lowest) { lowest = n; r = FMR_SWAPFS_MINFREE; } /* * Check that we have enough availrmem that memory locking (e.g., via * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum * stores the number of pages that cannot be locked; when availrmem * drops below pages_pp_maximum, page locking mechanisms such as * page_pp_lock() will fail.) */ n = PAGESIZE * (availrmem - pages_pp_maximum - arc_pages_pp_reserve); if (n < lowest) { lowest = n; r = FMR_PAGES_PP_MAXIMUM; } #if defined(__i386) /* * If we're on an i386 platform, it's possible that we'll exhaust the * kernel heap space before we ever run out of available physical * memory. Most checks of the size of the heap_area compare against * tune.t_minarmem, which is the minimum available real memory that we * can have in the system. However, this is generally fixed at 25 pages * which is so low that it's useless. In this comparison, we seek to * calculate the total heap-size, and reclaim if more than 3/4ths of the * heap is allocated. (Or, in the calculation, if less than 1/4th is * free) */ n = vmem_size(heap_arena, VMEM_FREE) - (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); if (n < lowest) { lowest = n; r = FMR_HEAP_ARENA; } #endif /* * If zio data pages are being allocated out of a separate heap segment, * then enforce that the size of available vmem for this arena remains * above about 1/16th free. * * Note: The 1/16th arena free requirement was put in place * to aggressively evict memory from the arc in order to avoid * memory fragmentation issues. */ if (zio_arena != NULL) { n = vmem_size(zio_arena, VMEM_FREE) - (vmem_size(zio_arena, VMEM_ALLOC) >> 4); if (n < lowest) { lowest = n; r = FMR_ZIO_ARENA; } } #else /* Every 100 calls, free a small amount */ if (spa_get_random(100) == 0) lowest = -1024; #endif last_free_memory = lowest; last_free_reason = r; return (lowest); } /* * Determine if the system is under memory pressure and is asking * to reclaim memory. A return value of TRUE indicates that the system * is under memory pressure and that the arc should adjust accordingly. */ static boolean_t arc_reclaim_needed(void) { return (arc_available_memory() < 0); } static void arc_kmem_reap_now(void) { size_t i; kmem_cache_t *prev_cache = NULL; kmem_cache_t *prev_data_cache = NULL; extern kmem_cache_t *zio_buf_cache[]; extern kmem_cache_t *zio_data_buf_cache[]; extern kmem_cache_t *range_seg_cache; #ifdef _KERNEL if (arc_meta_used >= arc_meta_limit) { /* * We are exceeding our meta-data cache limit. * Purge some DNLC entries to release holds on meta-data. */ dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); } #if defined(__i386) /* * Reclaim unused memory from all kmem caches. */ kmem_reap(); #endif #endif for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { if (zio_buf_cache[i] != prev_cache) { prev_cache = zio_buf_cache[i]; kmem_cache_reap_now(zio_buf_cache[i]); } if (zio_data_buf_cache[i] != prev_data_cache) { prev_data_cache = zio_data_buf_cache[i]; kmem_cache_reap_now(zio_data_buf_cache[i]); } } kmem_cache_reap_now(buf_cache); kmem_cache_reap_now(hdr_full_cache); kmem_cache_reap_now(hdr_l2only_cache); kmem_cache_reap_now(range_seg_cache); if (zio_arena != NULL) { /* * Ask the vmem arena to reclaim unused memory from its * quantum caches. */ vmem_qcache_reap(zio_arena); } } /* * Threads can block in arc_get_data_buf() waiting for this thread to evict * enough data and signal them to proceed. When this happens, the threads in * arc_get_data_buf() are sleeping while holding the hash lock for their * particular arc header. Thus, we must be careful to never sleep on a * hash lock in this thread. This is to prevent the following deadlock: * * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", * waiting for the reclaim thread to signal it. * * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, * fails, and goes to sleep forever. * * This possible deadlock is avoided by always acquiring a hash lock * using mutex_tryenter() from arc_reclaim_thread(). */ static void arc_reclaim_thread(void) { clock_t growtime = 0; callb_cpr_t cpr; CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); mutex_enter(&arc_reclaim_lock); while (!arc_reclaim_thread_exit) { int64_t free_memory = arc_available_memory(); uint64_t evicted = 0; mutex_exit(&arc_reclaim_lock); if (free_memory < 0) { arc_no_grow = B_TRUE; arc_warm = B_TRUE; /* * Wait at least zfs_grow_retry (default 60) seconds * before considering growing. */ growtime = ddi_get_lbolt() + (arc_grow_retry * hz); arc_kmem_reap_now(); /* * If we are still low on memory, shrink the ARC * so that we have arc_shrink_min free space. */ free_memory = arc_available_memory(); int64_t to_free = (arc_c >> arc_shrink_shift) - free_memory; if (to_free > 0) { #ifdef _KERNEL to_free = MAX(to_free, ptob(needfree)); #endif arc_shrink(to_free); } } else if (free_memory < arc_c >> arc_no_grow_shift) { arc_no_grow = B_TRUE; } else if (ddi_get_lbolt() >= growtime) { arc_no_grow = B_FALSE; } evicted = arc_adjust(); mutex_enter(&arc_reclaim_lock); /* * If evicted is zero, we couldn't evict anything via * arc_adjust(). This could be due to hash lock * collisions, but more likely due to the majority of * arc buffers being unevictable. Therefore, even if * arc_size is above arc_c, another pass is unlikely to * be helpful and could potentially cause us to enter an * infinite loop. */ if (arc_size <= arc_c || evicted == 0) { /* * We're either no longer overflowing, or we * can't evict anything more, so we should wake * up any threads before we go to sleep. */ cv_broadcast(&arc_reclaim_waiters_cv); /* * Block until signaled, or after one second (we * might need to perform arc_kmem_reap_now() * even if we aren't being signalled) */ CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait(&arc_reclaim_thread_cv, &arc_reclaim_lock, ddi_get_lbolt() + hz); CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); } } arc_reclaim_thread_exit = FALSE; cv_broadcast(&arc_reclaim_thread_cv); CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ thread_exit(); } static void arc_user_evicts_thread(void) { callb_cpr_t cpr; CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG); mutex_enter(&arc_user_evicts_lock); while (!arc_user_evicts_thread_exit) { mutex_exit(&arc_user_evicts_lock); arc_do_user_evicts(); /* * This is necessary in order for the mdb ::arc dcmd to * show up to date information. Since the ::arc command * does not call the kstat's update function, without * this call, the command may show stale stats for the * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even * with this change, the data might be up to 1 second * out of date; but that should suffice. The arc_state_t * structures can be queried directly if more accurate * information is needed. */ if (arc_ksp != NULL) arc_ksp->ks_update(arc_ksp, KSTAT_READ); mutex_enter(&arc_user_evicts_lock); /* * Block until signaled, or after one second (we need to * call the arc's kstat update function regularly). */ CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait(&arc_user_evicts_cv, &arc_user_evicts_lock, ddi_get_lbolt() + hz); CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock); } arc_user_evicts_thread_exit = FALSE; cv_broadcast(&arc_user_evicts_cv); CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */ thread_exit(); } /* * Adapt arc info given the number of bytes we are trying to add and * the state that we are comming from. This function is only called * when we are adding new content to the cache. */ static void arc_adapt(int bytes, arc_state_t *state) { int mult; uint64_t arc_p_min = (arc_c >> arc_p_min_shift); int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); if (state == arc_l2c_only) return; ASSERT(bytes > 0); /* * Adapt the target size of the MRU list: * - if we just hit in the MRU ghost list, then increase * the target size of the MRU list. * - if we just hit in the MFU ghost list, then increase * the target size of the MFU list by decreasing the * target size of the MRU list. */ if (state == arc_mru_ghost) { mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); } else if (state == arc_mfu_ghost) { uint64_t delta; mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); mult = MIN(mult, 10); delta = MIN(bytes * mult, arc_p); arc_p = MAX(arc_p_min, arc_p - delta); } ASSERT((int64_t)arc_p >= 0); if (arc_reclaim_needed()) { cv_signal(&arc_reclaim_thread_cv); return; } if (arc_no_grow) return; if (arc_c >= arc_c_max) return; /* * If we're within (2 * maxblocksize) bytes of the target * cache size, increment the target cache size */ if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { atomic_add_64(&arc_c, (int64_t)bytes); if (arc_c > arc_c_max) arc_c = arc_c_max; else if (state == arc_anon) atomic_add_64(&arc_p, (int64_t)bytes); if (arc_p > arc_c) arc_p = arc_c; } ASSERT((int64_t)arc_p >= 0); } /* * Check if arc_size has grown past our upper threshold, determined by * zfs_arc_overflow_shift. */ static boolean_t arc_is_overflowing(void) { /* Always allow at least one block of overflow */ uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, arc_c >> zfs_arc_overflow_shift); return (arc_size >= arc_c + overflow); } /* * The buffer, supplied as the first argument, needs a data block. If we * are hitting the hard limit for the cache size, we must sleep, waiting * for the eviction thread to catch up. If we're past the target size * but below the hard limit, we'll only signal the reclaim thread and * continue on. */ static void arc_get_data_buf(arc_buf_t *buf) { arc_state_t *state = buf->b_hdr->b_l1hdr.b_state; uint64_t size = buf->b_hdr->b_size; arc_buf_contents_t type = arc_buf_type(buf->b_hdr); arc_adapt(size, state); /* * If arc_size is currently overflowing, and has grown past our * upper limit, we must be adding data faster than the evict * thread can evict. Thus, to ensure we don't compound the * problem by adding more data and forcing arc_size to grow even * further past it's target size, we halt and wait for the * eviction thread to catch up. * * It's also possible that the reclaim thread is unable to evict * enough buffers to get arc_size below the overflow limit (e.g. * due to buffers being un-evictable, or hash lock collisions). * In this case, we want to proceed regardless if we're * overflowing; thus we don't use a while loop here. */ if (arc_is_overflowing()) { mutex_enter(&arc_reclaim_lock); /* * Now that we've acquired the lock, we may no longer be * over the overflow limit, lets check. * * We're ignoring the case of spurious wake ups. If that * were to happen, it'd let this thread consume an ARC * buffer before it should have (i.e. before we're under * the overflow limit and were signalled by the reclaim * thread). As long as that is a rare occurrence, it * shouldn't cause any harm. */ if (arc_is_overflowing()) { cv_signal(&arc_reclaim_thread_cv); cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); } mutex_exit(&arc_reclaim_lock); } if (type == ARC_BUFC_METADATA) { buf->b_data = zio_buf_alloc(size); arc_space_consume(size, ARC_SPACE_META); } else { ASSERT(type == ARC_BUFC_DATA); buf->b_data = zio_data_buf_alloc(size); arc_space_consume(size, ARC_SPACE_DATA); } /* * Update the state size. Note that ghost states have a * "ghost size" and so don't need to be updated. */ if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) { arc_buf_hdr_t *hdr = buf->b_hdr; arc_state_t *state = hdr->b_l1hdr.b_state; (void) refcount_add_many(&state->arcs_size, size, buf); /* * If this is reached via arc_read, the link is * protected by the hash lock. If reached via * arc_buf_alloc, the header should not be accessed by * any other thread. And, if reached via arc_read_done, * the hash lock will protect it if it's found in the * hash table; otherwise no other thread should be * trying to [add|remove]_reference it. */ if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type], size); } /* * If we are growing the cache, and we are adding anonymous * data, and we have outgrown arc_p, update arc_p */ if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && (refcount_count(&arc_anon->arcs_size) + refcount_count(&arc_mru->arcs_size) > arc_p)) arc_p = MIN(arc_c, arc_p + size); } } /* * This routine is called whenever a buffer is accessed. * NOTE: the hash lock is dropped in this function. */ static void arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) { clock_t now; ASSERT(MUTEX_HELD(hash_lock)); ASSERT(HDR_HAS_L1HDR(hdr)); if (hdr->b_l1hdr.b_state == arc_anon) { /* * This buffer is not in the cache, and does not * appear in our "ghost" list. Add the new buffer * to the MRU state. */ ASSERT0(hdr->b_l1hdr.b_arc_access); hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); arc_change_state(arc_mru, hdr, hash_lock); } else if (hdr->b_l1hdr.b_state == arc_mru) { now = ddi_get_lbolt(); /* * If this buffer is here because of a prefetch, then either: * - clear the flag if this is a "referencing" read * (any subsequent access will bump this into the MFU state). * or * - move the buffer to the head of the list if this is * another prefetch (to make it less likely to be evicted). */ if (HDR_PREFETCH(hdr)) { if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { /* link protected by hash lock */ ASSERT(multilist_link_active( &hdr->b_l1hdr.b_arc_node)); } else { hdr->b_flags &= ~ARC_FLAG_PREFETCH; ARCSTAT_BUMP(arcstat_mru_hits); } hdr->b_l1hdr.b_arc_access = now; return; } /* * This buffer has been "accessed" only once so far, * but it is still in the cache. Move it to the MFU * state. */ if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { /* * More than 125ms have passed since we * instantiated this buffer. Move it to the * most frequently used state. */ hdr->b_l1hdr.b_arc_access = now; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); arc_change_state(arc_mfu, hdr, hash_lock); } ARCSTAT_BUMP(arcstat_mru_hits); } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { arc_state_t *new_state; /* * This buffer has been "accessed" recently, but * was evicted from the cache. Move it to the * MFU state. */ if (HDR_PREFETCH(hdr)) { new_state = arc_mru; if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) hdr->b_flags &= ~ARC_FLAG_PREFETCH; DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); } else { new_state = arc_mfu; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); } hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); arc_change_state(new_state, hdr, hash_lock); ARCSTAT_BUMP(arcstat_mru_ghost_hits); } else if (hdr->b_l1hdr.b_state == arc_mfu) { /* * This buffer has been accessed more than once and is * still in the cache. Keep it in the MFU state. * * NOTE: an add_reference() that occurred when we did * the arc_read() will have kicked this off the list. * If it was a prefetch, we will explicitly move it to * the head of the list now. */ if ((HDR_PREFETCH(hdr)) != 0) { ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); /* link protected by hash_lock */ ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); } ARCSTAT_BUMP(arcstat_mfu_hits); hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { arc_state_t *new_state = arc_mfu; /* * This buffer has been accessed more than once but has * been evicted from the cache. Move it back to the * MFU state. */ if (HDR_PREFETCH(hdr)) { /* * This is a prefetch access... * move this block back to the MRU state. */ ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); new_state = arc_mru; } hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); arc_change_state(new_state, hdr, hash_lock); ARCSTAT_BUMP(arcstat_mfu_ghost_hits); } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { /* * This buffer is on the 2nd Level ARC. */ hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); arc_change_state(arc_mfu, hdr, hash_lock); } else { ASSERT(!"invalid arc state"); } } /* a generic arc_done_func_t which you can use */ /* ARGSUSED */ void arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) { if (zio == NULL || zio->io_error == 0) bcopy(buf->b_data, arg, buf->b_hdr->b_size); VERIFY(arc_buf_remove_ref(buf, arg)); } /* a generic arc_done_func_t */ void arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) { arc_buf_t **bufp = arg; if (zio && zio->io_error) { VERIFY(arc_buf_remove_ref(buf, arg)); *bufp = NULL; } else { *bufp = buf; ASSERT(buf->b_data); } } static void arc_read_done(zio_t *zio) { arc_buf_hdr_t *hdr; arc_buf_t *buf; arc_buf_t *abuf; /* buffer we're assigning to callback */ kmutex_t *hash_lock = NULL; arc_callback_t *callback_list, *acb; int freeable = FALSE; buf = zio->io_private; hdr = buf->b_hdr; /* * The hdr was inserted into hash-table and removed from lists * prior to starting I/O. We should find this header, since * it's in the hash table, and it should be legit since it's * not possible to evict it during the I/O. The only possible * reason for it not to be found is if we were freed during the * read. */ if (HDR_IN_HASH_TABLE(hdr)) { ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); ASSERT3U(hdr->b_dva.dva_word[0], ==, BP_IDENTITY(zio->io_bp)->dva_word[0]); ASSERT3U(hdr->b_dva.dva_word[1], ==, BP_IDENTITY(zio->io_bp)->dva_word[1]); arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || (found == hdr && HDR_L2_READING(hdr))); } hdr->b_flags &= ~ARC_FLAG_L2_EVICTED; if (l2arc_noprefetch && HDR_PREFETCH(hdr)) hdr->b_flags &= ~ARC_FLAG_L2CACHE; /* byteswap if necessary */ callback_list = hdr->b_l1hdr.b_acb; ASSERT(callback_list != NULL); if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? byteswap_uint64_array : dmu_ot_byteswap[bswap].ob_func; func(buf->b_data, hdr->b_size); } arc_cksum_compute(buf, B_FALSE); arc_buf_watch(buf); if (hash_lock && zio->io_error == 0 && hdr->b_l1hdr.b_state == arc_anon) { /* * Only call arc_access on anonymous buffers. This is because * if we've issued an I/O for an evicted buffer, we've already * called arc_access (to prevent any simultaneous readers from * getting confused). */ arc_access(hdr, hash_lock); } /* create copies of the data buffer for the callers */ abuf = buf; for (acb = callback_list; acb; acb = acb->acb_next) { if (acb->acb_done) { if (abuf == NULL) { ARCSTAT_BUMP(arcstat_duplicate_reads); abuf = arc_buf_clone(buf); } acb->acb_buf = abuf; abuf = NULL; } } hdr->b_l1hdr.b_acb = NULL; hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; ASSERT(!HDR_BUF_AVAILABLE(hdr)); if (abuf == buf) { ASSERT(buf->b_efunc == NULL); ASSERT(hdr->b_l1hdr.b_datacnt == 1); hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; } ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || callback_list != NULL); if (zio->io_error != 0) { hdr->b_flags |= ARC_FLAG_IO_ERROR; if (hdr->b_l1hdr.b_state != arc_anon) arc_change_state(arc_anon, hdr, hash_lock); if (HDR_IN_HASH_TABLE(hdr)) buf_hash_remove(hdr); freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); } /* * Broadcast before we drop the hash_lock to avoid the possibility * that the hdr (and hence the cv) might be freed before we get to * the cv_broadcast(). */ cv_broadcast(&hdr->b_l1hdr.b_cv); if (hash_lock != NULL) { mutex_exit(hash_lock); } else { /* * This block was freed while we waited for the read to * complete. It has been removed from the hash table and * moved to the anonymous state (so that it won't show up * in the cache). */ ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); } /* execute each callback and free its structure */ while ((acb = callback_list) != NULL) { if (acb->acb_done) acb->acb_done(zio, acb->acb_buf, acb->acb_private); if (acb->acb_zio_dummy != NULL) { acb->acb_zio_dummy->io_error = zio->io_error; zio_nowait(acb->acb_zio_dummy); } callback_list = acb->acb_next; kmem_free(acb, sizeof (arc_callback_t)); } if (freeable) arc_hdr_destroy(hdr); } /* * "Read" the block at the specified DVA (in bp) via the * cache. If the block is found in the cache, invoke the provided * callback immediately and return. Note that the `zio' parameter * in the callback will be NULL in this case, since no IO was * required. If the block is not in the cache pass the read request * on to the spa with a substitute callback function, so that the * requested block will be added to the cache. * * If a read request arrives for a block that has a read in-progress, * either wait for the in-progress read to complete (and return the * results); or, if this is a read with a "done" func, add a record * to the read to invoke the "done" func when the read completes, * and return; or just return. * * arc_read_done() will invoke all the requested "done" functions * for readers of this block. */ int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, void *private, zio_priority_t priority, int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) { arc_buf_hdr_t *hdr = NULL; arc_buf_t *buf = NULL; kmutex_t *hash_lock = NULL; zio_t *rzio; uint64_t guid = spa_load_guid(spa); ASSERT(!BP_IS_EMBEDDED(bp) || BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); top: if (!BP_IS_EMBEDDED(bp)) { /* * Embedded BP's have no DVA and require no I/O to "read". * Create an anonymous arc buf to back it. */ hdr = buf_hash_find(guid, bp, &hash_lock); } if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) { *arc_flags |= ARC_FLAG_CACHED; if (HDR_IO_IN_PROGRESS(hdr)) { if (*arc_flags & ARC_FLAG_WAIT) { cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); mutex_exit(hash_lock); goto top; } ASSERT(*arc_flags & ARC_FLAG_NOWAIT); if (done) { arc_callback_t *acb = NULL; acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); acb->acb_done = done; acb->acb_private = private; if (pio != NULL) acb->acb_zio_dummy = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); ASSERT(acb->acb_done != NULL); acb->acb_next = hdr->b_l1hdr.b_acb; hdr->b_l1hdr.b_acb = acb; add_reference(hdr, hash_lock, private); mutex_exit(hash_lock); return (0); } mutex_exit(hash_lock); return (0); } ASSERT(hdr->b_l1hdr.b_state == arc_mru || hdr->b_l1hdr.b_state == arc_mfu); if (done) { add_reference(hdr, hash_lock, private); /* * If this block is already in use, create a new * copy of the data so that we will be guaranteed * that arc_release() will always succeed. */ buf = hdr->b_l1hdr.b_buf; ASSERT(buf); ASSERT(buf->b_data); if (HDR_BUF_AVAILABLE(hdr)) { ASSERT(buf->b_efunc == NULL); hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; } else { buf = arc_buf_clone(buf); } } else if (*arc_flags & ARC_FLAG_PREFETCH && refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { hdr->b_flags |= ARC_FLAG_PREFETCH; } DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, hash_lock); if (*arc_flags & ARC_FLAG_L2CACHE) hdr->b_flags |= ARC_FLAG_L2CACHE; if (*arc_flags & ARC_FLAG_L2COMPRESS) hdr->b_flags |= ARC_FLAG_L2COMPRESS; mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); if (done) done(NULL, buf, private); } else { uint64_t size = BP_GET_LSIZE(bp); arc_callback_t *acb; vdev_t *vd = NULL; uint64_t addr = 0; boolean_t devw = B_FALSE; enum zio_compress b_compress = ZIO_COMPRESS_OFF; int32_t b_asize = 0; if (hdr == NULL) { /* this block is not in the cache */ arc_buf_hdr_t *exists = NULL; arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); buf = arc_buf_alloc(spa, size, private, type); hdr = buf->b_hdr; if (!BP_IS_EMBEDDED(bp)) { hdr->b_dva = *BP_IDENTITY(bp); hdr->b_birth = BP_PHYSICAL_BIRTH(bp); exists = buf_hash_insert(hdr, &hash_lock); } if (exists != NULL) { /* somebody beat us to the hash insert */ mutex_exit(hash_lock); buf_discard_identity(hdr); (void) arc_buf_remove_ref(buf, private); goto top; /* restart the IO request */ } /* if this is a prefetch, we don't have a reference */ if (*arc_flags & ARC_FLAG_PREFETCH) { (void) remove_reference(hdr, hash_lock, private); hdr->b_flags |= ARC_FLAG_PREFETCH; } if (*arc_flags & ARC_FLAG_L2CACHE) hdr->b_flags |= ARC_FLAG_L2CACHE; if (*arc_flags & ARC_FLAG_L2COMPRESS) hdr->b_flags |= ARC_FLAG_L2COMPRESS; if (BP_GET_LEVEL(bp) > 0) hdr->b_flags |= ARC_FLAG_INDIRECT; } else { /* * This block is in the ghost cache. If it was L2-only * (and thus didn't have an L1 hdr), we realloc the * header to add an L1 hdr. */ if (!HDR_HAS_L1HDR(hdr)) { hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, hdr_full_cache); } ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); /* if this is a prefetch, we don't have a reference */ if (*arc_flags & ARC_FLAG_PREFETCH) hdr->b_flags |= ARC_FLAG_PREFETCH; else add_reference(hdr, hash_lock, private); if (*arc_flags & ARC_FLAG_L2CACHE) hdr->b_flags |= ARC_FLAG_L2CACHE; if (*arc_flags & ARC_FLAG_L2COMPRESS) hdr->b_flags |= ARC_FLAG_L2COMPRESS; buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = NULL; hdr->b_l1hdr.b_buf = buf; ASSERT0(hdr->b_l1hdr.b_datacnt); hdr->b_l1hdr.b_datacnt = 1; arc_get_data_buf(buf); arc_access(hdr, hash_lock); } ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); acb->acb_done = done; acb->acb_private = private; ASSERT(hdr->b_l1hdr.b_acb == NULL); hdr->b_l1hdr.b_acb = acb; hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; if (HDR_HAS_L2HDR(hdr) && (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { devw = hdr->b_l2hdr.b_dev->l2ad_writing; addr = hdr->b_l2hdr.b_daddr; b_compress = HDR_GET_COMPRESS(hdr); b_asize = hdr->b_l2hdr.b_asize; /* * Lock out device removal. */ if (vdev_is_dead(vd) || !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) vd = NULL; } if (hash_lock != NULL) mutex_exit(hash_lock); /* * At this point, we have a level 1 cache miss. Try again in * L2ARC if possible. */ ASSERT3U(hdr->b_size, ==, size); DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, uint64_t, size, zbookmark_phys_t *, zb); ARCSTAT_BUMP(arcstat_misses); ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, misses); if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { /* * Read from the L2ARC if the following are true: * 1. The L2ARC vdev was previously cached. * 2. This buffer still has L2ARC metadata. * 3. This buffer isn't currently writing to the L2ARC. * 4. The L2ARC entry wasn't evicted, which may * also have invalidated the vdev. * 5. This isn't prefetch and l2arc_noprefetch is set. */ if (HDR_HAS_L2HDR(hdr) && !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { l2arc_read_callback_t *cb; DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_hits); cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); cb->l2rcb_buf = buf; cb->l2rcb_spa = spa; cb->l2rcb_bp = *bp; cb->l2rcb_zb = *zb; cb->l2rcb_flags = zio_flags; cb->l2rcb_compress = b_compress; ASSERT(addr >= VDEV_LABEL_START_SIZE && addr + size < vd->vdev_psize - VDEV_LABEL_END_SIZE); /* * l2arc read. The SCL_L2ARC lock will be * released by l2arc_read_done(). * Issue a null zio if the underlying buffer * was squashed to zero size by compression. */ if (b_compress == ZIO_COMPRESS_EMPTY) { rzio = zio_null(pio, spa, vd, l2arc_read_done, cb, zio_flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY); } else { rzio = zio_read_phys(pio, vd, addr, b_asize, buf->b_data, ZIO_CHECKSUM_OFF, l2arc_read_done, cb, priority, zio_flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE); } DTRACE_PROBE2(l2arc__read, vdev_t *, vd, zio_t *, rzio); ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); if (*arc_flags & ARC_FLAG_NOWAIT) { zio_nowait(rzio); return (0); } ASSERT(*arc_flags & ARC_FLAG_WAIT); if (zio_wait(rzio) == 0) return (0); /* l2arc read error; goto zio_read() */ } else { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); if (HDR_L2_WRITING(hdr)) ARCSTAT_BUMP(arcstat_l2_rw_clash); spa_config_exit(spa, SCL_L2ARC, vd); } } else { if (vd != NULL) spa_config_exit(spa, SCL_L2ARC, vd); if (l2arc_ndev != 0) { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); } } rzio = zio_read(pio, spa, bp, buf->b_data, size, arc_read_done, buf, priority, zio_flags, zb); if (*arc_flags & ARC_FLAG_WAIT) return (zio_wait(rzio)); ASSERT(*arc_flags & ARC_FLAG_NOWAIT); zio_nowait(rzio); } return (0); } void arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) { ASSERT(buf->b_hdr != NULL); ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon); ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) || func == NULL); ASSERT(buf->b_efunc == NULL); ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); buf->b_efunc = func; buf->b_private = private; } /* * Notify the arc that a block was freed, and thus will never be used again. */ void arc_freed(spa_t *spa, const blkptr_t *bp) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; uint64_t guid = spa_load_guid(spa); ASSERT(!BP_IS_EMBEDDED(bp)); hdr = buf_hash_find(guid, bp, &hash_lock); if (hdr == NULL) return; if (HDR_BUF_AVAILABLE(hdr)) { arc_buf_t *buf = hdr->b_l1hdr.b_buf; add_reference(hdr, hash_lock, FTAG); hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; mutex_exit(hash_lock); arc_release(buf, FTAG); (void) arc_buf_remove_ref(buf, FTAG); } else { mutex_exit(hash_lock); } } /* * Clear the user eviction callback set by arc_set_callback(), first calling * it if it exists. Because the presence of a callback keeps an arc_buf cached * clearing the callback may result in the arc_buf being destroyed. However, * it will not result in the *last* arc_buf being destroyed, hence the data * will remain cached in the ARC. We make a copy of the arc buffer here so * that we can process the callback without holding any locks. * * It's possible that the callback is already in the process of being cleared * by another thread. In this case we can not clear the callback. * * Returns B_TRUE if the callback was successfully called and cleared. */ boolean_t arc_clear_callback(arc_buf_t *buf) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; arc_evict_func_t *efunc = buf->b_efunc; void *private = buf->b_private; mutex_enter(&buf->b_evict_lock); hdr = buf->b_hdr; if (hdr == NULL) { /* * We are in arc_do_user_evicts(). */ ASSERT(buf->b_data == NULL); mutex_exit(&buf->b_evict_lock); return (B_FALSE); } else if (buf->b_data == NULL) { /* * We are on the eviction list; process this buffer now * but let arc_do_user_evicts() do the reaping. */ buf->b_efunc = NULL; mutex_exit(&buf->b_evict_lock); VERIFY0(efunc(private)); return (B_TRUE); } hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <, hdr->b_l1hdr.b_datacnt); ASSERT(hdr->b_l1hdr.b_state == arc_mru || hdr->b_l1hdr.b_state == arc_mfu); buf->b_efunc = NULL; buf->b_private = NULL; if (hdr->b_l1hdr.b_datacnt > 1) { mutex_exit(&buf->b_evict_lock); arc_buf_destroy(buf, TRUE); } else { ASSERT(buf == hdr->b_l1hdr.b_buf); hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; mutex_exit(&buf->b_evict_lock); } mutex_exit(hash_lock); VERIFY0(efunc(private)); return (B_TRUE); } /* * Release this buffer from the cache, making it an anonymous buffer. This * must be done after a read and prior to modifying the buffer contents. * If the buffer has more than one reference, we must make * a new hdr for the buffer. */ void arc_release(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; /* * It would be nice to assert that if it's DMU metadata (level > * 0 || it's the dnode file), then it must be syncing context. * But we don't know that information at this level. */ mutex_enter(&buf->b_evict_lock); ASSERT(HDR_HAS_L1HDR(hdr)); /* * We don't grab the hash lock prior to this check, because if * the buffer's header is in the arc_anon state, it won't be * linked into the hash table. */ if (hdr->b_l1hdr.b_state == arc_anon) { mutex_exit(&buf->b_evict_lock); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT(!HDR_IN_HASH_TABLE(hdr)); ASSERT(!HDR_HAS_L2HDR(hdr)); ASSERT(BUF_EMPTY(hdr)); ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1); ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); ASSERT3P(buf->b_efunc, ==, NULL); ASSERT3P(buf->b_private, ==, NULL); hdr->b_l1hdr.b_arc_access = 0; arc_buf_thaw(buf); return; } kmutex_t *hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); /* * This assignment is only valid as long as the hash_lock is * held, we must be careful not to reference state or the * b_state field after dropping the lock. */ arc_state_t *state = hdr->b_l1hdr.b_state; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT3P(state, !=, arc_anon); /* this buffer is not on any list */ ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0); if (HDR_HAS_L2HDR(hdr)) { mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); /* * We have to recheck this conditional again now that * we're holding the l2ad_mtx to prevent a race with * another thread which might be concurrently calling * l2arc_evict(). In that case, l2arc_evict() might have * destroyed the header's L2 portion as we were waiting * to acquire the l2ad_mtx. */ if (HDR_HAS_L2HDR(hdr)) arc_hdr_l2hdr_destroy(hdr); mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); } /* * Do we have more than one buf? */ if (hdr->b_l1hdr.b_datacnt > 1) { arc_buf_hdr_t *nhdr; arc_buf_t **bufp; uint64_t blksz = hdr->b_size; uint64_t spa = hdr->b_spa; arc_buf_contents_t type = arc_buf_type(hdr); uint32_t flags = hdr->b_flags; ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); /* * Pull the data off of this hdr and attach it to * a new anonymous hdr. */ (void) remove_reference(hdr, hash_lock, tag); bufp = &hdr->b_l1hdr.b_buf; while (*bufp != buf) bufp = &(*bufp)->b_next; *bufp = buf->b_next; buf->b_next = NULL; ASSERT3P(state, !=, arc_l2c_only); (void) refcount_remove_many( &state->arcs_size, hdr->b_size, buf); if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { ASSERT3P(state, !=, arc_l2c_only); uint64_t *size = &state->arcs_lsize[type]; ASSERT3U(*size, >=, hdr->b_size); atomic_add_64(size, -hdr->b_size); } /* * We're releasing a duplicate user data buffer, update * our statistics accordingly. */ if (HDR_ISTYPE_DATA(hdr)) { ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); ARCSTAT_INCR(arcstat_duplicate_buffers_size, -hdr->b_size); } hdr->b_l1hdr.b_datacnt -= 1; arc_cksum_verify(buf); arc_buf_unwatch(buf); mutex_exit(hash_lock); nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); nhdr->b_size = blksz; nhdr->b_spa = spa; nhdr->b_flags = flags & ARC_FLAG_L2_WRITING; nhdr->b_flags |= arc_bufc_to_flags(type); nhdr->b_flags |= ARC_FLAG_HAS_L1HDR; nhdr->b_l1hdr.b_buf = buf; nhdr->b_l1hdr.b_datacnt = 1; nhdr->b_l1hdr.b_state = arc_anon; nhdr->b_l1hdr.b_arc_access = 0; nhdr->b_l1hdr.b_tmp_cdata = NULL; nhdr->b_freeze_cksum = NULL; (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); buf->b_hdr = nhdr; mutex_exit(&buf->b_evict_lock); (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf); } else { mutex_exit(&buf->b_evict_lock); ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); /* protected by hash lock, or hdr is on arc_anon */ ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); arc_change_state(arc_anon, hdr, hash_lock); hdr->b_l1hdr.b_arc_access = 0; mutex_exit(hash_lock); buf_discard_identity(hdr); arc_buf_thaw(buf); } buf->b_efunc = NULL; buf->b_private = NULL; } int arc_released(arc_buf_t *buf) { int released; mutex_enter(&buf->b_evict_lock); released = (buf->b_data != NULL && buf->b_hdr->b_l1hdr.b_state == arc_anon); mutex_exit(&buf->b_evict_lock); return (released); } #ifdef ZFS_DEBUG int arc_referenced(arc_buf_t *buf) { int referenced; mutex_enter(&buf->b_evict_lock); referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); mutex_exit(&buf->b_evict_lock); return (referenced); } #endif static void arc_write_ready(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); ASSERT(hdr->b_l1hdr.b_datacnt > 0); callback->awcb_ready(zio, buf, callback->awcb_private); /* * If the IO is already in progress, then this is a re-write * attempt, so we need to thaw and re-compute the cksum. * It is the responsibility of the callback to handle the * accounting for any re-write attempt. */ if (HDR_IO_IN_PROGRESS(hdr)) { mutex_enter(&hdr->b_l1hdr.b_freeze_lock); if (hdr->b_freeze_cksum != NULL) { kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); hdr->b_freeze_cksum = NULL; } mutex_exit(&hdr->b_l1hdr.b_freeze_lock); } arc_cksum_compute(buf, B_FALSE); hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; } /* * The SPA calls this callback for each physical write that happens on behalf * of a logical write. See the comment in dbuf_write_physdone() for details. */ static void arc_write_physdone(zio_t *zio) { arc_write_callback_t *cb = zio->io_private; if (cb->awcb_physdone != NULL) cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); } static void arc_write_done(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(hdr->b_l1hdr.b_acb == NULL); if (zio->io_error == 0) { if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { buf_discard_identity(hdr); } else { hdr->b_dva = *BP_IDENTITY(zio->io_bp); hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); } } else { ASSERT(BUF_EMPTY(hdr)); } /* * If the block to be written was all-zero or compressed enough to be * embedded in the BP, no write was performed so there will be no * dva/birth/checksum. The buffer must therefore remain anonymous * (and uncached). */ if (!BUF_EMPTY(hdr)) { arc_buf_hdr_t *exists; kmutex_t *hash_lock; ASSERT(zio->io_error == 0); arc_cksum_verify(buf); exists = buf_hash_insert(hdr, &hash_lock); if (exists != NULL) { /* * This can only happen if we overwrite for * sync-to-convergence, because we remove * buffers from the hash table when we arc_free(). */ if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) panic("bad overwrite, hdr=%p exists=%p", (void *)hdr, (void *)exists); ASSERT(refcount_is_zero( &exists->b_l1hdr.b_refcnt)); arc_change_state(arc_anon, exists, hash_lock); mutex_exit(hash_lock); arc_hdr_destroy(exists); exists = buf_hash_insert(hdr, &hash_lock); ASSERT3P(exists, ==, NULL); } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { /* nopwrite */ ASSERT(zio->io_prop.zp_nopwrite); if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) panic("bad nopwrite, hdr=%p exists=%p", (void *)hdr, (void *)exists); } else { /* Dedup */ ASSERT(hdr->b_l1hdr.b_datacnt == 1); ASSERT(hdr->b_l1hdr.b_state == arc_anon); ASSERT(BP_GET_DEDUP(zio->io_bp)); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); } } hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; /* if it's not anon, we are doing a scrub */ if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) arc_access(hdr, hash_lock); mutex_exit(hash_lock); } else { hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; } ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); callback->awcb_done(zio, buf, callback->awcb_private); kmem_free(callback, sizeof (arc_write_callback_t)); } zio_t * arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, arc_done_func_t *done, void *private, zio_priority_t priority, int zio_flags, const zbookmark_phys_t *zb) { arc_buf_hdr_t *hdr = buf->b_hdr; arc_write_callback_t *callback; zio_t *zio; ASSERT(ready != NULL); ASSERT(done != NULL); ASSERT(!HDR_IO_ERROR(hdr)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT(hdr->b_l1hdr.b_acb == NULL); ASSERT(hdr->b_l1hdr.b_datacnt > 0); if (l2arc) hdr->b_flags |= ARC_FLAG_L2CACHE; if (l2arc_compress) hdr->b_flags |= ARC_FLAG_L2COMPRESS; callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); callback->awcb_ready = ready; callback->awcb_physdone = physdone; callback->awcb_done = done; callback->awcb_private = private; callback->awcb_buf = buf; zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, arc_write_ready, arc_write_physdone, arc_write_done, callback, priority, zio_flags, zb); return (zio); } static int arc_memory_throttle(uint64_t reserve, uint64_t txg) { #ifdef _KERNEL uint64_t available_memory = ptob(freemem); static uint64_t page_load = 0; static uint64_t last_txg = 0; #if defined(__i386) available_memory = MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); #endif if (freemem > physmem * arc_lotsfree_percent / 100) return (0); if (txg > last_txg) { last_txg = txg; page_load = 0; } /* * If we are in pageout, we know that memory is already tight, * the arc is already going to be evicting, so we just want to * continue to let page writes occur as quickly as possible. */ if (curproc == proc_pageout) { if (page_load > MAX(ptob(minfree), available_memory) / 4) return (SET_ERROR(ERESTART)); /* Note: reserve is inflated, so we deflate */ page_load += reserve / 8; return (0); } else if (page_load > 0 && arc_reclaim_needed()) { /* memory is low, delay before restarting */ ARCSTAT_INCR(arcstat_memory_throttle_count, 1); return (SET_ERROR(EAGAIN)); } page_load = 0; #endif return (0); } void arc_tempreserve_clear(uint64_t reserve) { atomic_add_64(&arc_tempreserve, -reserve); ASSERT((int64_t)arc_tempreserve >= 0); } int arc_tempreserve_space(uint64_t reserve, uint64_t txg) { int error; uint64_t anon_size; if (reserve > arc_c/4 && !arc_no_grow) arc_c = MIN(arc_c_max, reserve * 4); if (reserve > arc_c) return (SET_ERROR(ENOMEM)); /* * Don't count loaned bufs as in flight dirty data to prevent long * network delays from blocking transactions that are ready to be * assigned to a txg. */ anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - arc_loaned_bytes), 0); /* * Writes will, almost always, require additional memory allocations * in order to compress/encrypt/etc the data. We therefore need to * make sure that there is sufficient available memory for this. */ error = arc_memory_throttle(reserve, txg); if (error != 0) return (error); /* * Throttle writes when the amount of dirty data in the cache * gets too large. We try to keep the cache less than half full * of dirty blocks so that our sync times don't grow too large. * Note: if two requests come in concurrently, we might let them * both succeed, when one of them should fail. Not a huge deal. */ if (reserve + arc_tempreserve + anon_size > arc_c / 2 && anon_size > arc_c / 4) { dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", arc_tempreserve>>10, arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, reserve>>10, arc_c>>10); return (SET_ERROR(ERESTART)); } atomic_add_64(&arc_tempreserve, reserve); return (0); } static void arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, kstat_named_t *evict_data, kstat_named_t *evict_metadata) { size->value.ui64 = refcount_count(&state->arcs_size); evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA]; evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA]; } static int arc_kstat_update(kstat_t *ksp, int rw) { arc_stats_t *as = ksp->ks_data; if (rw == KSTAT_WRITE) { return (EACCES); } else { arc_kstat_update_state(arc_anon, &as->arcstat_anon_size, &as->arcstat_anon_evictable_data, &as->arcstat_anon_evictable_metadata); arc_kstat_update_state(arc_mru, &as->arcstat_mru_size, &as->arcstat_mru_evictable_data, &as->arcstat_mru_evictable_metadata); arc_kstat_update_state(arc_mru_ghost, &as->arcstat_mru_ghost_size, &as->arcstat_mru_ghost_evictable_data, &as->arcstat_mru_ghost_evictable_metadata); arc_kstat_update_state(arc_mfu, &as->arcstat_mfu_size, &as->arcstat_mfu_evictable_data, &as->arcstat_mfu_evictable_metadata); arc_kstat_update_state(arc_mfu_ghost, &as->arcstat_mfu_ghost_size, &as->arcstat_mfu_ghost_evictable_data, &as->arcstat_mfu_ghost_evictable_metadata); } return (0); } /* * This function *must* return indices evenly distributed between all * sublists of the multilist. This is needed due to how the ARC eviction * code is laid out; arc_evict_state() assumes ARC buffers are evenly * distributed between all sublists and uses this assumption when * deciding which sublist to evict from and how much to evict from it. */ unsigned int arc_state_multilist_index_func(multilist_t *ml, void *obj) { arc_buf_hdr_t *hdr = obj; /* * We rely on b_dva to generate evenly distributed index * numbers using buf_hash below. So, as an added precaution, * let's make sure we never add empty buffers to the arc lists. */ ASSERT(!BUF_EMPTY(hdr)); /* * The assumption here, is the hash value for a given * arc_buf_hdr_t will remain constant throughout it's lifetime * (i.e. it's b_spa, b_dva, and b_birth fields don't change). * Thus, we don't need to store the header's sublist index * on insertion, as this index can be recalculated on removal. * * Also, the low order bits of the hash value are thought to be * distributed evenly. Otherwise, in the case that the multilist * has a power of two number of sublists, each sublists' usage * would not be evenly distributed. */ return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % multilist_get_num_sublists(ml)); } void arc_init(void) { /* * allmem is "all memory that we could possibly use". */ #ifdef _KERNEL uint64_t allmem = ptob(physmem - swapfs_minfree); #else uint64_t allmem = (physmem * PAGESIZE) / 2; #endif mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL); /* Convert seconds to clock ticks */ arc_min_prefetch_lifespan = 1 * hz; /* Start out with 1/8 of all memory */ arc_c = allmem / 8; #ifdef _KERNEL /* * On architectures where the physical memory can be larger * than the addressable space (intel in 32-bit mode), we may * need to limit the cache to 1/8 of VM size. */ arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); #endif /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ arc_c_min = MAX(allmem / 32, 64 << 20); /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ if (allmem >= 1 << 30) arc_c_max = allmem - (1 << 30); else arc_c_max = arc_c_min; arc_c_max = MAX(allmem * 3 / 4, arc_c_max); /* * Allow the tunables to override our calculations if they are * reasonable (ie. over 64MB) */ if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) arc_c_max = zfs_arc_max; if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) arc_c_min = zfs_arc_min; arc_c = arc_c_max; arc_p = (arc_c >> 1); /* limit meta-data to 1/4 of the arc capacity */ arc_meta_limit = arc_c_max / 4; /* Allow the tunable to override if it is reasonable */ if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) arc_meta_limit = zfs_arc_meta_limit; if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) arc_c_min = arc_meta_limit / 2; if (zfs_arc_meta_min > 0) { arc_meta_min = zfs_arc_meta_min; } else { arc_meta_min = arc_c_min / 2; } if (zfs_arc_grow_retry > 0) arc_grow_retry = zfs_arc_grow_retry; if (zfs_arc_shrink_shift > 0) arc_shrink_shift = zfs_arc_shrink_shift; /* * Ensure that arc_no_grow_shift is less than arc_shrink_shift. */ if (arc_no_grow_shift >= arc_shrink_shift) arc_no_grow_shift = arc_shrink_shift - 1; if (zfs_arc_p_min_shift > 0) arc_p_min_shift = zfs_arc_p_min_shift; if (zfs_arc_num_sublists_per_state < 1) zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1); /* if kmem_flags are set, lets try to use less memory */ if (kmem_debugging()) arc_c = arc_c / 2; if (arc_c < arc_c_min) arc_c = arc_c_min; arc_anon = &ARC_anon; arc_mru = &ARC_mru; arc_mru_ghost = &ARC_mru_ghost; arc_mfu = &ARC_mfu; arc_mfu_ghost = &ARC_mfu_ghost; arc_l2c_only = &ARC_l2c_only; arc_size = 0; multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); refcount_create(&arc_anon->arcs_size); refcount_create(&arc_mru->arcs_size); refcount_create(&arc_mru_ghost->arcs_size); refcount_create(&arc_mfu->arcs_size); refcount_create(&arc_mfu_ghost->arcs_size); refcount_create(&arc_l2c_only->arcs_size); buf_init(); arc_reclaim_thread_exit = FALSE; arc_user_evicts_thread_exit = FALSE; arc_eviction_list = NULL; bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (arc_ksp != NULL) { arc_ksp->ks_data = &arc_stats; arc_ksp->ks_update = arc_kstat_update; kstat_install(arc_ksp); } (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, TS_RUN, minclsyspri); (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0, TS_RUN, minclsyspri); arc_dead = FALSE; arc_warm = B_FALSE; /* * Calculate maximum amount of dirty data per pool. * * If it has been set by /etc/system, take that. * Otherwise, use a percentage of physical memory defined by * zfs_dirty_data_max_percent (default 10%) with a cap at * zfs_dirty_data_max_max (default 4GB). */ if (zfs_dirty_data_max == 0) { zfs_dirty_data_max = physmem * PAGESIZE * zfs_dirty_data_max_percent / 100; zfs_dirty_data_max = MIN(zfs_dirty_data_max, zfs_dirty_data_max_max); } } void arc_fini(void) { mutex_enter(&arc_reclaim_lock); arc_reclaim_thread_exit = TRUE; /* * The reclaim thread will set arc_reclaim_thread_exit back to * FALSE when it is finished exiting; we're waiting for that. */ while (arc_reclaim_thread_exit) { cv_signal(&arc_reclaim_thread_cv); cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); } mutex_exit(&arc_reclaim_lock); mutex_enter(&arc_user_evicts_lock); arc_user_evicts_thread_exit = TRUE; /* * The user evicts thread will set arc_user_evicts_thread_exit * to FALSE when it is finished exiting; we're waiting for that. */ while (arc_user_evicts_thread_exit) { cv_signal(&arc_user_evicts_cv); cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock); } mutex_exit(&arc_user_evicts_lock); /* Use TRUE to ensure *all* buffers are evicted */ arc_flush(NULL, TRUE); arc_dead = TRUE; if (arc_ksp != NULL) { kstat_delete(arc_ksp); arc_ksp = NULL; } mutex_destroy(&arc_reclaim_lock); cv_destroy(&arc_reclaim_thread_cv); cv_destroy(&arc_reclaim_waiters_cv); mutex_destroy(&arc_user_evicts_lock); cv_destroy(&arc_user_evicts_cv); refcount_destroy(&arc_anon->arcs_size); refcount_destroy(&arc_mru->arcs_size); refcount_destroy(&arc_mru_ghost->arcs_size); refcount_destroy(&arc_mfu->arcs_size); refcount_destroy(&arc_mfu_ghost->arcs_size); refcount_destroy(&arc_l2c_only->arcs_size); multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); buf_fini(); ASSERT0(arc_loaned_bytes); } /* * Level 2 ARC * * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. * It uses dedicated storage devices to hold cached data, which are populated * using large infrequent writes. The main role of this cache is to boost * the performance of random read workloads. The intended L2ARC devices * include short-stroked disks, solid state disks, and other media with * substantially faster read latency than disk. * * +-----------------------+ * | ARC | * +-----------------------+ * | ^ ^ * | | | * l2arc_feed_thread() arc_read() * | | | * | l2arc read | * V | | * +---------------+ | * | L2ARC | | * +---------------+ | * | ^ | * l2arc_write() | | * | | | * V | | * +-------+ +-------+ * | vdev | | vdev | * | cache | | cache | * +-------+ +-------+ * +=========+ .-----. * : L2ARC : |-_____-| * : devices : | Disks | * +=========+ `-_____-' * * Read requests are satisfied from the following sources, in order: * * 1) ARC * 2) vdev cache of L2ARC devices * 3) L2ARC devices * 4) vdev cache of disks * 5) disks * * Some L2ARC device types exhibit extremely slow write performance. * To accommodate for this there are some significant differences between * the L2ARC and traditional cache design: * * 1. There is no eviction path from the ARC to the L2ARC. Evictions from * the ARC behave as usual, freeing buffers and placing headers on ghost * lists. The ARC does not send buffers to the L2ARC during eviction as * this would add inflated write latencies for all ARC memory pressure. * * 2. The L2ARC attempts to cache data from the ARC before it is evicted. * It does this by periodically scanning buffers from the eviction-end of * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are * not already there. It scans until a headroom of buffers is satisfied, * which itself is a buffer for ARC eviction. If a compressible buffer is * found during scanning and selected for writing to an L2ARC device, we * temporarily boost scanning headroom during the next scan cycle to make * sure we adapt to compression effects (which might significantly reduce * the data volume we write to L2ARC). The thread that does this is * l2arc_feed_thread(), illustrated below; example sizes are included to * provide a better sense of ratio than this diagram: * * head --> tail * +---------------------+----------+ * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC * +---------------------+----------+ | o L2ARC eligible * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer * +---------------------+----------+ | * 15.9 Gbytes ^ 32 Mbytes | * headroom | * l2arc_feed_thread() * | * l2arc write hand <--[oooo]--' * | 8 Mbyte * | write max * V * +==============================+ * L2ARC dev |####|#|###|###| |####| ... | * +==============================+ * 32 Gbytes * * 3. If an ARC buffer is copied to the L2ARC but then hit instead of * evicted, then the L2ARC has cached a buffer much sooner than it probably * needed to, potentially wasting L2ARC device bandwidth and storage. It is * safe to say that this is an uncommon case, since buffers at the end of * the ARC lists have moved there due to inactivity. * * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, * then the L2ARC simply misses copying some buffers. This serves as a * pressure valve to prevent heavy read workloads from both stalling the ARC * with waits and clogging the L2ARC with writes. This also helps prevent * the potential for the L2ARC to churn if it attempts to cache content too * quickly, such as during backups of the entire pool. * * 5. After system boot and before the ARC has filled main memory, there are * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru * lists can remain mostly static. Instead of searching from tail of these * lists as pictured, the l2arc_feed_thread() will search from the list heads * for eligible buffers, greatly increasing its chance of finding them. * * The L2ARC device write speed is also boosted during this time so that * the L2ARC warms up faster. Since there have been no ARC evictions yet, * there are no L2ARC reads, and no fear of degrading read performance * through increased writes. * * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that * the vdev queue can aggregate them into larger and fewer writes. Each * device is written to in a rotor fashion, sweeping writes through * available space then repeating. * * 7. The L2ARC does not store dirty content. It never needs to flush * write buffers back to disk based storage. * * 8. If an ARC buffer is written (and dirtied) which also exists in the * L2ARC, the now stale L2ARC buffer is immediately dropped. * * The performance of the L2ARC can be tweaked by a number of tunables, which * may be necessary for different workloads: * * l2arc_write_max max write bytes per interval * l2arc_write_boost extra write bytes during device warmup * l2arc_noprefetch skip caching prefetched buffers * l2arc_headroom number of max device writes to precache * l2arc_headroom_boost when we find compressed buffers during ARC * scanning, we multiply headroom by this * percentage factor for the next scan cycle, * since more compressed buffers are likely to * be present * l2arc_feed_secs seconds between L2ARC writing * * Tunables may be removed or added as future performance improvements are * integrated, and also may become zpool properties. * * There are three key functions that control how the L2ARC warms up: * * l2arc_write_eligible() check if a buffer is eligible to cache * l2arc_write_size() calculate how much to write * l2arc_write_interval() calculate sleep delay between writes * * These three functions determine what to write, how much, and how quickly * to send writes. */ static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) { /* * A buffer is *not* eligible for the L2ARC if it: * 1. belongs to a different spa. * 2. is already cached on the L2ARC. * 3. has an I/O in progress (it may be an incomplete read). * 4. is flagged not eligible (zfs property). */ if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) return (B_FALSE); return (B_TRUE); } static uint64_t l2arc_write_size(void) { uint64_t size; /* * Make sure our globals have meaningful values in case the user * altered them. */ size = l2arc_write_max; if (size == 0) { cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " "be greater than zero, resetting it to the default (%d)", L2ARC_WRITE_SIZE); size = l2arc_write_max = L2ARC_WRITE_SIZE; } if (arc_warm == B_FALSE) size += l2arc_write_boost; return (size); } static clock_t l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) { clock_t interval, next, now; /* * If the ARC lists are busy, increase our write rate; if the * lists are stale, idle back. This is achieved by checking * how much we previously wrote - if it was more than half of * what we wanted, schedule the next write much sooner. */ if (l2arc_feed_again && wrote > (wanted / 2)) interval = (hz * l2arc_feed_min_ms) / 1000; else interval = hz * l2arc_feed_secs; now = ddi_get_lbolt(); next = MAX(now, MIN(now + interval, began + interval)); return (next); } /* * Cycle through L2ARC devices. This is how L2ARC load balances. * If a device is returned, this also returns holding the spa config lock. */ static l2arc_dev_t * l2arc_dev_get_next(void) { l2arc_dev_t *first, *next = NULL; /* * Lock out the removal of spas (spa_namespace_lock), then removal * of cache devices (l2arc_dev_mtx). Once a device has been selected, * both locks will be dropped and a spa config lock held instead. */ mutex_enter(&spa_namespace_lock); mutex_enter(&l2arc_dev_mtx); /* if there are no vdevs, there is nothing to do */ if (l2arc_ndev == 0) goto out; first = NULL; next = l2arc_dev_last; do { /* loop around the list looking for a non-faulted vdev */ if (next == NULL) { next = list_head(l2arc_dev_list); } else { next = list_next(l2arc_dev_list, next); if (next == NULL) next = list_head(l2arc_dev_list); } /* if we have come back to the start, bail out */ if (first == NULL) first = next; else if (next == first) break; } while (vdev_is_dead(next->l2ad_vdev)); /* if we were unable to find any usable vdevs, return NULL */ if (vdev_is_dead(next->l2ad_vdev)) next = NULL; l2arc_dev_last = next; out: mutex_exit(&l2arc_dev_mtx); /* * Grab the config lock to prevent the 'next' device from being * removed while we are writing to it. */ if (next != NULL) spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); mutex_exit(&spa_namespace_lock); return (next); } /* * Free buffers that were tagged for destruction. */ static void l2arc_do_free_on_write() { list_t *buflist; l2arc_data_free_t *df, *df_prev; mutex_enter(&l2arc_free_on_write_mtx); buflist = l2arc_free_on_write; for (df = list_tail(buflist); df; df = df_prev) { df_prev = list_prev(buflist, df); ASSERT(df->l2df_data != NULL); ASSERT(df->l2df_func != NULL); df->l2df_func(df->l2df_data, df->l2df_size); list_remove(buflist, df); kmem_free(df, sizeof (l2arc_data_free_t)); } mutex_exit(&l2arc_free_on_write_mtx); } /* * A write to a cache device has completed. Update all headers to allow * reads from these buffers to begin. */ static void l2arc_write_done(zio_t *zio) { l2arc_write_callback_t *cb; l2arc_dev_t *dev; list_t *buflist; arc_buf_hdr_t *head, *hdr, *hdr_prev; kmutex_t *hash_lock; int64_t bytes_dropped = 0; cb = zio->io_private; ASSERT(cb != NULL); dev = cb->l2wcb_dev; ASSERT(dev != NULL); head = cb->l2wcb_head; ASSERT(head != NULL); buflist = &dev->l2ad_buflist; ASSERT(buflist != NULL); DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, l2arc_write_callback_t *, cb); if (zio->io_error != 0) ARCSTAT_BUMP(arcstat_l2_writes_error); /* * All writes completed, or an error was hit. */ top: mutex_enter(&dev->l2ad_mtx); for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { hdr_prev = list_prev(buflist, hdr); hash_lock = HDR_LOCK(hdr); /* * We cannot use mutex_enter or else we can deadlock * with l2arc_write_buffers (due to swapping the order * the hash lock and l2ad_mtx are taken). */ if (!mutex_tryenter(hash_lock)) { /* * Missed the hash lock. We must retry so we * don't leave the ARC_FLAG_L2_WRITING bit set. */ ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); /* * We don't want to rescan the headers we've * already marked as having been written out, so * we reinsert the head node so we can pick up * where we left off. */ list_remove(buflist, head); list_insert_after(buflist, hdr, head); mutex_exit(&dev->l2ad_mtx); /* * We wait for the hash lock to become available * to try and prevent busy waiting, and increase * the chance we'll be able to acquire the lock * the next time around. */ mutex_enter(hash_lock); mutex_exit(hash_lock); goto top; } /* * We could not have been moved into the arc_l2c_only * state while in-flight due to our ARC_FLAG_L2_WRITING * bit being set. Let's just ensure that's being enforced. */ ASSERT(HDR_HAS_L1HDR(hdr)); /* * We may have allocated a buffer for L2ARC compression, * we must release it to avoid leaking this data. */ l2arc_release_cdata_buf(hdr); if (zio->io_error != 0) { /* * Error - drop L2ARC entry. */ list_remove(buflist, hdr); hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR; ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize); ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); bytes_dropped += hdr->b_l2hdr.b_asize; (void) refcount_remove_many(&dev->l2ad_alloc, hdr->b_l2hdr.b_asize, hdr); } /* * Allow ARC to begin reads and ghost list evictions to * this L2ARC entry. */ hdr->b_flags &= ~ARC_FLAG_L2_WRITING; mutex_exit(hash_lock); } atomic_inc_64(&l2arc_writes_done); list_remove(buflist, head); ASSERT(!HDR_HAS_L1HDR(head)); kmem_cache_free(hdr_l2only_cache, head); mutex_exit(&dev->l2ad_mtx); vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); l2arc_do_free_on_write(); kmem_free(cb, sizeof (l2arc_write_callback_t)); } /* * A read to a cache device completed. Validate buffer contents before * handing over to the regular ARC routines. */ static void l2arc_read_done(zio_t *zio) { l2arc_read_callback_t *cb; arc_buf_hdr_t *hdr; arc_buf_t *buf; kmutex_t *hash_lock; int equal; ASSERT(zio->io_vd != NULL); ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); cb = zio->io_private; ASSERT(cb != NULL); buf = cb->l2rcb_buf; ASSERT(buf != NULL); hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); /* * If the buffer was compressed, decompress it first. */ if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); ASSERT(zio->io_data != NULL); /* * Check this survived the L2ARC journey. */ equal = arc_cksum_equal(buf); if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { mutex_exit(hash_lock); zio->io_private = buf; zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ arc_read_done(zio); } else { mutex_exit(hash_lock); /* * Buffer didn't survive caching. Increment stats and * reissue to the original storage device. */ if (zio->io_error != 0) { ARCSTAT_BUMP(arcstat_l2_io_error); } else { zio->io_error = SET_ERROR(EIO); } if (!equal) ARCSTAT_BUMP(arcstat_l2_cksum_bad); /* * If there's no waiter, issue an async i/o to the primary * storage now. If there *is* a waiter, the caller must * issue the i/o in a context where it's OK to block. */ if (zio->io_waiter == NULL) { zio_t *pio = zio_unique_parent(zio); ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, buf->b_data, zio->io_size, arc_read_done, buf, zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); } } kmem_free(cb, sizeof (l2arc_read_callback_t)); } /* * This is the list priority from which the L2ARC will search for pages to * cache. This is used within loops (0..3) to cycle through lists in the * desired order. This order can have a significant effect on cache * performance. * * Currently the metadata lists are hit first, MFU then MRU, followed by * the data lists. This function returns a locked list, and also returns * the lock pointer. */ static multilist_sublist_t * l2arc_sublist_lock(int list_num) { multilist_t *ml = NULL; unsigned int idx; ASSERT(list_num >= 0 && list_num <= 3); switch (list_num) { case 0: ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; break; case 1: ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; break; case 2: ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; break; case 3: ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; break; } /* * Return a randomly-selected sublist. This is acceptable * because the caller feeds only a little bit of data for each * call (8MB). Subsequent calls will result in different * sublists being selected. */ idx = multilist_get_random_index(ml); return (multilist_sublist_lock(ml, idx)); } /* * Evict buffers from the device write hand to the distance specified in * bytes. This distance may span populated buffers, it may span nothing. * This is clearing a region on the L2ARC device ready for writing. * If the 'all' boolean is set, every buffer is evicted. */ static void l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) { list_t *buflist; arc_buf_hdr_t *hdr, *hdr_prev; kmutex_t *hash_lock; uint64_t taddr; buflist = &dev->l2ad_buflist; if (!all && dev->l2ad_first) { /* * This is the first sweep through the device. There is * nothing to evict. */ return; } if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { /* * When nearing the end of the device, evict to the end * before the device write hand jumps to the start. */ taddr = dev->l2ad_end; } else { taddr = dev->l2ad_hand + distance; } DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, uint64_t, taddr, boolean_t, all); top: mutex_enter(&dev->l2ad_mtx); for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { hdr_prev = list_prev(buflist, hdr); hash_lock = HDR_LOCK(hdr); /* * We cannot use mutex_enter or else we can deadlock * with l2arc_write_buffers (due to swapping the order * the hash lock and l2ad_mtx are taken). */ if (!mutex_tryenter(hash_lock)) { /* * Missed the hash lock. Retry. */ ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); mutex_exit(&dev->l2ad_mtx); mutex_enter(hash_lock); mutex_exit(hash_lock); goto top; } if (HDR_L2_WRITE_HEAD(hdr)) { /* * We hit a write head node. Leave it for * l2arc_write_done(). */ list_remove(buflist, hdr); mutex_exit(hash_lock); continue; } if (!all && HDR_HAS_L2HDR(hdr) && (hdr->b_l2hdr.b_daddr > taddr || hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { /* * We've evicted to the target address, * or the end of the device. */ mutex_exit(hash_lock); break; } ASSERT(HDR_HAS_L2HDR(hdr)); if (!HDR_HAS_L1HDR(hdr)) { ASSERT(!HDR_L2_READING(hdr)); /* * This doesn't exist in the ARC. Destroy. * arc_hdr_destroy() will call list_remove() * and decrement arcstat_l2_size. */ arc_change_state(arc_anon, hdr, hash_lock); arc_hdr_destroy(hdr); } else { ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); ARCSTAT_BUMP(arcstat_l2_evict_l1cached); /* * Invalidate issued or about to be issued * reads, since we may be about to write * over this location. */ if (HDR_L2_READING(hdr)) { ARCSTAT_BUMP(arcstat_l2_evict_reading); hdr->b_flags |= ARC_FLAG_L2_EVICTED; } /* Ensure this header has finished being written */ ASSERT(!HDR_L2_WRITING(hdr)); ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); arc_hdr_l2hdr_destroy(hdr); } mutex_exit(hash_lock); } mutex_exit(&dev->l2ad_mtx); } /* * Find and write ARC buffers to the L2ARC device. * * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid * for reading until they have completed writing. * The headroom_boost is an in-out parameter used to maintain headroom boost * state between calls to this function. * * Returns the number of bytes actually written (which may be smaller than * the delta by which the device hand has changed due to alignment). */ static uint64_t l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, boolean_t *headroom_boost) { arc_buf_hdr_t *hdr, *hdr_prev, *head; uint64_t write_asize, write_psize, write_sz, headroom, buf_compress_minsz; void *buf_data; boolean_t full; l2arc_write_callback_t *cb; zio_t *pio, *wzio; uint64_t guid = spa_load_guid(spa); const boolean_t do_headroom_boost = *headroom_boost; ASSERT(dev->l2ad_vdev != NULL); /* Lower the flag now, we might want to raise it again later. */ *headroom_boost = B_FALSE; pio = NULL; write_sz = write_asize = write_psize = 0; full = B_FALSE; head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); head->b_flags |= ARC_FLAG_L2_WRITE_HEAD; head->b_flags |= ARC_FLAG_HAS_L2HDR; /* * We will want to try to compress buffers that are at least 2x the * device sector size. */ buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; /* * Copy buffers for L2ARC writing. */ for (int try = 0; try <= 3; try++) { multilist_sublist_t *mls = l2arc_sublist_lock(try); uint64_t passed_sz = 0; /* * L2ARC fast warmup. * * Until the ARC is warm and starts to evict, read from the * head of the ARC lists rather than the tail. */ if (arc_warm == B_FALSE) hdr = multilist_sublist_head(mls); else hdr = multilist_sublist_tail(mls); headroom = target_sz * l2arc_headroom; if (do_headroom_boost) headroom = (headroom * l2arc_headroom_boost) / 100; for (; hdr; hdr = hdr_prev) { kmutex_t *hash_lock; uint64_t buf_sz; if (arc_warm == B_FALSE) hdr_prev = multilist_sublist_next(mls, hdr); else hdr_prev = multilist_sublist_prev(mls, hdr); hash_lock = HDR_LOCK(hdr); if (!mutex_tryenter(hash_lock)) { /* * Skip this buffer rather than waiting. */ continue; } passed_sz += hdr->b_size; if (passed_sz > headroom) { /* * Searched too far. */ mutex_exit(hash_lock); break; } if (!l2arc_write_eligible(guid, hdr)) { mutex_exit(hash_lock); continue; } if ((write_sz + hdr->b_size) > target_sz) { full = B_TRUE; mutex_exit(hash_lock); break; } if (pio == NULL) { /* * Insert a dummy header on the buflist so * l2arc_write_done() can find where the * write buffers begin without searching. */ mutex_enter(&dev->l2ad_mtx); list_insert_head(&dev->l2ad_buflist, head); mutex_exit(&dev->l2ad_mtx); cb = kmem_alloc( sizeof (l2arc_write_callback_t), KM_SLEEP); cb->l2wcb_dev = dev; cb->l2wcb_head = head; pio = zio_root(spa, l2arc_write_done, cb, ZIO_FLAG_CANFAIL); } /* * Create and add a new L2ARC header. */ hdr->b_l2hdr.b_dev = dev; hdr->b_flags |= ARC_FLAG_L2_WRITING; /* * Temporarily stash the data buffer in b_tmp_cdata. * The subsequent write step will pick it up from * there. This is because can't access b_l1hdr.b_buf * without holding the hash_lock, which we in turn * can't access without holding the ARC list locks * (which we want to avoid during compression/writing). */ HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); hdr->b_l2hdr.b_asize = hdr->b_size; hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data; /* * Explicitly set the b_daddr field to a known * value which means "invalid address". This * enables us to differentiate which stage of * l2arc_write_buffers() the particular header * is in (e.g. this loop, or the one below). * ARC_FLAG_L2_WRITING is not enough to make * this distinction, and we need to know in * order to do proper l2arc vdev accounting in * arc_release() and arc_hdr_destroy(). * * Note, we can't use a new flag to distinguish * the two stages because we don't hold the * header's hash_lock below, in the second stage * of this function. Thus, we can't simply * change the b_flags field to denote that the * IO has been sent. We can change the b_daddr * field of the L2 portion, though, since we'll * be holding the l2ad_mtx; which is why we're * using it to denote the header's state change. */ hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET; buf_sz = hdr->b_size; hdr->b_flags |= ARC_FLAG_HAS_L2HDR; mutex_enter(&dev->l2ad_mtx); list_insert_head(&dev->l2ad_buflist, hdr); mutex_exit(&dev->l2ad_mtx); /* * Compute and store the buffer cksum before * writing. On debug the cksum is verified first. */ arc_cksum_verify(hdr->b_l1hdr.b_buf); arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE); mutex_exit(hash_lock); write_sz += buf_sz; } multilist_sublist_unlock(mls); if (full == B_TRUE) break; } /* No buffers selected for writing? */ if (pio == NULL) { ASSERT0(write_sz); ASSERT(!HDR_HAS_L1HDR(head)); kmem_cache_free(hdr_l2only_cache, head); return (0); } mutex_enter(&dev->l2ad_mtx); /* * Now start writing the buffers. We're starting at the write head * and work backwards, retracing the course of the buffer selector * loop above. */ for (hdr = list_prev(&dev->l2ad_buflist, head); hdr; hdr = list_prev(&dev->l2ad_buflist, hdr)) { uint64_t buf_sz; /* * We rely on the L1 portion of the header below, so * it's invalid for this header to have been evicted out * of the ghost cache, prior to being written out. The * ARC_FLAG_L2_WRITING bit ensures this won't happen. */ ASSERT(HDR_HAS_L1HDR(hdr)); /* * We shouldn't need to lock the buffer here, since we flagged * it as ARC_FLAG_L2_WRITING in the previous step, but we must * take care to only access its L2 cache parameters. In * particular, hdr->l1hdr.b_buf may be invalid by now due to * ARC eviction. */ hdr->b_l2hdr.b_daddr = dev->l2ad_hand; if ((HDR_L2COMPRESS(hdr)) && hdr->b_l2hdr.b_asize >= buf_compress_minsz) { if (l2arc_compress_buf(hdr)) { /* * If compression succeeded, enable headroom * boost on the next scan cycle. */ *headroom_boost = B_TRUE; } } /* * Pick up the buffer data we had previously stashed away * (and now potentially also compressed). */ buf_data = hdr->b_l1hdr.b_tmp_cdata; buf_sz = hdr->b_l2hdr.b_asize; /* * We need to do this regardless if buf_sz is zero or * not, otherwise, when this l2hdr is evicted we'll * remove a reference that was never added. */ (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr); /* Compression may have squashed the buffer to zero length. */ if (buf_sz != 0) { uint64_t buf_p_sz; wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); (void) zio_nowait(wzio); write_asize += buf_sz; /* * Keep the clock hand suitably device-aligned. */ buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); write_psize += buf_p_sz; dev->l2ad_hand += buf_p_sz; } } mutex_exit(&dev->l2ad_mtx); ASSERT3U(write_asize, <=, target_sz); ARCSTAT_BUMP(arcstat_l2_writes_sent); ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); ARCSTAT_INCR(arcstat_l2_size, write_sz); ARCSTAT_INCR(arcstat_l2_asize, write_asize); vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); /* * Bump device hand to the device start if it is approaching the end. * l2arc_evict() will already have evicted ahead for this case. */ if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { dev->l2ad_hand = dev->l2ad_start; dev->l2ad_first = B_FALSE; } dev->l2ad_writing = B_TRUE; (void) zio_wait(pio); dev->l2ad_writing = B_FALSE; return (write_asize); } /* * Compresses an L2ARC buffer. * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its * size in l2hdr->b_asize. This routine tries to compress the data and * depending on the compression result there are three possible outcomes: * *) The buffer was incompressible. The original l2hdr contents were left * untouched and are ready for writing to an L2 device. * *) The buffer was all-zeros, so there is no need to write it to an L2 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. * *) Compression succeeded and b_tmp_cdata was replaced with a temporary * data buffer which holds the compressed data to be written, and b_asize * tells us how much data there is. b_compress is set to the appropriate * compression algorithm. Once writing is done, invoke * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. * * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the * buffer was incompressible). */ static boolean_t l2arc_compress_buf(arc_buf_hdr_t *hdr) { void *cdata; size_t csize, len, rounded; ASSERT(HDR_HAS_L2HDR(hdr)); l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF); ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL); len = l2hdr->b_asize; cdata = zio_data_buf_alloc(len); ASSERT3P(cdata, !=, NULL); csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata, cdata, l2hdr->b_asize); rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); if (rounded > csize) { bzero((char *)cdata + csize, rounded - csize); csize = rounded; } if (csize == 0) { /* zero block, indicate that there's nothing to write */ zio_data_buf_free(cdata, len); HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY); l2hdr->b_asize = 0; hdr->b_l1hdr.b_tmp_cdata = NULL; ARCSTAT_BUMP(arcstat_l2_compress_zeros); return (B_TRUE); } else if (csize > 0 && csize < len) { /* * Compression succeeded, we'll keep the cdata around for * writing and release it afterwards. */ HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4); l2hdr->b_asize = csize; hdr->b_l1hdr.b_tmp_cdata = cdata; ARCSTAT_BUMP(arcstat_l2_compress_successes); return (B_TRUE); } else { /* * Compression failed, release the compressed buffer. * l2hdr will be left unmodified. */ zio_data_buf_free(cdata, len); ARCSTAT_BUMP(arcstat_l2_compress_failures); return (B_FALSE); } } /* * Decompresses a zio read back from an l2arc device. On success, the * underlying zio's io_data buffer is overwritten by the uncompressed * version. On decompression error (corrupt compressed stream), the * zio->io_error value is set to signal an I/O error. * * Please note that the compressed data stream is not checksummed, so * if the underlying device is experiencing data corruption, we may feed * corrupt data to the decompressor, so the decompressor needs to be * able to handle this situation (LZ4 does). */ static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) { ASSERT(L2ARC_IS_VALID_COMPRESS(c)); if (zio->io_error != 0) { /* * An io error has occured, just restore the original io * size in preparation for a main pool read. */ zio->io_orig_size = zio->io_size = hdr->b_size; return; } if (c == ZIO_COMPRESS_EMPTY) { /* * An empty buffer results in a null zio, which means we * need to fill its io_data after we're done restoring the * buffer's contents. */ ASSERT(hdr->b_l1hdr.b_buf != NULL); bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size); zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data; } else { ASSERT(zio->io_data != NULL); /* * We copy the compressed data from the start of the arc buffer * (the zio_read will have pulled in only what we need, the * rest is garbage which we will overwrite at decompression) * and then decompress back to the ARC data buffer. This way we * can minimize copying by simply decompressing back over the * original compressed data (rather than decompressing to an * aux buffer and then copying back the uncompressed buffer, * which is likely to be much larger). */ uint64_t csize; void *cdata; csize = zio->io_size; cdata = zio_data_buf_alloc(csize); bcopy(zio->io_data, cdata, csize); if (zio_decompress_data(c, cdata, zio->io_data, csize, hdr->b_size) != 0) zio->io_error = EIO; zio_data_buf_free(cdata, csize); } /* Restore the expected uncompressed IO size. */ zio->io_orig_size = zio->io_size = hdr->b_size; } /* * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. * This buffer serves as a temporary holder of compressed data while * the buffer entry is being written to an l2arc device. Once that is * done, we can dispose of it. */ static void l2arc_release_cdata_buf(arc_buf_hdr_t *hdr) { enum zio_compress comp = HDR_GET_COMPRESS(hdr); ASSERT(HDR_HAS_L1HDR(hdr)); ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp)); if (comp == ZIO_COMPRESS_OFF) { /* * In this case, b_tmp_cdata points to the same buffer * as the arc_buf_t's b_data field. We don't want to * free it, since the arc_buf_t will handle that. */ hdr->b_l1hdr.b_tmp_cdata = NULL; } else if (comp == ZIO_COMPRESS_EMPTY) { /* * In this case, b_tmp_cdata was compressed to an empty * buffer, thus there's nothing to free and b_tmp_cdata * should have been set to NULL in l2arc_write_buffers(). */ ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL); } else { /* * If the data was compressed, then we've allocated a * temporary buffer for it, so now we need to release it. */ ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL); zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata, hdr->b_size); hdr->b_l1hdr.b_tmp_cdata = NULL; } } /* * This thread feeds the L2ARC at regular intervals. This is the beating * heart of the L2ARC. */ static void l2arc_feed_thread(void) { callb_cpr_t cpr; l2arc_dev_t *dev; spa_t *spa; uint64_t size, wrote; clock_t begin, next = ddi_get_lbolt(); boolean_t headroom_boost = B_FALSE; CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); mutex_enter(&l2arc_feed_thr_lock); while (l2arc_thread_exit == 0) { CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, next); CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); next = ddi_get_lbolt() + hz; /* * Quick check for L2ARC devices. */ mutex_enter(&l2arc_dev_mtx); if (l2arc_ndev == 0) { mutex_exit(&l2arc_dev_mtx); continue; } mutex_exit(&l2arc_dev_mtx); begin = ddi_get_lbolt(); /* * This selects the next l2arc device to write to, and in * doing so the next spa to feed from: dev->l2ad_spa. This * will return NULL if there are now no l2arc devices or if * they are all faulted. * * If a device is returned, its spa's config lock is also * held to prevent device removal. l2arc_dev_get_next() * will grab and release l2arc_dev_mtx. */ if ((dev = l2arc_dev_get_next()) == NULL) continue; spa = dev->l2ad_spa; ASSERT(spa != NULL); /* * If the pool is read-only then force the feed thread to * sleep a little longer. */ if (!spa_writeable(spa)) { next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; spa_config_exit(spa, SCL_L2ARC, dev); continue; } /* * Avoid contributing to memory pressure. */ if (arc_reclaim_needed()) { ARCSTAT_BUMP(arcstat_l2_abort_lowmem); spa_config_exit(spa, SCL_L2ARC, dev); continue; } ARCSTAT_BUMP(arcstat_l2_feeds); size = l2arc_write_size(); /* * Evict L2ARC buffers that will be overwritten. */ l2arc_evict(dev, size, B_FALSE); /* * Write ARC buffers. */ wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); /* * Calculate interval between writes. */ next = l2arc_write_interval(begin, size, wrote); spa_config_exit(spa, SCL_L2ARC, dev); } l2arc_thread_exit = 0; cv_broadcast(&l2arc_feed_thr_cv); CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ thread_exit(); } boolean_t l2arc_vdev_present(vdev_t *vd) { l2arc_dev_t *dev; mutex_enter(&l2arc_dev_mtx); for (dev = list_head(l2arc_dev_list); dev != NULL; dev = list_next(l2arc_dev_list, dev)) { if (dev->l2ad_vdev == vd) break; } mutex_exit(&l2arc_dev_mtx); return (dev != NULL); } /* * Add a vdev for use by the L2ARC. By this point the spa has already * validated the vdev and opened it. */ void l2arc_add_vdev(spa_t *spa, vdev_t *vd) { l2arc_dev_t *adddev; ASSERT(!l2arc_vdev_present(vd)); /* * Create a new l2arc device entry. */ adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); adddev->l2ad_spa = spa; adddev->l2ad_vdev = vd; adddev->l2ad_start = VDEV_LABEL_START_SIZE; adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); adddev->l2ad_hand = adddev->l2ad_start; adddev->l2ad_first = B_TRUE; adddev->l2ad_writing = B_FALSE; mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); /* * This is a list of all ARC buffers that are still valid on the * device. */ list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); refcount_create(&adddev->l2ad_alloc); /* * Add device to global list */ mutex_enter(&l2arc_dev_mtx); list_insert_head(l2arc_dev_list, adddev); atomic_inc_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); } /* * Remove a vdev from the L2ARC. */ void l2arc_remove_vdev(vdev_t *vd) { l2arc_dev_t *dev, *nextdev, *remdev = NULL; /* * Find the device by vdev */ mutex_enter(&l2arc_dev_mtx); for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { nextdev = list_next(l2arc_dev_list, dev); if (vd == dev->l2ad_vdev) { remdev = dev; break; } } ASSERT(remdev != NULL); /* * Remove device from global list */ list_remove(l2arc_dev_list, remdev); l2arc_dev_last = NULL; /* may have been invalidated */ atomic_dec_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); /* * Clear all buflists and ARC references. L2ARC device flush. */ l2arc_evict(remdev, 0, B_TRUE); list_destroy(&remdev->l2ad_buflist); mutex_destroy(&remdev->l2ad_mtx); refcount_destroy(&remdev->l2ad_alloc); kmem_free(remdev, sizeof (l2arc_dev_t)); } void l2arc_init(void) { l2arc_thread_exit = 0; l2arc_ndev = 0; l2arc_writes_sent = 0; l2arc_writes_done = 0; mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); l2arc_dev_list = &L2ARC_dev_list; l2arc_free_on_write = &L2ARC_free_on_write; list_create(l2arc_dev_list, sizeof (l2arc_dev_t), offsetof(l2arc_dev_t, l2ad_node)); list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), offsetof(l2arc_data_free_t, l2df_list_node)); } void l2arc_fini(void) { /* * This is called from dmu_fini(), which is called from spa_fini(); * Because of this, we can assume that all l2arc devices have * already been removed when the pools themselves were removed. */ l2arc_do_free_on_write(); mutex_destroy(&l2arc_feed_thr_lock); cv_destroy(&l2arc_feed_thr_cv); mutex_destroy(&l2arc_dev_mtx); mutex_destroy(&l2arc_free_on_write_mtx); list_destroy(l2arc_dev_list); list_destroy(l2arc_free_on_write); } void l2arc_start(void) { if (!(spa_mode_global & FWRITE)) return; (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, TS_RUN, minclsyspri); } void l2arc_stop(void) { if (!(spa_mode_global & FWRITE)) return; mutex_enter(&l2arc_feed_thr_lock); cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ l2arc_thread_exit = 1; while (l2arc_thread_exit != 0) cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); mutex_exit(&l2arc_feed_thr_lock); }