/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static ino_t hashalloc(); static daddr_t fragextend(); static daddr_t alloccg(); static daddr_t alloccgblk(); static ino_t ialloccg(); static daddr_t mapsearch(); static int findlogstartcg(); extern int inside[], around[]; extern uchar_t *fragtbl[]; void delay(); /* * Allocate a block in the file system. * * The size of the requested block is given, which must be some * multiple of fs_fsize and <= fs_bsize. * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate a block: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate a block in the same cylinder group. * 4) quadratically rehash into other cylinder groups, until an * available block is located. * If no block preference is given the following hierarchy is used * to allocate a block: * 1) allocate a block in the cylinder group that contains the * inode for the file. * 2) quadratically rehash into other cylinder groups, until an * available block is located. */ int alloc(struct inode *ip, daddr_t bpref, int size, daddr_t *bnp, cred_t *cr) { struct fs *fs; struct ufsvfs *ufsvfsp; daddr_t bno; int cg; int err; char *errmsg = NULL; size_t len; clock_t now; ufsvfsp = ip->i_ufsvfs; fs = ufsvfsp->vfs_fs; if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { err = ufs_fault(ITOV(ip), "alloc: bad size, dev = 0x%lx," " bsize = %d, size = %d, fs = %s\n", ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); return (err); } if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) goto nospace; if (freespace(fs, ufsvfsp) <= 0 && secpolicy_fs_minfree(cr, ufsvfsp->vfs_vfs) != 0) goto nospace; err = chkdq(ip, (long)btodb(size), 0, cr, &errmsg, &len); /* Note that may not have err, but may have errmsg */ if (errmsg != NULL) { uprintf(errmsg); kmem_free(errmsg, len); errmsg = NULL; } if (err) return (err); if (bpref >= fs->fs_size) bpref = 0; if (bpref == 0) cg = (int)itog(fs, ip->i_number); else cg = dtog(fs, bpref); bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, (ulong_t (*)())alloccg); if (bno > 0) { *bnp = bno; return (0); } /* * hashalloc() failed because some other thread grabbed * the last block so unwind the quota operation. We can * ignore the return because subtractions don't fail and * size is guaranteed to be >= zero by our caller. */ (void) chkdq(ip, -(long)btodb(size), 0, cr, (char **)NULL, (size_t *)NULL); nospace: now = ddi_get_lbolt(); mutex_enter(&ufsvfsp->vfs_lock); if ((now - ufsvfsp->vfs_lastwhinetime) > (hz << 2) && (!(TRANS_ISTRANS(ufsvfsp)) || !(ip->i_flag & IQUIET))) { ufsvfsp->vfs_lastwhinetime = now; cmn_err(CE_NOTE, "alloc: %s: file system full", fs->fs_fsmnt); } mutex_exit(&ufsvfsp->vfs_lock); return (ENOSPC); } /* * Reallocate a fragment to a bigger size * * The number and size of the old block is given, and a preference * and new size is also specified. The allocator attempts to extend * the original block. Failing that, the regular block allocator is * invoked to get an appropriate block. */ int realloccg(struct inode *ip, daddr_t bprev, daddr_t bpref, int osize, int nsize, daddr_t *bnp, cred_t *cr) { daddr_t bno; struct fs *fs; struct ufsvfs *ufsvfsp; int cg, request; int err; char *errmsg = NULL; size_t len; clock_t now; ufsvfsp = ip->i_ufsvfs; fs = ufsvfsp->vfs_fs; if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { err = ufs_fault(ITOV(ip), "realloccg: bad size, dev=0x%lx, bsize=%d, " "osize=%d, nsize=%d, fs=%s\n", ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); return (err); } if (freespace(fs, ufsvfsp) <= 0 && secpolicy_fs_minfree(cr, ufsvfsp->vfs_vfs) != 0) goto nospace; if (bprev == 0) { err = ufs_fault(ITOV(ip), "realloccg: bad bprev, dev = 0x%lx, bsize = %d," " bprev = %ld, fs = %s\n", ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); return (err); } err = chkdq(ip, (long)btodb(nsize - osize), 0, cr, &errmsg, &len); /* Note that may not have err, but may have errmsg */ if (errmsg != NULL) { uprintf(errmsg); kmem_free(errmsg, len); errmsg = NULL; } if (err) return (err); cg = dtog(fs, bprev); bno = fragextend(ip, cg, (long)bprev, osize, nsize); if (bno != 0) { *bnp = bno; return (0); } if (bpref >= fs->fs_size) bpref = 0; /* * When optimizing for time we allocate a full block and * then only use the upper portion for this request. When * this file grows again it will grow into the unused portion * of the block (See fragextend() above). This saves time * because an extra disk write would be needed if the frags * following the current allocation were not free. The extra * disk write is needed to move the data from its current * location into the newly allocated position. * * When optimizing for space we allocate a run of frags * that is just the right size for this request. */ request = (fs->fs_optim == FS_OPTTIME) ? fs->fs_bsize : nsize; bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, (ulong_t (*)())alloccg); if (bno > 0) { *bnp = bno; if (nsize < request) (void) free(ip, bno + numfrags(fs, nsize), (off_t)(request - nsize), I_NOCANCEL); return (0); } /* * hashalloc() failed because some other thread grabbed * the last block so unwind the quota operation. We can * ignore the return because subtractions don't fail, and * our caller guarantees nsize >= osize. */ (void) chkdq(ip, -(long)btodb(nsize - osize), 0, cr, (char **)NULL, (size_t *)NULL); nospace: now = ddi_get_lbolt(); mutex_enter(&ufsvfsp->vfs_lock); if ((now - ufsvfsp->vfs_lastwhinetime) > (hz << 2) && (!(TRANS_ISTRANS(ufsvfsp)) || !(ip->i_flag & IQUIET))) { ufsvfsp->vfs_lastwhinetime = now; cmn_err(CE_NOTE, "realloccg %s: file system full", fs->fs_fsmnt); } mutex_exit(&ufsvfsp->vfs_lock); return (ENOSPC); } /* * Allocate an inode in the file system. * * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate an inode: * 1) allocate the requested inode. * 2) allocate an inode in the same cylinder group. * 3) quadratically rehash into other cylinder groups, until an * available inode is located. * If no inode preference is given the following hierarchy is used * to allocate an inode: * 1) allocate an inode in cylinder group 0. * 2) quadratically rehash into other cylinder groups, until an * available inode is located. */ int ufs_ialloc(struct inode *pip, ino_t ipref, mode_t mode, struct inode **ipp, cred_t *cr) { struct inode *ip; struct fs *fs; int cg; ino_t ino; int err; int nifree; struct ufsvfs *ufsvfsp = pip->i_ufsvfs; char *errmsg = NULL; size_t len; ASSERT(RW_WRITE_HELD(&pip->i_rwlock)); fs = pip->i_fs; loop: nifree = fs->fs_cstotal.cs_nifree; if (nifree == 0) goto noinodes; /* * Shadow inodes don't count against a user's inode allocation. * They are an implementation method and not a resource. */ if ((mode != IFSHAD) && (mode != IFATTRDIR)) { err = chkiq((struct ufsvfs *)ITOV(pip)->v_vfsp->vfs_data, /* change */ 1, (struct inode *)NULL, crgetuid(cr), 0, cr, &errmsg, &len); /* * As we haven't acquired any locks yet, dump the message * now. */ if (errmsg != NULL) { uprintf(errmsg); kmem_free(errmsg, len); errmsg = NULL; } if (err) return (err); } if (ipref >= (ulong_t)(fs->fs_ncg * fs->fs_ipg)) ipref = 0; cg = (int)itog(fs, ipref); ino = (ino_t)hashalloc(pip, cg, (long)ipref, (int)mode, (ulong_t (*)())ialloccg); if (ino == 0) { if ((mode != IFSHAD) && (mode != IFATTRDIR)) { /* * We can safely ignore the return from chkiq() * because deallocations can only fail if we * can't get the user's quota info record off * the disk due to an I/O error. In that case, * the quota subsystem is already messed up. */ (void) chkiq(ufsvfsp, /* change */ -1, (struct inode *)NULL, crgetuid(cr), 0, cr, (char **)NULL, (size_t *)NULL); } goto noinodes; } err = ufs_iget(pip->i_vfs, ino, ipp, cr); if (err) { if ((mode != IFSHAD) && (mode != IFATTRDIR)) { /* * See above comment about why it is safe to ignore an * error return here. */ (void) chkiq(ufsvfsp, /* change */ -1, (struct inode *)NULL, crgetuid(cr), 0, cr, (char **)NULL, (size_t *)NULL); } ufs_ifree(pip, ino, 0); return (err); } ip = *ipp; ASSERT(!ip->i_ufs_acl); ASSERT(!ip->i_dquot); rw_enter(&ip->i_contents, RW_WRITER); /* * Check if we really got a free inode, if not then complain * and mark the inode ISTALE so that it will be freed by the * ufs idle thread eventually and will not be sent to ufs_delete(). */ if (ip->i_mode || (ip->i_nlink > 0)) { ip->i_flag |= ISTALE; rw_exit(&ip->i_contents); VN_RELE(ITOV(ip)); cmn_err(CE_WARN, "%s: unexpected allocated inode %d, run fsck(8)%s", fs->fs_fsmnt, (int)ino, (TRANS_ISTRANS(ufsvfsp) ? " -o f" : "")); goto loop; } /* * Check the inode has no size or data blocks. * This could have happened if the truncation failed when * deleting the inode. It used to be possible for this to occur * if a block allocation failed when iteratively truncating a * large file using logging and with a full file system. * This was fixed with bug fix 4348738. However, truncation may * still fail on an IO error. So in all cases for safety and * security we clear out the size; the blocks allocated; and * pointers to the blocks. This will ultimately cause a fsck * error of un-accounted for blocks, but its a fairly benign error, * and possibly the correct thing to do anyway as accesssing those * blocks agains may lead to more IO errors. */ if (ip->i_size || ip->i_blocks) { int i; if (ip->i_size) { cmn_err(CE_WARN, "%s: free inode %d had size 0x%llx, run fsck(8)%s", fs->fs_fsmnt, (int)ino, ip->i_size, (TRANS_ISTRANS(ufsvfsp) ? " -o f" : "")); } /* * Clear any garbage left behind. */ ip->i_size = (u_offset_t)0; ip->i_blocks = 0; for (i = 0; i < NDADDR; i++) ip->i_db[i] = 0; for (i = 0; i < NIADDR; i++) ip->i_ib[i] = 0; } /* * Initialize the link count */ ip->i_nlink = 0; /* * Clear the old flags */ ip->i_flag &= IREF; /* * Access times are not really defined if the fs is mounted * with 'noatime'. But it can cause nfs clients to fail * open() if the atime is not a legal value. Set a legal value * here when the inode is allocated. */ if (ufsvfsp->vfs_noatime) { mutex_enter(&ufs_iuniqtime_lock); ip->i_atime = iuniqtime; mutex_exit(&ufs_iuniqtime_lock); } rw_exit(&ip->i_contents); return (0); noinodes: if (!(TRANS_ISTRANS(ufsvfsp)) || !(pip->i_flag & IQUIET)) cmn_err(CE_NOTE, "%s: out of inodes\n", fs->fs_fsmnt); return (ENOSPC); } /* * Find a cylinder group to place a directory. * Returns an inumber within the selected cylinder group. * Note, the vfs_lock is not needed as we don't require exact cg summary info. * * If the switch ufs_close_dirs is set, then the policy is to use * the current cg if it has more than 25% free inodes and more * than 25% free blocks. Otherwise the cgs are searched from * the beginning and the first cg with the same criteria is * used. If that is also null then we revert to the old algorithm. * This tends to cluster files at the beginning of the disk * until the disk gets full. * * Otherwise if ufs_close_dirs is not set then the original policy is * used which is to select from among those cylinder groups with * above the average number of free inodes, the one with the smallest * number of directories. */ int ufs_close_dirs = 1; /* allocate directories close as possible */ ino_t dirpref(inode_t *dp) { int cg, minndir, mincg, avgifree, mininode, minbpg, ifree; struct fs *fs = dp->i_fs; cg = itog(fs, dp->i_number); mininode = fs->fs_ipg >> 2; minbpg = fs->fs_maxbpg >> 2; if (ufs_close_dirs && (fs->fs_cs(fs, cg).cs_nifree > mininode) && (fs->fs_cs(fs, cg).cs_nbfree > minbpg)) { return (dp->i_number); } avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; minndir = fs->fs_ipg; mincg = 0; for (cg = 0; cg < fs->fs_ncg; cg++) { ifree = fs->fs_cs(fs, cg).cs_nifree; if (ufs_close_dirs && (ifree > mininode) && (fs->fs_cs(fs, cg).cs_nbfree > minbpg)) { return ((ino_t)(fs->fs_ipg * cg)); } if ((fs->fs_cs(fs, cg).cs_ndir < minndir) && (ifree >= avgifree)) { mincg = cg; minndir = fs->fs_cs(fs, cg).cs_ndir; } } return ((ino_t)(fs->fs_ipg * mincg)); } /* * Select the desired position for the next block in a file. The file is * logically divided into sections. The first section is composed of the * direct blocks. Each additional section contains fs_maxbpg blocks. * * If no blocks have been allocated in the first section, the policy is to * request a block in the same cylinder group as the inode that describes * the file. If no blocks have been allocated in any other section, the * policy is to place the section in a cylinder group with a greater than * average number of free blocks. An appropriate cylinder group is found * by using a rotor that sweeps the cylinder groups. When a new group of * blocks is needed, the sweep begins in the cylinder group following the * cylinder group from which the previous allocation was made. The sweep * continues until a cylinder group with greater than the average number * of free blocks is found. If the allocation is for the first block in an * indirect block, the information on the previous allocation is unavailable; * here a best guess is made based upon the logical block number being * allocated. * * If a section is already partially allocated, the policy is to * contiguously allocate fs_maxcontig blocks. The end of one of these * contiguous blocks and the beginning of the next is physically separated * so that the disk head will be in transit between them for at least * fs_rotdelay milliseconds. This is to allow time for the processor to * schedule another I/O transfer. */ daddr_t blkpref(struct inode *ip, daddr_t lbn, int indx, daddr32_t *bap) { struct fs *fs; struct ufsvfs *ufsvfsp; int cg; int avgbfree, startcg; daddr_t nextblk; ufsvfsp = ip->i_ufsvfs; fs = ip->i_fs; if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { if (lbn < NDADDR) { cg = itog(fs, ip->i_number); return (fs->fs_fpg * cg + fs->fs_frag); } /* * Find a cylinder with greater than average * number of unused data blocks. */ if (indx == 0 || bap[indx - 1] == 0) startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; else startcg = dtog(fs, bap[indx - 1]) + 1; startcg %= fs->fs_ncg; mutex_enter(&ufsvfsp->vfs_lock); avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; /* * used for computing log space for writes/truncs */ ufsvfsp->vfs_avgbfree = avgbfree; for (cg = startcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; mutex_exit(&ufsvfsp->vfs_lock); return (fs->fs_fpg * cg + fs->fs_frag); } for (cg = 0; cg <= startcg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; mutex_exit(&ufsvfsp->vfs_lock); return (fs->fs_fpg * cg + fs->fs_frag); } mutex_exit(&ufsvfsp->vfs_lock); return (0); } /* * One or more previous blocks have been laid out. If less * than fs_maxcontig previous blocks are contiguous, the * next block is requested contiguously, otherwise it is * requested rotationally delayed by fs_rotdelay milliseconds. */ nextblk = bap[indx - 1]; /* * Provision for fallocate to return positive * blk preference based on last allocation */ if (nextblk < 0 && nextblk != UFS_HOLE) { nextblk = (-bap[indx - 1]) + fs->fs_frag; } else { nextblk = bap[indx - 1] + fs->fs_frag; } if (indx > fs->fs_maxcontig && bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) != nextblk) { return (nextblk); } if (fs->fs_rotdelay != 0) /* * Here we convert ms of delay to frags as: * (frags) = (ms) * (rev/sec) * (sect/rev) / * ((sect/frag) * (ms/sec)) * then round up to the next block. */ nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / (NSPF(fs) * 1000), fs->fs_frag); return (nextblk); } /* * Free a block or fragment. * * The specified block or fragment is placed back in the * free map. If a fragment is deallocated, a possible * block reassembly is checked. */ void free(struct inode *ip, daddr_t bno, off_t size, int flags) { struct fs *fs = ip->i_fs; struct ufsvfs *ufsvfsp = ip->i_ufsvfs; struct ufs_q *delq = &ufsvfsp->vfs_delete; struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info; struct cg *cgp; struct buf *bp; int cg, bmap, bbase; int i; uchar_t *blksfree; int *blktot; short *blks; daddr_t blkno, cylno, rpos; /* * fallocate'd files will have negative block address. * So negate it again to get original block address. */ if (bno < 0 && (bno % fs->fs_frag == 0) && bno != UFS_HOLE) { bno = -bno; } if ((unsigned long)size > fs->fs_bsize || fragoff(fs, size) != 0) { (void) ufs_fault(ITOV(ip), "free: bad size, dev = 0x%lx, bsize = %d, size = %d, " "fs = %s\n", ip->i_dev, fs->fs_bsize, (int)size, fs->fs_fsmnt); return; } cg = dtog(fs, bno); ASSERT(!ufs_badblock(ip, bno)); bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); cgp = bp->b_un.b_cg; if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { brelse(bp); return; } if (!(flags & I_NOCANCEL)) TRANS_CANCEL(ufsvfsp, ldbtob(fsbtodb(fs, bno)), size, flags); if (flags & (I_DIR|I_IBLK|I_SHAD|I_QUOTA)) { TRANS_MATA_FREE(ufsvfsp, ldbtob(fsbtodb(fs, bno)), size); } blksfree = cg_blksfree(cgp); blktot = cg_blktot(cgp); mutex_enter(&ufsvfsp->vfs_lock); cgp->cg_time = gethrestime_sec(); bno = dtogd(fs, bno); if (size == fs->fs_bsize) { blkno = fragstoblks(fs, bno); cylno = cbtocylno(fs, bno); rpos = cbtorpos(ufsvfsp, bno); blks = cg_blks(ufsvfsp, cgp, cylno); if (!isclrblock(fs, blksfree, blkno)) { mutex_exit(&ufsvfsp->vfs_lock); brelse(bp); (void) ufs_fault(ITOV(ip), "free: freeing free block, " "dev:0x%lx, block:%ld, ino:%lu, fs:%s", ip->i_dev, bno, ip->i_number, fs->fs_fsmnt); return; } setblock(fs, blksfree, blkno); blks[rpos]++; blktot[cylno]++; cgp->cg_cs.cs_nbfree++; /* Log below */ fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; if (TRANS_ISTRANS(ufsvfsp) && (flags & I_ACCT)) { mutex_enter(&delq->uq_mutex); delq_info->delq_unreclaimed_blocks -= btodb(fs->fs_bsize); mutex_exit(&delq->uq_mutex); } } else { bbase = bno - fragnum(fs, bno); /* * Decrement the counts associated with the old frags */ bmap = blkmap(fs, blksfree, bbase); fragacct(fs, bmap, cgp->cg_frsum, -1); /* * Deallocate the fragment */ for (i = 0; i < numfrags(fs, size); i++) { if (isset(blksfree, bno + i)) { brelse(bp); mutex_exit(&ufsvfsp->vfs_lock); (void) ufs_fault(ITOV(ip), "free: freeing free frag, " "dev:0x%lx, blk:%ld, cg:%d, " "ino:%lu, fs:%s", ip->i_dev, bno + i, cgp->cg_cgx, ip->i_number, fs->fs_fsmnt); return; } setbit(blksfree, bno + i); } cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; if (TRANS_ISTRANS(ufsvfsp) && (flags & I_ACCT)) { mutex_enter(&delq->uq_mutex); delq_info->delq_unreclaimed_blocks -= btodb(i * fs->fs_fsize); mutex_exit(&delq->uq_mutex); } /* * Add back in counts associated with the new frags */ bmap = blkmap(fs, blksfree, bbase); fragacct(fs, bmap, cgp->cg_frsum, 1); /* * If a complete block has been reassembled, account for it */ blkno = fragstoblks(fs, bbase); if (isblock(fs, blksfree, blkno)) { cylno = cbtocylno(fs, bbase); rpos = cbtorpos(ufsvfsp, bbase); blks = cg_blks(ufsvfsp, cgp, cylno); blks[rpos]++; blktot[cylno]++; cgp->cg_cs.cs_nffree -= fs->fs_frag; fs->fs_cstotal.cs_nffree -= fs->fs_frag; fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; } } fs->fs_fmod = 1; ufs_notclean(ufsvfsp); TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); TRANS_SI(ufsvfsp, fs, cg); bdrwrite(bp); } /* * Free an inode. * * The specified inode is placed back in the free map. */ void ufs_ifree(struct inode *ip, ino_t ino, mode_t mode) { struct fs *fs = ip->i_fs; struct ufsvfs *ufsvfsp = ip->i_ufsvfs; struct cg *cgp; struct buf *bp; unsigned int inot; int cg; char *iused; if (ip->i_number == ino && ip->i_mode != 0) { (void) ufs_fault(ITOV(ip), "ufs_ifree: illegal mode: (imode) %o, (omode) %o, ino %d, " "fs = %s\n", ip->i_mode, mode, (int)ip->i_number, fs->fs_fsmnt); return; } if (ino >= fs->fs_ipg * fs->fs_ncg) { (void) ufs_fault(ITOV(ip), "ifree: range, dev = 0x%x, ino = %d, fs = %s\n", (int)ip->i_dev, (int)ino, fs->fs_fsmnt); return; } cg = (int)itog(fs, ino); bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); cgp = bp->b_un.b_cg; if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { brelse(bp); return; } mutex_enter(&ufsvfsp->vfs_lock); cgp->cg_time = gethrestime_sec(); iused = cg_inosused(cgp); inot = (unsigned int)(ino % (ulong_t)fs->fs_ipg); if (isclr(iused, inot)) { mutex_exit(&ufsvfsp->vfs_lock); brelse(bp); (void) ufs_fault(ITOV(ip), "ufs_ifree: freeing free inode, " "mode: (imode) %o, (omode) %o, ino:%d, " "fs:%s", ip->i_mode, mode, (int)ino, fs->fs_fsmnt); return; } clrbit(iused, inot); if (inot < (ulong_t)cgp->cg_irotor) cgp->cg_irotor = inot; cgp->cg_cs.cs_nifree++; fs->fs_cstotal.cs_nifree++; fs->fs_cs(fs, cg).cs_nifree++; if (((mode & IFMT) == IFDIR) || ((mode & IFMT) == IFATTRDIR)) { cgp->cg_cs.cs_ndir--; fs->fs_cstotal.cs_ndir--; fs->fs_cs(fs, cg).cs_ndir--; } fs->fs_fmod = 1; ufs_notclean(ufsvfsp); TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); TRANS_SI(ufsvfsp, fs, cg); bdrwrite(bp); } /* * Implement the cylinder overflow algorithm. * * The policy implemented by this algorithm is: * 1) allocate the block in its requested cylinder group. * 2) quadratically rehash on the cylinder group number. * 3) brute force search for a free block. * The size parameter means size for data blocks, mode for inodes. */ static ino_t hashalloc(struct inode *ip, int cg, long pref, int size, ulong_t (*allocator)()) { struct fs *fs; int i; long result; int icg = cg; fs = ip->i_fs; /* * 1: preferred cylinder group */ result = (*allocator)(ip, cg, pref, size); if (result) return (result); /* * 2: quadratic rehash */ for (i = 1; i < fs->fs_ncg; i *= 2) { cg += i; if (cg >= fs->fs_ncg) cg -= fs->fs_ncg; result = (*allocator)(ip, cg, 0, size); if (result) return (result); } /* * 3: brute force search * Note that we start at i == 2, since 0 was checked initially, * and 1 is always checked in the quadratic rehash. */ cg = (icg + 2) % fs->fs_ncg; for (i = 2; i < fs->fs_ncg; i++) { result = (*allocator)(ip, cg, 0, size); if (result) return (result); cg++; if (cg == fs->fs_ncg) cg = 0; } return (0); } /* * Determine whether a fragment can be extended. * * Check to see if the necessary fragments are available, and * if they are, allocate them. */ static daddr_t fragextend(struct inode *ip, int cg, long bprev, int osize, int nsize) { struct ufsvfs *ufsvfsp = ip->i_ufsvfs; struct fs *fs = ip->i_fs; struct buf *bp; struct cg *cgp; uchar_t *blksfree; long bno; int frags, bbase; int i, j; if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) return (0); frags = numfrags(fs, nsize); bbase = (int)fragnum(fs, bprev); if (bbase > fragnum(fs, (bprev + frags - 1))) { /* cannot extend across a block boundary */ return (0); } bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); cgp = bp->b_un.b_cg; if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { brelse(bp); return (0); } blksfree = cg_blksfree(cgp); mutex_enter(&ufsvfsp->vfs_lock); bno = dtogd(fs, bprev); for (i = numfrags(fs, osize); i < frags; i++) { if (isclr(blksfree, bno + i)) { mutex_exit(&ufsvfsp->vfs_lock); brelse(bp); return (0); } if ((TRANS_ISCANCEL(ufsvfsp, ldbtob(fsbtodb(fs, bprev + i)), fs->fs_fsize))) { mutex_exit(&ufsvfsp->vfs_lock); brelse(bp); return (0); } } cgp->cg_time = gethrestime_sec(); /* * The current fragment can be extended, * deduct the count on fragment being extended into * increase the count on the remaining fragment (if any) * allocate the extended piece. */ for (i = frags; i < fs->fs_frag - bbase; i++) if (isclr(blksfree, bno + i)) break; j = i - numfrags(fs, osize); cgp->cg_frsum[j]--; ASSERT(cgp->cg_frsum[j] >= 0); if (i != frags) cgp->cg_frsum[i - frags]++; for (i = numfrags(fs, osize); i < frags; i++) { clrbit(blksfree, bno + i); cgp->cg_cs.cs_nffree--; fs->fs_cs(fs, cg).cs_nffree--; fs->fs_cstotal.cs_nffree--; } fs->fs_fmod = 1; ufs_notclean(ufsvfsp); TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); TRANS_SI(ufsvfsp, fs, cg); bdrwrite(bp); return ((daddr_t)bprev); } /* * Determine whether a block can be allocated. * * Check to see if a block of the apprpriate size * is available, and if it is, allocate it. */ static daddr_t alloccg(struct inode *ip, int cg, daddr_t bpref, int size) { struct ufsvfs *ufsvfsp = ip->i_ufsvfs; struct fs *fs = ip->i_fs; struct buf *bp; struct cg *cgp; uchar_t *blksfree; int bno, frags; int allocsiz; int i; /* * Searching for space could be time expensive so do some * up front checking to verify that there is actually space * available (free blocks or free frags). */ if (fs->fs_cs(fs, cg).cs_nbfree == 0) { if (size == fs->fs_bsize) return (0); /* * If there are not enough free frags then return. */ if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, size)) return (0); } bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); cgp = bp->b_un.b_cg; if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) || (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { brelse(bp); return (0); } blksfree = cg_blksfree(cgp); mutex_enter(&ufsvfsp->vfs_lock); cgp->cg_time = gethrestime_sec(); if (size == fs->fs_bsize) { if ((bno = alloccgblk(ufsvfsp, cgp, bpref, bp)) == 0) goto errout; fs->fs_fmod = 1; ufs_notclean(ufsvfsp); TRANS_SI(ufsvfsp, fs, cg); bdrwrite(bp); return (bno); } /* * Check fragment bitmap to see if any fragments are already available. * mapsearch() may fail because the fragment that fits this request * might still be on the cancel list and not available for re-use yet. * Look for a bigger sized fragment to allocate first before we have * to give up and fragment a whole new block eventually. */ frags = numfrags(fs, size); allocsiz = frags; next_size: for (; allocsiz < fs->fs_frag; allocsiz++) if (cgp->cg_frsum[allocsiz] != 0) break; if (allocsiz != fs->fs_frag) { bno = mapsearch(ufsvfsp, cgp, bpref, allocsiz); if (bno < 0 && allocsiz < (fs->fs_frag - 1)) { allocsiz++; goto next_size; } } if (allocsiz == fs->fs_frag || bno < 0) { /* * No fragments were available, so a block * will be allocated and hacked up. */ if (cgp->cg_cs.cs_nbfree == 0) goto errout; if ((bno = alloccgblk(ufsvfsp, cgp, bpref, bp)) == 0) goto errout; bpref = dtogd(fs, bno); for (i = frags; i < fs->fs_frag; i++) setbit(blksfree, bpref + i); i = fs->fs_frag - frags; cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; cgp->cg_frsum[i]++; fs->fs_fmod = 1; ufs_notclean(ufsvfsp); TRANS_SI(ufsvfsp, fs, cg); bdrwrite(bp); return (bno); } for (i = 0; i < frags; i++) clrbit(blksfree, bno + i); cgp->cg_cs.cs_nffree -= frags; fs->fs_cstotal.cs_nffree -= frags; fs->fs_cs(fs, cg).cs_nffree -= frags; cgp->cg_frsum[allocsiz]--; ASSERT(cgp->cg_frsum[allocsiz] >= 0); if (frags != allocsiz) { cgp->cg_frsum[allocsiz - frags]++; } fs->fs_fmod = 1; ufs_notclean(ufsvfsp); TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); TRANS_SI(ufsvfsp, fs, cg); bdrwrite(bp); return (cg * fs->fs_fpg + bno); errout: mutex_exit(&ufsvfsp->vfs_lock); brelse(bp); return (0); } /* * Allocate a block in a cylinder group. * * This algorithm implements the following policy: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate the next available block on the block rotor for the * specified cylinder group. * Note that this routine only allocates fs_bsize blocks; these * blocks may be fragmented by the routine that allocates them. */ static daddr_t alloccgblk( struct ufsvfs *ufsvfsp, struct cg *cgp, daddr_t bpref, struct buf *bp) { daddr_t bno; int cylno, pos, delta, rotbl_size; short *cylbp; int i; struct fs *fs; uchar_t *blksfree; daddr_t blkno, rpos, frag; short *blks; int32_t *blktot; ASSERT(MUTEX_HELD(&ufsvfsp->vfs_lock)); fs = ufsvfsp->vfs_fs; blksfree = cg_blksfree(cgp); if (bpref == 0) { bpref = cgp->cg_rotor; goto norot; } bpref = blknum(fs, bpref); bpref = dtogd(fs, bpref); /* * If the requested block is available, use it. */ if (isblock(fs, blksfree, (daddr_t)fragstoblks(fs, bpref))) { bno = bpref; goto gotit; } /* * Check for a block available on the same cylinder. */ cylno = cbtocylno(fs, bpref); if (cg_blktot(cgp)[cylno] == 0) goto norot; if (fs->fs_cpc == 0) { /* * Block layout info is not available, so just * have to take any block in this cylinder. */ bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); goto norot; } /* * Check the summary information to see if a block is * available in the requested cylinder starting at the * requested rotational position and proceeding around. */ cylbp = cg_blks(ufsvfsp, cgp, cylno); pos = cbtorpos(ufsvfsp, bpref); for (i = pos; i < ufsvfsp->vfs_nrpos; i++) if (cylbp[i] > 0) break; if (i == ufsvfsp->vfs_nrpos) for (i = 0; i < pos; i++) if (cylbp[i] > 0) break; if (cylbp[i] > 0) { /* * Found a rotational position, now find the actual * block. A "panic" if none is actually there. */ /* * Up to this point, "pos" has referred to the rotational * position of the desired block. From now on, it holds * the offset of the current cylinder within a cylinder * cycle. (A cylinder cycle refers to a set of cylinders * which are described by a single rotational table; the * size of the cycle is fs_cpc.) * * bno is set to the block number of the first block within * the current cylinder cycle. */ pos = cylno % fs->fs_cpc; bno = (cylno - pos) * fs->fs_spc / NSPB(fs); /* * The blocks within a cylinder are grouped into equivalence * classes according to their "rotational position." There * are two tables used to determine these classes. * * The positional offset table (fs_postbl) has an entry for * each rotational position of each cylinder in a cylinder * cycle. This entry contains the relative block number * (counting from the start of the cylinder cycle) of the * first block in the equivalence class for that position * and that cylinder. Positions for which no blocks exist * are indicated by a -1. * * The rotational delta table (fs_rotbl) has an entry for * each block in a cylinder cycle. This entry contains * the offset from that block to the next block in the * same equivalence class. The last block in the class * is indicated by a zero in the table. * * The following code, then, walks through all of the blocks * in the cylinder (cylno) which we're allocating within * which are in the equivalence class for the rotational * position (i) which we're allocating within. */ if (fs_postbl(ufsvfsp, pos)[i] == -1) { (void) ufs_fault(ufsvfsp->vfs_root, "alloccgblk: cyl groups corrupted, pos = %d, " "i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); return (0); } /* * There is one entry in the rotational table for each block * in the cylinder cycle. These are whole blocks, not frags. */ rotbl_size = (fs->fs_cpc * fs->fs_spc) >> (fs->fs_fragshift + fs->fs_fsbtodb); /* * As we start, "i" is the rotational position within which * we're searching. After the next line, it will be a block * number (relative to the start of the cylinder cycle) * within the equivalence class of that rotational position. */ i = fs_postbl(ufsvfsp, pos)[i]; for (;;) { if (isblock(fs, blksfree, (daddr_t)(bno + i))) { bno = blkstofrags(fs, (bno + i)); goto gotit; } delta = fs_rotbl(fs)[i]; if (delta <= 0 || /* End of chain, or */ delta + i > rotbl_size) /* end of table? */ break; /* If so, panic. */ i += delta; } (void) ufs_fault(ufsvfsp->vfs_root, "alloccgblk: can't find blk in cyl, pos:%d, i:%d, " "fs:%s bno: %x\n", pos, i, fs->fs_fsmnt, (int)bno); return (0); } norot: /* * No blocks in the requested cylinder, so take * next available one in this cylinder group. */ bno = mapsearch(ufsvfsp, cgp, bpref, (int)fs->fs_frag); if (bno < 0) return (0); cgp->cg_rotor = bno; gotit: blkno = fragstoblks(fs, bno); frag = (cgp->cg_cgx * fs->fs_fpg) + bno; if (TRANS_ISCANCEL(ufsvfsp, ldbtob(fsbtodb(fs, frag)), fs->fs_bsize)) goto norot; clrblock(fs, blksfree, (long)blkno); /* * the other cg/sb/si fields are TRANS'ed by the caller */ cgp->cg_cs.cs_nbfree--; fs->fs_cstotal.cs_nbfree--; fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; cylno = cbtocylno(fs, bno); blks = cg_blks(ufsvfsp, cgp, cylno); rpos = cbtorpos(ufsvfsp, bno); blktot = cg_blktot(cgp); blks[rpos]--; blktot[cylno]--; TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); fs->fs_fmod = 1; return (frag); } /* * Determine whether an inode can be allocated. * * Check to see if an inode is available, and if it is, * allocate it using the following policy: * 1) allocate the requested inode. * 2) allocate the next available inode after the requested * inode in the specified cylinder group. */ static ino_t ialloccg(struct inode *ip, int cg, daddr_t ipref, int mode) { struct ufsvfs *ufsvfsp = ip->i_ufsvfs; struct fs *fs = ip->i_fs; struct cg *cgp; struct buf *bp; int start, len, loc, map, i; char *iused; if (fs->fs_cs(fs, cg).cs_nifree == 0) return (0); bp = UFS_BREAD(ufsvfsp, ip->i_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); cgp = bp->b_un.b_cg; if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { brelse(bp); return (0); } iused = cg_inosused(cgp); mutex_enter(&ufsvfsp->vfs_lock); /* * While we are waiting for the mutex, someone may have taken * the last available inode. Need to recheck. */ if (cgp->cg_cs.cs_nifree == 0) { mutex_exit(&ufsvfsp->vfs_lock); brelse(bp); return (0); } cgp->cg_time = gethrestime_sec(); if (ipref) { ipref %= fs->fs_ipg; if (isclr(iused, ipref)) goto gotit; } start = cgp->cg_irotor / NBBY; len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); loc = skpc(0xff, (uint_t)len, &iused[start]); if (loc == 0) { len = start + 1; start = 0; loc = skpc(0xff, (uint_t)len, &iused[0]); if (loc == 0) { mutex_exit(&ufsvfsp->vfs_lock); (void) ufs_fault(ITOV(ip), "ialloccg: map corrupted, cg = %d, irotor = %d, " "fs = %s\n", cg, (int)cgp->cg_irotor, fs->fs_fsmnt); return (0); } } i = start + len - loc; map = iused[i]; ipref = i * NBBY; for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { if ((map & i) == 0) { cgp->cg_irotor = ipref; goto gotit; } } mutex_exit(&ufsvfsp->vfs_lock); (void) ufs_fault(ITOV(ip), "ialloccg: block not in mapfs = %s", fs->fs_fsmnt); return (0); gotit: setbit(iused, ipref); cgp->cg_cs.cs_nifree--; fs->fs_cstotal.cs_nifree--; fs->fs_cs(fs, cg).cs_nifree--; if (((mode & IFMT) == IFDIR) || ((mode & IFMT) == IFATTRDIR)) { cgp->cg_cs.cs_ndir++; fs->fs_cstotal.cs_ndir++; fs->fs_cs(fs, cg).cs_ndir++; } fs->fs_fmod = 1; ufs_notclean(ufsvfsp); TRANS_BUF(ufsvfsp, 0, fs->fs_cgsize, bp, DT_CG); TRANS_SI(ufsvfsp, fs, cg); bdrwrite(bp); return (cg * fs->fs_ipg + ipref); } /* * Find a block of the specified size in the specified cylinder group. * * It is a panic if a request is made to find a block if none are * available. */ static daddr_t mapsearch(struct ufsvfs *ufsvfsp, struct cg *cgp, daddr_t bpref, int allocsiz) { struct fs *fs = ufsvfsp->vfs_fs; daddr_t bno, cfrag; int start, len, loc, i, last, first, secondtime; int blk, field, subfield, pos; int gotit; /* * ufsvfs->vfs_lock is held when calling this. */ /* * Find the fragment by searching through the * free block map for an appropriate bit pattern. */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = cgp->cg_frotor / NBBY; /* * the following loop performs two scans -- the first scan * searches the bottom half of the array for a match and the * second scan searches the top half of the array. The loops * have been merged just to make things difficult. */ first = start; last = howmany(fs->fs_fpg, NBBY); secondtime = 0; cfrag = cgp->cg_cgx * fs->fs_fpg; while (first < last) { len = last - first; /* * search the array for a match */ loc = scanc((unsigned)len, (uchar_t *)&cg_blksfree(cgp)[first], (uchar_t *)fragtbl[fs->fs_frag], (int)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); /* * match found */ if (loc) { bno = (last - loc) * NBBY; /* * Found the byte in the map, sift * through the bits to find the selected frag */ cgp->cg_frotor = bno; gotit = 0; for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { blk = blkmap(fs, cg_blksfree(cgp), bno); blk <<= 1; field = around[allocsiz]; subfield = inside[allocsiz]; for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { if ((blk & field) == subfield) { gotit++; break; } field <<= 1; subfield <<= 1; } if (gotit) break; } bno += pos; /* * success if block is *not* being converted from * metadata into userdata (harpy). If so, ignore. */ if (!TRANS_ISCANCEL(ufsvfsp, ldbtob(fsbtodb(fs, (cfrag+bno))), allocsiz * fs->fs_fsize)) return (bno); /* * keep looking -- this block is being converted */ first = (last - loc) + 1; loc = 0; if (first < last) continue; } /* * no usable matches in bottom half -- now search the top half */ if (secondtime) /* * no usable matches in top half -- all done */ break; secondtime = 1; last = start + 1; first = 0; } /* * no usable matches */ return ((daddr_t)-1); } #define UFSNADDR (NDADDR + NIADDR) /* NADDR applies to (obsolete) S5FS */ #define IB(i) (NDADDR + (i)) /* index of i'th indirect block ptr */ #define SINGLE 0 /* single indirect block ptr */ #define DOUBLE 1 /* double indirect block ptr */ #define TRIPLE 2 /* triple indirect block ptr */ /* * Acquire a write lock, and keep trying till we get it */ static int allocsp_wlockfs(struct vnode *vp, struct lockfs *lf) { int err = 0; lockagain: do { err = ufs_fiolfss(vp, lf); if (err) return (err); } while (!LOCKFS_IS_ULOCK(lf)); lf->lf_lock = LOCKFS_WLOCK; lf->lf_flags = 0; lf->lf_comment = NULL; err = ufs__fiolfs(vp, lf, 1, 0); if (err == EBUSY || err == EINVAL) goto lockagain; return (err); } /* * Release the write lock */ static int allocsp_unlockfs(struct vnode *vp, struct lockfs *lf) { int err = 0; lf->lf_lock = LOCKFS_ULOCK; lf->lf_flags = 0; err = ufs__fiolfs(vp, lf, 1, 0); return (err); } struct allocsp_undo { daddr_t offset; daddr_t blk; struct allocsp_undo *next; }; /* * ufs_allocsp() can be used to pre-allocate blocks for a file on a given * file system. For direct blocks, the blocks are allocated from the offset * requested to the block boundary, then any full blocks are allocated, * and finally any remainder. * For indirect blocks the blocks are not initialized and are * only marked as allocated. These addresses are then stored as negative * block numbers in the inode to imply special handling. UFS has been modified * where necessary to understand this new notion. * Successfully fallocated files will have IFALLOCATE cflag set in the inode. */ int ufs_allocsp(struct vnode *vp, struct flock64 *lp, cred_t *cr) { struct lockfs lf; int berr, err, resv, issync; off_t istart, len; /* istart, special for idb */ struct inode *ip; struct fs *fs; struct ufsvfs *ufsvfsp; u_offset_t resid, i, uoff; daddr32_t db_undo[NDADDR]; /* old direct blocks */ struct allocsp_undo *ib_undo = NULL; /* ib undo */ struct allocsp_undo *undo = NULL; u_offset_t osz; /* old file size */ int chunkblks = 0; /* # of blocks in 1 allocation */ int cnt = 0; daddr_t allocblk; daddr_t totblks = 0; struct ulockfs *ulp; size_t done_len; int nbytes, offsetn; ASSERT(vp->v_type == VREG); ip = VTOI(vp); fs = ip->i_fs; if ((ufsvfsp = ip->i_ufsvfs) == NULL) { err = EIO; goto out_allocsp; } istart = blkroundup(fs, (lp->l_start)); len = blkroundup(fs, (lp->l_len)); chunkblks = blkroundup(fs, ufsvfsp->vfs_iotransz) / fs->fs_bsize; ulp = &ufsvfsp->vfs_ulockfs; if (lp->l_start < 0 || lp->l_len <= 0) return (EINVAL); /* Quickly check to make sure we have space before we proceed */ if (lblkno(fs, len) > fs->fs_cstotal.cs_nbfree) { if (TRANS_ISTRANS(ufsvfsp)) { ufs_delete_drain_wait(ufsvfsp, 1); if (lblkno(fs, len) > fs->fs_cstotal.cs_nbfree) return (ENOSPC); } else return (ENOSPC); } /* * We will keep i_rwlock locked as WRITER through out the function * since we don't want anyone else reading or writing to the inode * while we are in the middle of fallocating the file. */ rw_enter(&ip->i_rwlock, RW_WRITER); /* Back up the direct block list, used for undo later if necessary */ rw_enter(&ip->i_contents, RW_READER); for (i = 0; i < NDADDR; i++) db_undo[i] = ip->i_db[i]; osz = ip->i_size; rw_exit(&ip->i_contents); /* Write lock the file system */ if (err = allocsp_wlockfs(vp, &lf)) goto exit; /* * Allocate any direct blocks now. * Blocks are allocated from the offset requested to the block * boundary, then any full blocks are allocated, and finally any * remainder. */ if (lblkno(fs, lp->l_start) < NDADDR) { ufs_trans_trunc_resv(ip, ip->i_size + (NDADDR * fs->fs_bsize), &resv, &resid); TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_ALLOCSP, resv); rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); rw_enter(&ip->i_contents, RW_WRITER); done_len = 0; while ((done_len < lp->l_len) && (lblkno(fs, lp->l_start + done_len) < NDADDR)) { uoff = (offset_t)(lp->l_start + done_len); offsetn = (int)blkoff(fs, uoff); nbytes = (int)MIN(fs->fs_bsize - offsetn, lp->l_len - done_len); berr = bmap_write(ip, uoff, offsetn + nbytes, BI_FALLOCATE, &allocblk, cr); /* Yikes error, quit */ if (berr) { TRANS_INODE(ufsvfsp, ip); rw_exit(&ip->i_contents); rw_exit(&ufsvfsp->vfs_dqrwlock); TRANS_END_CSYNC(ufsvfsp, err, issync, TOP_ALLOCSP, resv); err = allocsp_unlockfs(vp, &lf); goto exit; } if (allocblk) { totblks++; if ((uoff + nbytes) > ip->i_size) ip->i_size = (uoff + nbytes); } done_len += nbytes; } TRANS_INODE(ufsvfsp, ip); rw_exit(&ip->i_contents); rw_exit(&ufsvfsp->vfs_dqrwlock); TRANS_END_CSYNC(ufsvfsp, err, issync, TOP_ALLOCSP, resv); /* start offset for indirect allocation */ istart = (uoff + nbytes); } /* Break the transactions into vfs_iotransz units */ ufs_trans_trunc_resv(ip, ip->i_size + blkroundup(fs, ufsvfsp->vfs_iotransz), &resv, &resid); TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_ALLOCSP, resv); rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); rw_enter(&ip->i_contents, RW_WRITER); /* Now go about fallocating necessary indirect blocks */ for (i = istart; i < (lp->l_start + lp->l_len); i += fs->fs_bsize) { berr = bmap_write(ip, i, fs->fs_bsize, BI_FALLOCATE, &allocblk, cr); if (berr) { TRANS_INODE(ufsvfsp, ip); rw_exit(&ip->i_contents); rw_exit(&ufsvfsp->vfs_dqrwlock); TRANS_END_CSYNC(ufsvfsp, err, issync, TOP_ALLOCSP, resv); err = allocsp_unlockfs(vp, &lf); goto exit; } /* Update the blk counter only if new block was added */ if (allocblk) { /* Save undo information */ undo = kmem_alloc(sizeof (struct allocsp_undo), KM_SLEEP); undo->offset = i; undo->blk = allocblk; undo->next = ib_undo; ib_undo = undo; totblks++; if (i >= ip->i_size) ip->i_size += fs->fs_bsize; } cnt++; /* Being a good UFS citizen, let others get a share */ if (cnt == chunkblks) { /* * If there are waiters or the fs is hard locked, * error locked, or read-only error locked, * quit with EIO */ if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp) || ULOCKFS_IS_ROELOCK(ulp)) { ip->i_cflags |= IFALLOCATE; TRANS_INODE(ufsvfsp, ip); rw_exit(&ip->i_contents); rw_exit(&ufsvfsp->vfs_dqrwlock); TRANS_END_CSYNC(ufsvfsp, err, issync, TOP_ALLOCSP, resv); rw_exit(&ip->i_rwlock); (void) allocsp_unlockfs(vp, &lf); return (EIO); } TRANS_INODE(ufsvfsp, ip); rw_exit(&ip->i_contents); rw_exit(&ufsvfsp->vfs_dqrwlock); /* End the current transaction */ TRANS_END_CSYNC(ufsvfsp, err, issync, TOP_ALLOCSP, resv); if (CV_HAS_WAITERS(&ulp->ul_cv)) { /* Release the write lock */ if (err = allocsp_unlockfs(vp, &lf)) goto exit; /* Wake up others waiting to do operations */ mutex_enter(&ulp->ul_lock); cv_broadcast(&ulp->ul_cv); mutex_exit(&ulp->ul_lock); /* Grab the write lock again */ if (err = allocsp_wlockfs(vp, &lf)) goto exit; } /* end of CV_HAS_WAITERS(&ulp->ul_cv) */ /* Reserve more space in log for this file */ ufs_trans_trunc_resv(ip, ip->i_size + blkroundup(fs, ufsvfsp->vfs_iotransz), &resv, &resid); TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_ALLOCSP, resv); rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); rw_enter(&ip->i_contents, RW_WRITER); cnt = 0; /* reset cnt b/c of new transaction */ } } if (!err && !berr) ip->i_cflags |= IFALLOCATE; /* If the file has grown then correct the file size */ if (osz < (lp->l_start + lp->l_len)) ip->i_size = (lp->l_start + lp->l_len); /* Release locks, end log transaction and unlock fs */ TRANS_INODE(ufsvfsp, ip); rw_exit(&ip->i_contents); rw_exit(&ufsvfsp->vfs_dqrwlock); TRANS_END_CSYNC(ufsvfsp, err, issync, TOP_ALLOCSP, resv); err = allocsp_unlockfs(vp, &lf); /* * @ exit label, we should no longer be holding the fs write lock, and * all logging transactions should have been ended. We still hold * ip->i_rwlock. */ exit: /* * File has grown larger than 2GB. Set flag * in superblock to indicate this, if it * is not already set. */ if ((ip->i_size > MAXOFF32_T) && !(fs->fs_flags & FSLARGEFILES)) { ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); mutex_enter(&ufsvfsp->vfs_lock); fs->fs_flags |= FSLARGEFILES; ufs_sbwrite(ufsvfsp); mutex_exit(&ufsvfsp->vfs_lock); } /* * Since we couldn't allocate completely, we will undo the allocations. */ if (berr) { ufs_trans_trunc_resv(ip, totblks * fs->fs_bsize, &resv, &resid); TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_ALLOCSP, resv); rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); rw_enter(&ip->i_contents, RW_WRITER); /* Direct blocks */ for (i = 0; i < NDADDR; i++) { /* * Only free the block if they are not same, and * the old one isn't zero (the fragment was * re-allocated). */ if (db_undo[i] != ip->i_db[i] && db_undo[i] == 0) { free(ip, ip->i_db[i], fs->fs_bsize, 0); ip->i_db[i] = 0; } } /* Undo the indirect blocks */ while (ib_undo != NULL) { undo = ib_undo; err = bmap_set_bn(vp, undo->offset, 0); if (err) cmn_err(CE_PANIC, "ufs_allocsp(): failed to " "undo allocation of block %ld", undo->offset); free(ip, undo->blk, fs->fs_bsize, I_IBLK); ib_undo = undo->next; kmem_free(undo, sizeof (struct allocsp_undo)); } ip->i_size = osz; TRANS_INODE(ufsvfsp, ip); rw_exit(&ip->i_contents); rw_exit(&ufsvfsp->vfs_dqrwlock); TRANS_END_CSYNC(ufsvfsp, err, issync, TOP_ALLOCSP, resv); rw_exit(&ip->i_rwlock); return (berr); } /* * Don't forget to free the undo chain :) */ while (ib_undo != NULL) { undo = ib_undo; ib_undo = undo->next; kmem_free(undo, sizeof (struct allocsp_undo)); } rw_exit(&ip->i_rwlock); out_allocsp: return (err); } /* * Free storage space associated with the specified inode. The portion * to be freed is specified by lp->l_start and lp->l_len (already * normalized to a "whence" of 0). * * This is an experimental facility whose continued existence is not * guaranteed. Currently, we only support the special case * of l_len == 0, meaning free to end of file. * * Blocks are freed in reverse order. This FILO algorithm will tend to * maintain a contiguous free list much longer than FIFO. * See also ufs_itrunc() in ufs_inode.c. * * Bug: unused bytes in the last retained block are not cleared. * This may result in a "hole" in the file that does not read as zeroes. */ /* ARGSUSED */ int ufs_freesp(struct vnode *vp, struct flock64 *lp, int flag, cred_t *cr) { int i; struct inode *ip = VTOI(vp); int error; ASSERT(vp->v_type == VREG); ASSERT(lp->l_start >= 0); /* checked by convoff */ if (lp->l_len != 0) return (EINVAL); rw_enter(&ip->i_contents, RW_READER); if (ip->i_size == (u_offset_t)lp->l_start) { rw_exit(&ip->i_contents); return (0); } /* * Check if there is any active mandatory lock on the * range that will be truncated/expanded. */ if (MANDLOCK(vp, ip->i_mode)) { offset_t save_start; save_start = lp->l_start; if (ip->i_size < lp->l_start) { /* * "Truncate up" case: need to make sure there * is no lock beyond current end-of-file. To * do so, we need to set l_start to the size * of the file temporarily. */ lp->l_start = ip->i_size; } lp->l_type = F_WRLCK; lp->l_sysid = 0; lp->l_pid = ttoproc(curthread)->p_pid; i = (flag & (FNDELAY|FNONBLOCK)) ? 0 : SLPFLCK; rw_exit(&ip->i_contents); if ((i = reclock(vp, lp, i, 0, lp->l_start, NULL)) != 0 || lp->l_type != F_UNLCK) { return (i ? i : EAGAIN); } rw_enter(&ip->i_contents, RW_READER); lp->l_start = save_start; } /* * Make sure a write isn't in progress (allocating blocks) * by acquiring i_rwlock (we promised ufs_bmap we wouldn't * truncate while it was allocating blocks). * Grab the locks in the right order. */ rw_exit(&ip->i_contents); rw_enter(&ip->i_rwlock, RW_WRITER); error = TRANS_ITRUNC(ip, (u_offset_t)lp->l_start, 0, cr); rw_exit(&ip->i_rwlock); return (error); } /* * Find a cg with as close to nb contiguous bytes as possible * THIS MAY TAKE MANY DISK READS! * * Implemented in an attempt to allocate contiguous blocks for * writing the ufs log file to, minimizing future disk head seeking */ daddr_t contigpref(ufsvfs_t *ufsvfsp, size_t nb, size_t minb) { struct fs *fs = ufsvfsp->vfs_fs; daddr_t nblk = lblkno(fs, blkroundup(fs, nb)); daddr_t minblk = lblkno(fs, blkroundup(fs, minb)); daddr_t savebno, curbno, cgbno; int cg, cgblks, savecg, savenblk, curnblk, startcg; uchar_t *blksfree; buf_t *bp; struct cg *cgp; savenblk = 0; savecg = 0; savebno = 0; if ((startcg = findlogstartcg(fs, nblk, minblk)) == -1) cg = 0; /* Nothing suitable found */ else cg = startcg; for (; cg < fs->fs_ncg; ++cg) { /* * find the largest contiguous range in this cg */ bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, (daddr_t)fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize); cgp = bp->b_un.b_cg; if (bp->b_flags & B_ERROR || !cg_chkmagic(cgp)) { brelse(bp); continue; } blksfree = cg_blksfree(cgp); /* free array */ cgblks = fragstoblks(fs, fs->fs_fpg); /* blks in free array */ cgbno = 0; while (cgbno < cgblks && savenblk < nblk) { /* find a free block */ for (; cgbno < cgblks; ++cgbno) { if (isblock(fs, blksfree, cgbno)) { if (startcg != -1) { brelse(bp); savecg = startcg; savebno = cgbno; goto done; } else break; } } curbno = cgbno; /* count the number of free blocks */ for (curnblk = 0; cgbno < cgblks; ++cgbno) { if (!isblock(fs, blksfree, cgbno)) break; if (++curnblk >= nblk) break; } if (curnblk > savenblk) { savecg = cg; savenblk = curnblk; savebno = curbno; } } brelse(bp); if (savenblk >= nblk) break; } done: /* convert block offset in cg to frag offset in cg */ savebno = blkstofrags(fs, savebno); /* convert frag offset in cg to frag offset in fs */ savebno += (savecg * fs->fs_fpg); return (savebno); } /* * The object of this routine is to find a start point for the UFS log. * Ideally the space should be allocated from the smallest possible number * of contiguous cylinder groups. This is found by using a sliding window * technique. The smallest window of contiguous cylinder groups, which is * still able to accommodate the target, is found by moving the window * through the cylinder groups in a single pass. The end of the window is * advanced until the space is accommodated, then the start is advanced until * it no longer fits, the end is then advanced again and so on until the * final cylinder group is reached. The first suitable instance is recorded * and its starting cg number is returned. * * If we are not able to find a minimum amount of space, represented by * minblk, or to do so uses more than the available extents, then return -1. */ int findlogstartcg(struct fs *fs, daddr_t requested, daddr_t minblk) { int ncgs; /* number of cylinder groups */ daddr_t target; /* amount of space sought */ int cwidth, ctotal; /* current window width and total */ int bwidth, btotal; /* best window width and total so far */ int s; /* index of the first element in the current window */ int e; /* index of the first element + the width */ /* (i.e. 1 + index of last element) */ int bs; /* index of the first element in the best window so far */ int header, max_extents; target = requested; ncgs = fs->fs_ncg; header = sizeof (extent_block_t) - sizeof (extent_t); max_extents = ((fs->fs_bsize)-header) / sizeof (extent_t); cwidth = ctotal = 0; btotal = -1; bwidth = ncgs; s = e = 0; while (e < ncgs) { /* Advance the end of the window until it accommodates the target. */ while (ctotal < target && e < ncgs) { ctotal += fs->fs_cs(fs, e).cs_nbfree; e++; } /* * Advance the start of the window until it no longer * accommodates the target. */ while (ctotal >= target && s < e) { /* See if this is the smallest window so far. */ cwidth = e - s; if (cwidth <= bwidth) { if (cwidth == bwidth && ctotal <= btotal) goto more; bwidth = cwidth; btotal = ctotal; bs = s; } more: ctotal -= fs->fs_cs(fs, s).cs_nbfree; s++; } } /* * If we cannot allocate the minimum required or we use too many * extents to do so, return -1. */ if (btotal < minblk || bwidth > max_extents) bs = -1; return (bs); }