/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include /* TI_GETMYNAME, TI_GETPEERNAME */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Possible failures when memory can't be allocated. The documented behavior: * * 5.5: 4.X: XNET: * accept: ENOMEM/ENOSR/EINTR - (EINTR) ENOMEM/ENOBUFS/ENOSR/ * EINTR * (4.X does not document EINTR but returns it) * bind: ENOSR - ENOBUFS/ENOSR * connect: EINTR EINTR ENOBUFS/ENOSR/EINTR * getpeername: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR * getsockname: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR * (4.X getpeername and getsockname do not fail in practice) * getsockopt: ENOMEM/ENOSR - ENOBUFS/ENOSR * listen: - - ENOBUFS * recv: ENOMEM/ENOSR/EINTR EINTR ENOBUFS/ENOMEM/ENOSR/ * EINTR * send: ENOMEM/ENOSR/EINTR ENOBUFS/EINTR ENOBUFS/ENOMEM/ENOSR/ * EINTR * setsockopt: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR * shutdown: ENOMEM/ENOSR - ENOBUFS/ENOSR * socket: ENOMEM/ENOSR ENOBUFS ENOBUFS/ENOMEM/ENOSR * socketpair: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR * * Resolution. When allocation fails: * recv: return EINTR * send: return EINTR * connect, accept: EINTR * bind, listen, shutdown (unbind, unix_close, disconnect): sleep * socket, socketpair: ENOBUFS * getpeername, getsockname: sleep * getsockopt, setsockopt: sleep */ #ifdef SOCK_TEST /* * Variables that make sockfs do something other than the standard TPI * for the AF_INET transports. * * solisten_tpi_tcp: * TCP can handle a O_T_BIND_REQ with an increased backlog even though * the transport is already bound. This is needed to avoid loosing the * port number should listen() do a T_UNBIND_REQ followed by a * O_T_BIND_REQ. * * soconnect_tpi_udp: * UDP and ICMP can handle a T_CONN_REQ. * This is needed to make the sequence of connect(), getsockname() * return the local IP address used to send packets to the connected to * destination. * * soconnect_tpi_tcp: * TCP can handle a T_CONN_REQ without seeing a O_T_BIND_REQ. * Set this to non-zero to send TPI conformant messages to TCP in this * respect. This is a performance optimization. * * soaccept_tpi_tcp: * TCP can handle a T_CONN_REQ without the acceptor being bound. * This is a performance optimization that has been picked up in XTI. * * soaccept_tpi_multioptions: * When inheriting SOL_SOCKET options from the listener to the accepting * socket send them as a single message for AF_INET{,6}. */ int solisten_tpi_tcp = 0; int soconnect_tpi_udp = 0; int soconnect_tpi_tcp = 0; int soaccept_tpi_tcp = 0; int soaccept_tpi_multioptions = 1; #else /* SOCK_TEST */ #define soconnect_tpi_tcp 0 #define soconnect_tpi_udp 0 #define solisten_tpi_tcp 0 #define soaccept_tpi_tcp 0 #define soaccept_tpi_multioptions 1 #endif /* SOCK_TEST */ #ifdef SOCK_TEST extern int do_useracc; extern clock_t sock_test_timelimit; #endif /* SOCK_TEST */ /* * Some X/Open added checks might have to be backed out to keep SunOS 4.X * applications working. Turn on this flag to disable these checks. */ int xnet_skip_checks = 0; int xnet_check_print = 0; int xnet_truncate_print = 0; static void sotpi_destroy(struct sonode *); static struct sonode *sotpi_create(struct sockparams *, int, int, int, int, int, int *, cred_t *cr); static boolean_t sotpi_info_create(struct sonode *, int); static void sotpi_info_init(struct sonode *); static void sotpi_info_fini(struct sonode *); static void sotpi_info_destroy(struct sonode *); /* * Do direct function call to the transport layer below; this would * also allow the transport to utilize read-side synchronous stream * interface if necessary. This is a /etc/system tunable that must * not be modified on a running system. By default this is enabled * for performance reasons and may be disabled for debugging purposes. */ boolean_t socktpi_direct = B_TRUE; static struct kmem_cache *socktpi_cache, *socktpi_unix_cache; extern void sigintr(k_sigset_t *, int); extern void sigunintr(k_sigset_t *); /* Sockets acting as an in-kernel SSL proxy */ extern mblk_t *strsock_kssl_input(vnode_t *, mblk_t *, strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); extern mblk_t *strsock_kssl_output(vnode_t *, mblk_t *, strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); static int sotpi_unbind(struct sonode *, int); extern int sodput(sodirect_t *, mblk_t *); extern void sodwakeup(sodirect_t *); /* TPI sockfs sonode operations */ int sotpi_init(struct sonode *, struct sonode *, struct cred *, int); static int sotpi_accept(struct sonode *, int, struct cred *, struct sonode **); static int sotpi_bind(struct sonode *, struct sockaddr *, socklen_t, int, struct cred *); static int sotpi_listen(struct sonode *, int, struct cred *); static int sotpi_connect(struct sonode *, const struct sockaddr *, socklen_t, int, int, struct cred *); extern int sotpi_recvmsg(struct sonode *, struct nmsghdr *, struct uio *, struct cred *); static int sotpi_sendmsg(struct sonode *, struct nmsghdr *, struct uio *, struct cred *); static int sotpi_sendmblk(struct sonode *, struct nmsghdr *, int, struct cred *, mblk_t **); static int sosend_dgramcmsg(struct sonode *, struct sockaddr *, socklen_t, struct uio *, void *, t_uscalar_t, int); static int sodgram_direct(struct sonode *, struct sockaddr *, socklen_t, struct uio *, int); extern int sotpi_getpeername(struct sonode *, struct sockaddr *, socklen_t *, boolean_t, struct cred *); static int sotpi_getsockname(struct sonode *, struct sockaddr *, socklen_t *, struct cred *); static int sotpi_shutdown(struct sonode *, int, struct cred *); extern int sotpi_getsockopt(struct sonode *, int, int, void *, socklen_t *, int, struct cred *); extern int sotpi_setsockopt(struct sonode *, int, int, const void *, socklen_t, struct cred *); static int sotpi_ioctl(struct sonode *, int, intptr_t, int, struct cred *, int32_t *); static int socktpi_plumbioctl(struct vnode *, int, intptr_t, int, struct cred *, int32_t *); static int sotpi_poll(struct sonode *, short, int, short *, struct pollhead **); static int sotpi_close(struct sonode *, int, struct cred *); static int i_sotpi_info_constructor(sotpi_info_t *); static void i_sotpi_info_destructor(sotpi_info_t *); sonodeops_t sotpi_sonodeops = { sotpi_init, /* sop_init */ sotpi_accept, /* sop_accept */ sotpi_bind, /* sop_bind */ sotpi_listen, /* sop_listen */ sotpi_connect, /* sop_connect */ sotpi_recvmsg, /* sop_recvmsg */ sotpi_sendmsg, /* sop_sendmsg */ sotpi_sendmblk, /* sop_sendmblk */ sotpi_getpeername, /* sop_getpeername */ sotpi_getsockname, /* sop_getsockname */ sotpi_shutdown, /* sop_shutdown */ sotpi_getsockopt, /* sop_getsockopt */ sotpi_setsockopt, /* sop_setsockopt */ sotpi_ioctl, /* sop_ioctl */ sotpi_poll, /* sop_poll */ sotpi_close, /* sop_close */ }; /* * Return a TPI socket vnode. * * Note that sockets assume that the driver will clone (either itself * or by using the clone driver) i.e. a socket() call will always * result in a new vnode being created. */ /* * Common create code for socket and accept. If tso is set the values * from that node is used instead of issuing a T_INFO_REQ. */ /* ARGSUSED */ static struct sonode * sotpi_create(struct sockparams *sp, int family, int type, int protocol, int version, int sflags, int *errorp, cred_t *cr) { struct sonode *so; kmem_cache_t *cp; int sfamily = family; ASSERT(sp->sp_sdev_info.sd_vnode != NULL); if (family == AF_NCA) { /* * The request is for an NCA socket so for NL7C use the * INET domain instead and mark NL7C_AF_NCA below. */ family = AF_INET; /* * NL7C is not supported in the non-global zone, * we enforce this restriction here. */ if (getzoneid() != GLOBAL_ZONEID) { *errorp = ENOTSUP; return (NULL); } } /* * to be compatible with old tpi socket implementation ignore * sleep flag (sflags) passed in */ cp = (family == AF_UNIX) ? socktpi_unix_cache : socktpi_cache; so = kmem_cache_alloc(cp, KM_SLEEP); if (so == NULL) { *errorp = ENOMEM; return (NULL); } sonode_init(so, sp, family, type, protocol, &sotpi_sonodeops); sotpi_info_init(so); if (sfamily == AF_NCA) { SOTOTPI(so)->sti_nl7c_flags = NL7C_AF_NCA; } if (version == SOV_DEFAULT) version = so_default_version; so->so_version = (short)version; *errorp = 0; return (so); } static void sotpi_destroy(struct sonode *so) { kmem_cache_t *cp; struct sockparams *origsp; /* * If there is a new dealloc function (ie. smod_destroy_func), * then it should check the correctness of the ops. */ ASSERT(so->so_ops == &sotpi_sonodeops); origsp = SOTOTPI(so)->sti_orig_sp; sotpi_info_fini(so); if (so->so_state & SS_FALLBACK_COMP) { /* * A fallback happend, which means that a sotpi_info_t struct * was allocated (as opposed to being allocated from the TPI * sonode cache. Therefore we explicitly free the struct * here. */ sotpi_info_destroy(so); ASSERT(origsp != NULL); origsp->sp_smod_info->smod_sock_destroy_func(so); SOCKPARAMS_DEC_REF(origsp); } else { sonode_fini(so); cp = (so->so_family == AF_UNIX) ? socktpi_unix_cache : socktpi_cache; kmem_cache_free(cp, so); } } /* ARGSUSED1 */ int sotpi_init(struct sonode *so, struct sonode *tso, struct cred *cr, int flags) { major_t maj; dev_t newdev; struct vnode *vp; int error = 0; struct stdata *stp; sotpi_info_t *sti = SOTOTPI(so); dprint(1, ("sotpi_init()\n")); /* * over write the sleep flag passed in but that is ok * as tpi socket does not honor sleep flag. */ flags |= FREAD|FWRITE; /* * Record in so_flag that it is a clone. */ if (getmajor(sti->sti_dev) == clone_major) so->so_flag |= SOCLONE; if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM) && (so->so_family == AF_INET || so->so_family == AF_INET6) && (so->so_protocol == IPPROTO_TCP || so->so_protocol == IPPROTO_UDP || so->so_protocol == IPPROTO_IP)) { /* Tell tcp or udp that it's talking to sockets */ flags |= SO_SOCKSTR; /* * Here we indicate to socktpi_open() our attempt to * make direct calls between sockfs and transport. * The final decision is left to socktpi_open(). */ sti->sti_direct = 1; ASSERT(so->so_type != SOCK_DGRAM || tso == NULL); if (so->so_type == SOCK_STREAM && tso != NULL) { if (SOTOTPI(tso)->sti_direct) { /* * Inherit sti_direct from listener and pass * SO_ACCEPTOR open flag to tcp, indicating * that this is an accept fast-path instance. */ flags |= SO_ACCEPTOR; } else { /* * sti_direct is not set on listener, meaning * that the listener has been converted from * a socket to a stream. Ensure that the * acceptor inherits these settings. */ sti->sti_direct = 0; flags &= ~SO_SOCKSTR; } } } /* * Tell local transport that it is talking to sockets. */ if (so->so_family == AF_UNIX) { flags |= SO_SOCKSTR; } vp = SOTOV(so); newdev = vp->v_rdev; maj = getmajor(newdev); ASSERT(STREAMSTAB(maj)); error = stropen(vp, &newdev, flags, cr); stp = vp->v_stream; if (error == 0) { if (so->so_flag & SOCLONE) ASSERT(newdev != vp->v_rdev); mutex_enter(&so->so_lock); sti->sti_dev = newdev; vp->v_rdev = newdev; mutex_exit(&so->so_lock); if (stp->sd_flag & STRISTTY) { /* * this is a post SVR4 tty driver - a socket can not * be a controlling terminal. Fail the open. */ (void) sotpi_close(so, flags, cr); return (ENOTTY); /* XXX */ } ASSERT(stp->sd_wrq != NULL); sti->sti_provinfo = tpi_findprov(stp->sd_wrq); /* * If caller is interested in doing direct function call * interface to/from transport module, probe the module * directly beneath the streamhead to see if it qualifies. * * We turn off the direct interface when qualifications fail. * In the acceptor case, we simply turn off the sti_direct * flag on the socket. We do the fallback after the accept * has completed, before the new socket is returned to the * application. */ if (sti->sti_direct) { queue_t *tq = stp->sd_wrq->q_next; /* * sti_direct is currently supported and tested * only for tcp/udp; this is the main reason to * have the following assertions. */ ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6); ASSERT(so->so_protocol == IPPROTO_UDP || so->so_protocol == IPPROTO_TCP || so->so_protocol == IPPROTO_IP); ASSERT(so->so_type == SOCK_DGRAM || so->so_type == SOCK_STREAM); /* * Abort direct call interface if the module directly * underneath the stream head is not defined with the * _D_DIRECT flag. This could happen in the tcp or * udp case, when some other module is autopushed * above it, or for some reasons the expected module * isn't purely D_MP (which is the main requirement). * * Else, SS_DIRECT is valid. If the read-side Q has * _QSODIRECT set then and uioasync is enabled then * set SS_SODIRECT to enable sodirect. */ if (!socktpi_direct || !(tq->q_flag & _QDIRECT) || !(_OTHERQ(tq)->q_flag & _QDIRECT)) { int rval; /* Continue on without direct calls */ sti->sti_direct = 0; /* * Cannot issue ioctl on fallback socket since * there is no conn associated with the queue. * The fallback downcall will notify the proto * of the change. */ if (!(flags & SO_ACCEPTOR) && !(flags & SO_FALLBACK)) { if ((error = strioctl(vp, _SIOCSOCKFALLBACK, 0, 0, K_TO_K, cr, &rval)) != 0) { (void) sotpi_close(so, flags, cr); return (error); } } } else if ((_OTHERQ(tq)->q_flag & _QSODIRECT) && uioasync.enabled) { /* Enable sodirect */ so->so_state |= SS_SODIRECT; } } if (flags & SO_FALLBACK) { /* * The stream created does not have a conn. * do stream set up after conn has been assigned */ return (error); } if (error = so_strinit(so, tso)) { (void) sotpi_close(so, flags, cr); return (error); } /* Wildcard */ if (so->so_protocol != so->so_sockparams->sp_protocol) { int protocol = so->so_protocol; /* * Issue SO_PROTOTYPE setsockopt. */ error = sotpi_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE, &protocol, (t_uscalar_t)sizeof (protocol), cr); if (error != 0) { (void) sotpi_close(so, flags, cr); /* * Setsockopt often fails with ENOPROTOOPT but * socket() should fail with * EPROTONOSUPPORT/EPROTOTYPE. */ return (EPROTONOSUPPORT); } } } else { /* * While the same socket can not be reopened (unlike specfs) * the stream head sets STREOPENFAIL when the autopush fails. */ if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { /* * Open failed part way through. */ mutex_enter(&stp->sd_lock); stp->sd_flag &= ~STREOPENFAIL; mutex_exit(&stp->sd_lock); (void) sotpi_close(so, flags, cr); return (error); /*NOTREACHED*/ } ASSERT(stp == NULL); } TRACE_4(TR_FAC_SOCKFS, TR_SOCKFS_OPEN, "sockfs open:maj %d vp %p so %p error %d", maj, vp, so, error); return (error); } /* * Bind the socket to an unspecified address in sockfs only. * Used for TCP/UDP transports where we know that the O_T_BIND_REQ isn't * required in all cases. */ static void so_automatic_bind(struct sonode *so) { sotpi_info_t *sti = SOTOTPI(so); ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6); ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(!(so->so_state & SS_ISBOUND)); ASSERT(sti->sti_unbind_mp); ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); bzero(sti->sti_laddr_sa, sti->sti_laddr_len); sti->sti_laddr_sa->sa_family = so->so_family; so->so_state |= SS_ISBOUND; } /* * bind the socket. * * If the socket is already bound and none of _SOBIND_SOCKBSD or _SOBIND_XPG4_2 * are passed in we allow rebinding. Note that for backwards compatibility * even "svr4" sockets pass in _SOBIND_SOCKBSD/SOV_SOCKBSD to sobind/bind. * Thus the rebinding code is currently not executed. * * The constraints for rebinding are: * - it is a SOCK_DGRAM, or * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected * and no listen() has been done. * This rebinding code was added based on some language in the XNET book * about not returning EINVAL it the protocol allows rebinding. However, * this language is not present in the Posix socket draft. Thus maybe the * rebinding logic should be deleted from the source. * * A null "name" can be used to unbind the socket if: * - it is a SOCK_DGRAM, or * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected * and no listen() has been done. */ /* ARGSUSED */ static int sotpi_bindlisten(struct sonode *so, struct sockaddr *name, socklen_t namelen, int backlog, int flags, struct cred *cr) { struct T_bind_req bind_req; struct T_bind_ack *bind_ack; int error = 0; mblk_t *mp; void *addr; t_uscalar_t addrlen; int unbind_on_err = 1; boolean_t clear_acceptconn_on_err = B_FALSE; boolean_t restore_backlog_on_err = B_FALSE; int save_so_backlog; t_scalar_t PRIM_type = O_T_BIND_REQ; boolean_t tcp_udp_xport; void *nl7c = NULL; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_bindlisten(%p, %p, %d, %d, 0x%x) %s\n", (void *)so, (void *)name, namelen, backlog, flags, pr_state(so->so_state, so->so_mode))); tcp_udp_xport = so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM; if (!(flags & _SOBIND_LOCK_HELD)) { mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ } else { ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(so->so_flag & SOLOCKED); } /* * Make sure that there is a preallocated unbind_req message * before binding. This message allocated when the socket is * created but it might be have been consumed. */ if (sti->sti_unbind_mp == NULL) { dprintso(so, 1, ("sobind: allocating unbind_req\n")); /* NOTE: holding so_lock while sleeping */ sti->sti_unbind_mp = soallocproto(sizeof (struct T_unbind_req), _ALLOC_SLEEP, cr); } if (flags & _SOBIND_REBIND) { /* * Called from solisten after doing an sotpi_unbind() or * potentially without the unbind (latter for AF_INET{,6}). */ ASSERT(name == NULL && namelen == 0); if (so->so_family == AF_UNIX) { ASSERT(sti->sti_ux_bound_vp); addr = &sti->sti_ux_laddr; addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr); dprintso(so, 1, ("sobind rebind UNIX: addrlen %d, " "addr 0x%p, vp %p\n", addrlen, (void *)((struct so_ux_addr *)addr)->soua_vp, (void *)sti->sti_ux_bound_vp)); } else { addr = sti->sti_laddr_sa; addrlen = (t_uscalar_t)sti->sti_laddr_len; } } else if (flags & _SOBIND_UNSPEC) { ASSERT(name == NULL && namelen == 0); /* * The caller checked SS_ISBOUND but not necessarily * under so_lock */ if (so->so_state & SS_ISBOUND) { /* No error */ goto done; } /* Set an initial local address */ switch (so->so_family) { case AF_UNIX: /* * Use an address with same size as struct sockaddr * just like BSD. */ sti->sti_laddr_len = (socklen_t)sizeof (struct sockaddr); ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); bzero(sti->sti_laddr_sa, sti->sti_laddr_len); sti->sti_laddr_sa->sa_family = so->so_family; /* * Pass down an address with the implicit bind * magic number and the rest all zeros. * The transport will return a unique address. */ sti->sti_ux_laddr.soua_vp = NULL; sti->sti_ux_laddr.soua_magic = SOU_MAGIC_IMPLICIT; addr = &sti->sti_ux_laddr; addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr); break; case AF_INET: case AF_INET6: /* * An unspecified bind in TPI has a NULL address. * Set the address in sockfs to have the sa_family. */ sti->sti_laddr_len = (so->so_family == AF_INET) ? (socklen_t)sizeof (sin_t) : (socklen_t)sizeof (sin6_t); ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); bzero(sti->sti_laddr_sa, sti->sti_laddr_len); sti->sti_laddr_sa->sa_family = so->so_family; addr = NULL; addrlen = 0; break; default: /* * An unspecified bind in TPI has a NULL address. * Set the address in sockfs to be zero length. * * Can not assume there is a sa_family for all * protocol families. For example, AF_X25 does not * have a family field. */ bzero(sti->sti_laddr_sa, sti->sti_laddr_len); sti->sti_laddr_len = 0; /* XXX correct? */ addr = NULL; addrlen = 0; break; } } else { if (so->so_state & SS_ISBOUND) { /* * If it is ok to rebind the socket, first unbind * with the transport. A rebind to the NULL address * is interpreted as an unbind. * Note that a bind to NULL in BSD does unbind the * socket but it fails with EINVAL. * Note that regular sockets set SOV_SOCKBSD i.e. * _SOBIND_SOCKBSD gets set here hence no type of * socket does currently allow rebinding. * * If the name is NULL just do an unbind. */ if (flags & (_SOBIND_SOCKBSD|_SOBIND_XPG4_2) && name != NULL) { error = EINVAL; unbind_on_err = 0; eprintsoline(so, error); goto done; } if ((so->so_mode & SM_CONNREQUIRED) && (so->so_state & SS_CANTREBIND)) { error = EINVAL; unbind_on_err = 0; eprintsoline(so, error); goto done; } error = sotpi_unbind(so, 0); if (error) { eprintsoline(so, error); goto done; } ASSERT(!(so->so_state & SS_ISBOUND)); if (name == NULL) { so->so_state &= ~(SS_ISCONNECTED|SS_ISCONNECTING); goto done; } } /* X/Open requires this check */ if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { if (xnet_check_print) { printf("sockfs: X/Open bind state check " "caused EINVAL\n"); } error = EINVAL; goto done; } switch (so->so_family) { case AF_UNIX: /* * All AF_UNIX addresses are nul terminated * when copied (copyin_name) in so the minimum * length is 3 bytes. */ if (name == NULL || (ssize_t)namelen <= sizeof (short) + 1) { error = EISDIR; eprintsoline(so, error); goto done; } /* * Verify so_family matches the bound family. * BSD does not check this for AF_UNIX resulting * in funny mknods. */ if (name->sa_family != so->so_family) { error = EAFNOSUPPORT; goto done; } break; case AF_INET: if (name == NULL) { error = EINVAL; eprintsoline(so, error); goto done; } if ((size_t)namelen != sizeof (sin_t)) { error = name->sa_family != so->so_family ? EAFNOSUPPORT : EINVAL; eprintsoline(so, error); goto done; } if ((flags & _SOBIND_XPG4_2) && (name->sa_family != so->so_family)) { /* * This check has to be made for X/Open * sockets however application failures have * been observed when it is applied to * all sockets. */ error = EAFNOSUPPORT; eprintsoline(so, error); goto done; } /* * Force a zero sa_family to match so_family. * * Some programs like inetd(1M) don't set the * family field. Other programs leave * sin_family set to garbage - SunOS 4.X does * not check the family field on a bind. * We use the family field that * was passed in to the socket() call. */ name->sa_family = so->so_family; break; case AF_INET6: { #ifdef DEBUG sin6_t *sin6 = (sin6_t *)name; #endif /* DEBUG */ if (name == NULL) { error = EINVAL; eprintsoline(so, error); goto done; } if ((size_t)namelen != sizeof (sin6_t)) { error = name->sa_family != so->so_family ? EAFNOSUPPORT : EINVAL; eprintsoline(so, error); goto done; } if (name->sa_family != so->so_family) { /* * With IPv6 we require the family to match * unlike in IPv4. */ error = EAFNOSUPPORT; eprintsoline(so, error); goto done; } #ifdef DEBUG /* * Verify that apps don't forget to clear * sin6_scope_id etc */ if (sin6->sin6_scope_id != 0 && !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) { zcmn_err(getzoneid(), CE_WARN, "bind with uninitialized sin6_scope_id " "(%d) on socket. Pid = %d\n", (int)sin6->sin6_scope_id, (int)curproc->p_pid); } if (sin6->__sin6_src_id != 0) { zcmn_err(getzoneid(), CE_WARN, "bind with uninitialized __sin6_src_id " "(%d) on socket. Pid = %d\n", (int)sin6->__sin6_src_id, (int)curproc->p_pid); } #endif /* DEBUG */ break; } default: /* * Don't do any length or sa_family check to allow * non-sockaddr style addresses. */ if (name == NULL) { error = EINVAL; eprintsoline(so, error); goto done; } break; } if (namelen > (t_uscalar_t)sti->sti_laddr_maxlen) { error = ENAMETOOLONG; eprintsoline(so, error); goto done; } /* * Save local address. */ sti->sti_laddr_len = (socklen_t)namelen; ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); bcopy(name, sti->sti_laddr_sa, namelen); addr = sti->sti_laddr_sa; addrlen = (t_uscalar_t)sti->sti_laddr_len; switch (so->so_family) { case AF_INET6: case AF_INET: break; case AF_UNIX: { struct sockaddr_un *soun = (struct sockaddr_un *)sti->sti_laddr_sa; struct vnode *vp, *rvp; struct vattr vattr; ASSERT(sti->sti_ux_bound_vp == NULL); /* * Create vnode for the specified path name. * Keep vnode held with a reference in sti_ux_bound_vp. * Use the vnode pointer as the address used in the * bind with the transport. * * Use the same mode as in BSD. In particular this does * not observe the umask. */ /* MAXPATHLEN + soun_family + nul termination */ if (sti->sti_laddr_len > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) { error = ENAMETOOLONG; eprintsoline(so, error); goto done; } vattr.va_type = VSOCK; vattr.va_mode = 0777 & ~PTOU(curproc)->u_cmask; vattr.va_mask = AT_TYPE|AT_MODE; /* NOTE: holding so_lock */ error = vn_create(soun->sun_path, UIO_SYSSPACE, &vattr, EXCL, 0, &vp, CRMKNOD, 0, 0); if (error) { if (error == EEXIST) error = EADDRINUSE; eprintsoline(so, error); goto done; } /* * Establish pointer from the underlying filesystem * vnode to the socket node. * sti_ux_bound_vp and v_stream->sd_vnode form the * cross-linkage between the underlying filesystem * node and the socket node. */ if ((VOP_REALVP(vp, &rvp, NULL) == 0) && (vp != rvp)) { VN_HOLD(rvp); VN_RELE(vp); vp = rvp; } ASSERT(SOTOV(so)->v_stream); mutex_enter(&vp->v_lock); vp->v_stream = SOTOV(so)->v_stream; sti->sti_ux_bound_vp = vp; mutex_exit(&vp->v_lock); /* * Use the vnode pointer value as a unique address * (together with the magic number to avoid conflicts * with implicit binds) in the transport provider. */ sti->sti_ux_laddr.soua_vp = (void *)sti->sti_ux_bound_vp; sti->sti_ux_laddr.soua_magic = SOU_MAGIC_EXPLICIT; addr = &sti->sti_ux_laddr; addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr); dprintso(so, 1, ("sobind UNIX: addrlen %d, addr %p\n", addrlen, (void *)((struct so_ux_addr *)addr)->soua_vp)); break; } } /* end switch (so->so_family) */ } /* * set SS_ACCEPTCONN before sending down O_T_BIND_REQ since * the transport can start passing up T_CONN_IND messages * as soon as it receives the bind req and strsock_proto() * insists that SS_ACCEPTCONN is set when processing T_CONN_INDs. */ if (flags & _SOBIND_LISTEN) { if ((so->so_state & SS_ACCEPTCONN) == 0) clear_acceptconn_on_err = B_TRUE; save_so_backlog = so->so_backlog; restore_backlog_on_err = B_TRUE; so->so_state |= SS_ACCEPTCONN; so->so_backlog = backlog; } /* * If NL7C addr(s) have been configured check for addr/port match, * or if an implicit NL7C socket via AF_NCA mark socket as NL7C. * * NL7C supports the TCP transport only so check AF_INET and AF_INET6 * family sockets only. If match mark as such. */ if (nl7c_enabled && ((addr != NULL && (so->so_family == AF_INET || so->so_family == AF_INET6) && (nl7c = nl7c_lookup_addr(addr, addrlen))) || sti->sti_nl7c_flags == NL7C_AF_NCA)) { /* * NL7C is not supported in non-global zones, * we enforce this restriction here. */ if (so->so_zoneid == GLOBAL_ZONEID) { /* An NL7C socket, mark it */ sti->sti_nl7c_flags |= NL7C_ENABLED; if (nl7c == NULL) { /* * Was an AF_NCA bind() so add it to the * addr list for reporting purposes. */ nl7c = nl7c_add_addr(addr, addrlen); } } else nl7c = NULL; } /* * We send a T_BIND_REQ for TCP/UDP since we know it supports it, * for other transports we will send in a O_T_BIND_REQ. */ if (tcp_udp_xport && (so->so_family == AF_INET || so->so_family == AF_INET6)) PRIM_type = T_BIND_REQ; bind_req.PRIM_type = PRIM_type; bind_req.ADDR_length = addrlen; bind_req.ADDR_offset = (t_scalar_t)sizeof (bind_req); bind_req.CONIND_number = backlog; /* NOTE: holding so_lock while sleeping */ mp = soallocproto2(&bind_req, sizeof (bind_req), addr, addrlen, 0, _ALLOC_SLEEP, cr); sti->sti_laddr_valid = 0; /* Done using sti_laddr_sa - can drop the lock */ mutex_exit(&so->so_lock); /* * Intercept the bind_req message here to check if this
* was configured as an SSL proxy server, or if another endpoint was * already configured to act as a proxy for us. * * Note, only if NL7C not enabled for this socket. */ if (nl7c == NULL && (so->so_family == AF_INET || so->so_family == AF_INET6) && so->so_type == SOCK_STREAM) { if (sti->sti_kssl_ent != NULL) { kssl_release_ent(sti->sti_kssl_ent, so, sti->sti_kssl_type); sti->sti_kssl_ent = NULL; } sti->sti_kssl_type = kssl_check_proxy(mp, so, &sti->sti_kssl_ent); switch (sti->sti_kssl_type) { case KSSL_NO_PROXY: break; case KSSL_HAS_PROXY: mutex_enter(&so->so_lock); goto skip_transport; case KSSL_IS_PROXY: break; } } error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); if (error) { eprintsoline(so, error); mutex_enter(&so->so_lock); goto done; } mutex_enter(&so->so_lock); error = sowaitprim(so, PRIM_type, T_BIND_ACK, (t_uscalar_t)sizeof (*bind_ack), &mp, 0); if (error) { eprintsoline(so, error); goto done; } skip_transport: ASSERT(mp); /* * Even if some TPI message (e.g. T_DISCON_IND) was received in * strsock_proto while the lock was dropped above, the bind * is allowed to complete. */ /* Mark as bound. This will be undone if we detect errors below. */ if (flags & _SOBIND_NOXLATE) { ASSERT(so->so_family == AF_UNIX); sti->sti_faddr_noxlate = 1; } ASSERT(!(so->so_state & SS_ISBOUND) || (flags & _SOBIND_REBIND)); so->so_state |= SS_ISBOUND; ASSERT(sti->sti_unbind_mp); /* note that we've already set SS_ACCEPTCONN above */ /* * Recompute addrlen - an unspecied bind sent down an * address of length zero but we expect the appropriate length * in return. */ addrlen = (t_uscalar_t)(so->so_family == AF_UNIX ? sizeof (sti->sti_ux_laddr) : sti->sti_laddr_len); bind_ack = (struct T_bind_ack *)mp->b_rptr; /* * The alignment restriction is really too strict but * we want enough alignment to inspect the fields of * a sockaddr_in. */ addr = sogetoff(mp, bind_ack->ADDR_offset, bind_ack->ADDR_length, __TPI_ALIGN_SIZE); if (addr == NULL) { freemsg(mp); error = EPROTO; eprintsoline(so, error); goto done; } if (!(flags & _SOBIND_UNSPEC)) { /* * Verify that the transport didn't return something we * did not want e.g. an address other than what we asked for. * * NOTE: These checks would go away if/when we switch to * using the new TPI (in which the transport would fail * the request instead of assigning a different address). * * NOTE2: For protocols that we don't know (i.e. any * other than AF_INET6, AF_INET and AF_UNIX), we * cannot know if the transport should be expected to * return the same address as that requested. * * NOTE3: For AF_INET and AF_INET6, TCP/UDP, we send * down a T_BIND_REQ. We use O_T_BIND_REQ for others. * * For example, in the case of netatalk it may be * inappropriate for the transport to return the * requested address (as it may have allocated a local * port number in behaviour similar to that of an * AF_INET bind request with a port number of zero). * * Given the definition of O_T_BIND_REQ, where the * transport may bind to an address other than the * requested address, it's not possible to determine * whether a returned address that differs from the * requested address is a reason to fail (because the * requested address was not available) or succeed * (because the transport allocated an appropriate * address and/or port). * * sockfs currently requires that the transport return * the requested address in the T_BIND_ACK, unless * there is code here to allow for any discrepancy. * Such code exists for AF_INET and AF_INET6. * * Netatalk chooses to return the requested address * rather than the (correct) allocated address. This * means that netatalk violates the TPI specification * (and would not function correctly if used from a * TLI application), but it does mean that it works * with sockfs. * * As noted above, using the newer XTI bind primitive * (T_BIND_REQ) in preference to O_T_BIND_REQ would * allow sockfs to be more sure about whether or not * the bind request had succeeded (as transports are * not permitted to bind to a different address than * that requested - they must return failure). * Unfortunately, support for T_BIND_REQ may not be * present in all transport implementations (netatalk, * for example, doesn't have it), making the * transition difficult. */ if (bind_ack->ADDR_length != addrlen) { /* Assumes that the requested address was in use */ freemsg(mp); error = EADDRINUSE; eprintsoline(so, error); goto done; } switch (so->so_family) { case AF_INET6: case AF_INET: { sin_t *rname, *aname; rname = (sin_t *)addr; aname = (sin_t *)sti->sti_laddr_sa; /* * Take advantage of the alignment * of sin_port and sin6_port which fall * in the same place in their data structures. * Just use sin_port for either address family. * * This may become a problem if (heaven forbid) * there's a separate ipv6port_reserved... :-P * * Binding to port 0 has the semantics of letting * the transport bind to any port. * * If the transport is TCP or UDP since we had sent * a T_BIND_REQ we would not get a port other than * what we asked for. */ if (tcp_udp_xport) { /* * Pick up the new port number if we bound to * port 0. */ if (aname->sin_port == 0) aname->sin_port = rname->sin_port; sti->sti_laddr_valid = 1; break; } if (aname->sin_port != 0 && aname->sin_port != rname->sin_port) { freemsg(mp); error = EADDRINUSE; eprintsoline(so, error); goto done; } /* * Pick up the new port number if we bound to port 0. */ aname->sin_port = rname->sin_port; /* * Unfortunately, addresses aren't _quite_ the same. */ if (so->so_family == AF_INET) { if (aname->sin_addr.s_addr != rname->sin_addr.s_addr) { freemsg(mp); error = EADDRNOTAVAIL; eprintsoline(so, error); goto done; } } else { sin6_t *rname6 = (sin6_t *)rname; sin6_t *aname6 = (sin6_t *)aname; if (!IN6_ARE_ADDR_EQUAL(&aname6->sin6_addr, &rname6->sin6_addr)) { freemsg(mp); error = EADDRNOTAVAIL; eprintsoline(so, error); goto done; } } break; } case AF_UNIX: if (bcmp(addr, &sti->sti_ux_laddr, addrlen) != 0) { freemsg(mp); error = EADDRINUSE; eprintsoline(so, error); eprintso(so, ("addrlen %d, addr 0x%x, vp %p\n", addrlen, *((int *)addr), (void *)sti->sti_ux_bound_vp)); goto done; } sti->sti_laddr_valid = 1; break; default: /* * NOTE: This assumes that addresses can be * byte-compared for equivalence. */ if (bcmp(addr, sti->sti_laddr_sa, addrlen) != 0) { freemsg(mp); error = EADDRINUSE; eprintsoline(so, error); goto done; } /* * Don't mark sti_laddr_valid, as we cannot be * sure that the returned address is the real * bound address when talking to an unknown * transport. */ break; } } else { /* * Save for returned address for getsockname. * Needed for unspecific bind unless transport supports * the TI_GETMYNAME ioctl. * Do this for AF_INET{,6} even though they do, as * caching info here is much better performance than * a TPI/STREAMS trip to the transport for getsockname. * Any which can't for some reason _must_ _not_ set * sti_laddr_valid here for the caching version of * getsockname to not break; */ switch (so->so_family) { case AF_UNIX: /* * Record the address bound with the transport * for use by socketpair. */ bcopy(addr, &sti->sti_ux_laddr, addrlen); sti->sti_laddr_valid = 1; break; case AF_INET: case AF_INET6: ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); bcopy(addr, sti->sti_laddr_sa, sti->sti_laddr_len); sti->sti_laddr_valid = 1; break; default: /* * Don't mark sti_laddr_valid, as we cannot be * sure that the returned address is the real * bound address when talking to an unknown * transport. */ break; } } if (nl7c != NULL) { /* Register listen()er sonode pointer with NL7C */ nl7c_listener_addr(nl7c, so); } freemsg(mp); done: if (error) { /* reset state & backlog to values held on entry */ if (clear_acceptconn_on_err == B_TRUE) so->so_state &= ~SS_ACCEPTCONN; if (restore_backlog_on_err == B_TRUE) so->so_backlog = save_so_backlog; if (unbind_on_err && so->so_state & SS_ISBOUND) { int err; err = sotpi_unbind(so, 0); /* LINTED - statement has no consequent: if */ if (err) { eprintsoline(so, error); } else { ASSERT(!(so->so_state & SS_ISBOUND)); } } } if (!(flags & _SOBIND_LOCK_HELD)) { so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); } else { ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(so->so_flag & SOLOCKED); } return (error); } /* bind the socket */ static int sotpi_bind(struct sonode *so, struct sockaddr *name, socklen_t namelen, int flags, struct cred *cr) { if ((flags & _SOBIND_SOCKETPAIR) == 0) return (sotpi_bindlisten(so, name, namelen, 0, flags, cr)); flags &= ~_SOBIND_SOCKETPAIR; return (sotpi_bindlisten(so, name, namelen, 1, flags, cr)); } /* * Unbind a socket - used when bind() fails, when bind() specifies a NULL * address, or when listen needs to unbind and bind. * If the _SOUNBIND_REBIND flag is specified the addresses are retained * so that a sobind can pick them up. */ static int sotpi_unbind(struct sonode *so, int flags) { struct T_unbind_req unbind_req; int error = 0; mblk_t *mp; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_unbind(%p, 0x%x) %s\n", (void *)so, flags, pr_state(so->so_state, so->so_mode))); ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(so->so_flag & SOLOCKED); if (!(so->so_state & SS_ISBOUND)) { error = EINVAL; eprintsoline(so, error); goto done; } mutex_exit(&so->so_lock); /* * Flush the read and write side (except stream head read queue) * and send down T_UNBIND_REQ. */ (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHRW); unbind_req.PRIM_type = T_UNBIND_REQ; mp = soallocproto1(&unbind_req, sizeof (unbind_req), 0, _ALLOC_SLEEP, CRED()); error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); mutex_enter(&so->so_lock); if (error) { eprintsoline(so, error); goto done; } error = sowaitokack(so, T_UNBIND_REQ); if (error) { eprintsoline(so, error); goto done; } /* * Even if some TPI message (e.g. T_DISCON_IND) was received in * strsock_proto while the lock was dropped above, the unbind * is allowed to complete. */ if (!(flags & _SOUNBIND_REBIND)) { /* * Clear out bound address. */ vnode_t *vp; if ((vp = sti->sti_ux_bound_vp) != NULL) { /* Undo any SSL proxy setup */ if ((so->so_family == AF_INET || so->so_family == AF_INET6) && (so->so_type == SOCK_STREAM) && (sti->sti_kssl_ent != NULL)) { kssl_release_ent(sti->sti_kssl_ent, so, sti->sti_kssl_type); sti->sti_kssl_ent = NULL; sti->sti_kssl_type = KSSL_NO_PROXY; } sti->sti_ux_bound_vp = NULL; vn_rele_stream(vp); } /* Clear out address */ sti->sti_laddr_len = 0; } so->so_state &= ~(SS_ISBOUND|SS_ACCEPTCONN); sti->sti_laddr_valid = 0; done: /* If the caller held the lock don't release it here */ ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(so->so_flag & SOLOCKED); return (error); } /* * listen on the socket. * For TPI conforming transports this has to first unbind with the transport * and then bind again using the new backlog. */ /* ARGSUSED */ int sotpi_listen(struct sonode *so, int backlog, struct cred *cr) { int error = 0; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_listen(%p, %d) %s\n", (void *)so, backlog, pr_state(so->so_state, so->so_mode))); if (sti->sti_serv_type == T_CLTS) return (EOPNOTSUPP); /* * If the socket is ready to accept connections already, then * return without doing anything. This avoids a problem where * a second listen() call fails if a connection is pending and * leaves the socket unbound. Only when we are not unbinding * with the transport can we safely increase the backlog. */ if (so->so_state & SS_ACCEPTCONN && !((so->so_family == AF_INET || so->so_family == AF_INET6) && /*CONSTCOND*/ !solisten_tpi_tcp)) return (0); if (so->so_state & SS_ISCONNECTED) return (EINVAL); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ /* * If the listen doesn't change the backlog we do nothing. * This avoids an EPROTO error from the transport. */ if ((so->so_state & SS_ACCEPTCONN) && so->so_backlog == backlog) goto done; if (!(so->so_state & SS_ISBOUND)) { /* * Must have been explicitly bound in the UNIX domain. */ if (so->so_family == AF_UNIX) { error = EINVAL; goto done; } error = sotpi_bindlisten(so, NULL, 0, backlog, _SOBIND_UNSPEC|_SOBIND_LOCK_HELD|_SOBIND_LISTEN, cr); } else if (backlog > 0) { /* * AF_INET{,6} hack to avoid losing the port. * Assumes that all AF_INET{,6} transports can handle a * O_T_BIND_REQ with a non-zero CONIND_number when the TPI * has already bound thus it is possible to avoid the unbind. */ if (!((so->so_family == AF_INET || so->so_family == AF_INET6) && /*CONSTCOND*/ !solisten_tpi_tcp)) { error = sotpi_unbind(so, _SOUNBIND_REBIND); if (error) goto done; } error = sotpi_bindlisten(so, NULL, 0, backlog, _SOBIND_REBIND|_SOBIND_LOCK_HELD|_SOBIND_LISTEN, cr); } else { so->so_state |= SS_ACCEPTCONN; so->so_backlog = backlog; } if (error) goto done; ASSERT(so->so_state & SS_ACCEPTCONN); done: so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); return (error); } /* * Disconnect either a specified seqno or all (-1). * The former is used on listening sockets only. * * When seqno == -1 sodisconnect could call sotpi_unbind. However, * the current use of sodisconnect(seqno == -1) is only for shutdown * so there is no point (and potentially incorrect) to unbind. */ static int sodisconnect(struct sonode *so, t_scalar_t seqno, int flags) { struct T_discon_req discon_req; int error = 0; mblk_t *mp; dprintso(so, 1, ("sodisconnect(%p, %d, 0x%x) %s\n", (void *)so, seqno, flags, pr_state(so->so_state, so->so_mode))); if (!(flags & _SODISCONNECT_LOCK_HELD)) { mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ } else { ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(so->so_flag & SOLOCKED); } if (!(so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ACCEPTCONN))) { error = EINVAL; eprintsoline(so, error); goto done; } mutex_exit(&so->so_lock); /* * Flush the write side (unless this is a listener) * and then send down a T_DISCON_REQ. * (Don't flush on listener since it could flush {O_}T_CONN_RES * and other messages.) */ if (!(so->so_state & SS_ACCEPTCONN)) (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHW); discon_req.PRIM_type = T_DISCON_REQ; discon_req.SEQ_number = seqno; mp = soallocproto1(&discon_req, sizeof (discon_req), 0, _ALLOC_SLEEP, CRED()); error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); mutex_enter(&so->so_lock); if (error) { eprintsoline(so, error); goto done; } error = sowaitokack(so, T_DISCON_REQ); if (error) { eprintsoline(so, error); goto done; } /* * Even if some TPI message (e.g. T_DISCON_IND) was received in * strsock_proto while the lock was dropped above, the disconnect * is allowed to complete. However, it is not possible to * assert that SS_ISCONNECTED|SS_ISCONNECTING are set. */ so->so_state &= ~(SS_ISCONNECTED|SS_ISCONNECTING); SOTOTPI(so)->sti_laddr_valid = 0; SOTOTPI(so)->sti_faddr_valid = 0; done: if (!(flags & _SODISCONNECT_LOCK_HELD)) { so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); } else { /* If the caller held the lock don't release it here */ ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(so->so_flag & SOLOCKED); } return (error); } /* ARGSUSED */ int sotpi_accept(struct sonode *so, int fflag, struct cred *cr, struct sonode **nsop) { struct T_conn_ind *conn_ind; struct T_conn_res *conn_res; int error = 0; mblk_t *mp, *ctxmp, *ack_mp; struct sonode *nso; vnode_t *nvp; void *src; t_uscalar_t srclen; void *opt; t_uscalar_t optlen; t_scalar_t PRIM_type; t_scalar_t SEQ_number; size_t sinlen; sotpi_info_t *sti = SOTOTPI(so); sotpi_info_t *nsti; dprintso(so, 1, ("sotpi_accept(%p, 0x%x, %p) %s\n", (void *)so, fflag, (void *)nsop, pr_state(so->so_state, so->so_mode))); /* * Defer single-threading the accepting socket until * the T_CONN_IND has been received and parsed and the * new sonode has been opened. */ /* Check that we are not already connected */ if ((so->so_state & SS_ACCEPTCONN) == 0) goto conn_bad; again: if ((error = sowaitconnind(so, fflag, &mp)) != 0) goto e_bad; ASSERT(mp != NULL); conn_ind = (struct T_conn_ind *)mp->b_rptr; ctxmp = mp->b_cont; /* * Save SEQ_number for error paths. */ SEQ_number = conn_ind->SEQ_number; srclen = conn_ind->SRC_length; src = sogetoff(mp, conn_ind->SRC_offset, srclen, 1); if (src == NULL) { error = EPROTO; freemsg(mp); eprintsoline(so, error); goto disconnect_unlocked; } optlen = conn_ind->OPT_length; switch (so->so_family) { case AF_INET: case AF_INET6: if ((optlen == sizeof (intptr_t)) && (sti->sti_direct != 0)) { bcopy(mp->b_rptr + conn_ind->OPT_offset, &opt, conn_ind->OPT_length); } else { /* * The transport (in this case TCP) hasn't sent up * a pointer to an instance for the accept fast-path. * Disable fast-path completely because the call to * sotpi_create() below would otherwise create an * incomplete TCP instance, which would lead to * problems when sockfs sends a normal T_CONN_RES * message down the new stream. */ if (sti->sti_direct) { int rval; /* * For consistency we inform tcp to disable * direct interface on the listener, though * we can certainly live without doing this * because no data will ever travel upstream * on the listening socket. */ sti->sti_direct = 0; (void) strioctl(SOTOV(so), _SIOCSOCKFALLBACK, 0, 0, K_TO_K, cr, &rval); } opt = NULL; optlen = 0; } break; case AF_UNIX: default: if (optlen != 0) { opt = sogetoff(mp, conn_ind->OPT_offset, optlen, __TPI_ALIGN_SIZE); if (opt == NULL) { error = EPROTO; freemsg(mp); eprintsoline(so, error); goto disconnect_unlocked; } } if (so->so_family == AF_UNIX) { if (!sti->sti_faddr_noxlate) { src = NULL; srclen = 0; } /* Extract src address from options */ if (optlen != 0) so_getopt_srcaddr(opt, optlen, &src, &srclen); } break; } /* * Create the new socket. */ nso = socket_newconn(so, NULL, NULL, SOCKET_SLEEP, &error); if (nso == NULL) { ASSERT(error != 0); /* * Accept can not fail with ENOBUFS. sotpi_create * sleeps waiting for memory until a signal is caught * so return EINTR. */ freemsg(mp); if (error == ENOBUFS) error = EINTR; goto e_disc_unl; } nvp = SOTOV(nso); nsti = SOTOTPI(nso); /* * If the transport sent up an SSL connection context, then attach * it the new socket, and set the (sd_wputdatafunc)() and * (sd_rputdatafunc)() stream head hooks to intercept and process * SSL records. */ if (ctxmp != NULL) { /* * This kssl_ctx_t is already held for us by the transport. * So, we don't need to do a kssl_hold_ctx() here. */ nsti->sti_kssl_ctx = *((kssl_ctx_t *)ctxmp->b_rptr); freemsg(ctxmp); mp->b_cont = NULL; strsetrwputdatahooks(nvp, strsock_kssl_input, strsock_kssl_output); /* Disable sodirect if any */ if (nso->so_direct != NULL) { mutex_enter(nso->so_direct->sod_lockp); SOD_DISABLE(nso->so_direct); mutex_exit(nso->so_direct->sod_lockp); } } #ifdef DEBUG /* * SO_DEBUG is used to trigger the dprint* and eprint* macros thus * it's inherited early to allow debugging of the accept code itself. */ nso->so_options |= so->so_options & SO_DEBUG; #endif /* DEBUG */ /* * Save the SRC address from the T_CONN_IND * for getpeername to work on AF_UNIX and on transports that do not * support TI_GETPEERNAME. * * NOTE: AF_UNIX NUL termination is ensured by the sender's * copyin_name(). */ if (srclen > (t_uscalar_t)nsti->sti_faddr_maxlen) { error = EINVAL; freemsg(mp); eprintsoline(so, error); goto disconnect_vp_unlocked; } nsti->sti_faddr_len = (socklen_t)srclen; ASSERT(sti->sti_faddr_len <= sti->sti_faddr_maxlen); bcopy(src, nsti->sti_faddr_sa, srclen); nsti->sti_faddr_valid = 1; /* * Record so_peercred and so_cpid from a cred in the T_CONN_IND. */ if ((DB_REF(mp) > 1) || MBLKSIZE(mp) < (sizeof (struct T_conn_res) + sizeof (intptr_t))) { cred_t *cr; pid_t cpid; cr = msg_getcred(mp, &cpid); if (cr != NULL) { crhold(cr); nso->so_peercred = cr; nso->so_cpid = cpid; } freemsg(mp); mp = soallocproto1(NULL, sizeof (struct T_conn_res) + sizeof (intptr_t), 0, _ALLOC_INTR, cr); if (mp == NULL) { /* * Accept can not fail with ENOBUFS. * A signal was caught so return EINTR. */ error = EINTR; eprintsoline(so, error); goto disconnect_vp_unlocked; } conn_res = (struct T_conn_res *)mp->b_rptr; } else { /* * For efficency reasons we use msg_extractcred; no crhold * needed since db_credp is cleared (i.e., we move the cred * from the message to so_peercred. */ nso->so_peercred = msg_extractcred(mp, &nso->so_cpid); mp->b_rptr = DB_BASE(mp); conn_res = (struct T_conn_res *)mp->b_rptr; mp->b_wptr = mp->b_rptr + sizeof (struct T_conn_res); mblk_setcred(mp, cr, curproc->p_pid); } /* * New socket must be bound at least in sockfs and, except for AF_INET, * (or AF_INET6) it also has to be bound in the transport provider. * We set the local address in the sonode from the T_OK_ACK of the * T_CONN_RES. For this reason the address we bind to here isn't * important. */ if ((nso->so_family == AF_INET || nso->so_family == AF_INET6) && /*CONSTCOND*/ nso->so_type == SOCK_STREAM && !soaccept_tpi_tcp) { /* * Optimization for AF_INET{,6} transports * that can handle a T_CONN_RES without being bound. */ mutex_enter(&nso->so_lock); so_automatic_bind(nso); mutex_exit(&nso->so_lock); } else { /* Perform NULL bind with the transport provider. */ if ((error = sotpi_bind(nso, NULL, 0, _SOBIND_UNSPEC, cr)) != 0) { ASSERT(error != ENOBUFS); freemsg(mp); eprintsoline(nso, error); goto disconnect_vp_unlocked; } } /* * Inherit SIOCSPGRP, SS_ASYNC before we send the {O_}T_CONN_RES * so that any data arriving on the new socket will cause the * appropriate signals to be delivered for the new socket. * * No other thread (except strsock_proto and strsock_misc) * can access the new socket thus we relax the locking. */ nso->so_pgrp = so->so_pgrp; nso->so_state |= so->so_state & SS_ASYNC; nsti->sti_faddr_noxlate = sti->sti_faddr_noxlate; if (nso->so_pgrp != 0) { if ((error = so_set_events(nso, nvp, cr)) != 0) { eprintsoline(nso, error); error = 0; nso->so_pgrp = 0; } } /* * Make note of the socket level options. TCP and IP level options * are already inherited. We could do all this after accept is * successful but doing it here simplifies code and no harm done * for error case. */ nso->so_options = so->so_options & (SO_DEBUG|SO_REUSEADDR|SO_KEEPALIVE| SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK| SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER); nso->so_sndbuf = so->so_sndbuf; nso->so_rcvbuf = so->so_rcvbuf; if (nso->so_options & SO_LINGER) nso->so_linger = so->so_linger; /* * Note that the following sti_direct code path should be * removed once we are confident that the direct sockets * do not result in any degradation. */ if (sti->sti_direct) { ASSERT(opt != NULL); conn_res->OPT_length = optlen; conn_res->OPT_offset = MBLKL(mp); bcopy(&opt, mp->b_wptr, optlen); mp->b_wptr += optlen; conn_res->PRIM_type = T_CONN_RES; conn_res->ACCEPTOR_id = 0; PRIM_type = T_CONN_RES; /* Send down the T_CONN_RES on acceptor STREAM */ error = kstrputmsg(SOTOV(nso), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); if (error) { mutex_enter(&so->so_lock); so_lock_single(so); eprintsoline(so, error); goto disconnect_vp; } mutex_enter(&nso->so_lock); error = sowaitprim(nso, T_CONN_RES, T_OK_ACK, (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0); if (error) { mutex_exit(&nso->so_lock); mutex_enter(&so->so_lock); so_lock_single(so); eprintsoline(so, error); goto disconnect_vp; } if (nso->so_family == AF_INET) { sin_t *sin; sin = (sin_t *)(ack_mp->b_rptr + sizeof (struct T_ok_ack)); bcopy(sin, nsti->sti_laddr_sa, sizeof (sin_t)); nsti->sti_laddr_len = sizeof (sin_t); } else { sin6_t *sin6; sin6 = (sin6_t *)(ack_mp->b_rptr + sizeof (struct T_ok_ack)); bcopy(sin6, nsti->sti_laddr_sa, sizeof (sin6_t)); nsti->sti_laddr_len = sizeof (sin6_t); } freemsg(ack_mp); nso->so_state |= SS_ISCONNECTED; nso->so_proto_handle = (sock_lower_handle_t)opt; nsti->sti_laddr_valid = 1; if (sti->sti_nl7c_flags & NL7C_ENABLED) { /* * A NL7C marked listen()er so the new socket * inherits the listen()er's NL7C state, except * for NL7C_POLLIN. * * Only call NL7C to process the new socket if * the listen socket allows blocking i/o. */ nsti->sti_nl7c_flags = sti->sti_nl7c_flags & (~NL7C_POLLIN); if (so->so_state & (SS_NONBLOCK|SS_NDELAY)) { /* * Nonblocking accept() just make it * persist to defer processing to the * read-side syscall (e.g. read). */ nsti->sti_nl7c_flags |= NL7C_SOPERSIST; } else if (nl7c_process(nso, B_FALSE)) { /* * NL7C has completed processing on the * socket, close the socket and back to * the top to await the next T_CONN_IND. */ mutex_exit(&nso->so_lock); (void) VOP_CLOSE(nvp, 0, 1, (offset_t)0, cr, NULL); VN_RELE(nvp); goto again; } /* Pass the new socket out */ } mutex_exit(&nso->so_lock); /* * It's possible, through the use of autopush for example, * that the acceptor stream may not support sti_direct * semantics. If the new socket does not support sti_direct * we issue a _SIOCSOCKFALLBACK to inform the transport * as we would in the I_PUSH case. */ if (nsti->sti_direct == 0) { int rval; if ((error = strioctl(SOTOV(nso), _SIOCSOCKFALLBACK, 0, 0, K_TO_K, cr, &rval)) != 0) { mutex_enter(&so->so_lock); so_lock_single(so); eprintsoline(so, error); goto disconnect_vp; } } /* * Pass out new socket. */ if (nsop != NULL) *nsop = nso; return (0); } /* * This is the non-performance case for sockets (e.g. AF_UNIX sockets) * which don't support the FireEngine accept fast-path. It is also * used when the virtual "sockmod" has been I_POP'd and I_PUSH'd * again. Neither sockfs nor TCP attempt to find out if some other * random module has been inserted in between (in which case we * should follow TLI accept behaviour). We blindly assume the worst * case and revert back to old behaviour i.e. TCP will not send us * any option (eager) and the accept should happen on the listener * queue. Any queued T_conn_ind have already got their options removed * by so_sock2_stream() when "sockmod" was I_POP'd. */ /* * Fill in the {O_}T_CONN_RES before getting SOLOCKED. */ if ((nso->so_mode & SM_ACCEPTOR_ID) == 0) { #ifdef _ILP32 queue_t *q; /* * Find read queue in driver * Can safely do this since we "own" nso/nvp. */ q = strvp2wq(nvp)->q_next; while (SAMESTR(q)) q = q->q_next; q = RD(q); conn_res->ACCEPTOR_id = (t_uscalar_t)q; #else conn_res->ACCEPTOR_id = (t_uscalar_t)getminor(nvp->v_rdev); #endif /* _ILP32 */ conn_res->PRIM_type = O_T_CONN_RES; PRIM_type = O_T_CONN_RES; } else { conn_res->ACCEPTOR_id = nsti->sti_acceptor_id; conn_res->PRIM_type = T_CONN_RES; PRIM_type = T_CONN_RES; } conn_res->SEQ_number = SEQ_number; conn_res->OPT_length = 0; conn_res->OPT_offset = 0; mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ mutex_exit(&so->so_lock); error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); mutex_enter(&so->so_lock); if (error) { eprintsoline(so, error); goto disconnect_vp; } error = sowaitprim(so, PRIM_type, T_OK_ACK, (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0); if (error) { eprintsoline(so, error); goto disconnect_vp; } /* * If there is a sin/sin6 appended onto the T_OK_ACK use * that to set the local address. If this is not present * then we zero out the address and don't set the * sti_laddr_valid bit. For AF_UNIX endpoints we copy over * the pathname from the listening socket. */ sinlen = (nso->so_family == AF_INET) ? sizeof (sin_t) : sizeof (sin6_t); if ((nso->so_family == AF_INET) || (nso->so_family == AF_INET6) && MBLKL(ack_mp) == (sizeof (struct T_ok_ack) + sinlen)) { ack_mp->b_rptr += sizeof (struct T_ok_ack); bcopy(ack_mp->b_rptr, nsti->sti_laddr_sa, sinlen); nsti->sti_laddr_len = sinlen; nsti->sti_laddr_valid = 1; } else if (nso->so_family == AF_UNIX) { ASSERT(so->so_family == AF_UNIX); nsti->sti_laddr_len = sti->sti_laddr_len; ASSERT(nsti->sti_laddr_len <= nsti->sti_laddr_maxlen); bcopy(sti->sti_laddr_sa, nsti->sti_laddr_sa, nsti->sti_laddr_len); nsti->sti_laddr_valid = 1; } else { nsti->sti_laddr_len = sti->sti_laddr_len; ASSERT(nsti->sti_laddr_len <= nsti->sti_laddr_maxlen); bzero(nsti->sti_laddr_sa, nsti->sti_addr_size); nsti->sti_laddr_sa->sa_family = nso->so_family; } freemsg(ack_mp); so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); nso->so_state |= SS_ISCONNECTED; /* * Pass out new socket. */ if (nsop != NULL) *nsop = nso; return (0); eproto_disc_unl: error = EPROTO; e_disc_unl: eprintsoline(so, error); goto disconnect_unlocked; pr_disc_vp_unl: eprintsoline(so, error); disconnect_vp_unlocked: (void) VOP_CLOSE(nvp, 0, 1, 0, cr, NULL); VN_RELE(nvp); disconnect_unlocked: (void) sodisconnect(so, SEQ_number, 0); return (error); pr_disc_vp: eprintsoline(so, error); disconnect_vp: (void) sodisconnect(so, SEQ_number, _SODISCONNECT_LOCK_HELD); so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); (void) VOP_CLOSE(nvp, 0, 1, 0, cr, NULL); VN_RELE(nvp); return (error); conn_bad: /* Note: SunOS 4/BSD unconditionally returns EINVAL here */ error = (so->so_type == SOCK_DGRAM || so->so_type == SOCK_RAW) ? EOPNOTSUPP : EINVAL; e_bad: eprintsoline(so, error); return (error); } /* * connect a socket. * * Allow SOCK_DGRAM sockets to reconnect (by specifying a new address) and to * unconnect (by specifying a null address). */ int sotpi_connect(struct sonode *so, const struct sockaddr *name, socklen_t namelen, int fflag, int flags, struct cred *cr) { struct T_conn_req conn_req; int error = 0; mblk_t *mp; void *src; socklen_t srclen; void *addr; socklen_t addrlen; boolean_t need_unlock; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_connect(%p, %p, %d, 0x%x, 0x%x) %s\n", (void *)so, (void *)name, namelen, fflag, flags, pr_state(so->so_state, so->so_mode))); /* * Preallocate the T_CONN_REQ mblk before grabbing SOLOCKED to * avoid sleeping for memory with SOLOCKED held. * We know that the T_CONN_REQ can't be larger than 2 * sti_faddr_maxlen * + sizeof (struct T_opthdr). * (the AF_UNIX so_ux_addr_xlate() does not make the address * exceed sti_faddr_maxlen). */ mp = soallocproto(sizeof (struct T_conn_req) + 2 * sti->sti_faddr_maxlen + sizeof (struct T_opthdr), _ALLOC_INTR, cr); if (mp == NULL) { /* * Connect can not fail with ENOBUFS. A signal was * caught so return EINTR. */ error = EINTR; eprintsoline(so, error); return (error); } mutex_enter(&so->so_lock); /* * Make sure there is a preallocated T_unbind_req message * before any binding. This message is allocated when the * socket is created. Since another thread can consume * so_unbind_mp by the time we return from so_lock_single(), * we should check the availability of so_unbind_mp after * we return from so_lock_single(). */ so_lock_single(so); /* Set SOLOCKED */ need_unlock = B_TRUE; if (sti->sti_unbind_mp == NULL) { dprintso(so, 1, ("sotpi_connect: allocating unbind_req\n")); /* NOTE: holding so_lock while sleeping */ sti->sti_unbind_mp = soallocproto(sizeof (struct T_unbind_req), _ALLOC_INTR, cr); if (sti->sti_unbind_mp == NULL) { error = EINTR; goto done; } } /* * Can't have done a listen before connecting. */ if (so->so_state & SS_ACCEPTCONN) { error = EOPNOTSUPP; goto done; } /* * Must be bound with the transport */ if (!(so->so_state & SS_ISBOUND)) { if ((so->so_family == AF_INET || so->so_family == AF_INET6) && /*CONSTCOND*/ so->so_type == SOCK_STREAM && !soconnect_tpi_tcp) { /* * Optimization for AF_INET{,6} transports * that can handle a T_CONN_REQ without being bound. */ so_automatic_bind(so); } else { error = sotpi_bind(so, NULL, 0, _SOBIND_UNSPEC|_SOBIND_LOCK_HELD, cr); if (error) goto done; } ASSERT(so->so_state & SS_ISBOUND); flags |= _SOCONNECT_DID_BIND; } /* * Handle a connect to a name parameter of type AF_UNSPEC like a * connect to a null address. This is the portable method to * unconnect a socket. */ if ((namelen >= sizeof (sa_family_t)) && (name->sa_family == AF_UNSPEC)) { name = NULL; namelen = 0; } /* * Check that we are not already connected. * A connection-oriented socket cannot be reconnected. * A connected connection-less socket can be * - connected to a different address by a subsequent connect * - "unconnected" by a connect to the NULL address */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) { ASSERT(!(flags & _SOCONNECT_DID_BIND)); if (so->so_mode & SM_CONNREQUIRED) { /* Connection-oriented socket */ error = so->so_state & SS_ISCONNECTED ? EISCONN : EALREADY; goto done; } /* Connection-less socket */ if (name == NULL) { /* * Remove the connected state and clear SO_DGRAM_ERRIND * since it was set when the socket was connected. * If this is UDP also send down a T_DISCON_REQ. */ int val; if ((so->so_family == AF_INET || so->so_family == AF_INET6) && (so->so_type == SOCK_DGRAM || so->so_type == SOCK_RAW) && /*CONSTCOND*/ !soconnect_tpi_udp) { /* XXX What about implicitly unbinding here? */ error = sodisconnect(so, -1, _SODISCONNECT_LOCK_HELD); } else { so->so_state &= ~(SS_ISCONNECTED | SS_ISCONNECTING); sti->sti_faddr_valid = 0; sti->sti_faddr_len = 0; } /* Remove SOLOCKED since setsockopt will grab it */ so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); val = 0; (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND, &val, (t_uscalar_t)sizeof (val), cr); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ goto done; } } ASSERT(so->so_state & SS_ISBOUND); if (name == NULL || namelen == 0) { error = EINVAL; goto done; } /* * Mark the socket if sti_faddr_sa represents the transport level * address. */ if (flags & _SOCONNECT_NOXLATE) { struct sockaddr_ux *soaddr_ux; ASSERT(so->so_family == AF_UNIX); if (namelen != sizeof (struct sockaddr_ux)) { error = EINVAL; goto done; } soaddr_ux = (struct sockaddr_ux *)name; name = (struct sockaddr *)&soaddr_ux->sou_addr; namelen = sizeof (soaddr_ux->sou_addr); sti->sti_faddr_noxlate = 1; } /* * Length and family checks. */ error = so_addr_verify(so, name, namelen); if (error) goto bad; /* * Save foreign address. Needed for AF_UNIX as well as * transport providers that do not support TI_GETPEERNAME. * Also used for cached foreign address for TCP and UDP. */ if (namelen > (t_uscalar_t)sti->sti_faddr_maxlen) { error = EINVAL; goto done; } sti->sti_faddr_len = (socklen_t)namelen; ASSERT(sti->sti_faddr_len <= sti->sti_faddr_maxlen); bcopy(name, sti->sti_faddr_sa, namelen); sti->sti_faddr_valid = 1; if (so->so_family == AF_UNIX) { if (sti->sti_faddr_noxlate) { /* * Already have a transport internal address. Do not * pass any (transport internal) source address. */ addr = sti->sti_faddr_sa; addrlen = (t_uscalar_t)sti->sti_faddr_len; src = NULL; srclen = 0; } else { /* * Pass the sockaddr_un source address as an option * and translate the remote address. * Holding so_lock thus sti_laddr_sa can not change. */ src = sti->sti_laddr_sa; srclen = (t_uscalar_t)sti->sti_laddr_len; dprintso(so, 1, ("sotpi_connect UNIX: srclen %d, src %p\n", srclen, src)); error = so_ux_addr_xlate(so, sti->sti_faddr_sa, (socklen_t)sti->sti_faddr_len, (flags & _SOCONNECT_XPG4_2), &addr, &addrlen); if (error) goto bad; } } else { addr = sti->sti_faddr_sa; addrlen = (t_uscalar_t)sti->sti_faddr_len; src = NULL; srclen = 0; } /* * When connecting a datagram socket we issue the SO_DGRAM_ERRIND * option which asks the transport provider to send T_UDERR_IND * messages. These T_UDERR_IND messages are used to return connected * style errors (e.g. ECONNRESET) for connected datagram sockets. * * In addition, for UDP (and SOCK_RAW AF_INET{,6} sockets) * we send down a T_CONN_REQ. This is needed to let the * transport assign a local address that is consistent with * the remote address. Applications depend on a getsockname() * after a connect() to retrieve the "source" IP address for * the connected socket. Invalidate the cached local address * to force getsockname() to enquire of the transport. */ if (!(so->so_mode & SM_CONNREQUIRED)) { /* * Datagram socket. */ int32_t val; so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); val = 1; (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND, &val, (t_uscalar_t)sizeof (val), cr); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ if ((so->so_family != AF_INET && so->so_family != AF_INET6) || (so->so_type != SOCK_DGRAM && so->so_type != SOCK_RAW) || soconnect_tpi_udp) { soisconnected(so); goto done; } /* * Send down T_CONN_REQ etc. * Clear fflag to avoid returning EWOULDBLOCK. */ fflag = 0; ASSERT(so->so_family != AF_UNIX); sti->sti_laddr_valid = 0; } else if (sti->sti_laddr_len != 0) { /* * If the local address or port was "any" then it may be * changed by the transport as a result of the * connect. Invalidate the cached version if we have one. */ switch (so->so_family) { case AF_INET: ASSERT(sti->sti_laddr_len == (socklen_t)sizeof (sin_t)); if (((sin_t *)sti->sti_laddr_sa)->sin_addr.s_addr == INADDR_ANY || ((sin_t *)sti->sti_laddr_sa)->sin_port == 0) sti->sti_laddr_valid = 0; break; case AF_INET6: ASSERT(sti->sti_laddr_len == (socklen_t)sizeof (sin6_t)); if (IN6_IS_ADDR_UNSPECIFIED( &((sin6_t *)sti->sti_laddr_sa) ->sin6_addr) || IN6_IS_ADDR_V4MAPPED_ANY( &((sin6_t *)sti->sti_laddr_sa)->sin6_addr) || ((sin6_t *)sti->sti_laddr_sa)->sin6_port == 0) sti->sti_laddr_valid = 0; break; default: break; } } /* * Check for failure of an earlier call */ if (so->so_error != 0) goto so_bad; /* * Send down T_CONN_REQ. Message was allocated above. */ conn_req.PRIM_type = T_CONN_REQ; conn_req.DEST_length = addrlen; conn_req.DEST_offset = (t_scalar_t)sizeof (conn_req); if (srclen == 0) { conn_req.OPT_length = 0; conn_req.OPT_offset = 0; soappendmsg(mp, &conn_req, sizeof (conn_req)); soappendmsg(mp, addr, addrlen); } else { /* * There is a AF_UNIX sockaddr_un to include as a source * address option. */ struct T_opthdr toh; toh.level = SOL_SOCKET; toh.name = SO_SRCADDR; toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); toh.status = 0; conn_req.OPT_length = (t_scalar_t)(sizeof (toh) + _TPI_ALIGN_TOPT(srclen)); conn_req.OPT_offset = (t_scalar_t)(sizeof (conn_req) + _TPI_ALIGN_TOPT(addrlen)); soappendmsg(mp, &conn_req, sizeof (conn_req)); soappendmsg(mp, addr, addrlen); mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; soappendmsg(mp, &toh, sizeof (toh)); soappendmsg(mp, src, srclen); mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; ASSERT(mp->b_wptr <= mp->b_datap->db_lim); } /* * Set SS_ISCONNECTING before sending down the T_CONN_REQ * in order to have the right state when the T_CONN_CON shows up. */ soisconnecting(so); mutex_exit(&so->so_lock); if (audit_active) audit_sock(T_CONN_REQ, strvp2wq(SOTOV(so)), mp, 0); error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); mp = NULL; mutex_enter(&so->so_lock); if (error != 0) goto bad; if ((error = sowaitokack(so, T_CONN_REQ)) != 0) goto bad; /* Allow other threads to access the socket */ so_unlock_single(so, SOLOCKED); need_unlock = B_FALSE; /* * Wait until we get a T_CONN_CON or an error */ if ((error = sowaitconnected(so, fflag, 0)) != 0) { so_lock_single(so); /* Set SOLOCKED */ need_unlock = B_TRUE; } done: freemsg(mp); switch (error) { case EINPROGRESS: case EALREADY: case EISCONN: case EINTR: /* Non-fatal errors */ sti->sti_laddr_valid = 0; /* FALLTHRU */ case 0: break; default: ASSERT(need_unlock); /* * Fatal errors: clear SS_ISCONNECTING in case it was set, * and invalidate local-address cache */ so->so_state &= ~SS_ISCONNECTING; sti->sti_laddr_valid = 0; /* A discon_ind might have already unbound us */ if ((flags & _SOCONNECT_DID_BIND) && (so->so_state & SS_ISBOUND)) { int err; err = sotpi_unbind(so, 0); /* LINTED - statement has no conseq */ if (err) { eprintsoline(so, err); } } break; } if (need_unlock) so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); return (error); so_bad: error = sogeterr(so, B_TRUE); bad: eprintsoline(so, error); goto done; } /* ARGSUSED */ int sotpi_shutdown(struct sonode *so, int how, struct cred *cr) { struct T_ordrel_req ordrel_req; mblk_t *mp; uint_t old_state, state_change; int error = 0; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_shutdown(%p, %d) %s\n", (void *)so, how, pr_state(so->so_state, so->so_mode))); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ /* * SunOS 4.X has no check for datagram sockets. * 5.X checks that it is connected (ENOTCONN) * X/Open requires that we check the connected state. */ if (!(so->so_state & SS_ISCONNECTED)) { if (!xnet_skip_checks) { error = ENOTCONN; if (xnet_check_print) { printf("sockfs: X/Open shutdown check " "caused ENOTCONN\n"); } } goto done; } /* * Record the current state and then perform any state changes. * Then use the difference between the old and new states to * determine which messages need to be sent. * This prevents e.g. duplicate T_ORDREL_REQ when there are * duplicate calls to shutdown(). */ old_state = so->so_state; switch (how) { case 0: socantrcvmore(so); break; case 1: socantsendmore(so); break; case 2: socantsendmore(so); socantrcvmore(so); break; default: error = EINVAL; goto done; } /* * Assumes that the SS_CANT* flags are never cleared in the above code. */ state_change = (so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) - (old_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)); ASSERT((state_change & ~(SS_CANTRCVMORE|SS_CANTSENDMORE)) == 0); switch (state_change) { case 0: dprintso(so, 1, ("sotpi_shutdown: nothing to send in state 0x%x\n", so->so_state)); goto done; case SS_CANTRCVMORE: mutex_exit(&so->so_lock); strseteof(SOTOV(so), 1); /* * strseteof takes care of read side wakeups, * pollwakeups, and signals. */ /* * Get the read lock before flushing data to avoid problems * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg. */ mutex_enter(&so->so_lock); (void) so_lock_read(so, 0); /* Set SOREADLOCKED */ mutex_exit(&so->so_lock); /* Flush read side queue */ strflushrq(SOTOV(so), FLUSHALL); mutex_enter(&so->so_lock); so_unlock_read(so); /* Clear SOREADLOCKED */ break; case SS_CANTSENDMORE: mutex_exit(&so->so_lock); strsetwerror(SOTOV(so), 0, 0, sogetwrerr); mutex_enter(&so->so_lock); break; case SS_CANTSENDMORE|SS_CANTRCVMORE: mutex_exit(&so->so_lock); strsetwerror(SOTOV(so), 0, 0, sogetwrerr); strseteof(SOTOV(so), 1); /* * strseteof takes care of read side wakeups, * pollwakeups, and signals. */ /* * Get the read lock before flushing data to avoid problems * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg. */ mutex_enter(&so->so_lock); (void) so_lock_read(so, 0); /* Set SOREADLOCKED */ mutex_exit(&so->so_lock); /* Flush read side queue */ strflushrq(SOTOV(so), FLUSHALL); mutex_enter(&so->so_lock); so_unlock_read(so); /* Clear SOREADLOCKED */ break; } ASSERT(MUTEX_HELD(&so->so_lock)); /* * If either SS_CANTSENDMORE or SS_CANTRCVMORE or both of them * was set due to this call and the new state has both of them set: * Send the AF_UNIX close indication * For T_COTS send a discon_ind * * If cantsend was set due to this call: * For T_COTSORD send an ordrel_ind * * Note that for T_CLTS there is no message sent here. */ if ((so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) == (SS_CANTRCVMORE|SS_CANTSENDMORE)) { /* * For SunOS 4.X compatibility we tell the other end * that we are unable to receive at this point. */ if (so->so_family == AF_UNIX && sti->sti_serv_type != T_CLTS) so_unix_close(so); if (sti->sti_serv_type == T_COTS) error = sodisconnect(so, -1, _SODISCONNECT_LOCK_HELD); } if ((state_change & SS_CANTSENDMORE) && (sti->sti_serv_type == T_COTS_ORD)) { /* Send an orderly release */ ordrel_req.PRIM_type = T_ORDREL_REQ; mutex_exit(&so->so_lock); mp = soallocproto1(&ordrel_req, sizeof (ordrel_req), 0, _ALLOC_SLEEP, cr); /* * Send down the T_ORDREL_REQ even if there is flow control. * This prevents shutdown from blocking. * Note that there is no T_OK_ACK for ordrel_req. */ error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); mutex_enter(&so->so_lock); if (error) { eprintsoline(so, error); goto done; } } done: so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); return (error); } /* * For any connected SOCK_STREAM/SOCK_SEQPACKET AF_UNIX socket we send * a zero-length T_OPTDATA_REQ with the SO_UNIX_CLOSE option to inform the peer * that we have closed. * Also, for connected AF_UNIX SOCK_DGRAM sockets we send a zero-length * T_UNITDATA_REQ containing the same option. * * For SOCK_DGRAM half-connections (somebody connected to this end * but this end is not connect) we don't know where to send any * SO_UNIX_CLOSE. * * We have to ignore stream head errors just in case there has been * a shutdown(output). * Ignore any flow control to try to get the message more quickly to the peer. * While locally ignoring flow control solves the problem when there * is only the loopback transport on the stream it would not provide * the correct AF_UNIX socket semantics when one or more modules have * been pushed. */ void so_unix_close(struct sonode *so) { int error; struct T_opthdr toh; mblk_t *mp; sotpi_info_t *sti = SOTOTPI(so); ASSERT(MUTEX_HELD(&so->so_lock)); ASSERT(so->so_family == AF_UNIX); if ((so->so_state & (SS_ISCONNECTED|SS_ISBOUND)) != (SS_ISCONNECTED|SS_ISBOUND)) return; dprintso(so, 1, ("so_unix_close(%p) %s\n", (void *)so, pr_state(so->so_state, so->so_mode))); toh.level = SOL_SOCKET; toh.name = SO_UNIX_CLOSE; /* zero length + header */ toh.len = (t_uscalar_t)sizeof (struct T_opthdr); toh.status = 0; if (so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) { struct T_optdata_req tdr; tdr.PRIM_type = T_OPTDATA_REQ; tdr.DATA_flag = 0; tdr.OPT_length = (t_scalar_t)sizeof (toh); tdr.OPT_offset = (t_scalar_t)sizeof (tdr); /* NOTE: holding so_lock while sleeping */ mp = soallocproto2(&tdr, sizeof (tdr), &toh, sizeof (toh), 0, _ALLOC_SLEEP, CRED()); } else { struct T_unitdata_req tudr; void *addr; socklen_t addrlen; void *src; socklen_t srclen; struct T_opthdr toh2; t_scalar_t size; /* Connecteded DGRAM socket */ /* * For AF_UNIX the destination address is translated to * an internal name and the source address is passed as * an option. */ /* * Length and family checks. */ error = so_addr_verify(so, sti->sti_faddr_sa, (t_uscalar_t)sti->sti_faddr_len); if (error) { eprintsoline(so, error); return; } if (sti->sti_faddr_noxlate) { /* * Already have a transport internal address. Do not * pass any (transport internal) source address. */ addr = sti->sti_faddr_sa; addrlen = (t_uscalar_t)sti->sti_faddr_len; src = NULL; srclen = 0; } else { /* * Pass the sockaddr_un source address as an option * and translate the remote address. * Holding so_lock thus sti_laddr_sa can not change. */ src = sti->sti_laddr_sa; srclen = (socklen_t)sti->sti_laddr_len; dprintso(so, 1, ("so_ux_close: srclen %d, src %p\n", srclen, src)); error = so_ux_addr_xlate(so, sti->sti_faddr_sa, (socklen_t)sti->sti_faddr_len, 0, &addr, &addrlen); if (error) { eprintsoline(so, error); return; } } tudr.PRIM_type = T_UNITDATA_REQ; tudr.DEST_length = addrlen; tudr.DEST_offset = (t_scalar_t)sizeof (tudr); if (srclen == 0) { tudr.OPT_length = (t_scalar_t)sizeof (toh); tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + _TPI_ALIGN_TOPT(addrlen)); size = tudr.OPT_offset + tudr.OPT_length; /* NOTE: holding so_lock while sleeping */ mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, size, _ALLOC_SLEEP, CRED()); mp->b_wptr += (_TPI_ALIGN_TOPT(addrlen) - addrlen); soappendmsg(mp, &toh, sizeof (toh)); } else { /* * There is a AF_UNIX sockaddr_un to include as a * source address option. */ tudr.OPT_length = (t_scalar_t)(2 * sizeof (toh) + _TPI_ALIGN_TOPT(srclen)); tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + _TPI_ALIGN_TOPT(addrlen)); toh2.level = SOL_SOCKET; toh2.name = SO_SRCADDR; toh2.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); toh2.status = 0; size = tudr.OPT_offset + tudr.OPT_length; /* NOTE: holding so_lock while sleeping */ mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, size, _ALLOC_SLEEP, CRED()); mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; soappendmsg(mp, &toh, sizeof (toh)); soappendmsg(mp, &toh2, sizeof (toh2)); soappendmsg(mp, src, srclen); mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; } ASSERT(mp->b_wptr <= mp->b_datap->db_lim); } mutex_exit(&so->so_lock); error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); mutex_enter(&so->so_lock); } /* * Called by sotpi_recvmsg when reading a non-zero amount of data. * In addition, the caller typically verifies that there is some * potential state to clear by checking * if (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) * before calling this routine. * Note that such a check can be made without holding so_lock since * sotpi_recvmsg is single-threaded (using SOREADLOCKED) and only sotpi_recvmsg * decrements sti_oobsigcnt. * * When data is read *after* the point that all pending * oob data has been consumed the oob indication is cleared. * * This logic keeps select/poll returning POLLRDBAND and * SIOCATMARK returning true until we have read past * the mark. */ static void sorecv_update_oobstate(struct sonode *so) { sotpi_info_t *sti = SOTOTPI(so); mutex_enter(&so->so_lock); ASSERT(so_verify_oobstate(so)); dprintso(so, 1, ("sorecv_update_oobstate: counts %d/%d state %s\n", sti->sti_oobsigcnt, sti->sti_oobcnt, pr_state(so->so_state, so->so_mode))); if (sti->sti_oobsigcnt == 0) { /* No more pending oob indications */ so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK); freemsg(so->so_oobmsg); so->so_oobmsg = NULL; } ASSERT(so_verify_oobstate(so)); mutex_exit(&so->so_lock); } /* * Handle recv* calls for an so which has NL7C saved recv mblk_t(s). */ static int nl7c_sorecv(struct sonode *so, mblk_t **rmp, uio_t *uiop, rval_t *rp) { sotpi_info_t *sti = SOTOTPI(so); int error = 0; mblk_t *tmp = NULL; mblk_t *pmp = NULL; mblk_t *nmp = sti->sti_nl7c_rcv_mp; ASSERT(nmp != NULL); while (nmp != NULL && uiop->uio_resid > 0) { ssize_t n; if (DB_TYPE(nmp) == M_DATA) { /* * We have some data, uiomove up to resid bytes. */ n = MIN(MBLKL(nmp), uiop->uio_resid); if (n > 0) error = uiomove(nmp->b_rptr, n, UIO_READ, uiop); nmp->b_rptr += n; if (nmp->b_rptr == nmp->b_wptr) { pmp = nmp; nmp = nmp->b_cont; } if (error) break; } else { /* * We only handle data, save for caller to handle. */ if (pmp != NULL) { pmp->b_cont = nmp->b_cont; } nmp->b_cont = NULL; if (*rmp == NULL) { *rmp = nmp; } else { tmp->b_cont = nmp; } nmp = nmp->b_cont; tmp = nmp; } } if (pmp != NULL) { /* Free any mblk_t(s) which we have consumed */ pmp->b_cont = NULL; freemsg(sti->sti_nl7c_rcv_mp); } if ((sti->sti_nl7c_rcv_mp = nmp) == NULL) { /* Last mblk_t so return the saved kstrgetmsg() rval/error */ if (error == 0) { rval_t *p = (rval_t *)&sti->sti_nl7c_rcv_rval; error = p->r_v.r_v2; p->r_v.r_v2 = 0; } rp->r_vals = sti->sti_nl7c_rcv_rval; sti->sti_nl7c_rcv_rval = 0; } else { /* More mblk_t(s) to process so no rval to return */ rp->r_vals = 0; } return (error); } /* * Receive the next message on the queue. * If msg_controllen is non-zero when called the caller is interested in * any received control info (options). * If msg_namelen is non-zero when called the caller is interested in * any received source address. * The routine returns with msg_control and msg_name pointing to * kmem_alloc'ed memory which the caller has to free. */ /* ARGSUSED */ int sotpi_recvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, struct cred *cr) { union T_primitives *tpr; mblk_t *mp; uchar_t pri; int pflag, opflag; void *control; t_uscalar_t controllen; t_uscalar_t namelen; int so_state = so->so_state; /* Snapshot */ ssize_t saved_resid; rval_t rval; int flags; clock_t timout; int error = 0; int reterr = 0; struct uio *suiop = NULL; sotpi_info_t *sti = SOTOTPI(so); flags = msg->msg_flags; msg->msg_flags = 0; dprintso(so, 1, ("sotpi_recvmsg(%p, %p, 0x%x) state %s err %d\n", (void *)so, (void *)msg, flags, pr_state(so->so_state, so->so_mode), so->so_error)); if (so->so_version == SOV_STREAM) { so_update_attrs(so, SOACC); /* The imaginary "sockmod" has been popped - act as a stream */ return (strread(SOTOV(so), uiop, cr)); } /* * If we are not connected because we have never been connected * we return ENOTCONN. If we have been connected (but are no longer * connected) then SS_CANTRCVMORE is set and we let kstrgetmsg return * the EOF. * * An alternative would be to post an ENOTCONN error in stream head * (read+write) and clear it when we're connected. However, that error * would cause incorrect poll/select behavior! */ if ((so_state & (SS_ISCONNECTED|SS_CANTRCVMORE)) == 0 && (so->so_mode & SM_CONNREQUIRED)) { return (ENOTCONN); } /* * Note: SunOS 4.X checks uio_resid == 0 before going to sleep (but * after checking that the read queue is empty) and returns zero. * This implementation will sleep (in kstrgetmsg) even if uio_resid * is zero. */ if (flags & MSG_OOB) { /* Check that the transport supports OOB */ if (!(so->so_mode & SM_EXDATA)) return (EOPNOTSUPP); so_update_attrs(so, SOACC); return (sorecvoob(so, msg, uiop, flags, (so->so_options & SO_OOBINLINE))); } so_update_attrs(so, SOACC); /* * Set msg_controllen and msg_namelen to zero here to make it * simpler in the cases that no control or name is returned. */ controllen = msg->msg_controllen; namelen = msg->msg_namelen; msg->msg_controllen = 0; msg->msg_namelen = 0; dprintso(so, 1, ("sotpi_recvmsg: namelen %d controllen %d\n", namelen, controllen)); mutex_enter(&so->so_lock); /* * If an NL7C enabled socket and not waiting for write data. */ if ((sti->sti_nl7c_flags & (NL7C_ENABLED | NL7C_WAITWRITE)) == NL7C_ENABLED) { if (sti->sti_nl7c_uri) { /* Close uri processing for a previous request */ nl7c_close(so); } if ((so_state & SS_CANTRCVMORE) && sti->sti_nl7c_rcv_mp == NULL) { /* Nothing to process, EOF */ mutex_exit(&so->so_lock); return (0); } else if (sti->sti_nl7c_flags & NL7C_SOPERSIST) { /* Persistent NL7C socket, try to process request */ boolean_t ret; ret = nl7c_process(so, (so->so_state & (SS_NONBLOCK|SS_NDELAY))); rval.r_vals = sti->sti_nl7c_rcv_rval; error = rval.r_v.r_v2; if (error) { /* Error of some sort, return it */ mutex_exit(&so->so_lock); return (error); } if (sti->sti_nl7c_flags && ! (sti->sti_nl7c_flags & NL7C_WAITWRITE)) { /* * Still an NL7C socket and no data * to pass up to the caller. */ mutex_exit(&so->so_lock); if (ret) { /* EOF */ return (0); } else { /* Need more data */ return (EAGAIN); } } } else { /* * Not persistent so no further NL7C processing. */ sti->sti_nl7c_flags = 0; } } /* * Only one reader is allowed at any given time. This is needed * for T_EXDATA handling and, in the future, MSG_WAITALL. * * This is slightly different that BSD behavior in that it fails with * EWOULDBLOCK when using nonblocking io. In BSD the read queue access * is single-threaded using sblock(), which is dropped while waiting * for data to appear. The difference shows up e.g. if one * file descriptor does not have O_NONBLOCK but a dup'ed file descriptor * does use nonblocking io and different threads are reading each * file descriptor. In BSD there would never be an EWOULDBLOCK error * in this case as long as the read queue doesn't get empty. * In this implementation the thread using nonblocking io can * get an EWOULDBLOCK error due to the blocking thread executing * e.g. in the uiomove in kstrgetmsg. * This difference is not believed to be significant. */ /* Set SOREADLOCKED */ error = so_lock_read_intr(so, uiop->uio_fmode | ((flags & MSG_DONTWAIT) ? FNONBLOCK : 0)); mutex_exit(&so->so_lock); if (error) return (error); /* * Tell kstrgetmsg to not inspect the stream head errors until all * queued data has been consumed. * Use a timeout=-1 to wait forever unless MSG_DONTWAIT is set. * Also, If uio_fmode indicates nonblocking kstrgetmsg will not block. * * MSG_WAITALL only applies to M_DATA and T_DATA_IND messages and * to T_OPTDATA_IND that do not contain any user-visible control msg. * Note that MSG_WAITALL set with MSG_PEEK is a noop. */ pflag = MSG_ANY | MSG_DELAYERROR; if (flags & MSG_PEEK) { pflag |= MSG_IPEEK; flags &= ~MSG_WAITALL; } if (so->so_mode & SM_ATOMIC) pflag |= MSG_DISCARDTAIL; if (flags & MSG_DONTWAIT) timout = 0; else timout = -1; opflag = pflag; suiop = sod_rcv_init(so, flags, &uiop); retry: saved_resid = uiop->uio_resid; pri = 0; mp = NULL; if (sti->sti_nl7c_rcv_mp != NULL) { /* Already kstrgetmsg()ed saved mblk(s) from NL7C */ error = nl7c_sorecv(so, &mp, uiop, &rval); } else { error = kstrgetmsg(SOTOV(so), &mp, uiop, &pri, &pflag, timout, &rval); } if (error != 0) { /* kstrgetmsg returns ETIME when timeout expires */ if (error == ETIME) error = EWOULDBLOCK; goto out; } /* * For datagrams the MOREDATA flag is used to set MSG_TRUNC. * For non-datagrams MOREDATA is used to set MSG_EOR. */ ASSERT(!(rval.r_val1 & MORECTL)); if ((rval.r_val1 & MOREDATA) && (so->so_mode & SM_ATOMIC)) msg->msg_flags |= MSG_TRUNC; if (mp == NULL) { dprintso(so, 1, ("sotpi_recvmsg: got M_DATA\n")); /* * 4.3BSD and 4.4BSD clears the mark when peeking across it. * The draft Posix socket spec states that the mark should * not be cleared when peeking. We follow the latter. */ if ((so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && (uiop->uio_resid != saved_resid) && !(flags & MSG_PEEK)) { sorecv_update_oobstate(so); } mutex_enter(&so->so_lock); /* Set MSG_EOR based on MOREDATA */ if (!(rval.r_val1 & MOREDATA)) { if (so->so_state & SS_SAVEDEOR) { msg->msg_flags |= MSG_EOR; so->so_state &= ~SS_SAVEDEOR; } } /* * If some data was received (i.e. not EOF) and the * read/recv* has not been satisfied wait for some more. */ if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { mutex_exit(&so->so_lock); pflag = opflag | MSG_NOMARK; goto retry; } goto out_locked; } /* strsock_proto has already verified length and alignment */ tpr = (union T_primitives *)mp->b_rptr; dprintso(so, 1, ("sotpi_recvmsg: type %d\n", tpr->type)); switch (tpr->type) { case T_DATA_IND: { if ((so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && (uiop->uio_resid != saved_resid) && !(flags & MSG_PEEK)) { sorecv_update_oobstate(so); } /* * Set msg_flags to MSG_EOR based on * MORE_flag and MOREDATA. */ mutex_enter(&so->so_lock); so->so_state &= ~SS_SAVEDEOR; if (!(tpr->data_ind.MORE_flag & 1)) { if (!(rval.r_val1 & MOREDATA)) msg->msg_flags |= MSG_EOR; else so->so_state |= SS_SAVEDEOR; } freemsg(mp); /* * If some data was received (i.e. not EOF) and the * read/recv* has not been satisfied wait for some more. */ if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { mutex_exit(&so->so_lock); pflag = opflag | MSG_NOMARK; goto retry; } goto out_locked; } case T_UNITDATA_IND: { void *addr; t_uscalar_t addrlen; void *abuf; t_uscalar_t optlen; void *opt; if ((so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && (uiop->uio_resid != saved_resid) && !(flags & MSG_PEEK)) { sorecv_update_oobstate(so); } if (namelen != 0) { /* Caller wants source address */ addrlen = tpr->unitdata_ind.SRC_length; addr = sogetoff(mp, tpr->unitdata_ind.SRC_offset, addrlen, 1); if (addr == NULL) { freemsg(mp); error = EPROTO; eprintsoline(so, error); goto out; } if (so->so_family == AF_UNIX) { /* * Can not use the transport level address. * If there is a SO_SRCADDR option carrying * the socket level address it will be * extracted below. */ addr = NULL; addrlen = 0; } } optlen = tpr->unitdata_ind.OPT_length; if (optlen != 0) { t_uscalar_t ncontrollen; /* * Extract any source address option. * Determine how large cmsg buffer is needed. */ opt = sogetoff(mp, tpr->unitdata_ind.OPT_offset, optlen, __TPI_ALIGN_SIZE); if (opt == NULL) { freemsg(mp); error = EPROTO; eprintsoline(so, error); goto out; } if (so->so_family == AF_UNIX) so_getopt_srcaddr(opt, optlen, &addr, &addrlen); ncontrollen = so_cmsglen(mp, opt, optlen, !(flags & MSG_XPG4_2)); if (controllen != 0) controllen = ncontrollen; else if (ncontrollen != 0) msg->msg_flags |= MSG_CTRUNC; } else { controllen = 0; } if (namelen != 0) { /* * Return address to caller. * Caller handles truncation if length * exceeds msg_namelen. * NOTE: AF_UNIX NUL termination is ensured by * the sender's copyin_name(). */ abuf = kmem_alloc(addrlen, KM_SLEEP); bcopy(addr, abuf, addrlen); msg->msg_name = abuf; msg->msg_namelen = addrlen; } if (controllen != 0) { /* * Return control msg to caller. * Caller handles truncation if length * exceeds msg_controllen. */ control = kmem_zalloc(controllen, KM_SLEEP); error = so_opt2cmsg(mp, opt, optlen, !(flags & MSG_XPG4_2), control, controllen); if (error) { freemsg(mp); if (msg->msg_namelen != 0) kmem_free(msg->msg_name, msg->msg_namelen); kmem_free(control, controllen); eprintsoline(so, error); goto out; } msg->msg_control = control; msg->msg_controllen = controllen; } freemsg(mp); goto out; } case T_OPTDATA_IND: { struct T_optdata_req *tdr; void *opt; t_uscalar_t optlen; if ((so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && (uiop->uio_resid != saved_resid) && !(flags & MSG_PEEK)) { sorecv_update_oobstate(so); } tdr = (struct T_optdata_req *)mp->b_rptr; optlen = tdr->OPT_length; if (optlen != 0) { t_uscalar_t ncontrollen; /* * Determine how large cmsg buffer is needed. */ opt = sogetoff(mp, tpr->optdata_ind.OPT_offset, optlen, __TPI_ALIGN_SIZE); if (opt == NULL) { freemsg(mp); error = EPROTO; eprintsoline(so, error); goto out; } ncontrollen = so_cmsglen(mp, opt, optlen, !(flags & MSG_XPG4_2)); if (controllen != 0) controllen = ncontrollen; else if (ncontrollen != 0) msg->msg_flags |= MSG_CTRUNC; } else { controllen = 0; } if (controllen != 0) { /* * Return control msg to caller. * Caller handles truncation if length * exceeds msg_controllen. */ control = kmem_zalloc(controllen, KM_SLEEP); error = so_opt2cmsg(mp, opt, optlen, !(flags & MSG_XPG4_2), control, controllen); if (error) { freemsg(mp); kmem_free(control, controllen); eprintsoline(so, error); goto out; } msg->msg_control = control; msg->msg_controllen = controllen; } /* * Set msg_flags to MSG_EOR based on * DATA_flag and MOREDATA. */ mutex_enter(&so->so_lock); so->so_state &= ~SS_SAVEDEOR; if (!(tpr->data_ind.MORE_flag & 1)) { if (!(rval.r_val1 & MOREDATA)) msg->msg_flags |= MSG_EOR; else so->so_state |= SS_SAVEDEOR; } freemsg(mp); /* * If some data was received (i.e. not EOF) and the * read/recv* has not been satisfied wait for some more. * Not possible to wait if control info was received. */ if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && controllen == 0 && uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { mutex_exit(&so->so_lock); pflag = opflag | MSG_NOMARK; goto retry; } goto out_locked; } case T_EXDATA_IND: { dprintso(so, 1, ("sotpi_recvmsg: EXDATA_IND counts %d/%d consumed %ld " "state %s\n", sti->sti_oobsigcnt, sti->sti_oobcnt, saved_resid - uiop->uio_resid, pr_state(so->so_state, so->so_mode))); /* * kstrgetmsg handles MSGMARK so there is nothing to * inspect in the T_EXDATA_IND. * strsock_proto makes the stream head queue the T_EXDATA_IND * as a separate message with no M_DATA component. Furthermore, * the stream head does not consolidate M_DATA messages onto * an MSGMARK'ed message ensuring that the T_EXDATA_IND * remains a message by itself. This is needed since MSGMARK * marks both the whole message as well as the last byte * of the message. */ freemsg(mp); ASSERT(uiop->uio_resid == saved_resid); /* No data */ if (flags & MSG_PEEK) { /* * Even though we are peeking we consume the * T_EXDATA_IND thereby moving the mark information * to SS_RCVATMARK. Then the oob code below will * retry the peeking kstrgetmsg. * Note that the stream head read queue is * never flushed without holding SOREADLOCKED * thus the T_EXDATA_IND can not disappear * underneath us. */ dprintso(so, 1, ("sotpi_recvmsg: consume EXDATA_IND " "counts %d/%d state %s\n", sti->sti_oobsigcnt, sti->sti_oobcnt, pr_state(so->so_state, so->so_mode))); pflag = MSG_ANY | MSG_DELAYERROR; if (so->so_mode & SM_ATOMIC) pflag |= MSG_DISCARDTAIL; pri = 0; mp = NULL; error = kstrgetmsg(SOTOV(so), &mp, uiop, &pri, &pflag, (clock_t)-1, &rval); ASSERT(uiop->uio_resid == saved_resid); if (error) { #ifdef SOCK_DEBUG if (error != EWOULDBLOCK && error != EINTR) { eprintsoline(so, error); } #endif /* SOCK_DEBUG */ goto out; } ASSERT(mp); tpr = (union T_primitives *)mp->b_rptr; ASSERT(tpr->type == T_EXDATA_IND); freemsg(mp); } /* end "if (flags & MSG_PEEK)" */ /* * Decrement the number of queued and pending oob. * * SS_RCVATMARK is cleared when we read past a mark. * SS_HAVEOOBDATA is cleared when we've read past the * last mark. * SS_OOBPEND is cleared if we've read past the last * mark and no (new) SIGURG has been posted. */ mutex_enter(&so->so_lock); ASSERT(so_verify_oobstate(so)); ASSERT(sti->sti_oobsigcnt >= sti->sti_oobcnt); ASSERT(sti->sti_oobsigcnt > 0); sti->sti_oobsigcnt--; ASSERT(sti->sti_oobcnt > 0); sti->sti_oobcnt--; /* * Since the T_EXDATA_IND has been removed from the stream * head, but we have not read data past the mark, * sockfs needs to track that the socket is still at the mark. * * Since no data was received call kstrgetmsg again to wait * for data. */ so->so_state |= SS_RCVATMARK; mutex_exit(&so->so_lock); dprintso(so, 1, ("sotpi_recvmsg: retry EXDATA_IND counts %d/%d state %s\n", sti->sti_oobsigcnt, sti->sti_oobcnt, pr_state(so->so_state, so->so_mode))); pflag = opflag; goto retry; } default: cmn_err(CE_CONT, "sotpi_recvmsg: so %p prim %d mp %p\n", (void *)so, tpr->type, (void *)mp); ASSERT(0); freemsg(mp); error = EPROTO; eprintsoline(so, error); goto out; } /* NOTREACHED */ out: mutex_enter(&so->so_lock); out_locked: reterr = sod_rcv_done(so, suiop, uiop); if (reterr != 0 && error == 0) error = reterr; so_unlock_read(so); /* Clear SOREADLOCKED */ mutex_exit(&so->so_lock); return (error); } /* * Sending data with options on a datagram socket. * Assumes caller has verified that SS_ISBOUND etc. are set. */ static int sosend_dgramcmsg(struct sonode *so, struct sockaddr *name, socklen_t namelen, struct uio *uiop, void *control, t_uscalar_t controllen, int flags) { struct T_unitdata_req tudr; mblk_t *mp; int error; void *addr; socklen_t addrlen; void *src; socklen_t srclen; ssize_t len; int size; struct T_opthdr toh; struct fdbuf *fdbuf; t_uscalar_t optlen; void *fds; int fdlen; sotpi_info_t *sti = SOTOTPI(so); ASSERT(name && namelen); ASSERT(control && controllen); len = uiop->uio_resid; if (len > (ssize_t)sti->sti_tidu_size) { return (EMSGSIZE); } /* * For AF_UNIX the destination address is translated to an internal * name and the source address is passed as an option. * Also, file descriptors are passed as file pointers in an * option. */ /* * Length and family checks. */ error = so_addr_verify(so, name, namelen); if (error) { eprintsoline(so, error); return (error); } if (so->so_family == AF_UNIX) { if (sti->sti_faddr_noxlate) { /* * Already have a transport internal address. Do not * pass any (transport internal) source address. */ addr = name; addrlen = namelen; src = NULL; srclen = 0; } else { /* * Pass the sockaddr_un source address as an option * and translate the remote address. * * Note that this code does not prevent sti_laddr_sa * from changing while it is being used. Thus * if an unbind+bind occurs concurrently with this * send the peer might see a partially new and a * partially old "from" address. */ src = sti->sti_laddr_sa; srclen = (t_uscalar_t)sti->sti_laddr_len; dprintso(so, 1, ("sosend_dgramcmsg UNIX: srclen %d, src %p\n", srclen, src)); error = so_ux_addr_xlate(so, name, namelen, (flags & MSG_XPG4_2), &addr, &addrlen); if (error) { eprintsoline(so, error); return (error); } } } else { addr = name; addrlen = namelen; src = NULL; srclen = 0; } optlen = so_optlen(control, controllen, !(flags & MSG_XPG4_2)); tudr.PRIM_type = T_UNITDATA_REQ; tudr.DEST_length = addrlen; tudr.DEST_offset = (t_scalar_t)sizeof (tudr); if (srclen != 0) tudr.OPT_length = (t_scalar_t)(optlen + sizeof (toh) + _TPI_ALIGN_TOPT(srclen)); else tudr.OPT_length = optlen; tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + _TPI_ALIGN_TOPT(addrlen)); size = tudr.OPT_offset + tudr.OPT_length; /* * File descriptors only when SM_FDPASSING set. */ error = so_getfdopt(control, controllen, !(flags & MSG_XPG4_2), &fds, &fdlen); if (error) return (error); if (fdlen != -1) { if (!(so->so_mode & SM_FDPASSING)) return (EOPNOTSUPP); error = fdbuf_create(fds, fdlen, &fdbuf); if (error) return (error); mp = fdbuf_allocmsg(size, fdbuf); } else { mp = soallocproto(size, _ALLOC_INTR, CRED()); if (mp == NULL) { /* * Caught a signal waiting for memory. * Let send* return EINTR. */ return (EINTR); } } soappendmsg(mp, &tudr, sizeof (tudr)); soappendmsg(mp, addr, addrlen); mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; if (fdlen != -1) { ASSERT(fdbuf != NULL); toh.level = SOL_SOCKET; toh.name = SO_FILEP; toh.len = fdbuf->fd_size + (t_uscalar_t)sizeof (struct T_opthdr); toh.status = 0; soappendmsg(mp, &toh, sizeof (toh)); soappendmsg(mp, fdbuf, fdbuf->fd_size); ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); } if (srclen != 0) { /* * There is a AF_UNIX sockaddr_un to include as a source * address option. */ toh.level = SOL_SOCKET; toh.name = SO_SRCADDR; toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); toh.status = 0; soappendmsg(mp, &toh, sizeof (toh)); soappendmsg(mp, src, srclen); mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); } ASSERT(mp->b_wptr <= mp->b_datap->db_lim); so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp); /* At most 3 bytes left in the message */ ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE)); ASSERT(MBLKL(mp) <= (ssize_t)size); ASSERT(mp->b_wptr <= mp->b_datap->db_lim); if (audit_active) audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); #ifdef SOCK_DEBUG if (error) { eprintsoline(so, error); } #endif /* SOCK_DEBUG */ return (error); } /* * Sending data with options on a connected stream socket. * Assumes caller has verified that SS_ISCONNECTED is set. */ static int sosend_svccmsg(struct sonode *so, struct uio *uiop, int more, void *control, t_uscalar_t controllen, int flags) { struct T_optdata_req tdr; mblk_t *mp; int error; ssize_t iosize; int size; struct fdbuf *fdbuf; t_uscalar_t optlen; void *fds; int fdlen; struct T_opthdr toh; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sosend_svccmsg: resid %ld bytes\n", uiop->uio_resid)); /* * Has to be bound and connected. However, since no locks are * held the state could have changed after sotpi_sendmsg checked it * thus it is not possible to ASSERT on the state. */ /* Options on connection-oriented only when SM_OPTDATA set. */ if (!(so->so_mode & SM_OPTDATA)) return (EOPNOTSUPP); do { /* * Set the MORE flag if uio_resid does not fit in this * message or if the caller passed in "more". * Error for transports with zero tidu_size. */ tdr.PRIM_type = T_OPTDATA_REQ; iosize = sti->sti_tidu_size; if (iosize <= 0) return (EMSGSIZE); if (uiop->uio_resid > iosize) { tdr.DATA_flag = 1; } else { if (more) tdr.DATA_flag = 1; else tdr.DATA_flag = 0; iosize = uiop->uio_resid; } dprintso(so, 1, ("sosend_svccmsg: sending %d, %ld bytes\n", tdr.DATA_flag, iosize)); optlen = so_optlen(control, controllen, !(flags & MSG_XPG4_2)); tdr.OPT_length = optlen; tdr.OPT_offset = (t_scalar_t)sizeof (tdr); size = (int)sizeof (tdr) + optlen; /* * File descriptors only when SM_FDPASSING set. */ error = so_getfdopt(control, controllen, !(flags & MSG_XPG4_2), &fds, &fdlen); if (error) return (error); if (fdlen != -1) { if (!(so->so_mode & SM_FDPASSING)) return (EOPNOTSUPP); error = fdbuf_create(fds, fdlen, &fdbuf); if (error) return (error); mp = fdbuf_allocmsg(size, fdbuf); } else { mp = soallocproto(size, _ALLOC_INTR, CRED()); if (mp == NULL) { /* * Caught a signal waiting for memory. * Let send* return EINTR. */ return (EINTR); } } soappendmsg(mp, &tdr, sizeof (tdr)); if (fdlen != -1) { ASSERT(fdbuf != NULL); toh.level = SOL_SOCKET; toh.name = SO_FILEP; toh.len = fdbuf->fd_size + (t_uscalar_t)sizeof (struct T_opthdr); toh.status = 0; soappendmsg(mp, &toh, sizeof (toh)); soappendmsg(mp, fdbuf, fdbuf->fd_size); ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); } so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp); /* At most 3 bytes left in the message */ ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE)); ASSERT(MBLKL(mp) <= (ssize_t)size); ASSERT(mp->b_wptr <= mp->b_datap->db_lim); error = kstrputmsg(SOTOV(so), mp, uiop, iosize, 0, MSG_BAND, 0); if (error) { eprintsoline(so, error); return (error); } control = NULL; if (uiop->uio_resid > 0) { /* * Recheck for fatal errors. Fail write even though * some data have been written. This is consistent * with strwrite semantics and BSD sockets semantics. */ if (so->so_state & SS_CANTSENDMORE) { eprintsoline(so, error); return (EPIPE); } if (so->so_error != 0) { mutex_enter(&so->so_lock); error = sogeterr(so, B_TRUE); mutex_exit(&so->so_lock); if (error != 0) { eprintsoline(so, error); return (error); } } } } while (uiop->uio_resid > 0); return (0); } /* * Sending data on a datagram socket. * Assumes caller has verified that SS_ISBOUND etc. are set. * * For AF_UNIX the destination address is translated to an internal * name and the source address is passed as an option. */ int sosend_dgram(struct sonode *so, struct sockaddr *name, socklen_t namelen, struct uio *uiop, int flags) { struct T_unitdata_req tudr; mblk_t *mp; int error; void *addr; socklen_t addrlen; void *src; socklen_t srclen; ssize_t len; sotpi_info_t *sti = SOTOTPI(so); ASSERT(name != NULL && namelen != 0); len = uiop->uio_resid; if (len > sti->sti_tidu_size) { error = EMSGSIZE; goto done; } /* Length and family checks */ error = so_addr_verify(so, name, namelen); if (error != 0) goto done; if (sti->sti_direct) return (sodgram_direct(so, name, namelen, uiop, flags)); if (so->so_family == AF_UNIX) { if (sti->sti_faddr_noxlate) { /* * Already have a transport internal address. Do not * pass any (transport internal) source address. */ addr = name; addrlen = namelen; src = NULL; srclen = 0; } else { /* * Pass the sockaddr_un source address as an option * and translate the remote address. * * Note that this code does not prevent sti_laddr_sa * from changing while it is being used. Thus * if an unbind+bind occurs concurrently with this * send the peer might see a partially new and a * partially old "from" address. */ src = sti->sti_laddr_sa; srclen = (socklen_t)sti->sti_laddr_len; dprintso(so, 1, ("sosend_dgram UNIX: srclen %d, src %p\n", srclen, src)); error = so_ux_addr_xlate(so, name, namelen, (flags & MSG_XPG4_2), &addr, &addrlen); if (error) { eprintsoline(so, error); goto done; } } } else { addr = name; addrlen = namelen; src = NULL; srclen = 0; } tudr.PRIM_type = T_UNITDATA_REQ; tudr.DEST_length = addrlen; tudr.DEST_offset = (t_scalar_t)sizeof (tudr); if (srclen == 0) { tudr.OPT_length = 0; tudr.OPT_offset = 0; mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, 0, _ALLOC_INTR, CRED()); if (mp == NULL) { /* * Caught a signal waiting for memory. * Let send* return EINTR. */ error = EINTR; goto done; } } else { /* * There is a AF_UNIX sockaddr_un to include as a source * address option. */ struct T_opthdr toh; ssize_t size; tudr.OPT_length = (t_scalar_t)(sizeof (toh) + _TPI_ALIGN_TOPT(srclen)); tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + _TPI_ALIGN_TOPT(addrlen)); toh.level = SOL_SOCKET; toh.name = SO_SRCADDR; toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); toh.status = 0; size = tudr.OPT_offset + tudr.OPT_length; mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, size, _ALLOC_INTR, CRED()); if (mp == NULL) { /* * Caught a signal waiting for memory. * Let send* return EINTR. */ error = EINTR; goto done; } mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; soappendmsg(mp, &toh, sizeof (toh)); soappendmsg(mp, src, srclen); mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; ASSERT(mp->b_wptr <= mp->b_datap->db_lim); } if (audit_active) audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); done: #ifdef SOCK_DEBUG if (error) { eprintsoline(so, error); } #endif /* SOCK_DEBUG */ return (error); } /* * Sending data on a connected stream socket. * Assumes caller has verified that SS_ISCONNECTED is set. */ int sosend_svc(struct sonode *so, struct uio *uiop, t_scalar_t prim, int more, int sflag) { struct T_data_req tdr; mblk_t *mp; int error; ssize_t iosize; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sosend_svc: %p, resid %ld bytes, prim %d, sflag 0x%x\n", (void *)so, uiop->uio_resid, prim, sflag)); /* * Has to be bound and connected. However, since no locks are * held the state could have changed after sotpi_sendmsg checked it * thus it is not possible to ASSERT on the state. */ do { /* * Set the MORE flag if uio_resid does not fit in this * message or if the caller passed in "more". * Error for transports with zero tidu_size. */ tdr.PRIM_type = prim; iosize = sti->sti_tidu_size; if (iosize <= 0) return (EMSGSIZE); if (uiop->uio_resid > iosize) { tdr.MORE_flag = 1; } else { if (more) tdr.MORE_flag = 1; else tdr.MORE_flag = 0; iosize = uiop->uio_resid; } dprintso(so, 1, ("sosend_svc: sending 0x%x %d, %ld bytes\n", prim, tdr.MORE_flag, iosize)); mp = soallocproto1(&tdr, sizeof (tdr), 0, _ALLOC_INTR, CRED()); if (mp == NULL) { /* * Caught a signal waiting for memory. * Let send* return EINTR. */ return (EINTR); } error = kstrputmsg(SOTOV(so), mp, uiop, iosize, 0, sflag | MSG_BAND, 0); if (error) { eprintsoline(so, error); return (error); } if (uiop->uio_resid > 0) { /* * Recheck for fatal errors. Fail write even though * some data have been written. This is consistent * with strwrite semantics and BSD sockets semantics. */ if (so->so_state & SS_CANTSENDMORE) { eprintsoline(so, error); return (EPIPE); } if (so->so_error != 0) { mutex_enter(&so->so_lock); error = sogeterr(so, B_TRUE); mutex_exit(&so->so_lock); if (error != 0) { eprintsoline(so, error); return (error); } } } } while (uiop->uio_resid > 0); return (0); } /* * Check the state for errors and call the appropriate send function. * * If MSG_DONTROUTE is set (and SO_DONTROUTE isn't already set) * this function issues a setsockopt to toggle SO_DONTROUTE before and * after sending the message. */ static int sotpi_sendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, struct cred *cr) { int so_state; int so_mode; int error; struct sockaddr *name; t_uscalar_t namelen; int dontroute; int flags; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_sendmsg(%p, %p, 0x%x) state %s, error %d\n", (void *)so, (void *)msg, msg->msg_flags, pr_state(so->so_state, so->so_mode), so->so_error)); if (so->so_version == SOV_STREAM) { /* The imaginary "sockmod" has been popped - act as a stream */ so_update_attrs(so, SOMOD); return (strwrite(SOTOV(so), uiop, cr)); } mutex_enter(&so->so_lock); so_state = so->so_state; if (so_state & SS_CANTSENDMORE) { mutex_exit(&so->so_lock); return (EPIPE); } if (so->so_error != 0) { error = sogeterr(so, B_TRUE); if (error != 0) { mutex_exit(&so->so_lock); return (error); } } name = (struct sockaddr *)msg->msg_name; namelen = msg->msg_namelen; so_mode = so->so_mode; if (name == NULL) { if (!(so_state & SS_ISCONNECTED)) { mutex_exit(&so->so_lock); if (so_mode & SM_CONNREQUIRED) return (ENOTCONN); else return (EDESTADDRREQ); } if (so_mode & SM_CONNREQUIRED) { name = NULL; namelen = 0; } else { /* * Note that this code does not prevent sti_faddr_sa * from changing while it is being used. Thus * if an "unconnect"+connect occurs concurrently with * this send the datagram might be delivered to a * garbaled address. */ ASSERT(sti->sti_faddr_sa); name = sti->sti_faddr_sa; namelen = (t_uscalar_t)sti->sti_faddr_len; } } else { if (!(so_state & SS_ISCONNECTED) && (so_mode & SM_CONNREQUIRED)) { /* Required but not connected */ mutex_exit(&so->so_lock); return (ENOTCONN); } /* * Ignore the address on connection-oriented sockets. * Just like BSD this code does not generate an error for * TCP (a CONNREQUIRED socket) when sending to an address * passed in with sendto/sendmsg. Instead the data is * delivered on the connection as if no address had been * supplied. */ if ((so_state & SS_ISCONNECTED) && !(so_mode & SM_CONNREQUIRED)) { mutex_exit(&so->so_lock); return (EISCONN); } if (!(so_state & SS_ISBOUND)) { so_lock_single(so); /* Set SOLOCKED */ error = sotpi_bind(so, NULL, 0, _SOBIND_UNSPEC|_SOBIND_LOCK_HELD, cr); so_unlock_single(so, SOLOCKED); if (error) { mutex_exit(&so->so_lock); eprintsoline(so, error); return (error); } } /* * Handle delayed datagram errors. These are only queued * when the application sets SO_DGRAM_ERRIND. * Return the error if we are sending to the address * that was returned in the last T_UDERROR_IND. * If sending to some other address discard the delayed * error indication. */ if (sti->sti_delayed_error) { struct T_uderror_ind *tudi; void *addr; t_uscalar_t addrlen; boolean_t match = B_FALSE; ASSERT(sti->sti_eaddr_mp); error = sti->sti_delayed_error; sti->sti_delayed_error = 0; tudi = (struct T_uderror_ind *)sti->sti_eaddr_mp->b_rptr; addrlen = tudi->DEST_length; addr = sogetoff(sti->sti_eaddr_mp, tudi->DEST_offset, addrlen, 1); ASSERT(addr); /* Checked by strsock_proto */ switch (so->so_family) { case AF_INET: { /* Compare just IP address and port */ sin_t *sin1 = (sin_t *)name; sin_t *sin2 = (sin_t *)addr; if (addrlen == sizeof (sin_t) && namelen == addrlen && sin1->sin_port == sin2->sin_port && sin1->sin_addr.s_addr == sin2->sin_addr.s_addr) match = B_TRUE; break; } case AF_INET6: { /* Compare just IP address and port. Not flow */ sin6_t *sin1 = (sin6_t *)name; sin6_t *sin2 = (sin6_t *)addr; if (addrlen == sizeof (sin6_t) && namelen == addrlen && sin1->sin6_port == sin2->sin6_port && IN6_ARE_ADDR_EQUAL(&sin1->sin6_addr, &sin2->sin6_addr)) match = B_TRUE; break; } case AF_UNIX: default: if (namelen == addrlen && bcmp(name, addr, namelen) == 0) match = B_TRUE; } if (match) { freemsg(sti->sti_eaddr_mp); sti->sti_eaddr_mp = NULL; mutex_exit(&so->so_lock); #ifdef DEBUG dprintso(so, 0, ("sockfs delayed error %d for %s\n", error, pr_addr(so->so_family, name, namelen))); #endif /* DEBUG */ return (error); } freemsg(sti->sti_eaddr_mp); sti->sti_eaddr_mp = NULL; } } mutex_exit(&so->so_lock); flags = msg->msg_flags; dontroute = 0; if ((flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE)) { uint32_t val; val = 1; error = sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE, &val, (t_uscalar_t)sizeof (val), cr); if (error) return (error); dontroute = 1; } if ((flags & MSG_OOB) && !(so_mode & SM_EXDATA)) { error = EOPNOTSUPP; goto done; } if (msg->msg_controllen != 0) { if (!(so_mode & SM_CONNREQUIRED)) { so_update_attrs(so, SOMOD); error = sosend_dgramcmsg(so, name, namelen, uiop, msg->msg_control, msg->msg_controllen, flags); } else { if (flags & MSG_OOB) { /* Can't generate T_EXDATA_REQ with options */ error = EOPNOTSUPP; goto done; } so_update_attrs(so, SOMOD); error = sosend_svccmsg(so, uiop, !(flags & MSG_EOR), msg->msg_control, msg->msg_controllen, flags); } goto done; } so_update_attrs(so, SOMOD); if (!(so_mode & SM_CONNREQUIRED)) { /* * If there is no SO_DONTROUTE to turn off return immediately * from send_dgram. This can allow tail-call optimizations. */ if (!dontroute) { return (sosend_dgram(so, name, namelen, uiop, flags)); } error = sosend_dgram(so, name, namelen, uiop, flags); } else { t_scalar_t prim; int sflag; /* Ignore msg_name in the connected state */ if (flags & MSG_OOB) { prim = T_EXDATA_REQ; /* * Send down T_EXDATA_REQ even if there is flow * control for data. */ sflag = MSG_IGNFLOW; } else { if (so_mode & SM_BYTESTREAM) { /* Byte stream transport - use write */ dprintso(so, 1, ("sotpi_sendmsg: write\n")); /* Send M_DATA messages */ if ((sti->sti_nl7c_flags & NL7C_ENABLED) && (error = nl7c_data(so, uiop)) >= 0) { /* NL7C consumed the data */ return (error); } /* * If there is no SO_DONTROUTE to turn off, * sti_direct is on, and there is no flow * control, we can take the fast path. */ if (!dontroute && sti->sti_direct != 0 && canputnext(SOTOV(so)->v_stream->sd_wrq)) { return (sostream_direct(so, uiop, NULL, cr)); } error = strwrite(SOTOV(so), uiop, cr); goto done; } prim = T_DATA_REQ; sflag = 0; } /* * If there is no SO_DONTROUTE to turn off return immediately * from sosend_svc. This can allow tail-call optimizations. */ if (!dontroute) return (sosend_svc(so, uiop, prim, !(flags & MSG_EOR), sflag)); error = sosend_svc(so, uiop, prim, !(flags & MSG_EOR), sflag); } ASSERT(dontroute); done: if (dontroute) { uint32_t val; val = 0; (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE, &val, (t_uscalar_t)sizeof (val), cr); } return (error); } /* * kstrwritemp() has very similar semantics as that of strwrite(). * The main difference is it obtains mblks from the caller and also * does not do any copy as done in strwrite() from user buffers to * kernel buffers. * * Currently, this routine is used by sendfile to send data allocated * within the kernel without any copying. This interface does not use the * synchronous stream interface as synch. stream interface implies * copying. */ int kstrwritemp(struct vnode *vp, mblk_t *mp, ushort_t fmode) { struct stdata *stp; struct queue *wqp; mblk_t *newmp; char waitflag; int tempmode; int error = 0; int done = 0; struct sonode *so; boolean_t direct; ASSERT(vp->v_stream); stp = vp->v_stream; so = VTOSO(vp); direct = _SOTOTPI(so)->sti_direct; /* * This is the sockfs direct fast path. canputnext() need * not be accurate so we don't grab the sd_lock here. If * we get flow-controlled, we grab sd_lock just before the * do..while loop below to emulate what strwrite() does. */ wqp = stp->sd_wrq; if (canputnext(wqp) && direct && !(stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { return (sostream_direct(so, NULL, mp, CRED())); } else if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { /* Fast check of flags before acquiring the lock */ mutex_enter(&stp->sd_lock); error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0); mutex_exit(&stp->sd_lock); if (error != 0) { if (!(stp->sd_flag & STPLEX) && (stp->sd_wput_opt & SW_SIGPIPE)) { error = EPIPE; } return (error); } } waitflag = WRITEWAIT; if (stp->sd_flag & OLDNDELAY) tempmode = fmode & ~FNDELAY; else tempmode = fmode; mutex_enter(&stp->sd_lock); do { if (canputnext(wqp)) { mutex_exit(&stp->sd_lock); if (stp->sd_wputdatafunc != NULL) { newmp = (stp->sd_wputdatafunc)(vp, mp, NULL, NULL, NULL, NULL); if (newmp == NULL) { /* The caller will free mp */ return (ECOMM); } mp = newmp; } putnext(wqp, mp); return (0); } error = strwaitq(stp, waitflag, (ssize_t)0, tempmode, -1, &done); } while (error == 0 && !done); mutex_exit(&stp->sd_lock); /* * EAGAIN tells the application to try again. ENOMEM * is returned only if the memory allocation size * exceeds the physical limits of the system. ENOMEM * can't be true here. */ if (error == ENOMEM) error = EAGAIN; return (error); } /* ARGSUSED */ static int sotpi_sendmblk(struct sonode *so, struct nmsghdr *msg, int fflag, struct cred *cr, mblk_t **mpp) { int error; if (so->so_family != AF_INET && so->so_family != AF_INET6) return (EAFNOSUPPORT); if (so->so_state & SS_CANTSENDMORE) return (EPIPE); if (so->so_type != SOCK_STREAM) return (EOPNOTSUPP); if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); error = kstrwritemp(so->so_vnode, *mpp, fflag); if (error == 0) *mpp = NULL; return (error); } /* * Sending data on a datagram socket. * Assumes caller has verified that SS_ISBOUND etc. are set. */ /* ARGSUSED */ static int sodgram_direct(struct sonode *so, struct sockaddr *name, socklen_t namelen, struct uio *uiop, int flags) { struct T_unitdata_req tudr; mblk_t *mp = NULL; int error = 0; void *addr; socklen_t addrlen; ssize_t len; struct stdata *stp = SOTOV(so)->v_stream; int so_state; queue_t *udp_wq; boolean_t connected; mblk_t *mpdata = NULL; sotpi_info_t *sti = SOTOTPI(so); ASSERT(name != NULL && namelen != 0); ASSERT(!(so->so_mode & SM_CONNREQUIRED)); ASSERT(!(so->so_mode & SM_EXDATA)); ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6); ASSERT(SOTOV(so)->v_type == VSOCK); /* Caller checked for proper length */ len = uiop->uio_resid; ASSERT(len <= sti->sti_tidu_size); /* Length and family checks have been done by caller */ ASSERT(name->sa_family == so->so_family); ASSERT(so->so_family == AF_INET || (namelen == (socklen_t)sizeof (struct sockaddr_in6))); ASSERT(so->so_family == AF_INET6 || (namelen == (socklen_t)sizeof (struct sockaddr_in))); addr = name; addrlen = namelen; if (stp->sd_sidp != NULL && (error = straccess(stp, JCWRITE)) != 0) goto done; so_state = so->so_state; connected = so_state & SS_ISCONNECTED; if (!connected) { tudr.PRIM_type = T_UNITDATA_REQ; tudr.DEST_length = addrlen; tudr.DEST_offset = (t_scalar_t)sizeof (tudr); tudr.OPT_length = 0; tudr.OPT_offset = 0; mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, 0, _ALLOC_INTR, CRED()); if (mp == NULL) { /* * Caught a signal waiting for memory. * Let send* return EINTR. */ error = EINTR; goto done; } } /* * For UDP we don't break up the copyin into smaller pieces * as in the TCP case. That means if ENOMEM is returned by * mcopyinuio() then the uio vector has not been modified at * all and we fallback to either strwrite() or kstrputmsg() * below. Note also that we never generate priority messages * from here. */ udp_wq = stp->sd_wrq->q_next; if (canput(udp_wq) && (mpdata = mcopyinuio(stp, uiop, -1, -1, &error)) != NULL) { ASSERT(DB_TYPE(mpdata) == M_DATA); ASSERT(uiop->uio_resid == 0); if (!connected) linkb(mp, mpdata); else mp = mpdata; if (audit_active) audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); udp_wput(udp_wq, mp); return (0); } ASSERT(mpdata == NULL); if (error != 0 && error != ENOMEM) { freemsg(mp); return (error); } /* * For connected, let strwrite() handle the blocking case. * Otherwise we fall thru and use kstrputmsg(). */ if (connected) return (strwrite(SOTOV(so), uiop, CRED())); if (audit_active) audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); done: #ifdef SOCK_DEBUG if (error != 0) { eprintsoline(so, error); } #endif /* SOCK_DEBUG */ return (error); } int sostream_direct(struct sonode *so, struct uio *uiop, mblk_t *mp, cred_t *cr) { struct stdata *stp = SOTOV(so)->v_stream; ssize_t iosize, rmax, maxblk; queue_t *tcp_wq = stp->sd_wrq->q_next; mblk_t *newmp; int error = 0, wflag = 0; ASSERT(so->so_mode & SM_BYTESTREAM); ASSERT(SOTOV(so)->v_type == VSOCK); if (stp->sd_sidp != NULL && (error = straccess(stp, JCWRITE)) != 0) return (error); if (uiop == NULL) { /* * kstrwritemp() should have checked sd_flag and * flow-control before coming here. If we end up * here it means that we can simply pass down the * data to tcp. */ ASSERT(mp != NULL); if (stp->sd_wputdatafunc != NULL) { newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL, NULL, NULL, NULL); if (newmp == NULL) { /* The caller will free mp */ return (ECOMM); } mp = newmp; } tcp_wput(tcp_wq, mp); return (0); } /* Fallback to strwrite() to do proper error handling */ if (stp->sd_flag & (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY)) return (strwrite(SOTOV(so), uiop, cr)); rmax = stp->sd_qn_maxpsz; ASSERT(rmax >= 0 || rmax == INFPSZ); if (rmax == 0 || uiop->uio_resid <= 0) return (0); if (rmax == INFPSZ) rmax = uiop->uio_resid; maxblk = stp->sd_maxblk; for (;;) { iosize = MIN(uiop->uio_resid, rmax); mp = mcopyinuio(stp, uiop, iosize, maxblk, &error); if (mp == NULL) { /* * Fallback to strwrite() for ENOMEM; if this * is our first time in this routine and the uio * vector has not been modified, we will end up * calling strwrite() without any flag set. */ if (error == ENOMEM) goto slow_send; else return (error); } ASSERT(uiop->uio_resid >= 0); /* * If mp is non-NULL and ENOMEM is set, it means that * mcopyinuio() was able to break down some of the user * data into one or more mblks. Send the partial data * to tcp and let the rest be handled in strwrite(). */ ASSERT(error == 0 || error == ENOMEM); if (stp->sd_wputdatafunc != NULL) { newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL, NULL, NULL, NULL); if (newmp == NULL) { /* The caller will free mp */ return (ECOMM); } mp = newmp; } tcp_wput(tcp_wq, mp); wflag |= NOINTR; if (uiop->uio_resid == 0) { /* No more data; we're done */ ASSERT(error == 0); break; } else if (error == ENOMEM || !canput(tcp_wq) || (stp->sd_flag & (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY))) { slow_send: /* * We were able to send down partial data using * the direct call interface, but are now relying * on strwrite() to handle the non-fastpath cases. * If the socket is blocking we will sleep in * strwaitq() until write is permitted, otherwise, * we will need to return the amount of bytes * written so far back to the app. This is the * reason why we pass NOINTR flag to strwrite() * for non-blocking socket, because we don't want * to return EAGAIN when portion of the user data * has actually been sent down. */ return (strwrite_common(SOTOV(so), uiop, cr, wflag)); } } return (0); } /* * Update sti_faddr by asking the transport (unless AF_UNIX). */ /* ARGSUSED */ int sotpi_getpeername(struct sonode *so, struct sockaddr *name, socklen_t *namelen, boolean_t accept, struct cred *cr) { struct strbuf strbuf; int error = 0, res; void *addr; t_uscalar_t addrlen; k_sigset_t smask; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_getpeername(%p) %s\n", (void *)so, pr_state(so->so_state, so->so_mode))); ASSERT(*namelen > 0); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ if (accept) { bcopy(sti->sti_faddr_sa, name, MIN(*namelen, sti->sti_faddr_len)); *namelen = sti->sti_faddr_noxlate ? 0: sti->sti_faddr_len; goto done; } if (!(so->so_state & SS_ISCONNECTED)) { error = ENOTCONN; goto done; } /* Added this check for X/Open */ if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { error = EINVAL; if (xnet_check_print) { printf("sockfs: X/Open getpeername check => EINVAL\n"); } goto done; } if (sti->sti_faddr_valid) { bcopy(sti->sti_faddr_sa, name, MIN(*namelen, sti->sti_faddr_len)); *namelen = sti->sti_faddr_noxlate ? 0: sti->sti_faddr_len; goto done; } #ifdef DEBUG dprintso(so, 1, ("sotpi_getpeername (local): %s\n", pr_addr(so->so_family, sti->sti_faddr_sa, (t_uscalar_t)sti->sti_faddr_len))); #endif /* DEBUG */ if (so->so_family == AF_UNIX) { /* Transport has different name space - return local info */ if (sti->sti_faddr_noxlate) *namelen = 0; error = 0; goto done; } ASSERT(so->so_family != AF_UNIX && sti->sti_faddr_noxlate == 0); ASSERT(sti->sti_faddr_sa); /* Allocate local buffer to use with ioctl */ addrlen = (t_uscalar_t)sti->sti_faddr_maxlen; mutex_exit(&so->so_lock); addr = kmem_alloc(addrlen, KM_SLEEP); /* * Issue TI_GETPEERNAME with signals masked. * Put the result in sti_faddr_sa so that getpeername works after * a shutdown(output). * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted * back to the socket. */ strbuf.buf = addr; strbuf.maxlen = addrlen; strbuf.len = 0; sigintr(&smask, 0); res = 0; ASSERT(cr); error = strioctl(SOTOV(so), TI_GETPEERNAME, (intptr_t)&strbuf, 0, K_TO_K, cr, &res); sigunintr(&smask); mutex_enter(&so->so_lock); /* * If there is an error record the error in so_error put don't fail * the getpeername. Instead fallback on the recorded * sti->sti_faddr_sa. */ if (error) { /* * Various stream head errors can be returned to the ioctl. * However, it is impossible to determine which ones of * these are really socket level errors that were incorrectly * consumed by the ioctl. Thus this code silently ignores the * error - to code explicitly does not reinstate the error * using soseterror(). * Experiments have shows that at least this set of * errors are reported and should not be reinstated on the * socket: * EINVAL E.g. if an I_LINK was in effect when * getpeername was called. * EPIPE The ioctl error semantics prefer the write * side error over the read side error. * ENOTCONN The transport just got disconnected but * sockfs had not yet seen the T_DISCON_IND * when issuing the ioctl. */ error = 0; } else if (res == 0 && strbuf.len > 0 && (so->so_state & SS_ISCONNECTED)) { ASSERT(strbuf.len <= (int)sti->sti_faddr_maxlen); sti->sti_faddr_len = (socklen_t)strbuf.len; bcopy(addr, sti->sti_faddr_sa, sti->sti_faddr_len); sti->sti_faddr_valid = 1; bcopy(addr, name, MIN(*namelen, sti->sti_faddr_len)); *namelen = sti->sti_faddr_len; } kmem_free(addr, addrlen); #ifdef DEBUG dprintso(so, 1, ("sotpi_getpeername (tp): %s\n", pr_addr(so->so_family, sti->sti_faddr_sa, (t_uscalar_t)sti->sti_faddr_len))); #endif /* DEBUG */ done: so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); return (error); } /* * Update sti_laddr by asking the transport (unless AF_UNIX). */ int sotpi_getsockname(struct sonode *so, struct sockaddr *name, socklen_t *namelen, struct cred *cr) { struct strbuf strbuf; int error = 0, res; void *addr; t_uscalar_t addrlen; k_sigset_t smask; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_getsockname(%p) %s\n", (void *)so, pr_state(so->so_state, so->so_mode))); ASSERT(*namelen > 0); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ #ifdef DEBUG dprintso(so, 1, ("sotpi_getsockname (local): %s\n", pr_addr(so->so_family, sti->sti_laddr_sa, (t_uscalar_t)sti->sti_laddr_len))); #endif /* DEBUG */ if (sti->sti_laddr_valid) { bcopy(sti->sti_laddr_sa, name, MIN(*namelen, sti->sti_laddr_len)); *namelen = sti->sti_laddr_len; goto done; } if (so->so_family == AF_UNIX) { /* Transport has different name space - return local info */ error = 0; *namelen = 0; goto done; } if (!(so->so_state & SS_ISBOUND)) { /* If not bound, then nothing to return. */ error = 0; goto done; } /* Allocate local buffer to use with ioctl */ addrlen = (t_uscalar_t)sti->sti_laddr_maxlen; mutex_exit(&so->so_lock); addr = kmem_alloc(addrlen, KM_SLEEP); /* * Issue TI_GETMYNAME with signals masked. * Put the result in sti_laddr_sa so that getsockname works after * a shutdown(output). * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted * back to the socket. */ strbuf.buf = addr; strbuf.maxlen = addrlen; strbuf.len = 0; sigintr(&smask, 0); res = 0; ASSERT(cr); error = strioctl(SOTOV(so), TI_GETMYNAME, (intptr_t)&strbuf, 0, K_TO_K, cr, &res); sigunintr(&smask); mutex_enter(&so->so_lock); /* * If there is an error record the error in so_error put don't fail * the getsockname. Instead fallback on the recorded * sti->sti_laddr_sa. */ if (error) { /* * Various stream head errors can be returned to the ioctl. * However, it is impossible to determine which ones of * these are really socket level errors that were incorrectly * consumed by the ioctl. Thus this code silently ignores the * error - to code explicitly does not reinstate the error * using soseterror(). * Experiments have shows that at least this set of * errors are reported and should not be reinstated on the * socket: * EINVAL E.g. if an I_LINK was in effect when * getsockname was called. * EPIPE The ioctl error semantics prefer the write * side error over the read side error. */ error = 0; } else if (res == 0 && strbuf.len > 0 && (so->so_state & SS_ISBOUND)) { ASSERT(strbuf.len <= (int)sti->sti_laddr_maxlen); sti->sti_laddr_len = (socklen_t)strbuf.len; bcopy(addr, sti->sti_laddr_sa, sti->sti_laddr_len); sti->sti_laddr_valid = 1; bcopy(addr, name, MIN(sti->sti_laddr_len, *namelen)); *namelen = sti->sti_laddr_len; } kmem_free(addr, addrlen); #ifdef DEBUG dprintso(so, 1, ("sotpi_getsockname (tp): %s\n", pr_addr(so->so_family, sti->sti_laddr_sa, (t_uscalar_t)sti->sti_laddr_len))); #endif /* DEBUG */ done: so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); return (error); } /* * Get socket options. For SOL_SOCKET options some options are handled * by the sockfs while others use the value recorded in the sonode as a * fallback should the T_SVR4_OPTMGMT_REQ fail. * * On the return most *optlenp bytes are copied to optval. */ /* ARGSUSED */ int sotpi_getsockopt(struct sonode *so, int level, int option_name, void *optval, socklen_t *optlenp, int flags, struct cred *cr) { struct T_optmgmt_req optmgmt_req; struct T_optmgmt_ack *optmgmt_ack; struct opthdr oh; struct opthdr *opt_res; mblk_t *mp = NULL; int error = 0; void *option = NULL; /* Set if fallback value */ t_uscalar_t maxlen = *optlenp; t_uscalar_t len; uint32_t value; struct timeval tmo_val; /* used for SO_RCVTIMEO, SO_SNDTIMEO */ struct timeval32 tmo_val32; struct so_snd_bufinfo snd_bufinfo; /* used for zero copy */ dprintso(so, 1, ("sotpi_getsockopt(%p, 0x%x, 0x%x, %p, %p) %s\n", (void *)so, level, option_name, optval, (void *)optlenp, pr_state(so->so_state, so->so_mode))); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ /* * Check for SOL_SOCKET options. * Certain SOL_SOCKET options are returned directly whereas * others only provide a default (fallback) value should * the T_SVR4_OPTMGMT_REQ fail. */ if (level == SOL_SOCKET) { /* Check parameters */ switch (option_name) { case SO_TYPE: case SO_ERROR: case SO_DEBUG: case SO_ACCEPTCONN: case SO_REUSEADDR: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_BROADCAST: case SO_USELOOPBACK: case SO_OOBINLINE: case SO_SNDBUF: case SO_RCVBUF: #ifdef notyet case SO_SNDLOWAT: case SO_RCVLOWAT: #endif /* notyet */ case SO_DOMAIN: case SO_DGRAM_ERRIND: if (maxlen < (t_uscalar_t)sizeof (int32_t)) { error = EINVAL; eprintsoline(so, error); goto done2; } break; case SO_RCVTIMEO: case SO_SNDTIMEO: if (get_udatamodel() == DATAMODEL_NONE || get_udatamodel() == DATAMODEL_NATIVE) { if (maxlen < sizeof (struct timeval)) { error = EINVAL; eprintsoline(so, error); goto done2; } } else { if (maxlen < sizeof (struct timeval32)) { error = EINVAL; eprintsoline(so, error); goto done2; } } break; case SO_LINGER: if (maxlen < (t_uscalar_t)sizeof (struct linger)) { error = EINVAL; eprintsoline(so, error); goto done2; } break; case SO_SND_BUFINFO: if (maxlen < (t_uscalar_t) sizeof (struct so_snd_bufinfo)) { error = EINVAL; eprintsoline(so, error); goto done2; } break; } len = (t_uscalar_t)sizeof (uint32_t); /* Default */ switch (option_name) { case SO_TYPE: value = so->so_type; option = &value; goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ case SO_ERROR: value = sogeterr(so, B_TRUE); option = &value; goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ case SO_ACCEPTCONN: if (so->so_state & SS_ACCEPTCONN) value = SO_ACCEPTCONN; else value = 0; #ifdef DEBUG if (value) { dprintso(so, 1, ("sotpi_getsockopt: 0x%x is set\n", option_name)); } else { dprintso(so, 1, ("sotpi_getsockopt: 0x%x not set\n", option_name)); } #endif /* DEBUG */ option = &value; goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ case SO_DEBUG: case SO_REUSEADDR: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_BROADCAST: case SO_USELOOPBACK: case SO_OOBINLINE: case SO_DGRAM_ERRIND: value = (so->so_options & option_name); #ifdef DEBUG if (value) { dprintso(so, 1, ("sotpi_getsockopt: 0x%x is set\n", option_name)); } else { dprintso(so, 1, ("sotpi_getsockopt: 0x%x not set\n", option_name)); } #endif /* DEBUG */ option = &value; goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ /* * The following options are only returned by sockfs when the * T_SVR4_OPTMGMT_REQ fails. */ case SO_LINGER: option = &so->so_linger; len = (t_uscalar_t)sizeof (struct linger); break; case SO_SNDBUF: { ssize_t lvalue; /* * If the option has not been set then get a default * value from the read queue. This value is * returned if the transport fails * the T_SVR4_OPTMGMT_REQ. */ lvalue = so->so_sndbuf; if (lvalue == 0) { mutex_exit(&so->so_lock); (void) strqget(strvp2wq(SOTOV(so))->q_next, QHIWAT, 0, &lvalue); mutex_enter(&so->so_lock); dprintso(so, 1, ("got SO_SNDBUF %ld from q\n", lvalue)); } value = (int)lvalue; option = &value; len = (t_uscalar_t)sizeof (so->so_sndbuf); break; } case SO_RCVBUF: { ssize_t lvalue; /* * If the option has not been set then get a default * value from the read queue. This value is * returned if the transport fails * the T_SVR4_OPTMGMT_REQ. * * XXX If SO_RCVBUF has been set and this is an * XPG 4.2 application then do not ask the transport * since the transport might adjust the value and not * return exactly what was set by the application. * For non-XPG 4.2 application we return the value * that the transport is actually using. */ lvalue = so->so_rcvbuf; if (lvalue == 0) { mutex_exit(&so->so_lock); (void) strqget(RD(strvp2wq(SOTOV(so))), QHIWAT, 0, &lvalue); mutex_enter(&so->so_lock); dprintso(so, 1, ("got SO_RCVBUF %ld from q\n", lvalue)); } else if (flags & _SOGETSOCKOPT_XPG4_2) { value = (int)lvalue; option = &value; goto copyout; /* skip asking transport */ } value = (int)lvalue; option = &value; len = (t_uscalar_t)sizeof (so->so_rcvbuf); break; } case SO_DOMAIN: value = so->so_family; option = &value; goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ #ifdef notyet /* * We do not implement the semantics of these options * thus we shouldn't implement the options either. */ case SO_SNDLOWAT: value = so->so_sndlowat; option = &value; break; case SO_RCVLOWAT: value = so->so_rcvlowat; option = &value; break; #endif /* notyet */ case SO_SNDTIMEO: case SO_RCVTIMEO: { clock_t val; if (option_name == SO_RCVTIMEO) val = drv_hztousec(so->so_rcvtimeo); else val = drv_hztousec(so->so_sndtimeo); tmo_val.tv_sec = val / (1000 * 1000); tmo_val.tv_usec = val % (1000 * 1000); if (get_udatamodel() == DATAMODEL_NONE || get_udatamodel() == DATAMODEL_NATIVE) { option = &tmo_val; len = sizeof (struct timeval); } else { TIMEVAL_TO_TIMEVAL32(&tmo_val32, &tmo_val); option = &tmo_val32; len = sizeof (struct timeval32); } break; } case SO_SND_BUFINFO: { snd_bufinfo.sbi_wroff = (so->so_proto_props).sopp_wroff; snd_bufinfo.sbi_maxblk = (so->so_proto_props).sopp_maxblk; snd_bufinfo.sbi_maxpsz = (so->so_proto_props).sopp_maxpsz; snd_bufinfo.sbi_tail = (so->so_proto_props).sopp_tail; option = &snd_bufinfo; len = (t_uscalar_t)sizeof (struct so_snd_bufinfo); break; } } } mutex_exit(&so->so_lock); /* Send request */ optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ; optmgmt_req.MGMT_flags = T_CHECK; optmgmt_req.OPT_length = (t_scalar_t)(sizeof (oh) + maxlen); optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req); oh.level = level; oh.name = option_name; oh.len = maxlen; mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req), &oh, sizeof (oh), NULL, maxlen, 0, _ALLOC_SLEEP, cr); /* Let option management work in the presence of data flow control */ error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); mp = NULL; mutex_enter(&so->so_lock); if (error) { eprintsoline(so, error); goto done2; } error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK, (t_uscalar_t)(sizeof (*optmgmt_ack) + sizeof (*opt_res)), &mp, 0); if (error) { if (option != NULL) { /* We have a fallback value */ error = 0; goto copyout; } eprintsoline(so, error); goto done2; } ASSERT(mp); optmgmt_ack = (struct T_optmgmt_ack *)mp->b_rptr; opt_res = (struct opthdr *)sogetoff(mp, optmgmt_ack->OPT_offset, optmgmt_ack->OPT_length, __TPI_ALIGN_SIZE); if (opt_res == NULL) { if (option != NULL) { /* We have a fallback value */ error = 0; goto copyout; } error = EPROTO; eprintsoline(so, error); goto done; } option = &opt_res[1]; /* check to ensure that the option is within bounds */ if (((uintptr_t)option + opt_res->len < (uintptr_t)option) || (uintptr_t)option + opt_res->len > (uintptr_t)mp->b_wptr) { if (option != NULL) { /* We have a fallback value */ error = 0; goto copyout; } error = EPROTO; eprintsoline(so, error); goto done; } len = opt_res->len; copyout: { t_uscalar_t size = MIN(len, maxlen); bcopy(option, optval, size); bcopy(&size, optlenp, sizeof (size)); } done: freemsg(mp); done2: so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); return (error); } /* * Set socket options. All options are passed down in a T_SVR4_OPTMGMT_REQ. * SOL_SOCKET options are also recorded in the sonode. A setsockopt for * SOL_SOCKET options will not fail just because the T_SVR4_OPTMGMT_REQ fails - * setsockopt has to work even if the transport does not support the option. */ /* ARGSUSED */ int sotpi_setsockopt(struct sonode *so, int level, int option_name, const void *optval, t_uscalar_t optlen, struct cred *cr) { struct T_optmgmt_req optmgmt_req; struct opthdr oh; mblk_t *mp; int error = 0; boolean_t handled = B_FALSE; dprintso(so, 1, ("sotpi_setsockopt(%p, 0x%x, 0x%x, %p, %d) %s\n", (void *)so, level, option_name, optval, optlen, pr_state(so->so_state, so->so_mode))); /* X/Open requires this check */ if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { if (xnet_check_print) printf("sockfs: X/Open setsockopt check => EINVAL\n"); return (EINVAL); } mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ mutex_exit(&so->so_lock); /* * For SOCKET or TCP level options, try to set it here itself * provided socket has not been popped and we know the tcp * structure (stored in so_priv). */ if ((level == SOL_SOCKET || level == IPPROTO_TCP) && (so->so_family == AF_INET || so->so_family == AF_INET6) && (so->so_version == SOV_SOCKSTREAM) && (so->so_proto_handle != NULL)) { tcp_t *tcp = (tcp_t *)so->so_proto_handle; boolean_t onoff; #define intvalue (*(int32_t *)optval) switch (level) { case SOL_SOCKET: switch (option_name) { /* Check length param */ case SO_DEBUG: case SO_REUSEADDR: case SO_DONTROUTE: case SO_BROADCAST: case SO_USELOOPBACK: case SO_OOBINLINE: case SO_DGRAM_ERRIND: if (optlen != (t_uscalar_t)sizeof (int32_t)) { error = EINVAL; eprintsoline(so, error); mutex_enter(&so->so_lock); goto done2; } ASSERT(optval); onoff = intvalue != 0; handled = B_TRUE; break; case SO_SNDTIMEO: case SO_RCVTIMEO: if (get_udatamodel() == DATAMODEL_NONE || get_udatamodel() == DATAMODEL_NATIVE) { if (optlen != sizeof (struct timeval)) { error = EINVAL; eprintsoline(so, error); mutex_enter(&so->so_lock); goto done2; } } else { if (optlen != sizeof (struct timeval32)) { error = EINVAL; eprintsoline(so, error); mutex_enter(&so->so_lock); goto done2; } } ASSERT(optval); handled = B_TRUE; break; case SO_LINGER: if (optlen != (t_uscalar_t)sizeof (struct linger)) { error = EINVAL; eprintsoline(so, error); mutex_enter(&so->so_lock); goto done2; } ASSERT(optval); handled = B_TRUE; break; } switch (option_name) { /* Do actions */ case SO_LINGER: { struct linger *lgr = (struct linger *)optval; if (lgr->l_onoff) { tcp->tcp_linger = 1; tcp->tcp_lingertime = lgr->l_linger; so->so_linger.l_onoff = SO_LINGER; so->so_options |= SO_LINGER; } else { tcp->tcp_linger = 0; tcp->tcp_lingertime = 0; so->so_linger.l_onoff = 0; so->so_options &= ~SO_LINGER; } so->so_linger.l_linger = lgr->l_linger; handled = B_TRUE; break; } case SO_SNDTIMEO: case SO_RCVTIMEO: { struct timeval tl; clock_t val; if (get_udatamodel() == DATAMODEL_NONE || get_udatamodel() == DATAMODEL_NATIVE) bcopy(&tl, (struct timeval *)optval, sizeof (struct timeval)); else TIMEVAL32_TO_TIMEVAL(&tl, (struct timeval32 *)optval); val = tl.tv_sec * 1000 * 1000 + tl.tv_usec; if (option_name == SO_RCVTIMEO) so->so_rcvtimeo = drv_usectohz(val); else so->so_sndtimeo = drv_usectohz(val); break; } case SO_DEBUG: tcp->tcp_debug = onoff; #ifdef SOCK_TEST if (intvalue & 2) sock_test_timelimit = 10 * hz; else sock_test_timelimit = 0; if (intvalue & 4) do_useracc = 0; else do_useracc = 1; #endif /* SOCK_TEST */ break; case SO_DONTROUTE: /* * SO_DONTROUTE, SO_USELOOPBACK and * SO_BROADCAST are only of interest to IP. * We track them here only so * that we can report their current value. */ tcp->tcp_dontroute = onoff; if (onoff) so->so_options |= option_name; else so->so_options &= ~option_name; break; case SO_USELOOPBACK: tcp->tcp_useloopback = onoff; if (onoff) so->so_options |= option_name; else so->so_options &= ~option_name; break; case SO_BROADCAST: tcp->tcp_broadcast = onoff; if (onoff) so->so_options |= option_name; else so->so_options &= ~option_name; break; case SO_REUSEADDR: tcp->tcp_reuseaddr = onoff; if (onoff) so->so_options |= option_name; else so->so_options &= ~option_name; break; case SO_OOBINLINE: tcp->tcp_oobinline = onoff; if (onoff) so->so_options |= option_name; else so->so_options &= ~option_name; break; case SO_DGRAM_ERRIND: tcp->tcp_dgram_errind = onoff; if (onoff) so->so_options |= option_name; else so->so_options &= ~option_name; break; } break; case IPPROTO_TCP: switch (option_name) { case TCP_NODELAY: if (optlen != (t_uscalar_t)sizeof (int32_t)) { error = EINVAL; eprintsoline(so, error); mutex_enter(&so->so_lock); goto done2; } ASSERT(optval); tcp->tcp_naglim = intvalue ? 1 : tcp->tcp_mss; handled = B_TRUE; break; } break; default: handled = B_FALSE; break; } } if (handled) { mutex_enter(&so->so_lock); goto done2; } optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ; optmgmt_req.MGMT_flags = T_NEGOTIATE; optmgmt_req.OPT_length = (t_scalar_t)sizeof (oh) + optlen; optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req); oh.level = level; oh.name = option_name; oh.len = optlen; mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req), &oh, sizeof (oh), optval, optlen, 0, _ALLOC_SLEEP, cr); /* Let option management work in the presence of data flow control */ error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); mp = NULL; mutex_enter(&so->so_lock); if (error) { eprintsoline(so, error); goto done2; } error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK, (t_uscalar_t)sizeof (struct T_optmgmt_ack), &mp, 0); if (error) { eprintsoline(so, error); goto done; } ASSERT(mp); /* No need to verify T_optmgmt_ack */ freemsg(mp); done: /* * Check for SOL_SOCKET options and record their values. * If we know about a SOL_SOCKET parameter and the transport * failed it with TBADOPT or TOUTSTATE (i.e. ENOPROTOOPT or * EPROTO) we let the setsockopt succeed. */ if (level == SOL_SOCKET) { /* Check parameters */ switch (option_name) { case SO_DEBUG: case SO_REUSEADDR: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_BROADCAST: case SO_USELOOPBACK: case SO_OOBINLINE: case SO_SNDBUF: case SO_RCVBUF: #ifdef notyet case SO_SNDLOWAT: case SO_RCVLOWAT: #endif /* notyet */ case SO_DGRAM_ERRIND: if (optlen != (t_uscalar_t)sizeof (int32_t)) { error = EINVAL; eprintsoline(so, error); goto done2; } ASSERT(optval); handled = B_TRUE; break; case SO_SNDTIMEO: case SO_RCVTIMEO: if (get_udatamodel() == DATAMODEL_NONE || get_udatamodel() == DATAMODEL_NATIVE) { if (optlen != sizeof (struct timeval)) { error = EINVAL; eprintsoline(so, error); goto done2; } } else { if (optlen != sizeof (struct timeval32)) { error = EINVAL; eprintsoline(so, error); goto done2; } } ASSERT(optval); handled = B_TRUE; break; case SO_LINGER: if (optlen != (t_uscalar_t)sizeof (struct linger)) { error = EINVAL; eprintsoline(so, error); goto done2; } ASSERT(optval); handled = B_TRUE; break; } #define intvalue (*(int32_t *)optval) switch (option_name) { case SO_TYPE: case SO_ERROR: case SO_ACCEPTCONN: /* Can't be set */ error = ENOPROTOOPT; goto done2; case SO_LINGER: { struct linger *l = (struct linger *)optval; so->so_linger.l_linger = l->l_linger; if (l->l_onoff) { so->so_linger.l_onoff = SO_LINGER; so->so_options |= SO_LINGER; } else { so->so_linger.l_onoff = 0; so->so_options &= ~SO_LINGER; } break; } case SO_DEBUG: #ifdef SOCK_TEST if (intvalue & 2) sock_test_timelimit = 10 * hz; else sock_test_timelimit = 0; if (intvalue & 4) do_useracc = 0; else do_useracc = 1; #endif /* SOCK_TEST */ /* FALLTHRU */ case SO_REUSEADDR: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_BROADCAST: case SO_USELOOPBACK: case SO_OOBINLINE: case SO_DGRAM_ERRIND: if (intvalue != 0) { dprintso(so, 1, ("socket_setsockopt: setting 0x%x\n", option_name)); so->so_options |= option_name; } else { dprintso(so, 1, ("socket_setsockopt: clearing 0x%x\n", option_name)); so->so_options &= ~option_name; } break; /* * The following options are only returned by us when the * transport layer fails. * XXX XPG 4.2 applications retrieve SO_RCVBUF from sockfs * since the transport might adjust the value and not * return exactly what was set by the application. */ case SO_SNDBUF: so->so_sndbuf = intvalue; break; case SO_RCVBUF: so->so_rcvbuf = intvalue; break; case SO_RCVPSH: so->so_rcv_timer_interval = intvalue; break; #ifdef notyet /* * We do not implement the semantics of these options * thus we shouldn't implement the options either. */ case SO_SNDLOWAT: so->so_sndlowat = intvalue; break; case SO_RCVLOWAT: so->so_rcvlowat = intvalue; break; #endif /* notyet */ case SO_SNDTIMEO: case SO_RCVTIMEO: { struct timeval tl; clock_t val; if (get_udatamodel() == DATAMODEL_NONE || get_udatamodel() == DATAMODEL_NATIVE) bcopy(&tl, (struct timeval *)optval, sizeof (struct timeval)); else TIMEVAL32_TO_TIMEVAL(&tl, (struct timeval32 *)optval); val = tl.tv_sec * 1000 * 1000 + tl.tv_usec; if (option_name == SO_RCVTIMEO) so->so_rcvtimeo = drv_usectohz(val); else so->so_sndtimeo = drv_usectohz(val); break; } } #undef intvalue if (error) { if ((error == ENOPROTOOPT || error == EPROTO || error == EINVAL) && handled) { dprintso(so, 1, ("setsockopt: ignoring error %d for 0x%x\n", error, option_name)); error = 0; } } } done2: so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); return (error); } /* * sotpi_close() is called when the last open reference goes away. */ /* ARGSUSED */ int sotpi_close(struct sonode *so, int flag, struct cred *cr) { struct vnode *vp = SOTOV(so); dev_t dev; int error = 0; sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 1, ("sotpi_close(%p, %x) %s\n", (void *)vp, flag, pr_state(so->so_state, so->so_mode))); dev = sti->sti_dev; ASSERT(STREAMSTAB(getmajor(dev))); mutex_enter(&so->so_lock); so_lock_single(so); /* Set SOLOCKED */ ASSERT(so_verify_oobstate(so)); if (sti->sti_nl7c_flags & NL7C_ENABLED) { sti->sti_nl7c_flags = 0; nl7c_close(so); } if (vp->v_stream != NULL) { vnode_t *ux_vp; if (so->so_family == AF_UNIX) { /* Could avoid this when CANTSENDMORE for !dgram */ so_unix_close(so); } mutex_exit(&so->so_lock); /* * Disassemble the linkage from the AF_UNIX underlying file * system vnode to this socket (by atomically clearing * v_stream in vn_rele_stream) before strclose clears sd_vnode * and frees the stream head. */ if ((ux_vp = sti->sti_ux_bound_vp) != NULL) { ASSERT(ux_vp->v_stream); sti->sti_ux_bound_vp = NULL; vn_rele_stream(ux_vp); } if (so->so_family == AF_INET || so->so_family == AF_INET6) { strsetrwputdatahooks(SOTOV(so), NULL, NULL); if (sti->sti_kssl_ent != NULL) { kssl_release_ent(sti->sti_kssl_ent, so, sti->sti_kssl_type); sti->sti_kssl_ent = NULL; } if (sti->sti_kssl_ctx != NULL) { kssl_release_ctx(sti->sti_kssl_ctx); sti->sti_kssl_ctx = NULL; } sti->sti_kssl_type = KSSL_NO_PROXY; } error = strclose(vp, flag, cr); vp->v_stream = NULL; mutex_enter(&so->so_lock); } /* * Flush the T_DISCON_IND on sti_discon_ind_mp. */ so_flush_discon_ind(so); so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); /* * Needed for STREAMs. * Decrement the device driver's reference count for streams * opened via the clone dip. The driver was held in clone_open(). * The absence of clone_close() forces this asymmetry. */ if (so->so_flag & SOCLONE) ddi_rele_driver(getmajor(dev)); return (error); } static int sotpi_ioctl(struct sonode *so, int cmd, intptr_t arg, int mode, struct cred *cr, int32_t *rvalp) { struct vnode *vp = SOTOV(so); sotpi_info_t *sti = SOTOTPI(so); int error = 0; dprintso(so, 0, ("sotpi_ioctl: cmd 0x%x, arg 0x%lx, state %s\n", cmd, arg, pr_state(so->so_state, so->so_mode))); switch (cmd) { case SIOCSQPTR: /* * SIOCSQPTR is valid only when helper stream is created * by the protocol. */ case _I_INSERT: case _I_REMOVE: /* * Since there's no compelling reason to support these ioctls * on sockets, and doing so would increase the complexity * markedly, prevent it. */ return (EOPNOTSUPP); case I_FIND: case I_LIST: case I_LOOK: case I_POP: case I_PUSH: /* * To prevent races and inconsistencies between the actual * state of the stream and the state according to the sonode, * we serialize all operations which modify or operate on the * list of modules on the socket's stream. */ mutex_enter(&sti->sti_plumb_lock); error = socktpi_plumbioctl(vp, cmd, arg, mode, cr, rvalp); mutex_exit(&sti->sti_plumb_lock); return (error); default: if (so->so_version != SOV_STREAM) break; /* * The imaginary "sockmod" has been popped; act as a stream. */ return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); } ASSERT(so->so_version != SOV_STREAM); /* * Process socket-specific ioctls. */ switch (cmd) { case FIONBIO: { int32_t value; if (so_copyin((void *)arg, &value, sizeof (int32_t), (mode & (int)FKIOCTL))) return (EFAULT); mutex_enter(&so->so_lock); if (value) { so->so_state |= SS_NDELAY; } else { so->so_state &= ~SS_NDELAY; } mutex_exit(&so->so_lock); return (0); } case FIOASYNC: { int32_t value; if (so_copyin((void *)arg, &value, sizeof (int32_t), (mode & (int)FKIOCTL))) return (EFAULT); mutex_enter(&so->so_lock); /* * SS_ASYNC flag not already set correctly? * (!value != !(so->so_state & SS_ASYNC)) * but some engineers find that too hard to read. */ if (value == 0 && (so->so_state & SS_ASYNC) != 0 || value != 0 && (so->so_state & SS_ASYNC) == 0) error = so_flip_async(so, vp, mode, cr); mutex_exit(&so->so_lock); return (error); } case SIOCSPGRP: case FIOSETOWN: { pid_t pgrp; if (so_copyin((void *)arg, &pgrp, sizeof (pid_t), (mode & (int)FKIOCTL))) return (EFAULT); mutex_enter(&so->so_lock); dprintso(so, 1, ("setown: new %d old %d\n", pgrp, so->so_pgrp)); /* Any change? */ if (pgrp != so->so_pgrp) error = so_set_siggrp(so, vp, pgrp, mode, cr); mutex_exit(&so->so_lock); return (error); } case SIOCGPGRP: case FIOGETOWN: if (so_copyout(&so->so_pgrp, (void *)arg, sizeof (pid_t), (mode & (int)FKIOCTL))) return (EFAULT); return (0); case SIOCATMARK: { int retval; uint_t so_state; /* * strwaitmark has a finite timeout after which it * returns -1 if the mark state is undetermined. * In order to avoid any race between the mark state * in sockfs and the mark state in the stream head this * routine loops until the mark state can be determined * (or the urgent data indication has been removed by some * other thread). */ do { mutex_enter(&so->so_lock); so_state = so->so_state; mutex_exit(&so->so_lock); if (so_state & SS_RCVATMARK) { retval = 1; } else if (!(so_state & SS_OOBPEND)) { /* * No SIGURG has been generated -- there is no * pending or present urgent data. Thus can't * possibly be at the mark. */ retval = 0; } else { /* * Have the stream head wait until there is * either some messages on the read queue, or * STRATMARK or STRNOTATMARK gets set. The * STRNOTATMARK flag is used so that the * transport can send up a MSGNOTMARKNEXT * M_DATA to indicate that it is not * at the mark and additional data is not about * to be send upstream. * * If the mark state is undetermined this will * return -1 and we will loop rechecking the * socket state. */ retval = strwaitmark(vp); } } while (retval == -1); if (so_copyout(&retval, (void *)arg, sizeof (int), (mode & (int)FKIOCTL))) return (EFAULT); return (0); } case I_FDINSERT: case I_SENDFD: case I_RECVFD: case I_ATMARK: case _SIOCSOCKFALLBACK: /* * These ioctls do not apply to sockets. I_FDINSERT can be * used to send M_PROTO messages without modifying the socket * state. I_SENDFD/RECVFD should not be used for socket file * descriptor passing since they assume a twisted stream. * SIOCATMARK must be used instead of I_ATMARK. * * _SIOCSOCKFALLBACK from an application should never be * processed. It is only generated by socktpi_open() or * in response to I_POP or I_PUSH. */ #ifdef DEBUG zcmn_err(getzoneid(), CE_WARN, "Unsupported STREAMS ioctl 0x%x on socket. " "Pid = %d\n", cmd, curproc->p_pid); #endif /* DEBUG */ return (EOPNOTSUPP); case _I_GETPEERCRED: if ((mode & FKIOCTL) == 0) return (EINVAL); mutex_enter(&so->so_lock); if ((so->so_mode & SM_CONNREQUIRED) == 0) { error = ENOTSUP; } else if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; } else if (so->so_peercred != NULL) { k_peercred_t *kp = (k_peercred_t *)arg; kp->pc_cr = so->so_peercred; kp->pc_cpid = so->so_cpid; crhold(so->so_peercred); } else { error = EINVAL; } mutex_exit(&so->so_lock); return (error); default: /* * Do the higher-order bits of the ioctl cmd indicate * that it is an I_* streams ioctl? */ if ((cmd & 0xffffff00U) == STR && so->so_version == SOV_SOCKBSD) { #ifdef DEBUG zcmn_err(getzoneid(), CE_WARN, "Unsupported STREAMS ioctl 0x%x on socket. " "Pid = %d\n", cmd, curproc->p_pid); #endif /* DEBUG */ return (EOPNOTSUPP); } return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); } } /* * Handle plumbing-related ioctls. */ static int socktpi_plumbioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, int32_t *rvalp) { static const char sockmod_name[] = "sockmod"; struct sonode *so = VTOSO(vp); char mname[FMNAMESZ + 1]; int error; sotpi_info_t *sti = SOTOTPI(so); ASSERT(MUTEX_HELD(&sti->sti_plumb_lock)); if (so->so_version == SOV_SOCKBSD) return (EOPNOTSUPP); if (so->so_version == SOV_STREAM) { /* * The imaginary "sockmod" has been popped - act as a stream. * If this is a push of sockmod then change back to a socket. */ if (cmd == I_PUSH) { error = ((mode & FKIOCTL) ? copystr : copyinstr)( (void *)arg, mname, sizeof (mname), NULL); if (error == 0 && strcmp(mname, sockmod_name) == 0) { dprintso(so, 0, ("socktpi_ioctl: going to " "socket version\n")); so_stream2sock(so); return (0); } } return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); } switch (cmd) { case I_PUSH: if (sti->sti_direct) { mutex_enter(&so->so_lock); so_lock_single(so); mutex_exit(&so->so_lock); error = strioctl(vp, _SIOCSOCKFALLBACK, 0, 0, K_TO_K, cr, rvalp); mutex_enter(&so->so_lock); if (error == 0) sti->sti_direct = 0; so_unlock_single(so, SOLOCKED); mutex_exit(&so->so_lock); if (error != 0) return (error); } error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); if (error == 0) sti->sti_pushcnt++; return (error); case I_POP: if (sti->sti_pushcnt == 0) { /* Emulate sockmod being popped */ dprintso(so, 0, ("socktpi_ioctl: going to STREAMS version\n")); return (so_sock2stream(so)); } error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); if (error == 0) sti->sti_pushcnt--; return (error); case I_LIST: { struct str_mlist *kmlistp, *umlistp; struct str_list kstrlist; ssize_t kstrlistsize; int i, nmods; STRUCT_DECL(str_list, ustrlist); STRUCT_INIT(ustrlist, mode); if (arg == NULL) { error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); if (error == 0) (*rvalp)++; /* Add one for sockmod */ return (error); } error = so_copyin((void *)arg, STRUCT_BUF(ustrlist), STRUCT_SIZE(ustrlist), mode & FKIOCTL); if (error != 0) return (error); nmods = STRUCT_FGET(ustrlist, sl_nmods); if (nmods <= 0) return (EINVAL); /* * Ceiling nmods at nstrpush to prevent someone from * maliciously consuming lots of kernel memory. */ nmods = MIN(nmods, nstrpush); kstrlistsize = (nmods + 1) * sizeof (struct str_mlist); kstrlist.sl_nmods = nmods; kstrlist.sl_modlist = kmem_zalloc(kstrlistsize, KM_SLEEP); error = strioctl(vp, cmd, (intptr_t)&kstrlist, mode, K_TO_K, cr, rvalp); if (error != 0) goto done; /* * Considering the module list as a 0-based array of sl_nmods * modules, sockmod should conceptually exist at slot * sti_pushcnt. Insert sockmod at this location by sliding all * of the module names after so_pushcnt over by one. We know * that there will be room to do this since we allocated * sl_modlist with an additional slot. */ for (i = kstrlist.sl_nmods; i > sti->sti_pushcnt; i--) kstrlist.sl_modlist[i] = kstrlist.sl_modlist[i - 1]; (void) strcpy(kstrlist.sl_modlist[i].l_name, sockmod_name); kstrlist.sl_nmods++; /* * Copy all of the entries out to ustrlist. */ kmlistp = kstrlist.sl_modlist; umlistp = STRUCT_FGETP(ustrlist, sl_modlist); for (i = 0; i < nmods && i < kstrlist.sl_nmods; i++) { error = so_copyout(kmlistp++, umlistp++, sizeof (struct str_mlist), mode & FKIOCTL); if (error != 0) goto done; } error = so_copyout(&i, (void *)arg, sizeof (int32_t), mode & FKIOCTL); if (error == 0) *rvalp = 0; done: kmem_free(kstrlist.sl_modlist, kstrlistsize); return (error); } case I_LOOK: if (sti->sti_pushcnt == 0) { return (so_copyout(sockmod_name, (void *)arg, sizeof (sockmod_name), mode & FKIOCTL)); } return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); case I_FIND: error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); if (error && error != EINVAL) return (error); /* if not found and string was sockmod return 1 */ if (*rvalp == 0 || error == EINVAL) { error = ((mode & FKIOCTL) ? copystr : copyinstr)( (void *)arg, mname, sizeof (mname), NULL); if (error == ENAMETOOLONG) error = EINVAL; if (error == 0 && strcmp(mname, sockmod_name) == 0) *rvalp = 1; } return (error); default: panic("socktpi_plumbioctl: unknown ioctl %d", cmd); break; } return (0); } /* * Wrapper around the streams poll routine that implements socket poll * semantics. * The sockfs never calls pollwakeup itself - the stream head take care * of all pollwakeups. Since sockfs never holds so_lock when calling the * stream head there can never be a deadlock due to holding so_lock across * pollwakeup and acquiring so_lock in this routine. * * However, since the performance of VOP_POLL is critical we avoid * acquiring so_lock here. This is based on two assumptions: * - The poll implementation holds locks to serialize the VOP_POLL call * and a pollwakeup for the same pollhead. This ensures that should * e.g. so_state change during a socktpi_poll call the pollwakeup * (which strsock_* and strrput conspire to issue) is issued after * the state change. Thus the pollwakeup will block until VOP_POLL has * returned and then wake up poll and have it call VOP_POLL again. * - The reading of so_state without holding so_lock does not result in * stale data that is older than the latest state change that has dropped * so_lock. This is ensured by the mutex_exit issuing the appropriate * memory barrier to force the data into the coherency domain. */ static int sotpi_poll( struct sonode *so, short events, int anyyet, short *reventsp, struct pollhead **phpp) { short origevents = events; struct vnode *vp = SOTOV(so); int error; int so_state = so->so_state; /* snapshot */ sotpi_info_t *sti = SOTOTPI(so); dprintso(so, 0, ("socktpi_poll(%p): state %s err %d\n", (void *)vp, pr_state(so_state, so->so_mode), so->so_error)); ASSERT(vp->v_type == VSOCK); ASSERT(vp->v_stream != NULL); if (so->so_version == SOV_STREAM) { /* The imaginary "sockmod" has been popped - act as a stream */ return (strpoll(vp->v_stream, events, anyyet, reventsp, phpp)); } if (!(so_state & SS_ISCONNECTED) && (so->so_mode & SM_CONNREQUIRED)) { /* Not connected yet - turn off write side events */ events &= ~(POLLOUT|POLLWRBAND); } /* * Check for errors without calling strpoll if the caller wants them. * In sockets the errors are represented as input/output events * and there is no need to ask the stream head for this information. */ if (so->so_error != 0 && ((POLLIN|POLLRDNORM|POLLOUT) & origevents) != 0) { *reventsp = (POLLIN|POLLRDNORM|POLLOUT) & origevents; return (0); } /* * Ignore M_PROTO only messages such as the T_EXDATA_IND messages. * These message with only an M_PROTO/M_PCPROTO part and no M_DATA * will not trigger a POLLIN event with POLLRDDATA set. * The handling of urgent data (causing POLLRDBAND) is done by * inspecting SS_OOBPEND below. */ events |= POLLRDDATA; /* * After shutdown(output) a stream head write error is set. * However, we should not return output events. */ events |= POLLNOERR; error = strpoll(vp->v_stream, events, anyyet, reventsp, phpp); if (error) return (error); ASSERT(!(*reventsp & POLLERR)); /* * Notes on T_CONN_IND handling for sockets. * * If strpoll() returned without events, SR_POLLIN is guaranteed * to be set, ensuring any subsequent strrput() runs pollwakeup(). * * Since the so_lock is not held, soqueueconnind() may have run * and a T_CONN_IND may be waiting. We now check for any queued * T_CONN_IND msgs on sti_conn_ind_head and set appropriate events * to ensure poll returns. * * However: * If the T_CONN_IND hasn't arrived by the time strpoll() returns, * when strrput() does run for an arriving M_PROTO with T_CONN_IND * the following actions will occur; taken together they ensure the * syscall will return. * * 1. If a socket, soqueueconnind() will queue the T_CONN_IND but if * the accept() was run on a non-blocking socket sowaitconnind() * may have already returned EWOULDBLOCK, so not be waiting to * process the message. Additionally socktpi_poll() has probably * proceeded past the sti_conn_ind_head check below. * 2. strrput() runs pollwakeup()->pollnotify()->cv_signal() to wake * this thread, however that could occur before poll_common() * has entered cv_wait. * 3. pollnotify() sets T_POLLWAKE, while holding the pc_lock. * * Before proceeding to cv_wait() in poll_common() for an event, * poll_common() atomically checks for T_POLLWAKE under the pc_lock, * and if set, re-calls strpoll() to ensure the late arriving * T_CONN_IND is recognized, and pollsys() returns. */ if (sti->sti_conn_ind_head != NULL) *reventsp |= (POLLIN|POLLRDNORM) & events; if (so->so_state & SS_OOBPEND) *reventsp |= POLLRDBAND & events; if (sti->sti_nl7c_rcv_mp != NULL) { *reventsp |= (POLLIN|POLLRDNORM) & events; } if ((sti->sti_nl7c_flags & NL7C_ENABLED) && ((POLLIN|POLLRDNORM) & *reventsp)) { sti->sti_nl7c_flags |= NL7C_POLLIN; } return (0); } /*ARGSUSED*/ static int socktpi_constructor(void *buf, void *cdrarg, int kmflags) { sotpi_sonode_t *st = (sotpi_sonode_t *)buf; int error = 0; error = sonode_constructor(buf, cdrarg, kmflags); if (error != 0) return (error); error = i_sotpi_info_constructor(&st->st_info); if (error != 0) sonode_destructor(buf, cdrarg); st->st_sonode.so_priv = &st->st_info; return (error); } /*ARGSUSED1*/ static void socktpi_destructor(void *buf, void *cdrarg) { sotpi_sonode_t *st = (sotpi_sonode_t *)buf; ASSERT(st->st_sonode.so_priv == &st->st_info); st->st_sonode.so_priv = NULL; i_sotpi_info_destructor(&st->st_info); sonode_destructor(buf, cdrarg); } static int socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags) { int retval; if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) { struct sonode *so = (struct sonode *)buf; sotpi_info_t *sti = SOTOTPI(so); mutex_enter(&socklist.sl_lock); sti->sti_next_so = socklist.sl_list; sti->sti_prev_so = NULL; if (sti->sti_next_so != NULL) SOTOTPI(sti->sti_next_so)->sti_prev_so = so; socklist.sl_list = so; mutex_exit(&socklist.sl_lock); } return (retval); } static void socktpi_unix_destructor(void *buf, void *cdrarg) { struct sonode *so = (struct sonode *)buf; sotpi_info_t *sti = SOTOTPI(so); mutex_enter(&socklist.sl_lock); if (sti->sti_next_so != NULL) SOTOTPI(sti->sti_next_so)->sti_prev_so = sti->sti_prev_so; if (sti->sti_prev_so != NULL) SOTOTPI(sti->sti_prev_so)->sti_next_so = sti->sti_next_so; else socklist.sl_list = sti->sti_next_so; mutex_exit(&socklist.sl_lock); socktpi_destructor(buf, cdrarg); } int socktpi_init(void) { /* * Create sonode caches. We create a special one for AF_UNIX so * that we can track them for netstat(1m). */ socktpi_cache = kmem_cache_create("socktpi_cache", sizeof (struct sotpi_sonode), 0, socktpi_constructor, socktpi_destructor, NULL, NULL, NULL, 0); socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache", sizeof (struct sotpi_sonode), 0, socktpi_unix_constructor, socktpi_unix_destructor, NULL, NULL, NULL, 0); return (0); } /* * Given a non-TPI sonode, allocate and prep it to be ready for TPI. * * Caller must still update state and mode using sotpi_update_state(). */ int sotpi_convert_sonode(struct sonode *so, struct sockparams *newsp, boolean_t *direct, queue_t **qp, struct cred *cr) { sotpi_info_t *sti; struct sockparams *origsp = so->so_sockparams; sock_lower_handle_t handle = so->so_proto_handle; struct stdata *stp; struct vnode *vp; queue_t *q; int error = 0; ASSERT((so->so_state & (SS_FALLBACK_PENDING|SS_FALLBACK_COMP)) == SS_FALLBACK_PENDING); ASSERT(SOCK_IS_NONSTR(so)); *qp = NULL; *direct = B_FALSE; so->so_sockparams = newsp; /* * Allocate and initalize fields required by TPI. */ (void) sotpi_info_create(so, KM_SLEEP); sotpi_info_init(so); if ((error = sotpi_init(so, NULL, cr, SO_FALLBACK)) != 0) { sotpi_info_fini(so); sotpi_info_destroy(so); return (error); } ASSERT(handle == so->so_proto_handle); sti = SOTOTPI(so); if (sti->sti_direct != 0) *direct = B_TRUE; /* * When it comes to urgent data we have two cases to deal with; * (1) The oob byte has already arrived, or (2) the protocol has * notified that oob data is pending, but it has not yet arrived. * * For (1) all we need to do is send a T_EXDATA_IND to indicate were * in the byte stream the oob byte is. For (2) we have to send a * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether * the oob byte will be the next byte from the protocol. * * So in the worst case we need two mblks, one for the signal, another * for mark indication. In that case we use the exdata_mp for the sig. */ sti->sti_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind), BPRI_MED, STR_NOSIG, NULL); sti->sti_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); /* * Keep the original sp around so we can properly dispose of the * sonode when the socket is being closed. */ sti->sti_orig_sp = origsp; so_basic_strinit(so); /* skips the T_CAPABILITY_REQ */ so_alloc_addr(so, so->so_max_addr_len); /* * If the application has done a SIOCSPGRP, make sure the * STREAM head is aware. This needs to take place before * the protocol start sending up messages. Otherwise we * might miss to generate SIGPOLL. * * It is possible that the application will receive duplicate * signals if some were already generated for either data or * connection indications. */ if (so->so_pgrp != 0) { if (so_set_events(so, so->so_vnode, cr) != 0) so->so_pgrp = 0; } /* * Determine which queue to use. */ vp = SOTOV(so); stp = vp->v_stream; ASSERT(stp != NULL); q = stp->sd_wrq->q_next; /* * Skip any modules that may have been auto pushed when the device * was opened */ while (q->q_next != NULL) q = q->q_next; *qp = _RD(q); /* This is now a STREAMS sockets */ so->so_not_str = B_FALSE; return (error); } /* * Revert a TPI sonode. It is only allowed to revert the sonode during * the fallback process. */ void sotpi_revert_sonode(struct sonode *so, struct cred *cr) { vnode_t *vp = SOTOV(so); ASSERT((so->so_state & (SS_FALLBACK_PENDING|SS_FALLBACK_COMP)) == SS_FALLBACK_PENDING); ASSERT(!SOCK_IS_NONSTR(so)); ASSERT(vp->v_stream != NULL); if (SOTOTPI(so)->sti_exdata_mp != NULL) { freeb(SOTOTPI(so)->sti_exdata_mp); SOTOTPI(so)->sti_exdata_mp = NULL; } if (SOTOTPI(so)->sti_urgmark_mp != NULL) { freeb(SOTOTPI(so)->sti_urgmark_mp); SOTOTPI(so)->sti_urgmark_mp = NULL; } strclean(vp); (void) strclose(vp, FREAD|FWRITE|SO_FALLBACK, cr); /* * Restore the original sockparams. The caller is responsible for * dropping the ref to the new sp. */ so->so_sockparams = SOTOTPI(so)->sti_orig_sp; sotpi_info_fini(so); sotpi_info_destroy(so); /* This is no longer a STREAMS sockets */ so->so_not_str = B_TRUE; } void sotpi_update_state(struct sonode *so, struct T_capability_ack *tcap, struct sockaddr *laddr, socklen_t laddrlen, struct sockaddr *faddr, socklen_t faddrlen, short opts) { sotpi_info_t *sti = SOTOTPI(so); so_proc_tcapability_ack(so, tcap); so->so_options |= opts; /* * Determine whether the foreign and local address are valid */ if (laddrlen != 0) { ASSERT(laddrlen <= sti->sti_laddr_maxlen); sti->sti_laddr_len = laddrlen; bcopy(laddr, sti->sti_laddr_sa, laddrlen); sti->sti_laddr_valid = (so->so_state & SS_ISBOUND); } if (faddrlen != 0) { ASSERT(faddrlen <= sti->sti_faddr_maxlen); sti->sti_faddr_len = faddrlen; bcopy(faddr, sti->sti_faddr_sa, faddrlen); sti->sti_faddr_valid = (so->so_state & SS_ISCONNECTED); } } /* * Allocate enough space to cache the local and foreign addresses. */ void so_alloc_addr(struct sonode *so, t_uscalar_t maxlen) { sotpi_info_t *sti = SOTOTPI(so); ASSERT(sti->sti_laddr_sa == NULL && sti->sti_faddr_sa == NULL); ASSERT(sti->sti_laddr_len == 0 && sti->sti_faddr_len == 0); sti->sti_laddr_maxlen = sti->sti_faddr_maxlen = P2ROUNDUP(maxlen, KMEM_ALIGN); so->so_max_addr_len = sti->sti_laddr_maxlen; sti->sti_laddr_sa = kmem_alloc(sti->sti_laddr_maxlen * 2, KM_SLEEP); sti->sti_faddr_sa = (struct sockaddr *)((caddr_t)sti->sti_laddr_sa + sti->sti_laddr_maxlen); if (so->so_family == AF_UNIX) { /* * Initialize AF_UNIX related fields. */ bzero(&sti->sti_ux_laddr, sizeof (sti->sti_ux_laddr)); bzero(&sti->sti_ux_faddr, sizeof (sti->sti_ux_faddr)); } } sotpi_info_t * sotpi_sototpi(struct sonode *so) { sotpi_info_t *sti; ASSERT(so != NULL); sti = (sotpi_info_t *)so->so_priv; ASSERT(sti != NULL); ASSERT(sti->sti_magic == SOTPI_INFO_MAGIC); return (sti); } static int i_sotpi_info_constructor(sotpi_info_t *sti) { sti->sti_magic = SOTPI_INFO_MAGIC; sti->sti_ack_mp = NULL; sti->sti_discon_ind_mp = NULL; sti->sti_ux_bound_vp = NULL; sti->sti_unbind_mp = NULL; sti->sti_conn_ind_head = NULL; sti->sti_conn_ind_tail = NULL; sti->sti_laddr_sa = NULL; sti->sti_faddr_sa = NULL; sti->sti_nl7c_flags = 0; sti->sti_nl7c_uri = NULL; sti->sti_nl7c_rcv_mp = NULL; sti->sti_exdata_mp = NULL; sti->sti_urgmark_mp = NULL; mutex_init(&sti->sti_plumb_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&sti->sti_ack_cv, NULL, CV_DEFAULT, NULL); return (0); } static void i_sotpi_info_destructor(sotpi_info_t *sti) { ASSERT(sti->sti_magic == SOTPI_INFO_MAGIC); ASSERT(sti->sti_ack_mp == NULL); ASSERT(sti->sti_discon_ind_mp == NULL); ASSERT(sti->sti_ux_bound_vp == NULL); ASSERT(sti->sti_unbind_mp == NULL); ASSERT(sti->sti_conn_ind_head == NULL); ASSERT(sti->sti_conn_ind_tail == NULL); ASSERT(sti->sti_laddr_sa == NULL); ASSERT(sti->sti_faddr_sa == NULL); ASSERT(sti->sti_nl7c_flags == 0); ASSERT(sti->sti_nl7c_uri == NULL); ASSERT(sti->sti_nl7c_rcv_mp == NULL); ASSERT(sti->sti_exdata_mp == NULL); ASSERT(sti->sti_urgmark_mp == NULL); mutex_destroy(&sti->sti_plumb_lock); cv_destroy(&sti->sti_ack_cv); } /* * Creates and attaches TPI information to the given sonode */ static boolean_t sotpi_info_create(struct sonode *so, int kmflags) { sotpi_info_t *sti; ASSERT(so->so_priv == NULL); if ((sti = kmem_zalloc(sizeof (*sti), kmflags)) == NULL) return (B_FALSE); if (i_sotpi_info_constructor(sti) != 0) { kmem_free(sti, sizeof (*sti)); return (B_FALSE); } so->so_priv = (void *)sti; return (B_TRUE); } /* * Initializes the TPI information. */ static void sotpi_info_init(struct sonode *so) { struct vnode *vp = SOTOV(so); sotpi_info_t *sti = SOTOTPI(so); time_t now; sti->sti_dev = so->so_sockparams->sp_sdev_info.sd_vnode->v_rdev; vp->v_rdev = sti->sti_dev; sti->sti_orig_sp = NULL; sti->sti_pushcnt = 0; now = gethrestime_sec(); sti->sti_atime = now; sti->sti_mtime = now; sti->sti_ctime = now; sti->sti_eaddr_mp = NULL; sti->sti_delayed_error = 0; sti->sti_provinfo = NULL; sti->sti_oobcnt = 0; sti->sti_oobsigcnt = 0; ASSERT(sti->sti_laddr_sa == NULL && sti->sti_faddr_sa == NULL); sti->sti_laddr_sa = 0; sti->sti_faddr_sa = 0; sti->sti_laddr_maxlen = sti->sti_faddr_maxlen = 0; sti->sti_laddr_len = sti->sti_faddr_len = 0; sti->sti_laddr_valid = 0; sti->sti_faddr_valid = 0; sti->sti_faddr_noxlate = 0; sti->sti_direct = 0; ASSERT(sti->sti_ack_mp == NULL); ASSERT(sti->sti_ux_bound_vp == NULL); ASSERT(sti->sti_unbind_mp == NULL); ASSERT(sti->sti_conn_ind_head == NULL); ASSERT(sti->sti_conn_ind_tail == NULL); /* Initialize the kernel SSL proxy fields */ sti->sti_kssl_type = KSSL_NO_PROXY; sti->sti_kssl_ent = NULL; sti->sti_kssl_ctx = NULL; } /* * Given a sonode, grab the TPI info and free any data. */ static void sotpi_info_fini(struct sonode *so) { sotpi_info_t *sti = SOTOTPI(so); mblk_t *mp; ASSERT(sti->sti_discon_ind_mp == NULL); if ((mp = sti->sti_conn_ind_head) != NULL) { mblk_t *mp1; while (mp) { mp1 = mp->b_next; mp->b_next = NULL; freemsg(mp); mp = mp1; } sti->sti_conn_ind_head = sti->sti_conn_ind_tail = NULL; } /* * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely * indirect them. It also uses so_count as a validity test. */ mutex_enter(&so->so_lock); if (sti->sti_laddr_sa) { ASSERT((caddr_t)sti->sti_faddr_sa == (caddr_t)sti->sti_laddr_sa + sti->sti_laddr_maxlen); ASSERT(sti->sti_faddr_maxlen == sti->sti_laddr_maxlen); sti->sti_laddr_valid = 0; sti->sti_faddr_valid = 0; kmem_free(sti->sti_laddr_sa, sti->sti_laddr_maxlen * 2); sti->sti_laddr_sa = NULL; sti->sti_laddr_len = sti->sti_laddr_maxlen = 0; sti->sti_faddr_sa = NULL; sti->sti_faddr_len = sti->sti_faddr_maxlen = 0; } mutex_exit(&so->so_lock); if ((mp = sti->sti_eaddr_mp) != NULL) { freemsg(mp); sti->sti_eaddr_mp = NULL; sti->sti_delayed_error = 0; } if ((mp = sti->sti_ack_mp) != NULL) { freemsg(mp); sti->sti_ack_mp = NULL; } if ((mp = sti->sti_nl7c_rcv_mp) != NULL) { sti->sti_nl7c_rcv_mp = NULL; freemsg(mp); } sti->sti_nl7c_rcv_rval = 0; if (sti->sti_nl7c_uri != NULL) { nl7c_urifree(so); /* urifree() cleared nl7c_uri */ } if (sti->sti_nl7c_flags) { sti->sti_nl7c_flags = 0; } ASSERT(sti->sti_ux_bound_vp == NULL); if ((mp = sti->sti_unbind_mp) != NULL) { freemsg(mp); sti->sti_unbind_mp = NULL; } } /* * Destroys the TPI information attached to a sonode. */ static void sotpi_info_destroy(struct sonode *so) { sotpi_info_t *sti = SOTOTPI(so); i_sotpi_info_destructor(sti); kmem_free(sti, sizeof (*sti)); so->so_priv = NULL; } /* * Create the global sotpi socket module entry. It will never be freed. */ smod_info_t * sotpi_smod_create(void) { smod_info_t *smodp; smodp = kmem_zalloc(sizeof (*smodp), KM_SLEEP); smodp->smod_name = kmem_alloc(sizeof (SOTPI_SMOD_NAME), KM_SLEEP); (void) strcpy(smodp->smod_name, SOTPI_SMOD_NAME); /* * Initialize the smod_refcnt to 1 so it will never be freed. */ smodp->smod_refcnt = 1; smodp->smod_uc_version = SOCK_UC_VERSION; smodp->smod_dc_version = SOCK_DC_VERSION; smodp->smod_sock_create_func = &sotpi_create; smodp->smod_sock_destroy_func = &sotpi_destroy; return (smodp); }