/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2018 Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* How many iovec we'll handle as a local array (no allocation) */ #define SMB_LOCAL_IOV_MAX 16 #define SMB_NEW_KID() atomic_inc_64_nv(&smb_kids) static volatile uint64_t smb_kids; /* * We track the keepalive in minutes, but this constant * specifies it in seconds, so convert to minutes. */ uint32_t smb_keep_alive = SMB_PI_KEEP_ALIVE_MIN / 60; /* * There are many smbtorture test cases that send * racing requests, and where the tests fail if we * don't execute them in exactly the order sent. * These are test bugs. The protocol makes no * guarantees about execution order of requests * that are concurrently active. * * Nonetheless, smbtorture has many useful tests, * so we have this work-around we can enable to * basically force sequential execution. When * enabled, insert a delay after each request is * issued a taskq job. Enable this with mdb by * setting smb_reader_delay to 10. Don't make it * more than 500 or so or the server will appear * to be so slow that tests may time out. */ int smb_reader_delay = 0; /* mSec. */ static int smbsr_newrq_initial(smb_request_t *); static void smb_session_cancel(smb_session_t *); static int smb_session_reader(smb_session_t *); static int smb_session_xprt_puthdr(smb_session_t *, uint8_t msg_type, uint32_t msg_len, uint8_t *dst, size_t dstlen); static smb_tree_t *smb_session_get_tree(smb_session_t *, smb_tree_t *); static void smb_session_logoff(smb_session_t *); static void smb_request_init_command_mbuf(smb_request_t *sr); static void smb_session_genkey(smb_session_t *); void smb_session_timers(smb_llist_t *ll) { smb_session_t *session; smb_llist_enter(ll, RW_READER); session = smb_llist_head(ll); while (session != NULL) { /* * Walk through the table and decrement each keep_alive * timer that has not timed out yet. (keepalive > 0) */ SMB_SESSION_VALID(session); if (session->keep_alive && (session->keep_alive != (uint32_t)-1)) session->keep_alive--; session = smb_llist_next(ll, session); } smb_llist_exit(ll); } void smb_session_correct_keep_alive_values(smb_llist_t *ll, uint32_t new_keep_alive) { smb_session_t *sn; /* * Caller specifies seconds, but we track in minutes, so * convert to minutes (rounded up). */ new_keep_alive = (new_keep_alive + 59) / 60; if (new_keep_alive == smb_keep_alive) return; /* * keep alive == 0 means do not drop connection if it's idle */ smb_keep_alive = (new_keep_alive) ? new_keep_alive : -1; /* * Walk through the table and set each session to the new keep_alive * value if they have not already timed out. Block clock interrupts. */ smb_llist_enter(ll, RW_READER); sn = smb_llist_head(ll); while (sn != NULL) { SMB_SESSION_VALID(sn); if (sn->keep_alive != 0) sn->keep_alive = new_keep_alive; sn = smb_llist_next(ll, sn); } smb_llist_exit(ll); } /* * Send a session message - supports SMB-over-NBT and SMB-over-TCP. * If an mbuf chain is provided (optional), it will be freed and * set to NULL -- unconditionally! (error or not) * * Builds a I/O vector (uio/iov) to do the send from mbufs, plus one * segment for the 4-byte NBT header. */ int smb_session_send(smb_session_t *session, uint8_t nbt_type, mbuf_chain_t *mbc) { uio_t uio; iovec_t local_iov[SMB_LOCAL_IOV_MAX]; iovec_t *alloc_iov = NULL; int alloc_sz = 0; mbuf_t *m; uint8_t nbt_hdr[NETBIOS_HDR_SZ]; uint32_t nbt_len; int i, nseg; int rc; switch (session->s_state) { case SMB_SESSION_STATE_DISCONNECTED: case SMB_SESSION_STATE_TERMINATED: rc = ENOTCONN; goto out; default: break; } /* * Setup the IOV. First, count the number of IOV segments * (plus one for the NBT header) and decide whether we * need to allocate an iovec or can use local_iov; */ bzero(&uio, sizeof (uio)); nseg = 1; m = (mbc != NULL) ? mbc->chain : NULL; while (m != NULL) { nseg++; m = m->m_next; } if (nseg <= SMB_LOCAL_IOV_MAX) { uio.uio_iov = local_iov; } else { alloc_sz = nseg * sizeof (iovec_t); alloc_iov = kmem_alloc(alloc_sz, KM_SLEEP); uio.uio_iov = alloc_iov; } uio.uio_iovcnt = nseg; uio.uio_segflg = UIO_SYSSPACE; uio.uio_extflg = UIO_COPY_DEFAULT; /* * Build the iov list, meanwhile computing the length of * the SMB payload (to put in the NBT header). */ uio.uio_iov[0].iov_base = (void *)nbt_hdr; uio.uio_iov[0].iov_len = sizeof (nbt_hdr); i = 1; nbt_len = 0; m = (mbc != NULL) ? mbc->chain : NULL; while (m != NULL) { uio.uio_iov[i].iov_base = m->m_data; uio.uio_iov[i++].iov_len = m->m_len; nbt_len += m->m_len; m = m->m_next; } ASSERT3S(i, ==, nseg); /* * Set the NBT header, set uio_resid */ uio.uio_resid = nbt_len + NETBIOS_HDR_SZ; rc = smb_session_xprt_puthdr(session, nbt_type, nbt_len, nbt_hdr, NETBIOS_HDR_SZ); if (rc != 0) goto out; smb_server_add_txb(session->s_server, (int64_t)uio.uio_resid); rc = smb_net_send_uio(session, &uio); out: if (alloc_iov != NULL) kmem_free(alloc_iov, alloc_sz); if ((mbc != NULL) && (mbc->chain != NULL)) { m_freem(mbc->chain); mbc->chain = NULL; mbc->flags = 0; } return (rc); } /* * Read, process and respond to a NetBIOS session request. * * A NetBIOS session must be established for SMB-over-NetBIOS. Validate * the calling and called name format and save the client NetBIOS name, * which is used when a NetBIOS session is established to check for and * cleanup leftover state from a previous session. * * Session requests are not valid for SMB-over-TCP, which is unfortunate * because without the client name leftover state cannot be cleaned up * if the client is behind a NAT server. */ static int smb_netbios_session_request(struct smb_session *session) { int rc; char *calling_name; char *called_name; char client_name[NETBIOS_NAME_SZ]; struct mbuf_chain mbc; char *names = NULL; smb_wchar_t *wbuf = NULL; smb_xprt_t hdr; char *p; int rc1, rc2; session->keep_alive = smb_keep_alive; if ((rc = smb_session_xprt_gethdr(session, &hdr)) != 0) return (rc); DTRACE_PROBE2(receive__session__req__xprthdr, struct session *, session, smb_xprt_t *, &hdr); if ((hdr.xh_type != SESSION_REQUEST) || (hdr.xh_length != NETBIOS_SESSION_REQUEST_DATA_LENGTH)) { DTRACE_PROBE1(receive__session__req__failed, struct session *, session); return (EINVAL); } names = kmem_alloc(hdr.xh_length, KM_SLEEP); if ((rc = smb_sorecv(session->sock, names, hdr.xh_length)) != 0) { kmem_free(names, hdr.xh_length); DTRACE_PROBE1(receive__session__req__failed, struct session *, session); return (rc); } DTRACE_PROBE3(receive__session__req__data, struct session *, session, char *, names, uint32_t, hdr.xh_length); called_name = &names[0]; calling_name = &names[NETBIOS_ENCODED_NAME_SZ + 2]; rc1 = netbios_name_isvalid(called_name, 0); rc2 = netbios_name_isvalid(calling_name, client_name); if (rc1 == 0 || rc2 == 0) { DTRACE_PROBE3(receive__invalid__session__req, struct session *, session, char *, names, uint32_t, hdr.xh_length); kmem_free(names, hdr.xh_length); MBC_INIT(&mbc, MAX_DATAGRAM_LENGTH); (void) smb_mbc_encodef(&mbc, "b", DATAGRAM_INVALID_SOURCE_NAME_FORMAT); (void) smb_session_send(session, NEGATIVE_SESSION_RESPONSE, &mbc); return (EINVAL); } DTRACE_PROBE3(receive__session__req__calling__decoded, struct session *, session, char *, calling_name, char *, client_name); /* * The client NetBIOS name is in oem codepage format. * We need to convert it to unicode and store it in * multi-byte format. We also need to strip off any * spaces added as part of the NetBIOS name encoding. */ wbuf = kmem_alloc((SMB_PI_MAX_HOST * sizeof (smb_wchar_t)), KM_SLEEP); (void) oemtoucs(wbuf, client_name, SMB_PI_MAX_HOST, OEM_CPG_850); (void) smb_wcstombs(session->workstation, wbuf, SMB_PI_MAX_HOST); kmem_free(wbuf, (SMB_PI_MAX_HOST * sizeof (smb_wchar_t))); if ((p = strchr(session->workstation, ' ')) != 0) *p = '\0'; kmem_free(names, hdr.xh_length); return (smb_session_send(session, POSITIVE_SESSION_RESPONSE, NULL)); } /* * Read 4-byte header from the session socket and build an in-memory * session transport header. See smb_xprt_t definition for header * format information. * * Direct hosted NetBIOS-less SMB (SMB-over-TCP) uses port 445. The * first byte of the four-byte header must be 0 and the next three * bytes contain the length of the remaining data. */ int smb_session_xprt_gethdr(smb_session_t *session, smb_xprt_t *ret_hdr) { int rc; unsigned char buf[NETBIOS_HDR_SZ]; if ((rc = smb_sorecv(session->sock, buf, NETBIOS_HDR_SZ)) != 0) return (rc); switch (session->s_local_port) { case IPPORT_NETBIOS_SSN: ret_hdr->xh_type = buf[0]; ret_hdr->xh_length = (((uint32_t)buf[1] & 1) << 16) | ((uint32_t)buf[2] << 8) | ((uint32_t)buf[3]); break; case IPPORT_SMB: ret_hdr->xh_type = buf[0]; if (ret_hdr->xh_type != 0) { cmn_err(CE_WARN, "invalid NBT type (%u) from %s", ret_hdr->xh_type, session->ip_addr_str); return (EPROTO); } ret_hdr->xh_length = ((uint32_t)buf[1] << 16) | ((uint32_t)buf[2] << 8) | ((uint32_t)buf[3]); break; default: cmn_err(CE_WARN, "invalid port %u", session->s_local_port); return (EPROTO); } return (0); } /* * Encode a transport session packet header into a 4-byte buffer. */ static int smb_session_xprt_puthdr(smb_session_t *session, uint8_t msg_type, uint32_t msg_length, uint8_t *buf, size_t buflen) { if (buf == NULL || buflen < NETBIOS_HDR_SZ) { return (-1); } switch (session->s_local_port) { case IPPORT_NETBIOS_SSN: /* Per RFC 1001, 1002: msg. len < 128KB */ if (msg_length >= (1 << 17)) return (-1); buf[0] = msg_type; buf[1] = ((msg_length >> 16) & 1); buf[2] = (msg_length >> 8) & 0xff; buf[3] = msg_length & 0xff; break; case IPPORT_SMB: /* * SMB over TCP is like NetBIOS but the one byte * message type is always zero, and the length * part is three bytes. It could actually use * longer messages, but this is conservative. */ if (msg_length >= (1 << 24)) return (-1); buf[0] = msg_type; buf[1] = (msg_length >> 16) & 0xff; buf[2] = (msg_length >> 8) & 0xff; buf[3] = msg_length & 0xff; break; default: cmn_err(CE_WARN, "invalid port %u", session->s_local_port); return (-1); } return (0); } static void smb_request_init_command_mbuf(smb_request_t *sr) { /* * Setup mbuf using the buffer we allocated. */ MBC_ATTACH_BUF(&sr->command, sr->sr_request_buf, sr->sr_req_length); sr->command.flags = 0; sr->command.shadow_of = NULL; } /* * smb_request_cancel * * Handle a cancel for a request properly depending on the current request * state. */ void smb_request_cancel(smb_request_t *sr) { void (*cancel_method)(smb_request_t *) = NULL; mutex_enter(&sr->sr_mutex); switch (sr->sr_state) { case SMB_REQ_STATE_INITIALIZING: case SMB_REQ_STATE_SUBMITTED: case SMB_REQ_STATE_ACTIVE: case SMB_REQ_STATE_CLEANED_UP: sr->sr_state = SMB_REQ_STATE_CANCELLED; break; case SMB_REQ_STATE_WAITING_AUTH: case SMB_REQ_STATE_WAITING_FCN1: case SMB_REQ_STATE_WAITING_LOCK: case SMB_REQ_STATE_WAITING_PIPE: /* * These are states that have a cancel_method. * Make the state change now, to ensure that * we call cancel_method exactly once. Do the * method call below, after we drop sr_mutex. * When the cancelled request thread resumes, * it should re-take sr_mutex and set sr_state * to CANCELLED, then return STATUS_CANCELLED. */ sr->sr_state = SMB_REQ_STATE_CANCEL_PENDING; cancel_method = sr->cancel_method; VERIFY(cancel_method != NULL); break; case SMB_REQ_STATE_WAITING_FCN2: case SMB_REQ_STATE_COMPLETED: case SMB_REQ_STATE_CANCEL_PENDING: case SMB_REQ_STATE_CANCELLED: /* * No action required for these states since the request * is completing. */ break; case SMB_REQ_STATE_FREE: default: SMB_PANIC(); } mutex_exit(&sr->sr_mutex); if (cancel_method != NULL) { cancel_method(sr); } } /* * smb_session_receiver * * Receives request from the network and dispatches them to a worker. */ void smb_session_receiver(smb_session_t *session) { int rc = 0; SMB_SESSION_VALID(session); session->s_thread = curthread; if (session->s_local_port == IPPORT_NETBIOS_SSN) { rc = smb_netbios_session_request(session); if (rc != 0) { smb_rwx_rwenter(&session->s_lock, RW_WRITER); session->s_state = SMB_SESSION_STATE_DISCONNECTED; smb_rwx_rwexit(&session->s_lock); return; } } smb_rwx_rwenter(&session->s_lock, RW_WRITER); session->s_state = SMB_SESSION_STATE_ESTABLISHED; smb_rwx_rwexit(&session->s_lock); (void) smb_session_reader(session); smb_rwx_rwenter(&session->s_lock, RW_WRITER); session->s_state = SMB_SESSION_STATE_DISCONNECTED; smb_rwx_rwexit(&session->s_lock); smb_soshutdown(session->sock); DTRACE_PROBE2(session__drop, struct session *, session, int, rc); smb_session_cancel(session); /* * At this point everything related to the session should have been * cleaned up and we expect that nothing will attempt to use the * socket. */ } /* * smb_session_disconnect * * Disconnects the session passed in. */ void smb_session_disconnect(smb_session_t *session) { SMB_SESSION_VALID(session); smb_rwx_rwenter(&session->s_lock, RW_WRITER); switch (session->s_state) { case SMB_SESSION_STATE_INITIALIZED: case SMB_SESSION_STATE_CONNECTED: case SMB_SESSION_STATE_ESTABLISHED: case SMB_SESSION_STATE_NEGOTIATED: smb_soshutdown(session->sock); session->s_state = SMB_SESSION_STATE_DISCONNECTED; _NOTE(FALLTHRU) case SMB_SESSION_STATE_DISCONNECTED: case SMB_SESSION_STATE_TERMINATED: break; } smb_rwx_rwexit(&session->s_lock); } /* * Read and process SMB requests. * * Returns: * 0 Success * 1 Unable to read transport header * 2 Invalid transport header type * 3 Invalid SMB length (too small) * 4 Unable to read SMB header * 5 Invalid SMB header (bad magic number) * 6 Unable to read SMB data */ static int smb_session_reader(smb_session_t *session) { smb_server_t *sv; smb_request_t *sr = NULL; smb_xprt_t hdr; uint8_t *req_buf; uint32_t resid; int rc; sv = session->s_server; for (;;) { rc = smb_session_xprt_gethdr(session, &hdr); if (rc) return (rc); DTRACE_PROBE2(session__receive__xprthdr, session_t *, session, smb_xprt_t *, &hdr); if (hdr.xh_type != SESSION_MESSAGE) { /* * Anything other than SESSION_MESSAGE or * SESSION_KEEP_ALIVE is an error. A SESSION_REQUEST * may indicate a new session request but we need to * close this session and we can treat it as an error * here. */ if (hdr.xh_type == SESSION_KEEP_ALIVE) { session->keep_alive = smb_keep_alive; continue; } return (EPROTO); } if (hdr.xh_length == 0) { /* zero length is another form of keep alive */ session->keep_alive = smb_keep_alive; continue; } if (hdr.xh_length < SMB_HEADER_LEN) return (EPROTO); if (hdr.xh_length > session->cmd_max_bytes) return (EPROTO); session->keep_alive = smb_keep_alive; /* * Allocate a request context, read the whole message. * If the request alloc fails, we've disconnected and * won't be able to send the reply anyway, so bail now. */ if ((sr = smb_request_alloc(session, hdr.xh_length)) == NULL) break; req_buf = (uint8_t *)sr->sr_request_buf; resid = hdr.xh_length; rc = smb_sorecv(session->sock, req_buf, resid); if (rc) { smb_request_free(sr); break; } /* accounting: received bytes */ smb_server_add_rxb(sv, (int64_t)(hdr.xh_length + NETBIOS_HDR_SZ)); /* * Initialize command MBC to represent the received data. */ smb_request_init_command_mbuf(sr); DTRACE_PROBE1(session__receive__smb, smb_request_t *, sr); rc = session->newrq_func(sr); sr = NULL; /* enqueued or freed */ if (rc != 0) break; /* See notes where this is defined (above). */ if (smb_reader_delay) { delay(MSEC_TO_TICK(smb_reader_delay)); } } return (rc); } /* * This is the initial handler for new smb requests, called from * from smb_session_reader when we have not yet seen any requests. * The first SMB request must be "negotiate", which determines * which protocol and dialect we'll be using. That's the ONLY * request type handled here, because with all later requests, * we know the protocol and handle those with either the SMB1 or * SMB2 handlers: smb1sr_post() or smb2sr_post(). * Those do NOT allow SMB negotiate, because that's only allowed * as the first request on new session. * * This and other "post a request" handlers must either enqueue * the new request for the session taskq, or smb_request_free it * (in case we've decided to drop this connection). In this * (special) new request handler, we always free the request. */ static int smbsr_newrq_initial(smb_request_t *sr) { uint32_t magic; int rc = EPROTO; mutex_enter(&sr->sr_mutex); sr->sr_state = SMB_REQ_STATE_ACTIVE; mutex_exit(&sr->sr_mutex); magic = SMB_READ_PROTOCOL(sr->sr_request_buf); if (magic == SMB_PROTOCOL_MAGIC) rc = smb1_newrq_negotiate(sr); if (magic == SMB2_PROTOCOL_MAGIC) rc = smb2_newrq_negotiate(sr); mutex_enter(&sr->sr_mutex); sr->sr_state = SMB_REQ_STATE_COMPLETED; mutex_exit(&sr->sr_mutex); smb_request_free(sr); return (rc); } /* * Port will be IPPORT_NETBIOS_SSN or IPPORT_SMB. */ smb_session_t * smb_session_create(ksocket_t new_so, uint16_t port, smb_server_t *sv, int family) { struct sockaddr_in sin; socklen_t slen; struct sockaddr_in6 sin6; smb_session_t *session; int64_t now; uint16_t rport; session = kmem_cache_alloc(smb_cache_session, KM_SLEEP); bzero(session, sizeof (smb_session_t)); if (smb_idpool_constructor(&session->s_uid_pool)) { kmem_cache_free(smb_cache_session, session); return (NULL); } if (smb_idpool_constructor(&session->s_tid_pool)) { smb_idpool_destructor(&session->s_uid_pool); kmem_cache_free(smb_cache_session, session); return (NULL); } now = ddi_get_lbolt64(); session->s_kid = SMB_NEW_KID(); session->s_state = SMB_SESSION_STATE_INITIALIZED; session->native_os = NATIVE_OS_UNKNOWN; session->opentime = now; session->keep_alive = smb_keep_alive; session->activity_timestamp = now; smb_session_genkey(session); mutex_init(&session->s_credits_mutex, NULL, MUTEX_DEFAULT, NULL); smb_slist_constructor(&session->s_req_list, sizeof (smb_request_t), offsetof(smb_request_t, sr_session_lnd)); smb_llist_constructor(&session->s_user_list, sizeof (smb_user_t), offsetof(smb_user_t, u_lnd)); smb_llist_constructor(&session->s_tree_list, sizeof (smb_tree_t), offsetof(smb_tree_t, t_lnd)); smb_llist_constructor(&session->s_xa_list, sizeof (smb_xa_t), offsetof(smb_xa_t, xa_lnd)); smb_net_txl_constructor(&session->s_txlst); smb_rwx_init(&session->s_lock); if (new_so != NULL) { if (family == AF_INET) { slen = sizeof (sin); (void) ksocket_getsockname(new_so, (struct sockaddr *)&sin, &slen, CRED()); bcopy(&sin.sin_addr, &session->local_ipaddr.au_addr.au_ipv4, sizeof (in_addr_t)); slen = sizeof (sin); (void) ksocket_getpeername(new_so, (struct sockaddr *)&sin, &slen, CRED()); bcopy(&sin.sin_addr, &session->ipaddr.au_addr.au_ipv4, sizeof (in_addr_t)); rport = sin.sin_port; } else { slen = sizeof (sin6); (void) ksocket_getsockname(new_so, (struct sockaddr *)&sin6, &slen, CRED()); bcopy(&sin6.sin6_addr, &session->local_ipaddr.au_addr.au_ipv6, sizeof (in6_addr_t)); slen = sizeof (sin6); (void) ksocket_getpeername(new_so, (struct sockaddr *)&sin6, &slen, CRED()); bcopy(&sin6.sin6_addr, &session->ipaddr.au_addr.au_ipv6, sizeof (in6_addr_t)); rport = sin6.sin6_port; } session->ipaddr.a_family = family; session->local_ipaddr.a_family = family; session->s_local_port = port; session->s_remote_port = ntohs(rport); session->sock = new_so; (void) smb_inet_ntop(&session->ipaddr, session->ip_addr_str, INET6_ADDRSTRLEN); if (port == IPPORT_NETBIOS_SSN) smb_server_inc_nbt_sess(sv); else smb_server_inc_tcp_sess(sv); } session->s_server = sv; smb_server_get_cfg(sv, &session->s_cfg); session->s_srqueue = &sv->sv_srqueue; /* * The initial new request handler is special, * and only accepts negotiation requests. */ session->newrq_func = smbsr_newrq_initial; /* These may increase in SMB2 negotiate. */ session->cmd_max_bytes = SMB_REQ_MAX_SIZE; session->reply_max_bytes = SMB_REQ_MAX_SIZE; session->s_magic = SMB_SESSION_MAGIC; return (session); } void smb_session_delete(smb_session_t *session) { ASSERT(session->s_magic == SMB_SESSION_MAGIC); if (session->sign_fini != NULL) session->sign_fini(session); if (session->signing.mackey != NULL) { kmem_free(session->signing.mackey, session->signing.mackey_len); } session->s_magic = 0; smb_rwx_destroy(&session->s_lock); smb_net_txl_destructor(&session->s_txlst); mutex_destroy(&session->s_credits_mutex); smb_slist_destructor(&session->s_req_list); smb_llist_destructor(&session->s_tree_list); smb_llist_destructor(&session->s_user_list); smb_llist_destructor(&session->s_xa_list); ASSERT(session->s_tree_cnt == 0); ASSERT(session->s_file_cnt == 0); ASSERT(session->s_dir_cnt == 0); smb_idpool_destructor(&session->s_tid_pool); smb_idpool_destructor(&session->s_uid_pool); if (session->sock != NULL) { if (session->s_local_port == IPPORT_NETBIOS_SSN) smb_server_dec_nbt_sess(session->s_server); else smb_server_dec_tcp_sess(session->s_server); smb_sodestroy(session->sock); } kmem_cache_free(smb_cache_session, session); } static void smb_session_cancel(smb_session_t *session) { smb_xa_t *xa, *nextxa; /* All the request currently being treated must be canceled. */ smb_session_cancel_requests(session, NULL, NULL); /* * We wait for the completion of all the requests associated with * this session. */ smb_slist_wait_for_empty(&session->s_req_list); /* * At this point the reference count of the users, trees, files, * directories should be zero. It should be possible to destroy them * without any problem. */ xa = smb_llist_head(&session->s_xa_list); while (xa) { nextxa = smb_llist_next(&session->s_xa_list, xa); smb_xa_close(xa); xa = nextxa; } smb_session_logoff(session); } /* * Cancel requests. If a non-null tree is specified, only requests specific * to that tree will be cancelled. If a non-null sr is specified, that sr * will be not be cancelled - this would typically be the caller's sr. */ void smb_session_cancel_requests( smb_session_t *session, smb_tree_t *tree, smb_request_t *exclude_sr) { smb_request_t *sr; smb_slist_enter(&session->s_req_list); sr = smb_slist_head(&session->s_req_list); while (sr) { ASSERT(sr->sr_magic == SMB_REQ_MAGIC); if ((sr != exclude_sr) && (tree == NULL || sr->tid_tree == tree)) smb_request_cancel(sr); sr = smb_slist_next(&session->s_req_list, sr); } smb_slist_exit(&session->s_req_list); } /* * Find a user on the specified session by SMB UID. */ smb_user_t * smb_session_lookup_uid(smb_session_t *session, uint16_t uid) { return (smb_session_lookup_uid_st(session, uid, SMB_USER_STATE_LOGGED_ON)); } smb_user_t * smb_session_lookup_uid_st(smb_session_t *session, uint16_t uid, smb_user_state_t st) { smb_user_t *user; smb_llist_t *user_list; SMB_SESSION_VALID(session); user_list = &session->s_user_list; smb_llist_enter(user_list, RW_READER); user = smb_llist_head(user_list); while (user) { SMB_USER_VALID(user); ASSERT(user->u_session == session); if (user->u_uid == uid && user->u_state == st) { smb_user_hold_internal(user); break; } user = smb_llist_next(user_list, user); } smb_llist_exit(user_list); return (user); } void smb_session_post_user(smb_session_t *session, smb_user_t *user) { SMB_USER_VALID(user); ASSERT(user->u_refcnt == 0); ASSERT(user->u_state == SMB_USER_STATE_LOGGED_OFF); ASSERT(user->u_session == session); smb_llist_post(&session->s_user_list, user, smb_user_delete); } /* * Find a tree by tree-id. */ smb_tree_t * smb_session_lookup_tree( smb_session_t *session, uint16_t tid) { smb_tree_t *tree; SMB_SESSION_VALID(session); smb_llist_enter(&session->s_tree_list, RW_READER); tree = smb_llist_head(&session->s_tree_list); while (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); if (tree->t_tid == tid) { if (smb_tree_hold(tree)) { smb_llist_exit(&session->s_tree_list); return (tree); } else { smb_llist_exit(&session->s_tree_list); return (NULL); } } tree = smb_llist_next(&session->s_tree_list, tree); } smb_llist_exit(&session->s_tree_list); return (NULL); } /* * Find the first connected tree that matches the specified sharename. * If the specified tree is NULL the search starts from the beginning of * the user's tree list. If a tree is provided the search starts just * after that tree. */ smb_tree_t * smb_session_lookup_share( smb_session_t *session, const char *sharename, smb_tree_t *tree) { SMB_SESSION_VALID(session); ASSERT(sharename); smb_llist_enter(&session->s_tree_list, RW_READER); if (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); tree = smb_llist_next(&session->s_tree_list, tree); } else { tree = smb_llist_head(&session->s_tree_list); } while (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); if (smb_strcasecmp(tree->t_sharename, sharename, 0) == 0) { if (smb_tree_hold(tree)) { smb_llist_exit(&session->s_tree_list); return (tree); } } tree = smb_llist_next(&session->s_tree_list, tree); } smb_llist_exit(&session->s_tree_list); return (NULL); } /* * Find the first connected tree that matches the specified volume name. * If the specified tree is NULL the search starts from the beginning of * the user's tree list. If a tree is provided the search starts just * after that tree. */ smb_tree_t * smb_session_lookup_volume( smb_session_t *session, const char *name, smb_tree_t *tree) { SMB_SESSION_VALID(session); ASSERT(name); smb_llist_enter(&session->s_tree_list, RW_READER); if (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); tree = smb_llist_next(&session->s_tree_list, tree); } else { tree = smb_llist_head(&session->s_tree_list); } while (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); if (smb_strcasecmp(tree->t_volume, name, 0) == 0) { if (smb_tree_hold(tree)) { smb_llist_exit(&session->s_tree_list); return (tree); } } tree = smb_llist_next(&session->s_tree_list, tree); } smb_llist_exit(&session->s_tree_list); return (NULL); } /* * Disconnect all trees that match the specified client process-id. */ void smb_session_close_pid( smb_session_t *session, uint32_t pid) { smb_tree_t *tree; SMB_SESSION_VALID(session); tree = smb_session_get_tree(session, NULL); while (tree) { smb_tree_t *next; ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); smb_tree_close_pid(tree, pid); next = smb_session_get_tree(session, tree); smb_tree_release(tree); tree = next; } } static void smb_session_tree_dtor(void *t) { smb_tree_t *tree = (smb_tree_t *)t; smb_tree_disconnect(tree, B_TRUE); /* release the ref acquired during the traversal loop */ smb_tree_release(tree); } /* * Disconnect all trees that this user has connected. */ void smb_session_disconnect_owned_trees( smb_session_t *session, smb_user_t *owner) { smb_tree_t *tree; smb_llist_t *tree_list = &session->s_tree_list; SMB_SESSION_VALID(session); SMB_USER_VALID(owner); smb_llist_enter(tree_list, RW_READER); tree = smb_llist_head(tree_list); while (tree) { if ((tree->t_owner == owner) && smb_tree_hold(tree)) { /* * smb_tree_hold() succeeded, hence we are in state * SMB_TREE_STATE_CONNECTED; schedule this tree * for asynchronous disconnect, which will fire * after we drop the llist traversal lock. */ smb_llist_post(tree_list, tree, smb_session_tree_dtor); } tree = smb_llist_next(tree_list, tree); } /* drop the lock and flush the dtor queue */ smb_llist_exit(tree_list); } /* * Disconnect all trees that this user has connected. */ void smb_session_disconnect_trees( smb_session_t *session) { smb_tree_t *tree; SMB_SESSION_VALID(session); tree = smb_session_get_tree(session, NULL); while (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); smb_tree_disconnect(tree, B_TRUE); smb_tree_release(tree); tree = smb_session_get_tree(session, NULL); } } /* * Disconnect all trees that match the specified share name. */ void smb_session_disconnect_share( smb_session_t *session, const char *sharename) { smb_tree_t *tree; smb_tree_t *next; SMB_SESSION_VALID(session); tree = smb_session_lookup_share(session, sharename, NULL); while (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); ASSERT(tree->t_session == session); smb_tree_disconnect(tree, B_TRUE); smb_session_cancel_requests(session, tree, NULL); next = smb_session_lookup_share(session, sharename, tree); smb_tree_release(tree); tree = next; } } void smb_session_post_tree(smb_session_t *session, smb_tree_t *tree) { SMB_SESSION_VALID(session); SMB_TREE_VALID(tree); ASSERT0(tree->t_refcnt); ASSERT(tree->t_state == SMB_TREE_STATE_DISCONNECTED); ASSERT(tree->t_session == session); smb_llist_post(&session->s_tree_list, tree, smb_tree_dealloc); } /* * Get the next connected tree in the list. A reference is taken on * the tree, which can be released later with smb_tree_release(). * * If the specified tree is NULL the search starts from the beginning of * the tree list. If a tree is provided the search starts just after * that tree. * * Returns NULL if there are no connected trees in the list. */ static smb_tree_t * smb_session_get_tree( smb_session_t *session, smb_tree_t *tree) { smb_llist_t *tree_list; SMB_SESSION_VALID(session); tree_list = &session->s_tree_list; smb_llist_enter(tree_list, RW_READER); if (tree) { ASSERT3U(tree->t_magic, ==, SMB_TREE_MAGIC); tree = smb_llist_next(tree_list, tree); } else { tree = smb_llist_head(tree_list); } while (tree) { if (smb_tree_hold(tree)) break; tree = smb_llist_next(tree_list, tree); } smb_llist_exit(tree_list); return (tree); } /* * Logoff all users associated with the specified session. */ static void smb_session_logoff(smb_session_t *session) { smb_user_t *user; SMB_SESSION_VALID(session); smb_session_disconnect_trees(session); smb_llist_enter(&session->s_user_list, RW_READER); user = smb_llist_head(&session->s_user_list); while (user) { SMB_USER_VALID(user); ASSERT(user->u_session == session); switch (user->u_state) { case SMB_USER_STATE_LOGGING_ON: case SMB_USER_STATE_LOGGED_ON: smb_user_hold_internal(user); smb_user_logoff(user); smb_user_release(user); break; case SMB_USER_STATE_LOGGED_OFF: case SMB_USER_STATE_LOGGING_OFF: break; default: ASSERT(0); break; } user = smb_llist_next(&session->s_user_list, user); } smb_llist_exit(&session->s_user_list); } /* * Copy the session workstation/client name to buf. If the workstation * is an empty string (which it will be on TCP connections), use the * client IP address. */ void smb_session_getclient(smb_session_t *sn, char *buf, size_t buflen) { *buf = '\0'; if (sn->workstation[0] != '\0') { (void) strlcpy(buf, sn->workstation, buflen); return; } (void) strlcpy(buf, sn->ip_addr_str, buflen); } /* * Check whether or not the specified client name is the client of this * session. The name may be in UNC format (\\CLIENT). * * A workstation/client name is setup on NBT connections as part of the * NetBIOS session request but that isn't available on TCP connections. * If the session doesn't have a client name we typically return the * client IP address as the workstation name on MSRPC requests. So we * check for the IP address here in addition to the workstation name. */ boolean_t smb_session_isclient(smb_session_t *sn, const char *client) { client += strspn(client, "\\"); if (smb_strcasecmp(client, sn->workstation, 0) == 0) return (B_TRUE); if (smb_strcasecmp(client, sn->ip_addr_str, 0) == 0) return (B_TRUE); return (B_FALSE); } /* * smb_request_alloc * * Allocate an smb_request_t structure from the kmem_cache. Partially * initialize the found/new request. * * Returns pointer to a request, or NULL if the session state is * one in which new requests are no longer allowed. */ smb_request_t * smb_request_alloc(smb_session_t *session, int req_length) { smb_request_t *sr; ASSERT(session->s_magic == SMB_SESSION_MAGIC); ASSERT(req_length <= session->cmd_max_bytes); sr = kmem_cache_alloc(smb_cache_request, KM_SLEEP); /* * Future: Use constructor to pre-initialize some fields. For now * there are so many fields that it is easiest just to zero the * whole thing and start over. */ bzero(sr, sizeof (smb_request_t)); mutex_init(&sr->sr_mutex, NULL, MUTEX_DEFAULT, NULL); smb_srm_init(sr); sr->session = session; sr->sr_server = session->s_server; sr->sr_gmtoff = session->s_server->si_gmtoff; sr->sr_cfg = &session->s_cfg; sr->command.max_bytes = req_length; sr->reply.max_bytes = session->reply_max_bytes; sr->sr_req_length = req_length; if (req_length) sr->sr_request_buf = kmem_alloc(req_length, KM_SLEEP); sr->sr_magic = SMB_REQ_MAGIC; sr->sr_state = SMB_REQ_STATE_INITIALIZING; /* * Only allow new SMB requests in some states. */ smb_rwx_rwenter(&session->s_lock, RW_WRITER); switch (session->s_state) { case SMB_SESSION_STATE_CONNECTED: case SMB_SESSION_STATE_INITIALIZED: case SMB_SESSION_STATE_ESTABLISHED: case SMB_SESSION_STATE_NEGOTIATED: smb_slist_insert_tail(&session->s_req_list, sr); break; default: ASSERT(0); /* FALLTHROUGH */ case SMB_SESSION_STATE_DISCONNECTED: case SMB_SESSION_STATE_TERMINATED: /* Disallow new requests in these states. */ if (sr->sr_request_buf) kmem_free(sr->sr_request_buf, sr->sr_req_length); sr->session = NULL; sr->sr_magic = 0; mutex_destroy(&sr->sr_mutex); kmem_cache_free(smb_cache_request, sr); sr = NULL; break; } smb_rwx_rwexit(&session->s_lock); return (sr); } /* * smb_request_free * * release the memories which have been allocated for a smb request. */ void smb_request_free(smb_request_t *sr) { ASSERT(sr->sr_magic == SMB_REQ_MAGIC); ASSERT(sr->session); ASSERT(sr->r_xa == NULL); if (sr->fid_ofile != NULL) { smb_ofile_request_complete(sr->fid_ofile); smb_ofile_release(sr->fid_ofile); } if (sr->tid_tree != NULL) smb_tree_release(sr->tid_tree); if (sr->uid_user != NULL) smb_user_release(sr->uid_user); /* * The above may have left work on the delete queues */ smb_llist_flush(&sr->session->s_tree_list); smb_llist_flush(&sr->session->s_user_list); smb_slist_remove(&sr->session->s_req_list, sr); sr->session = NULL; smb_srm_fini(sr); if (sr->sr_request_buf) kmem_free(sr->sr_request_buf, sr->sr_req_length); if (sr->command.chain) m_freem(sr->command.chain); if (sr->reply.chain) m_freem(sr->reply.chain); if (sr->raw_data.chain) m_freem(sr->raw_data.chain); sr->sr_magic = 0; mutex_destroy(&sr->sr_mutex); kmem_cache_free(smb_cache_request, sr); } boolean_t smb_session_oplocks_enable(smb_session_t *session) { SMB_SESSION_VALID(session); if (session->s_cfg.skc_oplock_enable == 0) return (B_FALSE); else return (B_TRUE); } boolean_t smb_session_levelII_oplocks(smb_session_t *session) { SMB_SESSION_VALID(session); /* Clients using SMB2 and later always know about oplocks. */ if (session->dialect > NT_LM_0_12) return (B_TRUE); /* Older clients only do Level II oplocks if negotiated. */ if ((session->capabilities & CAP_LEVEL_II_OPLOCKS) != 0) return (B_TRUE); return (B_FALSE); } /* * smb_session_oplock_break * * Send an oplock break request to the client, * recalling some cache delegation. */ void smb_session_oplock_break(smb_request_t *sr, uint8_t brk) { smb_session_t *session = sr->session; mbuf_chain_t *mbc = &sr->reply; SMB_SESSION_VALID(session); /* * Build the break message in sr->reply and then send it. * The mbc is free'd later, in smb_request_free(). */ mbc->max_bytes = MLEN; if (session->dialect <= NT_LM_0_12) { smb1_oplock_break_notification(sr, brk); } else { smb2_oplock_break_notification(sr, brk); } (void) smb_session_send(session, 0, mbc); } static void smb_session_genkey(smb_session_t *session) { uint8_t tmp_key[SMB_CHALLENGE_SZ]; (void) random_get_pseudo_bytes(tmp_key, SMB_CHALLENGE_SZ); bcopy(tmp_key, &session->challenge_key, SMB_CHALLENGE_SZ); session->challenge_len = SMB_CHALLENGE_SZ; (void) random_get_pseudo_bytes(tmp_key, 4); session->sesskey = tmp_key[0] | tmp_key[1] << 8 | tmp_key[2] << 16 | tmp_key[3] << 24; }