/* * Copyright (c) 2000-2001, Boris Popov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Boris Popov. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: smbfs_vfsops.c,v 1.73.64.1 2005/05/27 02:35:28 lindak Exp $ */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2012 Nexenta Systems, Inc. All rights reserved. * Copyright 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2016 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Should smbfs mount enable "-o acl" by default? There are good * arguments for both. The most common use case is individual users * accessing files on some SMB server, for which "noacl" is the more * convenient default. A less common use case is data migration, * where the "acl" option might be a desirable default. We'll make * the common use case the default. This default can be changed via * /etc/system, and/or set per-mount via the "acl" mount option. */ int smbfs_default_opt_acl = 0; /* * How many taskq threads per-mount should we use. * Just one is fine (until we do more async work). */ int smbfs_tq_nthread = 1; /* * Local functions definitions. */ int smbfsinit(int fstyp, char *name); void smbfsfini(); static int smbfs_mount_label_policy(vfs_t *, void *, int, cred_t *); /* * SMBFS Mount options table for MS_OPTIONSTR * Note: These are not all the options. * Some options come in via MS_DATA. * Others are generic (see vfs.c) */ static char *intr_cancel[] = { MNTOPT_NOINTR, NULL }; static char *nointr_cancel[] = { MNTOPT_INTR, NULL }; static char *acl_cancel[] = { MNTOPT_NOACL, NULL }; static char *noacl_cancel[] = { MNTOPT_ACL, NULL }; static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; static mntopt_t mntopts[] = { /* * option name cancel option default arg flags * ufs arg flag */ { MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT, 0 }, { MNTOPT_NOINTR, nointr_cancel, NULL, 0, 0 }, { MNTOPT_ACL, acl_cancel, NULL, 0, 0 }, { MNTOPT_NOACL, noacl_cancel, NULL, 0, 0 }, { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, 0 }, { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, 0 } }; static mntopts_t smbfs_mntopts = { sizeof (mntopts) / sizeof (mntopt_t), mntopts }; static const char fs_type_name[FSTYPSZ] = "smbfs"; static vfsdef_t vfw = { VFSDEF_VERSION, (char *)fs_type_name, smbfsinit, /* init routine */ VSW_HASPROTO|VSW_NOTZONESAFE, /* flags */ &smbfs_mntopts /* mount options table prototype */ }; static struct modlfs modlfs = { &mod_fsops, "SMBFS filesystem", &vfw }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modlfs, NULL }; /* * Mutex to protect the following variables: * smbfs_major * smbfs_minor */ extern kmutex_t smbfs_minor_lock; extern int smbfs_major; extern int smbfs_minor; /* * Prevent unloads while we have mounts */ uint32_t smbfs_mountcount; /* * smbfs vfs operations. */ static int smbfs_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *); static int smbfs_unmount(vfs_t *, int, cred_t *); static int smbfs_root(vfs_t *, vnode_t **); static int smbfs_statvfs(vfs_t *, statvfs64_t *); static int smbfs_sync(vfs_t *, short, cred_t *); static void smbfs_freevfs(vfs_t *); /* * Module loading */ /* * This routine is invoked automatically when the kernel module * containing this routine is loaded. This allows module specific * initialization to be done when the module is loaded. */ int _init(void) { int error; /* * Check compiled-in version of "nsmb" * that we're linked with. (paranoid) */ if (nsmb_version != NSMB_VERSION) { cmn_err(CE_WARN, "_init: nsmb version mismatch"); return (ENOTTY); } smbfs_mountcount = 0; /* * NFS calls these two in _clntinit * Easier to follow this way. */ if ((error = smbfs_subrinit()) != 0) { cmn_err(CE_WARN, "_init: smbfs_subrinit failed"); return (error); } if ((error = smbfs_vfsinit()) != 0) { cmn_err(CE_WARN, "_init: smbfs_vfsinit failed"); smbfs_subrfini(); return (error); } if ((error = smbfs_clntinit()) != 0) { cmn_err(CE_WARN, "_init: smbfs_clntinit failed"); smbfs_vfsfini(); smbfs_subrfini(); return (error); } error = mod_install((struct modlinkage *)&modlinkage); return (error); } /* * Free kernel module resources that were allocated in _init * and remove the linkage information into the kernel */ int _fini(void) { int error; /* * If a forcedly unmounted instance is still hanging around, * we cannot allow the module to be unloaded because that would * cause panics once the VFS framework decides it's time to call * into VFS_FREEVFS(). */ if (smbfs_mountcount) return (EBUSY); error = mod_remove(&modlinkage); if (error) return (error); /* * Free the allocated smbnodes, etc. */ smbfs_clntfini(); /* NFS calls these two in _clntfini */ smbfs_vfsfini(); smbfs_subrfini(); /* * Free the ops vectors */ smbfsfini(); return (0); } /* * Return information about the module */ int _info(struct modinfo *modinfop) { return (mod_info((struct modlinkage *)&modlinkage, modinfop)); } /* * Initialize the vfs structure */ int smbfsfstyp; vfsops_t *smbfs_vfsops = NULL; static const fs_operation_def_t smbfs_vfsops_template[] = { { VFSNAME_MOUNT, { .vfs_mount = smbfs_mount } }, { VFSNAME_UNMOUNT, { .vfs_unmount = smbfs_unmount } }, { VFSNAME_ROOT, { .vfs_root = smbfs_root } }, { VFSNAME_STATVFS, { .vfs_statvfs = smbfs_statvfs } }, { VFSNAME_SYNC, { .vfs_sync = smbfs_sync } }, { VFSNAME_VGET, { .error = fs_nosys } }, { VFSNAME_MOUNTROOT, { .error = fs_nosys } }, { VFSNAME_FREEVFS, { .vfs_freevfs = smbfs_freevfs } }, { NULL, NULL } }; int smbfsinit(int fstyp, char *name) { int error; error = vfs_setfsops(fstyp, smbfs_vfsops_template, &smbfs_vfsops); if (error != 0) { zcmn_err(GLOBAL_ZONEID, CE_WARN, "smbfsinit: bad vfs ops template"); return (error); } error = vn_make_ops(name, smbfs_vnodeops_template, &smbfs_vnodeops); if (error != 0) { (void) vfs_freevfsops_by_type(fstyp); zcmn_err(GLOBAL_ZONEID, CE_WARN, "smbfsinit: bad vnode ops template"); return (error); } smbfsfstyp = fstyp; return (0); } void smbfsfini() { if (smbfs_vfsops) { (void) vfs_freevfsops_by_type(smbfsfstyp); smbfs_vfsops = NULL; } if (smbfs_vnodeops) { vn_freevnodeops(smbfs_vnodeops); smbfs_vnodeops = NULL; } } void smbfs_free_smi(smbmntinfo_t *smi) { if (smi == NULL) return; if (smi->smi_zone_ref.zref_zone != NULL) zone_rele_ref(&smi->smi_zone_ref, ZONE_REF_SMBFS); if (smi->smi_share != NULL) smb_share_rele(smi->smi_share); avl_destroy(&smi->smi_hash_avl); rw_destroy(&smi->smi_hash_lk); cv_destroy(&smi->smi_statvfs_cv); mutex_destroy(&smi->smi_lock); kmem_free(smi, sizeof (smbmntinfo_t)); } /* * smbfs mount vfsop * Set up mount info record and attach it to vfs struct. */ static int smbfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) { char *data = uap->dataptr; int error; smbnode_t *rtnp = NULL; /* root of this fs */ smbmntinfo_t *smi = NULL; dev_t smbfs_dev; int version; int devfd; zone_t *zone = curproc->p_zone; zone_t *mntzone = NULL; smb_share_t *ssp = NULL; smb_cred_t scred; int flags, sec; STRUCT_DECL(smbfs_args, args); /* smbfs mount arguments */ if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) return (error); if (mvp->v_type != VDIR) return (ENOTDIR); /* * get arguments * * uap->datalen might be different from sizeof (args) * in a compatible situation. */ STRUCT_INIT(args, get_udatamodel()); bzero(STRUCT_BUF(args), SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE)); if (copyin(data, STRUCT_BUF(args), MIN(uap->datalen, SIZEOF_STRUCT(smbfs_args, DATAMODEL_NATIVE)))) return (EFAULT); /* * Check mount program version */ version = STRUCT_FGET(args, version); if (version != SMBFS_VERSION) { cmn_err(CE_WARN, "mount version mismatch:" " kernel=%d, mount=%d\n", SMBFS_VERSION, version); return (EINVAL); } /* * Deal with re-mount requests. */ if (uap->flags & MS_REMOUNT) { cmn_err(CE_WARN, "MS_REMOUNT not implemented"); return (ENOTSUP); } /* * Check for busy */ mutex_enter(&mvp->v_lock); if (!(uap->flags & MS_OVERLAY) && (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { mutex_exit(&mvp->v_lock); return (EBUSY); } mutex_exit(&mvp->v_lock); /* * Get the "share" from the netsmb driver (ssp). * It is returned with a "ref" (hold) for us. * Release this hold: at errout below, or in * smbfs_freevfs(). */ devfd = STRUCT_FGET(args, devfd); error = smb_dev2share(devfd, &ssp); if (error) { cmn_err(CE_WARN, "invalid device handle %d (%d)\n", devfd, error); return (error); } /* * Use "goto errout" from here on. * See: ssp, smi, rtnp, mntzone */ /* * Determine the zone we're being mounted into. */ zone_hold(mntzone = zone); /* start with this assumption */ if (getzoneid() == GLOBAL_ZONEID) { zone_rele(mntzone); mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); ASSERT(mntzone != NULL); if (mntzone != zone) { error = EBUSY; goto errout; } } /* * Stop the mount from going any further if the zone is going away. */ if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) { error = EBUSY; goto errout; } /* * On a Trusted Extensions client, we may have to force read-only * for read-down mounts. */ if (is_system_labeled()) { void *addr; int ipvers = 0; struct smb_vc *vcp; vcp = SSTOVC(ssp); addr = smb_vc_getipaddr(vcp, &ipvers); error = smbfs_mount_label_policy(vfsp, addr, ipvers, cr); if (error > 0) goto errout; if (error == -1) { /* change mount to read-only to prevent write-down */ vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); } } /* Prevent unload. */ atomic_inc_32(&smbfs_mountcount); /* * Create a mount record and link it to the vfs struct. * No more possiblities for errors from here on. * Tear-down of this stuff is in smbfs_free_smi() * * Compare with NFS: nfsrootvp() */ smi = kmem_zalloc(sizeof (*smi), KM_SLEEP); mutex_init(&smi->smi_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&smi->smi_statvfs_cv, NULL, CV_DEFAULT, NULL); rw_init(&smi->smi_hash_lk, NULL, RW_DEFAULT, NULL); smbfs_init_hash_avl(&smi->smi_hash_avl); smi->smi_share = ssp; ssp = NULL; /* * Convert the anonymous zone hold acquired via zone_hold() above * into a zone reference. */ zone_init_ref(&smi->smi_zone_ref); zone_hold_ref(mntzone, &smi->smi_zone_ref, ZONE_REF_SMBFS); zone_rele(mntzone); mntzone = NULL; /* * Initialize option defaults */ smi->smi_flags = SMI_LLOCK; smi->smi_acregmin = SEC2HR(SMBFS_ACREGMIN); smi->smi_acregmax = SEC2HR(SMBFS_ACREGMAX); smi->smi_acdirmin = SEC2HR(SMBFS_ACDIRMIN); smi->smi_acdirmax = SEC2HR(SMBFS_ACDIRMAX); /* * All "generic" mount options have already been * handled in vfs.c:domount() - see mntopts stuff. * Query generic options using vfs_optionisset(). * Give ACL an adjustable system-wide default. */ if (smbfs_default_opt_acl || vfs_optionisset(vfsp, MNTOPT_ACL, NULL)) smi->smi_flags |= SMI_ACL; if (vfs_optionisset(vfsp, MNTOPT_NOACL, NULL)) smi->smi_flags &= ~SMI_ACL; if (vfs_optionisset(vfsp, MNTOPT_INTR, NULL)) smi->smi_flags |= SMI_INT; /* * Get the mount options that come in as smbfs_args, * starting with args.flags (SMBFS_MF_xxx) */ flags = STRUCT_FGET(args, flags); smi->smi_uid = STRUCT_FGET(args, uid); smi->smi_gid = STRUCT_FGET(args, gid); smi->smi_fmode = STRUCT_FGET(args, file_mode) & 0777; smi->smi_dmode = STRUCT_FGET(args, dir_mode) & 0777; /* * Hande the SMBFS_MF_xxx flags. */ if (flags & SMBFS_MF_NOAC) smi->smi_flags |= SMI_NOAC; if (flags & SMBFS_MF_ACREGMIN) { sec = STRUCT_FGET(args, acregmin); if (sec < 0 || sec > SMBFS_ACMINMAX) sec = SMBFS_ACMINMAX; smi->smi_acregmin = SEC2HR(sec); } if (flags & SMBFS_MF_ACREGMAX) { sec = STRUCT_FGET(args, acregmax); if (sec < 0 || sec > SMBFS_ACMAXMAX) sec = SMBFS_ACMAXMAX; smi->smi_acregmax = SEC2HR(sec); } if (flags & SMBFS_MF_ACDIRMIN) { sec = STRUCT_FGET(args, acdirmin); if (sec < 0 || sec > SMBFS_ACMINMAX) sec = SMBFS_ACMINMAX; smi->smi_acdirmin = SEC2HR(sec); } if (flags & SMBFS_MF_ACDIRMAX) { sec = STRUCT_FGET(args, acdirmax); if (sec < 0 || sec > SMBFS_ACMAXMAX) sec = SMBFS_ACMAXMAX; smi->smi_acdirmax = SEC2HR(sec); } /* * Get attributes of the remote file system, * i.e. ACL support, named streams, etc. */ smb_credinit(&scred, cr); error = smbfs_smb_qfsattr(smi->smi_share, &smi->smi_fsa, &scred); smb_credrele(&scred); if (error) { SMBVDEBUG("smbfs_smb_qfsattr error %d\n", error); } /* * We enable XATTR by default (via smbfs_mntopts) * but if the share does not support named streams, * force the NOXATTR option (also clears XATTR). * Caller will set or clear VFS_XATTR after this. */ if ((smi->smi_fsattr & FILE_NAMED_STREAMS) == 0) vfs_setmntopt(vfsp, MNTOPT_NOXATTR, NULL, 0); /* * Ditto ACLs (disable if not supported on this share) */ if ((smi->smi_fsattr & FILE_PERSISTENT_ACLS) == 0) { vfs_setmntopt(vfsp, MNTOPT_NOACL, NULL, 0); smi->smi_flags &= ~SMI_ACL; } /* * Assign a unique device id to the mount */ mutex_enter(&smbfs_minor_lock); do { smbfs_minor = (smbfs_minor + 1) & MAXMIN32; smbfs_dev = makedevice(smbfs_major, smbfs_minor); } while (vfs_devismounted(smbfs_dev)); mutex_exit(&smbfs_minor_lock); vfsp->vfs_dev = smbfs_dev; vfs_make_fsid(&vfsp->vfs_fsid, smbfs_dev, smbfsfstyp); vfsp->vfs_data = (caddr_t)smi; vfsp->vfs_fstype = smbfsfstyp; vfsp->vfs_bsize = MAXBSIZE; vfsp->vfs_bcount = 0; smi->smi_vfsp = vfsp; smbfs_zonelist_add(smi); /* undo in smbfs_freevfs */ /* PSARC 2007/227 VFS Feature Registration */ vfs_set_feature(vfsp, VFSFT_XVATTR); vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); /* * Create the root vnode, which we need in unmount * for the call to smbfs_check_table(), etc. * Release this hold in smbfs_unmount. */ rtnp = smbfs_node_findcreate(smi, "\\", 1, NULL, 0, 0, &smbfs_fattr0); ASSERT(rtnp != NULL); rtnp->r_vnode->v_type = VDIR; rtnp->r_vnode->v_flag |= VROOT; smi->smi_root = rtnp; /* * Create a taskq for async work (i.e. putpage) */ smi->smi_taskq = taskq_create_proc("smbfs", smbfs_tq_nthread, minclsyspri, smbfs_tq_nthread, smbfs_tq_nthread * 2, zone->zone_zsched, TASKQ_PREPOPULATE); /* * NFS does other stuff here too: * async worker threads * init kstats * * End of code from NFS nfsrootvp() */ return (0); errout: vfsp->vfs_data = NULL; if (smi != NULL) smbfs_free_smi(smi); if (mntzone != NULL) zone_rele(mntzone); if (ssp != NULL) smb_share_rele(ssp); return (error); } /* * vfs operations */ static int smbfs_unmount(vfs_t *vfsp, int flag, cred_t *cr) { smbmntinfo_t *smi; smbnode_t *rtnp; smi = VFTOSMI(vfsp); if (secpolicy_fs_unmount(cr, vfsp) != 0) return (EPERM); if ((flag & MS_FORCE) == 0) { smbfs_rflush(vfsp, cr); /* * If there are any active vnodes on this file system, * (other than the root vnode) then the file system is * busy and can't be umounted. */ if (smbfs_check_table(vfsp, smi->smi_root)) return (EBUSY); /* * We normally hold a ref to the root vnode, so * check for references beyond the one we expect: * smbmntinfo_t -> smi_root * Note that NFS does not hold the root vnode. */ if (smi->smi_root && smi->smi_root->r_vnode->v_count > 1) return (EBUSY); } /* * common code for both forced and non-forced * * Setting VFS_UNMOUNTED prevents new operations. * Operations already underway may continue, * but not for long. */ vfsp->vfs_flag |= VFS_UNMOUNTED; /* * If we hold the root VP (and we normally do) * then it's safe to release it now. */ if (smi->smi_root) { rtnp = smi->smi_root; smi->smi_root = NULL; VN_RELE(rtnp->r_vnode); /* release root vnode */ } /* * Remove all nodes from the node hash tables. * This (indirectly) calls: smbfs_addfree, smbinactive, * which will try to flush dirty pages, etc. so * don't destroy the underlying share just yet. * * Also, with a forced unmount, some nodes may * remain active, and those will get cleaned up * after their last vn_rele. */ smbfs_destroy_table(vfsp); /* * Shutdown any outstanding I/O requests on this share, * and force a tree disconnect. The share object will * continue to hang around until smb_share_rele(). * This should also cause most active nodes to be * released as their operations fail with EIO. */ smb_share_kill(smi->smi_share); /* * Any async taskq work should be giving up. * Wait for those to exit. */ taskq_destroy(smi->smi_taskq); /* * Delete our kstats... * * Doing it here, rather than waiting until * smbfs_freevfs so these are not visible * after the unmount. */ if (smi->smi_io_kstats) { kstat_delete(smi->smi_io_kstats); smi->smi_io_kstats = NULL; } if (smi->smi_ro_kstats) { kstat_delete(smi->smi_ro_kstats); smi->smi_ro_kstats = NULL; } /* * The rest happens in smbfs_freevfs() */ return (0); } /* * find root of smbfs */ static int smbfs_root(vfs_t *vfsp, vnode_t **vpp) { smbmntinfo_t *smi; vnode_t *vp; smi = VFTOSMI(vfsp); if (curproc->p_zone != smi->smi_zone_ref.zref_zone) return (EPERM); if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED) return (EIO); /* * The root vp is created in mount and held * until unmount, so this is paranoia. */ if (smi->smi_root == NULL) return (EIO); /* Just take a reference and return it. */ vp = SMBTOV(smi->smi_root); VN_HOLD(vp); *vpp = vp; return (0); } /* * Get file system statistics. */ static int smbfs_statvfs(vfs_t *vfsp, statvfs64_t *sbp) { int error; smbmntinfo_t *smi = VFTOSMI(vfsp); smb_share_t *ssp = smi->smi_share; statvfs64_t stvfs; hrtime_t now; smb_cred_t scred; if (curproc->p_zone != smi->smi_zone_ref.zref_zone) return (EPERM); if (smi->smi_flags & SMI_DEAD || vfsp->vfs_flag & VFS_UNMOUNTED) return (EIO); mutex_enter(&smi->smi_lock); /* * Use cached result if still valid. */ recheck: now = gethrtime(); if (now < smi->smi_statfstime) { error = 0; goto cache_hit; } /* * FS attributes are stale, so someone * needs to do an OTW call to get them. * Serialize here so only one thread * does the OTW call. */ if (smi->smi_status & SM_STATUS_STATFS_BUSY) { smi->smi_status |= SM_STATUS_STATFS_WANT; if (!cv_wait_sig(&smi->smi_statvfs_cv, &smi->smi_lock)) { mutex_exit(&smi->smi_lock); return (EINTR); } /* Hope status is valid now. */ goto recheck; } smi->smi_status |= SM_STATUS_STATFS_BUSY; mutex_exit(&smi->smi_lock); /* * Do the OTW call. Note: lock NOT held. */ smb_credinit(&scred, NULL); bzero(&stvfs, sizeof (stvfs)); error = smbfs_smb_statfs(ssp, &stvfs, &scred); smb_credrele(&scred); if (error) { SMBVDEBUG("statfs error=%d\n", error); } else { /* * Set a few things the OTW call didn't get. */ stvfs.f_frsize = stvfs.f_bsize; stvfs.f_favail = stvfs.f_ffree; stvfs.f_fsid = (unsigned long)vfsp->vfs_fsid.val[0]; bcopy(fs_type_name, stvfs.f_basetype, FSTYPSZ); stvfs.f_flag = vf_to_stf(vfsp->vfs_flag); stvfs.f_namemax = smi->smi_fsa.fsa_maxname; /* * Save the result, update lifetime */ now = gethrtime(); smi->smi_statfstime = now + (SM_MAX_STATFSTIME * (hrtime_t)NANOSEC); smi->smi_statvfsbuf = stvfs; /* struct assign! */ } mutex_enter(&smi->smi_lock); if (smi->smi_status & SM_STATUS_STATFS_WANT) cv_broadcast(&smi->smi_statvfs_cv); smi->smi_status &= ~(SM_STATUS_STATFS_BUSY | SM_STATUS_STATFS_WANT); /* * Copy the statvfs data to caller's buf. * Note: struct assignment */ cache_hit: if (error == 0) *sbp = smi->smi_statvfsbuf; mutex_exit(&smi->smi_lock); return (error); } /* * Flush dirty smbfs files for file system vfsp. * If vfsp == NULL, all smbfs files are flushed. */ /*ARGSUSED*/ static int smbfs_sync(vfs_t *vfsp, short flag, cred_t *cr) { /* * SYNC_ATTR is used by fsflush() to force old filesystems like UFS * to sync metadata, which they would otherwise cache indefinitely. * Semantically, the only requirement is that the sync be initiated. * Assume the server-side takes care of attribute sync. */ if (flag & SYNC_ATTR) return (0); if (vfsp == NULL) { /* * Flush ALL smbfs mounts in this zone. */ smbfs_flushall(cr); return (0); } smbfs_rflush(vfsp, cr); return (0); } /* * Initialization routine for VFS routines. Should only be called once */ int smbfs_vfsinit(void) { return (0); } /* * Shutdown routine for VFS routines. Should only be called once */ void smbfs_vfsfini(void) { } void smbfs_freevfs(vfs_t *vfsp) { smbmntinfo_t *smi; /* free up the resources */ smi = VFTOSMI(vfsp); /* * By this time we should have already deleted the * smi kstats in the unmount code. If they are still around * something is wrong */ ASSERT(smi->smi_io_kstats == NULL); smbfs_zonelist_remove(smi); smbfs_free_smi(smi); /* * Allow _fini() to succeed now, if so desired. */ atomic_dec_32(&smbfs_mountcount); } /* * smbfs_mount_label_policy: * Determine whether the mount is allowed according to MAC check, * by comparing (where appropriate) label of the remote server * against the label of the zone being mounted into. * * Returns: * 0 : access allowed * -1 : read-only access allowed (i.e., read-down) * >0 : error code, such as EACCES * * NB: * NFS supports Cipso labels by parsing the vfs_resource * to see what the Solaris server global zone has shared. * We can't support that for CIFS since resource names * contain share names, not paths. */ static int smbfs_mount_label_policy(vfs_t *vfsp, void *ipaddr, int addr_type, cred_t *cr) { bslabel_t *server_sl, *mntlabel; zone_t *mntzone = NULL; ts_label_t *zlabel; tsol_tpc_t *tp; ts_label_t *tsl = NULL; int retv; /* * Get the zone's label. Each zone on a labeled system has a label. */ mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); zlabel = mntzone->zone_slabel; ASSERT(zlabel != NULL); label_hold(zlabel); retv = EACCES; /* assume the worst */ /* * Next, get the assigned label of the remote server. */ tp = find_tpc(ipaddr, addr_type, B_FALSE); if (tp == NULL) goto out; /* error getting host entry */ if (tp->tpc_tp.tp_doi != zlabel->tsl_doi) goto rel_tpc; /* invalid domain */ if ((tp->tpc_tp.host_type != UNLABELED)) goto rel_tpc; /* invalid hosttype */ server_sl = &tp->tpc_tp.tp_def_label; mntlabel = label2bslabel(zlabel); /* * Now compare labels to complete the MAC check. If the labels * are equal or if the requestor is in the global zone and has * NET_MAC_AWARE, then allow read-write access. (Except for * mounts into the global zone itself; restrict these to * read-only.) * * If the requestor is in some other zone, but their label * dominates the server, then allow read-down. * * Otherwise, access is denied. */ if (blequal(mntlabel, server_sl) || (crgetzoneid(cr) == GLOBAL_ZONEID && getpflags(NET_MAC_AWARE, cr) != 0)) { if ((mntzone == global_zone) || !blequal(mntlabel, server_sl)) retv = -1; /* read-only */ else retv = 0; /* access OK */ } else if (bldominates(mntlabel, server_sl)) { retv = -1; /* read-only */ } else { retv = EACCES; } if (tsl != NULL) label_rele(tsl); rel_tpc: /*LINTED*/ TPC_RELE(tp); out: if (mntzone) zone_rele(mntzone); label_rele(zlabel); return (retv); }