/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Copyright 2019, Joyent, Inc. * Copyright 2022 Oxide Computer Company */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "elf_impl.h" #include #include #include #include #if defined(__x86) #include #include #endif /* defined(__x86) */ extern int at_flags; extern volatile size_t aslr_max_brk_skew; #define ORIGIN_STR "ORIGIN" #define ORIGIN_STR_SIZE 6 static int getelfhead(vnode_t *, cred_t *, Ehdr *, uint_t *, uint_t *, uint_t *); static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, uint_t, caddr_t *, size_t *); static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, uint_t, uint_t, caddr_t *, size_t *, caddr_t *, size_t *); static size_t elfsize(const Ehdr *, uint_t, const caddr_t, uintptr_t *); static int mapelfexec(vnode_t *, Ehdr *, uint_t, caddr_t, Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, caddr_t *, caddr_t *, intptr_t *, uintptr_t *, size_t, size_t *, size_t *); #ifdef _ELF32_COMPAT /* Link against the non-compat instances when compiling the 32-bit version. */ extern size_t elf_datasz_max; extern size_t elf_zeropg_sz; extern void elf_ctx_resize_scratch(elf_core_ctx_t *, size_t); extern uint_t elf_nphdr_max; extern uint_t elf_nshdr_max; extern size_t elf_shstrtab_max; #else size_t elf_datasz_max = 1 * 1024 * 1024; size_t elf_zeropg_sz = 4 * 1024; uint_t elf_nphdr_max = 1000; uint_t elf_nshdr_max = 10000; size_t elf_shstrtab_max = 100 * 1024; #endif static int dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) { ASSERT(phdrp->p_type == PT_SUNWDTRACE); /* * See the comment in fasttrap.h for information on how to safely * update this program header. */ if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) return (-1); args->thrptr = phdrp->p_vaddr + base; return (0); } static int handle_secflag_dt(proc_t *p, uint_t dt, uint_t val) { uint_t flag; switch (dt) { case DT_SUNW_ASLR: flag = PROC_SEC_ASLR; break; default: return (EINVAL); } if (val == 0) { if (secflag_isset(p->p_secflags.psf_lower, flag)) return (EPERM); if ((secpolicy_psecflags(CRED(), p, p) != 0) && secflag_isset(p->p_secflags.psf_inherit, flag)) return (EPERM); secflag_clear(&p->p_secflags.psf_effective, flag); } else { if (!secflag_isset(p->p_secflags.psf_upper, flag)) return (EPERM); if ((secpolicy_psecflags(CRED(), p, p) != 0) && !secflag_isset(p->p_secflags.psf_inherit, flag)) return (EPERM); secflag_set(&p->p_secflags.psf_effective, flag); } return (0); } #ifndef _ELF32_COMPAT void elf_ctx_resize_scratch(elf_core_ctx_t *ctx, size_t sz) { size_t target = MIN(sz, elf_datasz_max); if (target > ctx->ecc_bufsz) { if (ctx->ecc_buf != NULL) { kmem_free(ctx->ecc_buf, ctx->ecc_bufsz); } ctx->ecc_buf = kmem_alloc(target, KM_SLEEP); ctx->ecc_bufsz = target; } } #endif /* _ELF32_COMPAT */ /* * Map in the executable pointed to by vp. Returns 0 on success. */ int mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) { size_t len, phdrsize; struct vattr vat; caddr_t phdrbase = NULL; uint_t nshdrs, shstrndx, nphdrs; int error = 0; Phdr *uphdr = NULL; Phdr *junk = NULL; Phdr *dynphdr = NULL; Phdr *dtrphdr = NULL; uintptr_t lddata, minaddr; size_t execsz; if (lddatap != NULL) *lddatap = 0; if (error = execpermissions(vp, &vat, args)) { uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); return (error); } if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, &nphdrs)) != 0 || (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, &phdrsize)) != 0) { uprintf("%s: Cannot read %s\n", exec_file, args->pathname); return (error); } if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { uprintf("%s: Nothing to load in %s", exec_file, args->pathname); kmem_free(phdrbase, phdrsize); return (ENOEXEC); } if (lddatap != NULL) *lddatap = lddata; if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, len, &execsz, brksize)) { uprintf("%s: Cannot map %s\n", exec_file, args->pathname); if (uphdr != NULL && uphdr->p_flags == 0) kmem_free(uphdr, sizeof (Phdr)); kmem_free(phdrbase, phdrsize); return (error); } /* * Inform our caller if the executable needs an interpreter. */ *interp = (dynphdr == NULL) ? 0 : 1; /* * If this is a statically linked executable, voffset should indicate * the address of the executable itself (it normally holds the address * of the interpreter). */ if (ehdr->e_type == ET_EXEC && *interp == 0) *voffset = minaddr; if (uphdr != NULL) { *uphdr_vaddr = uphdr->p_vaddr; if (uphdr->p_flags == 0) kmem_free(uphdr, sizeof (Phdr)); } else { *uphdr_vaddr = (Addr)-1; } kmem_free(phdrbase, phdrsize); return (error); } int elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, int level, size_t *execsz, int setid, caddr_t exec_file, cred_t *cred, int brand_action) { caddr_t phdrbase = NULL; caddr_t bssbase = 0; caddr_t brkbase = 0; size_t brksize = 0; size_t dlnsize; aux_entry_t *aux; int error; ssize_t resid; int fd = -1; intptr_t voffset; Phdr *intphdr = NULL; Phdr *dynamicphdr = NULL; Phdr *stphdr = NULL; Phdr *uphdr = NULL; Phdr *junk = NULL; size_t len; size_t postfixsize = 0; size_t i; Phdr *phdrp; Phdr *dataphdrp = NULL; Phdr *dtrphdr; Phdr *capphdr = NULL; Cap *cap = NULL; size_t capsize; int hasu = 0; int hasauxv = 0; int hasintp = 0; int branded = 0; boolean_t dynuphdr = B_FALSE; struct proc *p = ttoproc(curthread); struct user *up = PTOU(p); struct bigwad { Ehdr ehdr; aux_entry_t elfargs[__KERN_NAUXV_IMPL]; char dl_name[MAXPATHLEN]; char pathbuf[MAXPATHLEN]; struct vattr vattr; struct execenv exenv; } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ Ehdr *ehdrp; uint_t nshdrs, shstrndx, nphdrs; size_t phdrsize; char *dlnp; char *pathbufp; rlim64_t limit; rlim64_t roundlimit; ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); ehdrp = &bigwad->ehdr; dlnp = bigwad->dl_name; pathbufp = bigwad->pathbuf; /* * Obtain ELF and program header information. */ if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, &nphdrs)) != 0 || (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, &phdrsize)) != 0) goto out; /* * Prevent executing an ELF file that has no entry point. */ if (ehdrp->e_entry == 0) { uprintf("%s: Bad entry point\n", exec_file); goto bad; } /* * Put data model that we're exec-ing to into the args passed to * exec_args(), so it will know what it is copying to on new stack. * Now that we know whether we are exec-ing a 32-bit or 64-bit * executable, we can set execsz with the appropriate NCARGS. */ #ifdef _LP64 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { args->to_model = DATAMODEL_ILP32; *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); } else { args->to_model = DATAMODEL_LP64; args->stk_prot &= ~PROT_EXEC; #if defined(__x86) args->dat_prot &= ~PROT_EXEC; #endif *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); } #else /* _LP64 */ args->to_model = DATAMODEL_ILP32; *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); #endif /* _LP64 */ /* * We delay invoking the brand callback until we've figured out * what kind of elf binary we're trying to run, 32-bit or 64-bit. * We do this because now the brand library can just check * args->to_model to see if the target is 32-bit or 64-bit without * having do duplicate all the code above. * * The level checks associated with brand handling below are used to * prevent a loop since the brand elfexec function typically comes back * through this function. We must check <= here since the nested * handling in the #! interpreter code will increment the level before * calling gexec to run the final elfexec interpreter. */ if ((level <= INTP_MAXDEPTH) && (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { error = BROP(p)->b_elfexec(vp, uap, args, idatap, level + 1, execsz, setid, exec_file, cred, brand_action); goto out; } /* * Determine aux size now so that stack can be built * in one shot (except actual copyout of aux image), * determine any non-default stack protections, * and still have this code be machine independent. */ const uint_t hsize = ehdrp->e_phentsize; phdrp = (Phdr *)phdrbase; for (i = nphdrs; i > 0; i--) { switch (phdrp->p_type) { case PT_INTERP: hasauxv = hasintp = 1; break; case PT_PHDR: hasu = 1; break; case PT_SUNWSTACK: args->stk_prot = PROT_USER; if (phdrp->p_flags & PF_R) args->stk_prot |= PROT_READ; if (phdrp->p_flags & PF_W) args->stk_prot |= PROT_WRITE; if (phdrp->p_flags & PF_X) args->stk_prot |= PROT_EXEC; break; case PT_LOAD: dataphdrp = phdrp; break; case PT_SUNWCAP: capphdr = phdrp; break; case PT_DYNAMIC: dynamicphdr = phdrp; break; } phdrp = (Phdr *)((caddr_t)phdrp + hsize); } if (ehdrp->e_type != ET_EXEC) { dataphdrp = NULL; hasauxv = 1; } /* Copy BSS permissions to args->dat_prot */ if (dataphdrp != NULL) { args->dat_prot = PROT_USER; if (dataphdrp->p_flags & PF_R) args->dat_prot |= PROT_READ; if (dataphdrp->p_flags & PF_W) args->dat_prot |= PROT_WRITE; if (dataphdrp->p_flags & PF_X) args->dat_prot |= PROT_EXEC; } /* * If a auxvector will be required - reserve the space for * it now. This may be increased by exec_args if there are * ISA-specific types (included in __KERN_NAUXV_IMPL). */ if (hasauxv) { /* * If a AUX vector is being built - the base AUX * entries are: * * AT_BASE * AT_FLAGS * AT_PAGESZ * AT_SUN_AUXFLAGS * AT_SUN_HWCAP * AT_SUN_HWCAP2 * AT_SUN_HWCAP3 * AT_SUN_PLATFORM (added in stk_copyout) * AT_SUN_EXECNAME (added in stk_copyout) * AT_NULL * * total == 10 */ if (hasintp && hasu) { /* * Has PT_INTERP & PT_PHDR - the auxvectors that * will be built are: * * AT_PHDR * AT_PHENT * AT_PHNUM * AT_ENTRY * AT_LDDATA * * total = 5 */ args->auxsize = (10 + 5) * sizeof (aux_entry_t); } else if (hasintp) { /* * Has PT_INTERP but no PT_PHDR * * AT_EXECFD * AT_LDDATA * * total = 2 */ args->auxsize = (10 + 2) * sizeof (aux_entry_t); } else { args->auxsize = 10 * sizeof (aux_entry_t); } } else { args->auxsize = 0; } /* * If this binary is using an emulator, we need to add an * AT_SUN_EMULATOR aux entry. */ if (args->emulator != NULL) args->auxsize += sizeof (aux_entry_t); /* * On supported kernels (x86_64) make room in the auxv for the * AT_SUN_COMMPAGE entry. This will go unpopulated on i86xpv systems * which do not provide such functionality. * * Additionally cover the floating point information AT_SUN_FPSIZE and * AT_SUN_FPTYPE. */ #if defined(__amd64) args->auxsize += 3 * sizeof (aux_entry_t); #endif /* defined(__amd64) */ if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { branded = 1; /* * We will be adding 4 entries to the aux vectors. One for * the the brandname and 3 for the brand specific aux vectors. */ args->auxsize += 4 * sizeof (aux_entry_t); } /* If the binary has an explicit ASLR flag, it must be honoured */ if ((dynamicphdr != NULL) && (dynamicphdr->p_filesz > 0)) { const size_t dynfilesz = dynamicphdr->p_filesz; const size_t dynoffset = dynamicphdr->p_offset; Dyn *dyn, *dp; if (dynoffset > MAXOFFSET_T || dynfilesz > MAXOFFSET_T || dynoffset + dynfilesz > MAXOFFSET_T) { uprintf("%s: cannot read full .dynamic section\n", exec_file); error = EINVAL; goto out; } #define DYN_STRIDE 100 for (i = 0; i < dynfilesz; i += sizeof (*dyn) * DYN_STRIDE) { const size_t remdyns = (dynfilesz - i) / sizeof (*dyn); const size_t ndyns = MIN(DYN_STRIDE, remdyns); const size_t dynsize = ndyns * sizeof (*dyn); dyn = kmem_alloc(dynsize, KM_SLEEP); if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn, (ssize_t)dynsize, (offset_t)(dynoffset + i), UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), NULL)) != 0) { uprintf("%s: cannot read .dynamic section\n", exec_file); goto out; } for (dp = dyn; dp < (dyn + ndyns); dp++) { if (dp->d_tag == DT_SUNW_ASLR) { if ((error = handle_secflag_dt(p, DT_SUNW_ASLR, dp->d_un.d_val)) != 0) { uprintf("%s: error setting " "security-flag from " "DT_SUNW_ASLR: %d\n", exec_file, error); goto out; } } } kmem_free(dyn, dynsize); } } /* Hardware/Software capabilities */ if (capphdr != NULL && (capsize = capphdr->p_filesz) > 0 && capsize <= 16 * sizeof (*cap)) { const uint_t ncaps = capsize / sizeof (*cap); Cap *cp; cap = kmem_alloc(capsize, KM_SLEEP); if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, (ssize_t)capsize, (offset_t)capphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), NULL)) != 0) { uprintf("%s: Cannot read capabilities section\n", exec_file); goto out; } for (cp = cap; cp < cap + ncaps; cp++) { if (cp->c_tag == CA_SUNW_SF_1 && (cp->c_un.c_val & SF1_SUNW_ADDR32)) { if (args->to_model == DATAMODEL_LP64) args->addr32 = 1; break; } } } aux = bigwad->elfargs; /* * Move args to the user's stack. * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. */ if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { if (error == -1) { error = ENOEXEC; goto bad; } goto out; } /* we're single threaded after this point */ /* * If this is an ET_DYN executable (shared object), * determine its memory size so that mapelfexec() can load it. */ if (ehdrp->e_type == ET_DYN) len = elfsize(ehdrp, nphdrs, phdrbase, NULL); else len = 0; dtrphdr = NULL; error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr, &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, len, execsz, &brksize); /* * Our uphdr has been dynamically allocated if (and only if) its * program header flags are clear. To avoid leaks, this must be * checked regardless of whether mapelfexec() emitted an error. */ dynuphdr = (uphdr != NULL && uphdr->p_flags == 0); if (error != 0) goto bad; if (uphdr != NULL && intphdr == NULL) goto bad; if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); goto bad; } if (intphdr != NULL) { size_t len; uintptr_t lddata; char *p; struct vnode *nvp; dlnsize = intphdr->p_filesz; /* * Make sure none of the component pieces of dlnsize result in * an oversized or zeroed result. */ if (intphdr->p_filesz > MAXPATHLEN || dlnsize > MAXPATHLEN || dlnsize == 0 || dlnsize < intphdr->p_filesz) { goto bad; } /* * Read in "interpreter" pathname. */ if ((error = vn_rdwr(UIO_READ, vp, dlnp, (ssize_t)intphdr->p_filesz, (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { uprintf("%s: Cannot obtain interpreter pathname\n", exec_file); goto bad; } if (resid != 0 || dlnp[dlnsize - 1] != '\0') goto bad; /* * Search for '$ORIGIN' token in interpreter path. * If found, expand it. */ for (p = dlnp; p = strchr(p, '$'); ) { uint_t len, curlen; char *_ptr; if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) continue; /* * We don't support $ORIGIN on setid programs to close * a potential attack vector. */ if ((setid & EXECSETID_SETID) != 0) { error = ENOEXEC; goto bad; } curlen = 0; len = p - dlnp - 1; if (len) { bcopy(dlnp, pathbufp, len); curlen += len; } if (_ptr = strrchr(args->pathname, '/')) { len = _ptr - args->pathname; if ((curlen + len) > MAXPATHLEN) break; bcopy(args->pathname, &pathbufp[curlen], len); curlen += len; } else { /* * executable is a basename found in the * current directory. So - just substitue * '.' for ORIGIN. */ pathbufp[curlen] = '.'; curlen++; } p += ORIGIN_STR_SIZE; len = strlen(p); if ((curlen + len) > MAXPATHLEN) break; bcopy(p, &pathbufp[curlen], len); curlen += len; pathbufp[curlen++] = '\0'; bcopy(pathbufp, dlnp, curlen); } /* * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). * Just in case /usr is not mounted, change it now. */ if (strcmp(dlnp, USR_LIB_RTLD) == 0) dlnp += 4; error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); if (error && dlnp != bigwad->dl_name) { /* new kernel, old user-level */ error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); } if (error) { uprintf("%s: Cannot find %s\n", exec_file, dlnp); goto bad; } /* * Setup the "aux" vector. */ if (uphdr) { if (ehdrp->e_type == ET_DYN) { /* don't use the first page */ bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; } else { bigwad->exenv.ex_bssbase = bssbase; bigwad->exenv.ex_brkbase = brkbase; } bigwad->exenv.ex_brksize = brksize; bigwad->exenv.ex_magic = elfmagic; bigwad->exenv.ex_vp = vp; setexecenv(&bigwad->exenv); ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) ADDAUX(aux, AT_PHNUM, nphdrs) ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) } else { if ((error = execopen(&vp, &fd)) != 0) { VN_RELE(nvp); goto bad; } ADDAUX(aux, AT_EXECFD, fd) } if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { VN_RELE(nvp); uprintf("%s: Cannot execute %s\n", exec_file, dlnp); goto bad; } /* * Now obtain the ELF header along with the entire program * header contained in "nvp". */ kmem_free(phdrbase, phdrsize); phdrbase = NULL; if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, &shstrndx, &nphdrs)) != 0 || (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, &phdrsize)) != 0) { VN_RELE(nvp); uprintf("%s: Cannot read %s\n", exec_file, dlnp); goto bad; } /* * Determine memory size of the "interpreter's" loadable * sections. This size is then used to obtain the virtual * address of a hole, in the user's address space, large * enough to map the "interpreter". */ if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { VN_RELE(nvp); uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); goto bad; } dtrphdr = NULL; error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, NULL, &junk, &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, execsz, NULL); if (error || junk != NULL) { VN_RELE(nvp); uprintf("%s: Cannot map %s\n", exec_file, dlnp); goto bad; } /* * We use the DTrace program header to initialize the * architecture-specific user per-LWP location. The dtrace * fasttrap provider requires ready access to per-LWP scratch * space. We assume that there is only one such program header * in the interpreter. */ if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { VN_RELE(nvp); uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); goto bad; } VN_RELE(nvp); ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) } if (hasauxv) { int auxf = AF_SUN_HWCAPVERIFY; #if defined(__amd64) size_t fpsize; int fptype; #endif /* defined(__amd64) */ /* * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via * exec_args() */ ADDAUX(aux, AT_BASE, voffset) ADDAUX(aux, AT_FLAGS, at_flags) ADDAUX(aux, AT_PAGESZ, PAGESIZE) /* * Linker flags. (security) * p_flag not yet set at this time. * We rely on gexec() to provide us with the information. * If the application is set-uid but this is not reflected * in a mismatch between real/effective uids/gids, then * don't treat this as a set-uid exec. So we care about * the EXECSETID_UGIDS flag but not the ...SETID flag. */ if ((setid &= ~EXECSETID_SETID) != 0) auxf |= AF_SUN_SETUGID; /* * If we're running a native process from within a branded * zone under pfexec then we clear the AF_SUN_SETUGID flag so * that the native ld.so.1 is able to link with the native * libraries instead of using the brand libraries that are * installed in the zone. We only do this for processes * which we trust because we see they are already running * under pfexec (where uid != euid). This prevents a * malicious user within the zone from crafting a wrapper to * run native suid commands with unsecure libraries interposed. */ if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && (setid &= ~EXECSETID_SETID) != 0)) auxf &= ~AF_SUN_SETUGID; /* * Record the user addr of the auxflags aux vector entry * since brands may optionally want to manipulate this field. */ args->auxp_auxflags = (char *)((char *)args->stackend + ((char *)&aux->a_type - (char *)bigwad->elfargs)); ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); /* * Hardware capability flag word (performance hints) * Used for choosing faster library routines. * (Potentially different between 32-bit and 64-bit ABIs) */ if (args->to_model == DATAMODEL_NATIVE) { ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) ADDAUX(aux, AT_SUN_HWCAP3, auxv_hwcap_3) } else { ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) ADDAUX(aux, AT_SUN_HWCAP3, auxv_hwcap32_3) } if (branded) { /* * Reserve space for the brand-private aux vectors, * and record the user addr of that space. */ args->auxp_brand = (char *)((char *)args->stackend + ((char *)&aux->a_type - (char *)bigwad->elfargs)); ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) } /* * Add the comm page auxv entry, mapping it in if needed. Also * take care of the FPU entries. */ #if defined(__amd64) if (args->commpage != (uintptr_t)NULL || (args->commpage = (uintptr_t)comm_page_mapin()) != (uintptr_t)NULL) { ADDAUX(aux, AT_SUN_COMMPAGE, args->commpage) } else { /* * If the comm page cannot be mapped, pad out the auxv * to satisfy later size checks. */ ADDAUX(aux, AT_NULL, 0) } fptype = AT_386_FPINFO_NONE; fpu_auxv_info(&fptype, &fpsize); if (fptype != AT_386_FPINFO_NONE) { ADDAUX(aux, AT_SUN_FPTYPE, fptype) ADDAUX(aux, AT_SUN_FPSIZE, fpsize) } else { ADDAUX(aux, AT_NULL, 0) ADDAUX(aux, AT_NULL, 0) } #endif /* defined(__amd64) */ ADDAUX(aux, AT_NULL, 0) postfixsize = (uintptr_t)aux - (uintptr_t)bigwad->elfargs; /* * We make assumptions above when we determine how many aux * vector entries we will be adding. However, if we have an * invalid elf file, it is possible that mapelfexec might * behave differently (but not return an error), in which case * the number of aux entries we actually add will be different. * We detect that now and error out. */ if (postfixsize != args->auxsize) { DTRACE_PROBE2(elfexec_badaux, size_t, postfixsize, size_t, args->auxsize); goto bad; } ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); } /* * For the 64-bit kernel, the limit is big enough that rounding it up * to a page can overflow the 64-bit limit, so we check for btopr() * overflowing here by comparing it with the unrounded limit in pages. * If it hasn't overflowed, compare the exec size with the rounded up * limit in pages. Otherwise, just compare with the unrounded limit. */ limit = btop(p->p_vmem_ctl); roundlimit = btopr(p->p_vmem_ctl); if ((roundlimit > limit && *execsz > roundlimit) || (roundlimit < limit && *execsz > limit)) { mutex_enter(&p->p_lock); (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, RCA_SAFE); mutex_exit(&p->p_lock); error = ENOMEM; goto bad; } bzero(up->u_auxv, sizeof (up->u_auxv)); up->u_commpagep = args->commpage; if (postfixsize) { size_t num_auxv; /* * Copy the aux vector to the user stack. */ error = execpoststack(args, bigwad->elfargs, postfixsize); if (error) goto bad; /* * Copy auxv to the process's user structure for use by /proc. * If this is a branded process, the brand's exec routine will * copy it's private entries to the user structure later. It * relies on the fact that the blank entries are at the end. */ num_auxv = postfixsize / sizeof (aux_entry_t); ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); aux = bigwad->elfargs; for (i = 0; i < num_auxv; i++) { up->u_auxv[i].a_type = aux[i].a_type; up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; } } /* * Pass back the starting address so we can set the program counter. */ args->entry = (uintptr_t)(ehdrp->e_entry + voffset); if (!uphdr) { if (ehdrp->e_type == ET_DYN) { /* * If we are executing a shared library which doesn't * have a interpreter (probably ld.so.1) then * we don't set the brkbase now. Instead we * delay it's setting until the first call * via grow.c::brk(). This permits ld.so.1 to * initialize brkbase to the tail of the executable it * loads (which is where it needs to be). */ bigwad->exenv.ex_brkbase = (caddr_t)0; bigwad->exenv.ex_bssbase = (caddr_t)0; bigwad->exenv.ex_brksize = 0; } else { bigwad->exenv.ex_brkbase = brkbase; bigwad->exenv.ex_bssbase = bssbase; bigwad->exenv.ex_brksize = brksize; } bigwad->exenv.ex_magic = elfmagic; bigwad->exenv.ex_vp = vp; setexecenv(&bigwad->exenv); } ASSERT(error == 0); goto out; bad: if (fd != -1) /* did we open the a.out yet */ (void) execclose(fd); psignal(p, SIGKILL); if (error == 0) error = ENOEXEC; out: if (dynuphdr) kmem_free(uphdr, sizeof (Phdr)); if (phdrbase != NULL) kmem_free(phdrbase, phdrsize); if (cap != NULL) kmem_free(cap, capsize); kmem_free(bigwad, sizeof (struct bigwad)); return (error); } /* * Compute the memory size requirement for the ELF file. */ static size_t elfsize(const Ehdr *ehdrp, uint_t nphdrs, const caddr_t phdrbase, uintptr_t *lddata) { const Phdr *phdrp = (Phdr *)phdrbase; const uint_t hsize = ehdrp->e_phentsize; boolean_t dfirst = B_TRUE; uintptr_t loaddr = UINTPTR_MAX; uintptr_t hiaddr = 0; uint_t i; for (i = nphdrs; i > 0; i--) { if (phdrp->p_type == PT_LOAD) { const uintptr_t lo = phdrp->p_vaddr; const uintptr_t hi = lo + phdrp->p_memsz; loaddr = MIN(lo, loaddr); hiaddr = MAX(hi, hiaddr); /* * save the address of the first data segment * of a object - used for the AT_SUNW_LDDATA * aux entry. */ if ((lddata != NULL) && dfirst && (phdrp->p_flags & PF_W)) { *lddata = lo; dfirst = B_FALSE; } } phdrp = (Phdr *)((caddr_t)phdrp + hsize); } if (hiaddr <= loaddr) { /* No non-zero PT_LOAD segment found */ return (0); } return (roundup(hiaddr - (loaddr & PAGEMASK), PAGESIZE)); } /* * Read in the ELF header and program header table. * SUSV3 requires: * ENOEXEC File format is not recognized * EINVAL Format recognized but execution not supported */ static int getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, uint_t *nshdrs, uint_t *shstrndx, uint_t *nphdrs) { int error; ssize_t resid; /* * We got here by the first two bytes in ident, * now read the entire ELF header. */ if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid)) != 0) return (error); /* * Since a separate version is compiled for handling 32-bit and * 64-bit ELF executables on a 64-bit kernel, the 64-bit version * doesn't need to be able to deal with 32-bit ELF files. */ if (resid != 0 || ehdr->e_ident[EI_MAG2] != ELFMAG2 || ehdr->e_ident[EI_MAG3] != ELFMAG3) return (ENOEXEC); if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || #if defined(_ILP32) || defined(_ELF32_COMPAT) ehdr->e_ident[EI_CLASS] != ELFCLASS32 || #else ehdr->e_ident[EI_CLASS] != ELFCLASS64 || #endif !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, ehdr->e_flags)) return (EINVAL); *nshdrs = ehdr->e_shnum; *shstrndx = ehdr->e_shstrndx; *nphdrs = ehdr->e_phnum; /* * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need * to read in the section header at index zero to access the true * values for those fields. */ if ((*nshdrs == 0 && ehdr->e_shoff != 0) || *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { Shdr shdr; if (ehdr->e_shoff == 0) return (EINVAL); if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, credp, NULL)) != 0) { return (error); } if (*nshdrs == 0) *nshdrs = shdr.sh_size; if (*shstrndx == SHN_XINDEX) *shstrndx = shdr.sh_link; if (*nphdrs == PN_XNUM && shdr.sh_info != 0) *nphdrs = shdr.sh_info; } return (0); } /* * We use members through p_flags on 32-bit files and p_memsz on 64-bit files, * so e_phentsize must be at least large enough to include those members. */ #if !defined(_LP64) || defined(_ELF32_COMPAT) #define MINPHENTSZ (offsetof(Phdr, p_flags) + \ sizeof (((Phdr *)NULL)->p_flags)) #else #define MINPHENTSZ (offsetof(Phdr, p_memsz) + \ sizeof (((Phdr *)NULL)->p_memsz)) #endif static int getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, uint_t nphdrs, caddr_t *phbasep, size_t *phsizep) { int err; /* * Ensure that e_phentsize is large enough for required fields to be * accessible and will maintain 8-byte alignment. */ if (ehdr->e_phentsize < MINPHENTSZ || (ehdr->e_phentsize & 3)) return (EINVAL); *phsizep = nphdrs * ehdr->e_phentsize; if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) return (ENOMEM); } else { *phbasep = kmem_alloc(*phsizep, KM_SLEEP); } if ((err = vn_rdwr(UIO_READ, vp, *phbasep, (ssize_t)*phsizep, (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, credp, NULL)) != 0) { kmem_free(*phbasep, *phsizep); *phbasep = NULL; return (err); } return (0); } #define MINSHDRSZ (offsetof(Shdr, sh_entsize) + \ sizeof (((Shdr *)NULL)->sh_entsize)) static int getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, uint_t nshdrs, uint_t shstrndx, caddr_t *shbasep, size_t *shsizep, char **shstrbasep, size_t *shstrsizep) { int err; Shdr *shdr; /* * Since we're going to be using e_shentsize to iterate down the * array of section headers, it must be 8-byte aligned or else * a we might cause a misaligned access. We use all members through * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize * must be at least large enough to include that member. The index * of the string table section must also be valid. */ if (ehdr->e_shentsize < MINSHDRSZ || (ehdr->e_shentsize & 3) || nshdrs == 0 || shstrndx >= nshdrs) { return (EINVAL); } *shsizep = nshdrs * ehdr->e_shentsize; if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) return (ENOMEM); } else { *shbasep = kmem_alloc(*shsizep, KM_SLEEP); } if ((err = vn_rdwr(UIO_READ, vp, *shbasep, (ssize_t)*shsizep, (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, credp, NULL)) != 0) { kmem_free(*shbasep, *shsizep); return (err); } /* * Grab the section string table. Walking through the shdrs is * pointless if their names cannot be interrogated. */ shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); if ((*shstrsizep = shdr->sh_size) == 0) { kmem_free(*shbasep, *shsizep); return (EINVAL); } if (*shstrsizep > elf_shstrtab_max) { if ((*shstrbasep = kmem_alloc(*shstrsizep, KM_NOSLEEP)) == NULL) { kmem_free(*shbasep, *shsizep); return (ENOMEM); } } else { *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); } if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, (ssize_t)*shstrsizep, (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, credp, NULL)) != 0) { kmem_free(*shbasep, *shsizep); kmem_free(*shstrbasep, *shstrsizep); return (err); } /* * Make sure the strtab is null-terminated to make sure we * don't run off the end of the table. */ (*shstrbasep)[*shstrsizep - 1] = '\0'; return (0); } int elfreadhdr(vnode_t *vp, cred_t *credp, Ehdr *ehdrp, uint_t *nphdrs, caddr_t *phbasep, size_t *phsizep) { int error; uint_t nshdrs, shstrndx; if ((error = getelfhead(vp, credp, ehdrp, &nshdrs, &shstrndx, nphdrs)) != 0 || (error = getelfphdr(vp, credp, ehdrp, *nphdrs, phbasep, phsizep)) != 0) { return (error); } return (0); } static int mapelfexec( vnode_t *vp, Ehdr *ehdr, uint_t nphdrs, caddr_t phdrbase, Phdr **uphdr, Phdr **intphdr, Phdr **stphdr, Phdr **dtphdr, Phdr *dataphdrp, caddr_t *bssbase, caddr_t *brkbase, intptr_t *voffset, uintptr_t *minaddrp, size_t len, size_t *execsz, size_t *brksize) { Phdr *phdr; int error, page, prot; caddr_t addr = NULL; caddr_t minaddr = (caddr_t)UINTPTR_MAX; uint_t i; size_t zfodsz, memsz; boolean_t ptload = B_FALSE; off_t offset; const uint_t hsize = ehdr->e_phentsize; extern int use_brk_lpg; if (ehdr->e_type == ET_DYN) { secflagset_t flags = 0; /* * Obtain the virtual address of a hole in the * address space to map the "interpreter". */ if (secflag_enabled(curproc, PROC_SEC_ASLR)) flags |= _MAP_RANDOMIZE; map_addr(&addr, len, (offset_t)0, 1, flags); if (addr == NULL) return (ENOMEM); *voffset = (intptr_t)addr; /* * Calculate the minimum vaddr so it can be subtracted out. * According to the ELF specification, since PT_LOAD sections * must be sorted by increasing p_vaddr values, this is * guaranteed to be the first PT_LOAD section. */ phdr = (Phdr *)phdrbase; for (i = nphdrs; i > 0; i--) { if (phdr->p_type == PT_LOAD) { *voffset -= (uintptr_t)phdr->p_vaddr; break; } phdr = (Phdr *)((caddr_t)phdr + hsize); } } else { *voffset = 0; } phdr = (Phdr *)phdrbase; for (i = nphdrs; i > 0; i--) { switch (phdr->p_type) { case PT_LOAD: ptload = B_TRUE; prot = PROT_USER; if (phdr->p_flags & PF_R) prot |= PROT_READ; if (phdr->p_flags & PF_W) prot |= PROT_WRITE; if (phdr->p_flags & PF_X) prot |= PROT_EXEC; addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); if (*intphdr != NULL && uphdr != NULL && *uphdr == NULL) { /* * The PT_PHDR program header is, strictly * speaking, optional. If we find that this * is missing, we will determine the location * of the program headers based on the address * of the lowest PT_LOAD segment (namely, this * one): we subtract the p_offset to get to * the ELF header and then add back the program * header offset to get to the program headers. * We then cons up a Phdr that corresponds to * the (missing) PT_PHDR, setting the flags * to 0 to denote that this is artificial and * should (must) be freed by the caller. */ Phdr *cons; cons = kmem_zalloc(sizeof (Phdr), KM_SLEEP); cons->p_flags = 0; cons->p_type = PT_PHDR; cons->p_vaddr = ((uintptr_t)addr - phdr->p_offset) + ehdr->e_phoff; *uphdr = cons; } /* * The ELF spec dictates that p_filesz may not be * larger than p_memsz in PT_LOAD segments. */ if (phdr->p_filesz > phdr->p_memsz) { error = EINVAL; goto bad; } /* * Keep track of the segment with the lowest starting * address. */ if (addr < minaddr) minaddr = addr; zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; offset = phdr->p_offset; if (((uintptr_t)offset & PAGEOFFSET) == ((uintptr_t)addr & PAGEOFFSET) && (!(vp->v_flag & VNOMAP))) { page = 1; } else { page = 0; } /* * Set the heap pagesize for OOB when the bss size * is known and use_brk_lpg is not 0. */ if (brksize != NULL && use_brk_lpg && zfodsz != 0 && phdr == dataphdrp && (prot & PROT_WRITE)) { const size_t tlen = P2NPHASE((uintptr_t)addr + phdr->p_filesz, PAGESIZE); if (zfodsz > tlen) { const caddr_t taddr = addr + phdr->p_filesz + tlen; /* * Since a hole in the AS large enough * for this object as calculated by * elfsize() is available, we do not * need to fear overflow for 'taddr'. */ curproc->p_brkpageszc = page_szc(map_pgsz(MAPPGSZ_HEAP, curproc, taddr, zfodsz - tlen, 0)); } } if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && (prot & PROT_WRITE)) { uint_t szc = curproc->p_brkpageszc; size_t pgsz = page_get_pagesize(szc); caddr_t ebss = addr + phdr->p_memsz; /* * If we need extra space to keep the BSS an * integral number of pages in size, some of * that space may fall beyond p_brkbase, so we * need to set p_brksize to account for it * being (logically) part of the brk. */ size_t extra_zfodsz; ASSERT(pgsz > PAGESIZE); extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); if (error = execmap(vp, addr, phdr->p_filesz, zfodsz + extra_zfodsz, phdr->p_offset, prot, page, szc)) goto bad; if (brksize != NULL) *brksize = extra_zfodsz; } else { if (error = execmap(vp, addr, phdr->p_filesz, zfodsz, phdr->p_offset, prot, page, 0)) goto bad; } if (bssbase != NULL && addr >= *bssbase && phdr == dataphdrp) { *bssbase = addr + phdr->p_filesz; } if (brkbase != NULL && addr >= *brkbase) { *brkbase = addr + phdr->p_memsz; } memsz = btopr(phdr->p_memsz); if ((*execsz + memsz) < *execsz) { error = ENOMEM; goto bad; } *execsz += memsz; break; case PT_INTERP: if (ptload) goto bad; *intphdr = phdr; break; case PT_SHLIB: *stphdr = phdr; break; case PT_PHDR: if (ptload || phdr->p_flags == 0) goto bad; if (uphdr != NULL) *uphdr = phdr; break; case PT_NULL: case PT_DYNAMIC: case PT_NOTE: break; case PT_SUNWDTRACE: if (dtphdr != NULL) *dtphdr = phdr; break; default: break; } phdr = (Phdr *)((caddr_t)phdr + hsize); } if (minaddrp != NULL) { ASSERT(minaddr != (caddr_t)UINTPTR_MAX); *minaddrp = (uintptr_t)minaddr; } if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) { size_t off; uintptr_t base = (uintptr_t)*brkbase; uintptr_t oend = base + *brksize; ASSERT(ISP2(aslr_max_brk_skew)); (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off)); base += P2PHASE(off, aslr_max_brk_skew); base = P2ROUNDUP(base, PAGESIZE); *brkbase = (caddr_t)base; /* * Above, we set *brksize to account for the possibility we * had to grow the 'brk' in padding out the BSS to a page * boundary. * * We now need to adjust that based on where we now are * actually putting the brk. */ if (oend > base) *brksize = oend - base; else *brksize = 0; } return (0); bad: if (error == 0) error = EINVAL; return (error); } int elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, rlim64_t rlimit, cred_t *credp) { Note note; int error; bzero(¬e, sizeof (note)); bcopy("CORE", note.name, 4); note.nhdr.n_type = type; /* * The System V ABI states that n_namesz must be the length of the * string that follows the Nhdr structure including the terminating * null. The ABI also specifies that sufficient padding should be * included so that the description that follows the name string * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries * respectively. However, since this change was not made correctly * at the time of the 64-bit port, both 32- and 64-bit binaries * descriptions are only guaranteed to begin on a 4-byte boundary. */ note.nhdr.n_namesz = 5; note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, sizeof (note), rlimit, credp)) return (error); *offsetp += sizeof (note); if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, note.nhdr.n_descsz, rlimit, credp)) return (error); *offsetp += note.nhdr.n_descsz; return (0); } /* * Copy the section data from one vnode to the section of another vnode. */ static void elf_copy_scn(elf_core_ctx_t *ctx, const Shdr *src, vnode_t *src_vp, Shdr *dst) { size_t n = src->sh_size; u_offset_t off = 0; const u_offset_t soff = src->sh_offset; const u_offset_t doff = ctx->ecc_doffset; void *buf = ctx->ecc_buf; vnode_t *dst_vp = ctx->ecc_vp; cred_t *credp = ctx->ecc_credp; /* Protect the copy loop below from overflow on the offsets */ if (n > OFF_MAX || (n + soff) > OFF_MAX || (n + doff) > OFF_MAX || (n + soff) < n || (n + doff) < n) { dst->sh_size = 0; dst->sh_offset = 0; return; } while (n != 0) { const size_t len = MIN(ctx->ecc_bufsz, n); ssize_t resid; if (vn_rdwr(UIO_READ, src_vp, buf, (ssize_t)len, (offset_t)(soff + off), UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || resid >= len || resid < 0 || core_write(dst_vp, UIO_SYSSPACE, (offset_t)(doff + off), buf, len - resid, ctx->ecc_rlimit, credp) != 0) { dst->sh_size = 0; dst->sh_offset = 0; return; } ASSERT(n >= len - resid); n -= len - resid; off += len - resid; } ctx->ecc_doffset += src->sh_size; } /* * Walk sections for a given ELF object, counting (or copying) those of * interest (CTF, symtab, strtab, .debug_*). */ static int elf_process_obj_scns(elf_core_ctx_t *ctx, vnode_t *mvp, caddr_t saddr, Shdr *v, uint_t idx, uint_t remain, shstrtab_t *shstrtab, uint_t *countp) { Ehdr ehdr; const core_content_t content = ctx->ecc_content; cred_t *credp = ctx->ecc_credp; Shdr *ctf = NULL, *symtab = NULL, *strtab = NULL; uintptr_t off = 0; uint_t nshdrs, shstrndx, nphdrs, count = 0; u_offset_t *doffp = &ctx->ecc_doffset; boolean_t ctf_link = B_FALSE; caddr_t shbase; size_t shsize, shstrsize; char *shstrbase; int error = 0; const boolean_t justcounting = v == NULL; *countp = 0; if ((content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB | CC_CONTENT_DEBUG)) == 0) { return (0); } if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, &nphdrs) != 0 || getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, &shbase, &shsize, &shstrbase, &shstrsize) != 0) { return (0); } /* Starting at index 1 skips SHT_NULL which is expected at index 0 */ off = ehdr.e_shentsize; for (uint_t i = 1; i < nshdrs; i++, off += ehdr.e_shentsize) { Shdr *shdr, *symchk = NULL, *strchk; const char *name; shdr = (Shdr *)(shbase + off); if (shdr->sh_name >= shstrsize || shdr->sh_type == SHT_NULL) continue; name = shstrbase + shdr->sh_name; if (ctf == NULL && (content & CC_CONTENT_CTF) != 0 && strcmp(name, shstrtab_data[STR_CTF]) == 0) { ctf = shdr; if (ctf->sh_link != 0 && ctf->sh_link < nshdrs) { /* check linked symtab below */ symchk = (Shdr *)(shbase + shdr->sh_link * ehdr.e_shentsize); ctf_link = B_TRUE; } else { continue; } } else if (symtab == NULL && (content & CC_CONTENT_SYMTAB) != 0 && strcmp(name, shstrtab_data[STR_SYMTAB]) == 0) { symchk = shdr; } else if ((content & CC_CONTENT_DEBUG) != 0 && strncmp(name, ".debug_", strlen(".debug_")) == 0) { /* * The design of the above check is intentional. In * particular, we want to capture any sections that * begin with '.debug_' for a few reasons: * * 1) Various revisions to the DWARF spec end up * changing the set of section headers that exist. This * ensures that we don't need to change the kernel to * get a new version. * * 2) Other software uses .debug_ sections for things * which aren't DWARF. This allows them to be captured * as well. */ count++; if (!justcounting) { if (count > remain) { error = ENOMEM; goto done; } elf_ctx_resize_scratch(ctx, shdr->sh_size); if (!shstrtab_ndx(shstrtab, name, &v[idx].sh_name)) { error = ENOMEM; goto done; } v[idx].sh_addr = (Addr)(uintptr_t)saddr; v[idx].sh_type = shdr->sh_type; v[idx].sh_addralign = shdr->sh_addralign; *doffp = roundup(*doffp, v[idx].sh_addralign); v[idx].sh_offset = *doffp; v[idx].sh_size = shdr->sh_size; v[idx].sh_link = 0; v[idx].sh_entsize = shdr->sh_entsize; v[idx].sh_info = shdr->sh_info; elf_copy_scn(ctx, shdr, mvp, &v[idx]); idx++; } continue; } else { continue; } ASSERT(symchk != NULL); if ((symchk->sh_type != SHT_DYNSYM && symchk->sh_type != SHT_SYMTAB) || symchk->sh_link == 0 || symchk->sh_link >= nshdrs) { ctf_link = B_FALSE; continue; } strchk = (Shdr *)(shbase + symchk->sh_link * ehdr.e_shentsize); if (strchk->sh_type != SHT_STRTAB) { ctf_link = B_FALSE; continue; } symtab = symchk; strtab = strchk; if (symtab != NULL && ctf != NULL && (content & CC_CONTENT_DEBUG) == 0) { /* No other shdrs are of interest at this point */ break; } } if (ctf != NULL) count += 1; if (symtab != NULL) count += 2; if (count > remain) { count = remain; if (!justcounting) error = ENOMEM; goto done; } if (justcounting) goto done; /* output CTF section */ if (ctf != NULL) { elf_ctx_resize_scratch(ctx, ctf->sh_size); if (!shstrtab_ndx(shstrtab, shstrtab_data[STR_CTF], &v[idx].sh_name)) { error = ENOMEM; goto done; } v[idx].sh_addr = (Addr)(uintptr_t)saddr; v[idx].sh_type = SHT_PROGBITS; v[idx].sh_addralign = 4; *doffp = roundup(*doffp, v[idx].sh_addralign); v[idx].sh_offset = *doffp; v[idx].sh_size = ctf->sh_size; if (ctf_link) { /* * The linked symtab (and strtab) will be output * immediately after this CTF section. Its shdr index * directly follows this one. */ v[idx].sh_link = idx + 1; ASSERT(symtab != NULL); } else { v[idx].sh_link = 0; } elf_copy_scn(ctx, ctf, mvp, &v[idx]); idx++; } /* output SYMTAB/STRTAB sections */ if (symtab != NULL) { shstrtype_t symtab_type, strtab_type; uint_t symtab_name, strtab_name; elf_ctx_resize_scratch(ctx, MAX(symtab->sh_size, strtab->sh_size)); if (symtab->sh_type == SHT_DYNSYM) { symtab_type = STR_DYNSYM; strtab_type = STR_DYNSTR; } else { symtab_type = STR_SYMTAB; strtab_type = STR_STRTAB; } if (!shstrtab_ndx(shstrtab, shstrtab_data[symtab_type], &symtab_name)) { error = ENOMEM; goto done; } if (!shstrtab_ndx(shstrtab, shstrtab_data[strtab_type], &strtab_name)) { error = ENOMEM; goto done; } v[idx].sh_name = symtab_name; v[idx].sh_type = symtab->sh_type; v[idx].sh_addr = symtab->sh_addr; if (ehdr.e_type == ET_DYN || v[idx].sh_addr == 0) v[idx].sh_addr += (Addr)(uintptr_t)saddr; v[idx].sh_addralign = symtab->sh_addralign; *doffp = roundup(*doffp, v[idx].sh_addralign); v[idx].sh_offset = *doffp; v[idx].sh_size = symtab->sh_size; v[idx].sh_link = idx + 1; v[idx].sh_entsize = symtab->sh_entsize; v[idx].sh_info = symtab->sh_info; elf_copy_scn(ctx, symtab, mvp, &v[idx]); idx++; v[idx].sh_name = strtab_name; v[idx].sh_type = SHT_STRTAB; v[idx].sh_flags = SHF_STRINGS; v[idx].sh_addr = strtab->sh_addr; if (ehdr.e_type == ET_DYN || v[idx].sh_addr == 0) v[idx].sh_addr += (Addr)(uintptr_t)saddr; v[idx].sh_addralign = strtab->sh_addralign; *doffp = roundup(*doffp, v[idx].sh_addralign); v[idx].sh_offset = *doffp; v[idx].sh_size = strtab->sh_size; elf_copy_scn(ctx, strtab, mvp, &v[idx]); idx++; } done: kmem_free(shstrbase, shstrsize); kmem_free(shbase, shsize); if (error == 0) *countp = count; return (error); } /* * Walk mappings in process address space, examining those which correspond to * loaded objects. It is called twice from elfcore: Once to simply count * relevant sections, and again later to copy those sections once an adequate * buffer has been allocated for the shdr details. */ static int elf_process_scns(elf_core_ctx_t *ctx, Shdr *v, uint_t nv, uint_t *nshdrsp) { vnode_t *lastvp = NULL; struct seg *seg; uint_t idx = 0, remain; shstrtab_t shstrtab; struct as *as = ctx->ecc_p->p_as; int error = 0; ASSERT(AS_WRITE_HELD(as)); if (v != NULL) { ASSERT(nv != 0); if (!shstrtab_init(&shstrtab)) return (ENOMEM); remain = nv; } else { ASSERT(nv == 0); /* * The shdrs are being counted, rather than outputting them * into a buffer. Leave room for two entries: the SHT_NULL at * index 0 and the shstrtab at the end. */ remain = UINT_MAX - 2; } /* Per the ELF spec, shdr index 0 is reserved. */ idx = 1; for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { vnode_t *mvp; void *tmp = NULL; caddr_t saddr = seg->s_base, naddr, eaddr; size_t segsize; uint_t count, prot; /* * Since we're just looking for text segments of load * objects, we only care about the protection bits; we don't * care about the actual size of the segment so we use the * reserved size. If the segment's size is zero, there's * something fishy going on so we ignore this segment. */ if (seg->s_ops != &segvn_ops || SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || mvp == lastvp || mvp == NULL || mvp->v_type != VREG || (segsize = pr_getsegsize(seg, 1)) == 0) continue; eaddr = saddr + segsize; prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); pr_getprot_done(&tmp); /* * Skip this segment unless the protection bits look like * what we'd expect for a text segment. */ if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) continue; error = elf_process_obj_scns(ctx, mvp, saddr, v, idx, remain, &shstrtab, &count); if (error != 0) goto done; ASSERT(count <= remain); ASSERT(v == NULL || (idx + count) < nv); remain -= count; idx += count; lastvp = mvp; } if (v == NULL) { if (idx == 1) { *nshdrsp = 0; } else { /* Include room for the shrstrtab at the end */ *nshdrsp = idx + 1; } return (0); } if (idx != nv - 1) { cmn_err(CE_WARN, "elfcore: core dump failed for " "process %d; address space is changing", ctx->ecc_p->p_pid); error = EIO; goto done; } if (!shstrtab_ndx(&shstrtab, shstrtab_data[STR_SHSTRTAB], &v[idx].sh_name)) { error = ENOMEM; goto done; } v[idx].sh_size = shstrtab_size(&shstrtab); v[idx].sh_addralign = 1; v[idx].sh_offset = ctx->ecc_doffset; v[idx].sh_flags = SHF_STRINGS; v[idx].sh_type = SHT_STRTAB; elf_ctx_resize_scratch(ctx, v[idx].sh_size); VERIFY3U(ctx->ecc_bufsz, >=, v[idx].sh_size); shstrtab_dump(&shstrtab, ctx->ecc_buf); error = core_write(ctx->ecc_vp, UIO_SYSSPACE, ctx->ecc_doffset, ctx->ecc_buf, v[idx].sh_size, ctx->ecc_rlimit, ctx->ecc_credp); if (error == 0) { ctx->ecc_doffset += v[idx].sh_size; } done: if (v != NULL) shstrtab_fini(&shstrtab); return (error); } int elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, core_content_t content) { u_offset_t poffset, soffset, doffset; int error; uint_t i, nphdrs, nshdrs; struct seg *seg; struct as *as = p->p_as; void *bigwad, *zeropg = NULL; size_t bigsize, phdrsz, shdrsz; Ehdr *ehdr; Phdr *phdr; Shdr shdr0; caddr_t brkbase, stkbase; size_t brksize, stksize; boolean_t overflowed = B_FALSE, retried = B_FALSE; klwp_t *lwp = ttolwp(curthread); elf_core_ctx_t ctx = { .ecc_vp = vp, .ecc_p = p, .ecc_credp = credp, .ecc_rlimit = rlimit, .ecc_content = content, .ecc_doffset = 0, .ecc_buf = NULL, .ecc_bufsz = 0 }; top: /* * Make sure we have everything we need (registers, etc.). * All other lwps have already stopped and are in an orderly state. */ ASSERT(p == ttoproc(curthread)); prstop(0, 0); AS_LOCK_ENTER(as, RW_WRITER); nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ /* * Count the number of section headers we're going to need. */ nshdrs = 0; if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB | CC_CONTENT_DEBUG)) { VERIFY0(elf_process_scns(&ctx, NULL, 0, &nshdrs)); } AS_LOCK_EXIT(as); /* * The core file contents may require zero section headers, but if * we overflow the 16 bits allotted to the program header count in * the ELF header, we'll need that program header at index zero. */ if (nshdrs == 0 && nphdrs >= PN_XNUM) nshdrs = 1; /* * Allocate a buffer which is sized adequately to hold the ehdr, phdrs * or shdrs needed to produce the core file. It is used for the three * tasks sequentially, not simultaneously, so it does not need space * for all three data at once, only the largest one. */ VERIFY(nphdrs >= 2); phdrsz = nphdrs * sizeof (Phdr); shdrsz = nshdrs * sizeof (Shdr); bigsize = MAX(sizeof (Ehdr), MAX(phdrsz, shdrsz)); bigwad = kmem_alloc(bigsize, KM_SLEEP); ehdr = (Ehdr *)bigwad; bzero(ehdr, sizeof (*ehdr)); ehdr->e_ident[EI_MAG0] = ELFMAG0; ehdr->e_ident[EI_MAG1] = ELFMAG1; ehdr->e_ident[EI_MAG2] = ELFMAG2; ehdr->e_ident[EI_MAG3] = ELFMAG3; ehdr->e_ident[EI_CLASS] = ELFCLASS; ehdr->e_type = ET_CORE; #if !defined(_LP64) || defined(_ELF32_COMPAT) #if defined(__sparc) ehdr->e_ident[EI_DATA] = ELFDATA2MSB; ehdr->e_machine = EM_SPARC; #elif defined(__i386_COMPAT) ehdr->e_ident[EI_DATA] = ELFDATA2LSB; ehdr->e_machine = EM_386; #else #error "no recognized machine type is defined" #endif #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ #if defined(__sparc) ehdr->e_ident[EI_DATA] = ELFDATA2MSB; ehdr->e_machine = EM_SPARCV9; #elif defined(__amd64) ehdr->e_ident[EI_DATA] = ELFDATA2LSB; ehdr->e_machine = EM_AMD64; #else #error "no recognized 64-bit machine type is defined" #endif #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ poffset = sizeof (Ehdr); soffset = sizeof (Ehdr) + phdrsz; doffset = sizeof (Ehdr) + phdrsz + shdrsz; bzero(&shdr0, sizeof (shdr0)); /* * If the count of program headers or section headers or the index * of the section string table can't fit in the mere 16 bits * shortsightedly allotted to them in the ELF header, we use the * extended formats and put the real values in the section header * as index 0. */ if (nphdrs >= PN_XNUM) { ehdr->e_phnum = PN_XNUM; shdr0.sh_info = nphdrs; } else { ehdr->e_phnum = (unsigned short)nphdrs; } if (nshdrs > 0) { if (nshdrs >= SHN_LORESERVE) { ehdr->e_shnum = 0; shdr0.sh_size = nshdrs; } else { ehdr->e_shnum = (unsigned short)nshdrs; } if (nshdrs - 1 >= SHN_LORESERVE) { ehdr->e_shstrndx = SHN_XINDEX; shdr0.sh_link = nshdrs - 1; } else { ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); } ehdr->e_shoff = soffset; ehdr->e_shentsize = sizeof (Shdr); } ehdr->e_ident[EI_VERSION] = EV_CURRENT; ehdr->e_version = EV_CURRENT; ehdr->e_ehsize = sizeof (Ehdr); ehdr->e_phoff = poffset; ehdr->e_phentsize = sizeof (Phdr); if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, sizeof (Ehdr), rlimit, credp)) { goto done; } phdr = (Phdr *)bigwad; bzero(phdr, phdrsz); setup_old_note_header(&phdr[0], p); phdr[0].p_offset = doffset = roundup(doffset, sizeof (Word)); doffset += phdr[0].p_filesz; setup_note_header(&phdr[1], p); phdr[1].p_offset = doffset = roundup(doffset, sizeof (Word)); doffset += phdr[1].p_filesz; mutex_enter(&p->p_lock); brkbase = p->p_brkbase; brksize = p->p_brksize; stkbase = p->p_usrstack - p->p_stksize; stksize = p->p_stksize; mutex_exit(&p->p_lock); AS_LOCK_ENTER(as, RW_WRITER); i = 2; for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); caddr_t saddr, naddr; void *tmp = NULL; extern struct seg_ops segspt_shmops; if ((seg->s_flags & S_HOLE) != 0) { continue; } for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { uint_t prot; size_t size; int type; vnode_t *mvp; prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); prot &= PROT_READ | PROT_WRITE | PROT_EXEC; if ((size = (size_t)(naddr - saddr)) == 0) { ASSERT(tmp == NULL); continue; } else if (i == nphdrs) { pr_getprot_done(&tmp); overflowed = B_TRUE; break; } phdr[i].p_type = PT_LOAD; phdr[i].p_vaddr = (Addr)(uintptr_t)saddr; phdr[i].p_memsz = size; if (prot & PROT_READ) phdr[i].p_flags |= PF_R; if (prot & PROT_WRITE) phdr[i].p_flags |= PF_W; if (prot & PROT_EXEC) phdr[i].p_flags |= PF_X; /* * Figure out which mappings to include in the core. */ type = SEGOP_GETTYPE(seg, saddr); if (saddr == stkbase && size == stksize) { if (!(content & CC_CONTENT_STACK)) goto exclude; } else if (saddr == brkbase && size == brksize) { if (!(content & CC_CONTENT_HEAP)) goto exclude; } else if (seg->s_ops == &segspt_shmops) { if (type & MAP_NORESERVE) { if (!(content & CC_CONTENT_DISM)) goto exclude; } else { if (!(content & CC_CONTENT_ISM)) goto exclude; } } else if (seg->s_ops != &segvn_ops) { goto exclude; } else if (type & MAP_SHARED) { if (shmgetid(p, saddr) != SHMID_NONE) { if (!(content & CC_CONTENT_SHM)) goto exclude; } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || mvp == NULL || mvp->v_type != VREG) { if (!(content & CC_CONTENT_SHANON)) goto exclude; } else { if (!(content & CC_CONTENT_SHFILE)) goto exclude; } } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || mvp == NULL || mvp->v_type != VREG) { if (!(content & CC_CONTENT_ANON)) goto exclude; } else if (prot == (PROT_READ | PROT_EXEC)) { if (!(content & CC_CONTENT_TEXT)) goto exclude; } else if (prot == PROT_READ) { if (!(content & CC_CONTENT_RODATA)) goto exclude; } else { if (!(content & CC_CONTENT_DATA)) goto exclude; } doffset = roundup(doffset, sizeof (Word)); phdr[i].p_offset = doffset; phdr[i].p_filesz = size; doffset += size; exclude: i++; } VERIFY(tmp == NULL); if (overflowed) break; } AS_LOCK_EXIT(as); if (overflowed || i != nphdrs) { if (!retried) { retried = B_TRUE; overflowed = B_FALSE; kmem_free(bigwad, bigsize); goto top; } cmn_err(CE_WARN, "elfcore: core dump failed for " "process %d; address space is changing", p->p_pid); error = EIO; goto done; } if ((error = core_write(vp, UIO_SYSSPACE, poffset, phdr, phdrsz, rlimit, credp)) != 0) { goto done; } if ((error = write_old_elfnotes(p, sig, vp, phdr[0].p_offset, rlimit, credp)) != 0) { goto done; } if ((error = write_elfnotes(p, sig, vp, phdr[1].p_offset, rlimit, credp, content)) != 0) { goto done; } for (i = 2; i < nphdrs; i++) { prkillinfo_t killinfo; sigqueue_t *sq; int sig, j; if (phdr[i].p_filesz == 0) continue; /* * If we hit a region that was mapped PROT_NONE then we cannot * continue dumping this normally as the kernel would be unable * to read from the page and that would result in us failing to * dump the page. As such, any region mapped PROT_NONE, we dump * as a zero-filled page such that this is still represented in * the map. * * If dumping out this segment fails, rather than failing * the core dump entirely, we reset the size of the mapping * to zero to indicate that the data is absent from the core * file and or in the PF_SUNW_FAILURE flag to differentiate * this from mappings that were excluded due to the core file * content settings. */ if ((phdr[i].p_flags & (PF_R | PF_W | PF_X)) == 0) { size_t towrite = phdr[i].p_filesz; size_t curoff = 0; if (zeropg == NULL) { zeropg = kmem_zalloc(elf_zeropg_sz, KM_SLEEP); } error = 0; while (towrite != 0) { size_t len = MIN(towrite, elf_zeropg_sz); error = core_write(vp, UIO_SYSSPACE, phdr[i].p_offset + curoff, zeropg, len, rlimit, credp); if (error != 0) break; towrite -= len; curoff += len; } } else { error = core_seg(p, vp, phdr[i].p_offset, (caddr_t)(uintptr_t)phdr[i].p_vaddr, phdr[i].p_filesz, rlimit, credp); } if (error == 0) continue; if ((sig = lwp->lwp_cursig) == 0) { /* * We failed due to something other than a signal. * Since the space reserved for the segment is now * unused, we stash the errno in the first four * bytes. This undocumented interface will let us * understand the nature of the failure. */ (void) core_write(vp, UIO_SYSSPACE, phdr[i].p_offset, &error, sizeof (error), rlimit, credp); phdr[i].p_filesz = 0; phdr[i].p_flags |= PF_SUNW_FAILURE; if ((error = core_write(vp, UIO_SYSSPACE, poffset + sizeof (Phdr) * i, &phdr[i], sizeof (Phdr), rlimit, credp)) != 0) goto done; continue; } /* * We took a signal. We want to abort the dump entirely, but * we also want to indicate what failed and why. We therefore * use the space reserved for the first failing segment to * write our error (which, for purposes of compatability with * older core dump readers, we set to EINTR) followed by any * siginfo associated with the signal. */ bzero(&killinfo, sizeof (killinfo)); killinfo.prk_error = EINTR; sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; if (sq != NULL) { bcopy(&sq->sq_info, &killinfo.prk_info, sizeof (sq->sq_info)); } else { killinfo.prk_info.si_signo = lwp->lwp_cursig; killinfo.prk_info.si_code = SI_NOINFO; } #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) /* * If this is a 32-bit process, we need to translate from the * native siginfo to the 32-bit variant. (Core readers must * always have the same data model as their target or must * be aware of -- and compensate for -- data model differences.) */ if (curproc->p_model == DATAMODEL_ILP32) { siginfo32_t si32; siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); bcopy(&si32, &killinfo.prk_info, sizeof (si32)); } #endif (void) core_write(vp, UIO_SYSSPACE, phdr[i].p_offset, &killinfo, sizeof (killinfo), rlimit, credp); /* * For the segment on which we took the signal, indicate that * its data now refers to a siginfo. */ phdr[i].p_filesz = 0; phdr[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | PF_SUNW_SIGINFO; /* * And for every other segment, indicate that its absence * is due to a signal. */ for (j = i + 1; j < nphdrs; j++) { phdr[j].p_filesz = 0; phdr[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; } /* * Finally, write out our modified program headers. */ if ((error = core_write(vp, UIO_SYSSPACE, poffset + sizeof (Phdr) * i, &phdr[i], sizeof (Phdr) * (nphdrs - i), rlimit, credp)) != 0) { goto done; } break; } if (nshdrs > 0) { Shdr *shdr = (Shdr *)bigwad; bzero(shdr, shdrsz); if (nshdrs > 1) { ctx.ecc_doffset = doffset; AS_LOCK_ENTER(as, RW_WRITER); error = elf_process_scns(&ctx, shdr, nshdrs, NULL); AS_LOCK_EXIT(as); if (error != 0) { goto done; } } /* Copy any extended format data destined for the first shdr */ bcopy(&shdr0, shdr, sizeof (shdr0)); error = core_write(vp, UIO_SYSSPACE, soffset, shdr, shdrsz, rlimit, credp); } done: if (zeropg != NULL) kmem_free(zeropg, elf_zeropg_sz); if (ctx.ecc_bufsz != 0) kmem_free(ctx.ecc_buf, ctx.ecc_bufsz); kmem_free(bigwad, bigsize); return (error); } #ifndef _ELF32_COMPAT static struct execsw esw = { #ifdef _LP64 elf64magicstr, #else /* _LP64 */ elf32magicstr, #endif /* _LP64 */ 0, 5, elfexec, elfcore }; static struct modlexec modlexec = { &mod_execops, "exec module for elf", &esw }; #ifdef _LP64 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, int level, size_t *execsz, int setid, caddr_t exec_file, cred_t *cred, int brand_action); extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, core_content_t content); static struct execsw esw32 = { elf32magicstr, 0, 5, elf32exec, elf32core }; static struct modlexec modlexec32 = { &mod_execops, "32-bit exec module for elf", &esw32 }; #endif /* _LP64 */ static struct modlinkage modlinkage = { MODREV_1, (void *)&modlexec, #ifdef _LP64 (void *)&modlexec32, #endif /* _LP64 */ NULL }; int _init(void) { return (mod_install(&modlinkage)); } int _fini(void) { return (mod_remove(&modlinkage)); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } #endif /* !_ELF32_COMPAT */