/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ #pragma ident "%Z%%M% %I% %E% SMI" /* from SVr4.0 1.23 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for lbolt */ #include #include #include #include #include #include #include #include #include #include #include static pri_t ts_init(id_t, int, classfuncs_t **); static struct sclass csw = { "TS", ts_init, 0 }; static struct modlsched modlsched = { &mod_schedops, "time sharing sched class", &csw }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modlsched, NULL }; int _init() { return (mod_install(&modlinkage)); } int _fini() { return (EBUSY); /* don't remove TS for now */ } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* * Class specific code for the time-sharing class */ /* * Extern declarations for variables defined in the ts master file */ #define TSMAXUPRI 60 pri_t ts_maxupri = TSMAXUPRI; /* max time-sharing user priority */ pri_t ts_maxumdpri; /* maximum user mode ts priority */ pri_t ia_maxupri = IAMAXUPRI; /* max interactive user priority */ pri_t ia_boost = IA_BOOST; /* boost value for interactive */ tsdpent_t *ts_dptbl; /* time-sharing disp parameter table */ pri_t *ts_kmdpris; /* array of global pris used by ts procs when */ /* sleeping or running in kernel after sleep */ static id_t ia_cid; int ts_sleep_promote = 1; #define tsmedumdpri (ts_maxumdpri >> 1) #define TS_NEWUMDPRI(tspp) \ { \ pri_t pri; \ pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \ if (pri > ts_maxumdpri) \ (tspp)->ts_umdpri = ts_maxumdpri; \ else if (pri < 0) \ (tspp)->ts_umdpri = 0; \ else \ (tspp)->ts_umdpri = pri; \ ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \ } /* * The tsproc_t structures are kept in an array of circular doubly linked * lists. A hash on the thread pointer is used to determine which list * each thread should be placed. Each list has a dummy "head" which is * never removed, so the list is never empty. ts_update traverses these * lists to update the priorities of threads that have been waiting on * the run queue. */ #define TS_LISTS 16 /* number of lists, must be power of 2 */ /* hash function, argument is a thread pointer */ #define TS_LIST_HASH(tp) (((uintptr_t)(tp) >> 9) & (TS_LISTS - 1)) /* iterate to the next list */ #define TS_LIST_NEXT(i) (((i) + 1) & (TS_LISTS - 1)) /* * Insert thread into the appropriate tsproc list. */ #define TS_LIST_INSERT(tspp) \ { \ int index = TS_LIST_HASH(tspp->ts_tp); \ kmutex_t *lockp = &ts_list_lock[index]; \ tsproc_t *headp = &ts_plisthead[index]; \ mutex_enter(lockp); \ tspp->ts_next = headp->ts_next; \ tspp->ts_prev = headp; \ headp->ts_next->ts_prev = tspp; \ headp->ts_next = tspp; \ mutex_exit(lockp); \ } /* * Remove thread from tsproc list. */ #define TS_LIST_DELETE(tspp) \ { \ int index = TS_LIST_HASH(tspp->ts_tp); \ kmutex_t *lockp = &ts_list_lock[index]; \ mutex_enter(lockp); \ tspp->ts_prev->ts_next = tspp->ts_next; \ tspp->ts_next->ts_prev = tspp->ts_prev; \ mutex_exit(lockp); \ } static int ts_admin(caddr_t, cred_t *); static int ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *); static int ts_fork(kthread_t *, kthread_t *, void *); static int ts_getclinfo(void *); static int ts_getclpri(pcpri_t *); static int ts_parmsin(void *); static int ts_parmsout(void *, pc_vaparms_t *); static int ts_vaparmsin(void *, pc_vaparms_t *); static int ts_vaparmsout(void *, pc_vaparms_t *); static int ts_parmsset(kthread_t *, void *, id_t, cred_t *); static int ts_donice(kthread_t *, cred_t *, int, int *); static void ts_exitclass(void *); static int ts_canexit(kthread_t *, cred_t *); static void ts_forkret(kthread_t *, kthread_t *); static void ts_nullsys(); static void ts_parmsget(kthread_t *, void *); static void ts_preempt(kthread_t *); static void ts_setrun(kthread_t *); static void ts_sleep(kthread_t *); static pri_t ts_swapin(kthread_t *, int); static pri_t ts_swapout(kthread_t *, int); static void ts_tick(kthread_t *); static void ts_trapret(kthread_t *); static void ts_update(void *); static int ts_update_list(int); static void ts_wakeup(kthread_t *); static pri_t ts_globpri(kthread_t *); static void ts_yield(kthread_t *); extern tsdpent_t *ts_getdptbl(void); extern pri_t *ts_getkmdpris(void); extern pri_t td_getmaxumdpri(void); static int ts_alloc(void **, int); static void ts_free(void *); pri_t ia_init(id_t, int, classfuncs_t **); static int ia_getclinfo(void *); static int ia_parmsin(void *); static int ia_vaparmsin(void *, pc_vaparms_t *); static int ia_vaparmsout(void *, pc_vaparms_t *); static int ia_parmsset(kthread_t *, void *, id_t, cred_t *); static void ia_parmsget(kthread_t *, void *); static void ia_set_process_group(pid_t, pid_t, pid_t); static void ts_change_priority(kthread_t *, tsproc_t *); extern pri_t ts_maxkmdpri; /* maximum kernel mode ts priority */ static pri_t ts_maxglobpri; /* maximum global priority used by ts class */ static kmutex_t ts_dptblock; /* protects time sharing dispatch table */ static kmutex_t ts_list_lock[TS_LISTS]; /* protects tsproc lists */ static tsproc_t ts_plisthead[TS_LISTS]; /* dummy tsproc at head of lists */ static gid_t IA_gid = 0; static struct classfuncs ts_classfuncs = { /* class functions */ ts_admin, ts_getclinfo, ts_parmsin, ts_parmsout, ts_vaparmsin, ts_vaparmsout, ts_getclpri, ts_alloc, ts_free, /* thread functions */ ts_enterclass, ts_exitclass, ts_canexit, ts_fork, ts_forkret, ts_parmsget, ts_parmsset, ts_nullsys, /* stop */ ts_nullsys, /* exit */ ts_nullsys, /* active */ ts_nullsys, /* inactive */ ts_swapin, ts_swapout, ts_trapret, ts_preempt, ts_setrun, ts_sleep, ts_tick, ts_wakeup, ts_donice, ts_globpri, ts_nullsys, /* set_process_group */ ts_yield, }; /* * ia_classfuncs is used for interactive class threads; IA threads are stored * on the same class list as TS threads, and most of the class functions are * identical, but a few have different enough functionality to require their * own functions. */ static struct classfuncs ia_classfuncs = { /* class functions */ ts_admin, ia_getclinfo, ia_parmsin, ts_parmsout, ia_vaparmsin, ia_vaparmsout, ts_getclpri, ts_alloc, ts_free, /* thread functions */ ts_enterclass, ts_exitclass, ts_canexit, ts_fork, ts_forkret, ia_parmsget, ia_parmsset, ts_nullsys, /* stop */ ts_nullsys, /* exit */ ts_nullsys, /* active */ ts_nullsys, /* inactive */ ts_swapin, ts_swapout, ts_trapret, ts_preempt, ts_setrun, ts_sleep, ts_tick, ts_wakeup, ts_donice, ts_globpri, ia_set_process_group, ts_yield, }; /* * Time sharing class initialization. Called by dispinit() at boot time. * We can ignore the clparmsz argument since we know that the smallest * possible parameter buffer is big enough for us. */ /* ARGSUSED */ static pri_t ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) { int i; extern pri_t ts_getmaxumdpri(void); ts_dptbl = ts_getdptbl(); ts_kmdpris = ts_getkmdpris(); ts_maxumdpri = ts_getmaxumdpri(); ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri); /* * Initialize the tsproc lists. */ for (i = 0; i < TS_LISTS; i++) { ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev = &ts_plisthead[i]; } /* * We're required to return a pointer to our classfuncs * structure and the highest global priority value we use. */ *clfuncspp = &ts_classfuncs; return (ts_maxglobpri); } /* * Interactive class scheduler initialization */ /* ARGSUSED */ pri_t ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp) { /* * We're required to return a pointer to our classfuncs * structure and the highest global priority value we use. */ ia_cid = cid; *clfuncspp = &ia_classfuncs; return (ts_maxglobpri); } /* * Get or reset the ts_dptbl values per the user's request. */ static int ts_admin(caddr_t uaddr, cred_t *reqpcredp) { tsadmin_t tsadmin; tsdpent_t *tmpdpp; int userdpsz; int i; size_t tsdpsz; if (get_udatamodel() == DATAMODEL_NATIVE) { if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t))) return (EFAULT); } #ifdef _SYSCALL32_IMPL else { /* get tsadmin struct from ILP32 caller */ tsadmin32_t tsadmin32; if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t))) return (EFAULT); tsadmin.ts_dpents = (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents; tsadmin.ts_ndpents = tsadmin32.ts_ndpents; tsadmin.ts_cmd = tsadmin32.ts_cmd; } #endif /* _SYSCALL32_IMPL */ tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t); switch (tsadmin.ts_cmd) { case TS_GETDPSIZE: tsadmin.ts_ndpents = ts_maxumdpri + 1; if (get_udatamodel() == DATAMODEL_NATIVE) { if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) return (EFAULT); } #ifdef _SYSCALL32_IMPL else { /* return tsadmin struct to ILP32 caller */ tsadmin32_t tsadmin32; tsadmin32.ts_dpents = (caddr32_t)(uintptr_t)tsadmin.ts_dpents; tsadmin32.ts_ndpents = tsadmin.ts_ndpents; tsadmin32.ts_cmd = tsadmin.ts_cmd; if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) return (EFAULT); } #endif /* _SYSCALL32_IMPL */ break; case TS_GETDPTBL: userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t), tsdpsz); if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz)) return (EFAULT); tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t); if (get_udatamodel() == DATAMODEL_NATIVE) { if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t))) return (EFAULT); } #ifdef _SYSCALL32_IMPL else { /* return tsadmin struct to ILP32 callers */ tsadmin32_t tsadmin32; tsadmin32.ts_dpents = (caddr32_t)(uintptr_t)tsadmin.ts_dpents; tsadmin32.ts_ndpents = tsadmin.ts_ndpents; tsadmin32.ts_cmd = tsadmin.ts_cmd; if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t))) return (EFAULT); } #endif /* _SYSCALL32_IMPL */ break; case TS_SETDPTBL: /* * We require that the requesting process has sufficient * priveleges. We also require that the table supplied by * the user exactly match the current ts_dptbl in size. */ if (secpolicy_dispadm(reqpcredp) != 0) return (EPERM); if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) { return (EINVAL); } /* * We read the user supplied table into a temporary buffer * where it is validated before being copied over the * ts_dptbl. */ tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP); if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp, tsdpsz)) { kmem_free(tmpdpp, tsdpsz); return (EFAULT); } for (i = 0; i < tsadmin.ts_ndpents; i++) { /* * Validate the user supplied values. All we are doing * here is verifying that the values are within their * allowable ranges and will not panic the system. We * make no attempt to ensure that the resulting * configuration makes sense or results in reasonable * performance. */ if (tmpdpp[i].ts_quantum <= 0) { kmem_free(tmpdpp, tsdpsz); return (EINVAL); } if (tmpdpp[i].ts_tqexp > ts_maxumdpri || tmpdpp[i].ts_tqexp < 0) { kmem_free(tmpdpp, tsdpsz); return (EINVAL); } if (tmpdpp[i].ts_slpret > ts_maxumdpri || tmpdpp[i].ts_slpret < 0) { kmem_free(tmpdpp, tsdpsz); return (EINVAL); } if (tmpdpp[i].ts_maxwait < 0) { kmem_free(tmpdpp, tsdpsz); return (EINVAL); } if (tmpdpp[i].ts_lwait > ts_maxumdpri || tmpdpp[i].ts_lwait < 0) { kmem_free(tmpdpp, tsdpsz); return (EINVAL); } } /* * Copy the user supplied values over the current ts_dptbl * values. The ts_globpri member is read-only so we don't * overwrite it. */ mutex_enter(&ts_dptblock); for (i = 0; i < tsadmin.ts_ndpents; i++) { ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum; ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp; ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret; ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait; ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait; } mutex_exit(&ts_dptblock); kmem_free(tmpdpp, tsdpsz); break; default: return (EINVAL); } return (0); } /* * Allocate a time-sharing class specific thread structure and * initialize it with the parameters supplied. Also move the thread * to specified time-sharing priority. */ static int ts_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp, void *bufp) { tsparms_t *tsparmsp = (tsparms_t *)parmsp; tsproc_t *tspp; pri_t reqtsuprilim; pri_t reqtsupri; static uint32_t tspexists = 0; /* set on first occurrence of */ /* a time-sharing process */ tspp = (tsproc_t *)bufp; ASSERT(tspp != NULL); /* * Initialize the tsproc structure. */ tspp->ts_cpupri = tsmedumdpri; if (cid == ia_cid) { /* * Check to make sure caller is either privileged or the * window system. When the window system is converted * to using privileges, the second check can go away. */ if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && secpolicy_setpriority(reqpcredp) != 0) return (EPERM); /* * Belongs to IA "class", so set appropriate flags. * Mark as 'on' so it will not be a swap victim * while forking. */ tspp->ts_flags = TSIA | TSIASET; tspp->ts_boost = ia_boost; } else { tspp->ts_flags = 0; tspp->ts_boost = 0; } if (tsparmsp == NULL) { /* * Use default values. */ tspp->ts_uprilim = tspp->ts_upri = 0; tspp->ts_nice = NZERO; } else { /* * Use supplied values. */ if (tsparmsp->ts_uprilim == TS_NOCHANGE) reqtsuprilim = 0; else { if (tsparmsp->ts_uprilim > 0 && secpolicy_setpriority(reqpcredp) != 0) return (EPERM); reqtsuprilim = tsparmsp->ts_uprilim; } if (tsparmsp->ts_upri == TS_NOCHANGE) { reqtsupri = reqtsuprilim; } else { if (tsparmsp->ts_upri > 0 && secpolicy_setpriority(reqpcredp) != 0) return (EPERM); /* * Set the user priority to the requested value * or the upri limit, whichever is lower. */ reqtsupri = tsparmsp->ts_upri; if (reqtsupri > reqtsuprilim) reqtsupri = reqtsuprilim; } tspp->ts_uprilim = reqtsuprilim; tspp->ts_upri = reqtsupri; tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri; } TS_NEWUMDPRI(tspp); tspp->ts_dispwait = 0; tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_tp = t; /* * Reset priority. Process goes to a "user mode" priority * here regardless of whether or not it has slept since * entering the kernel. */ thread_lock(t); /* get dispatcher lock on thread */ t->t_clfuncs = &(sclass[cid].cl_funcs->thread); t->t_cid = cid; t->t_cldata = (void *)tspp; t->t_schedflag &= ~TS_RUNQMATCH; ts_change_priority(t, tspp); thread_unlock(t); /* * Link new structure into tsproc list. */ TS_LIST_INSERT(tspp); /* * If this is the first time-sharing thread to occur since * boot we set up the initial call to ts_update() here. * Use an atomic compare-and-swap since that's easier and * faster than a mutex (but check with an ordinary load first * since most of the time this will already be done). */ if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0) (void) timeout(ts_update, NULL, hz); return (0); } /* * Free tsproc structure of thread. */ static void ts_exitclass(void *procp) { tsproc_t *tspp = (tsproc_t *)procp; /* Remove tsproc_t structure from list */ TS_LIST_DELETE(tspp); kmem_free(tspp, sizeof (tsproc_t)); } /* ARGSUSED */ static int ts_canexit(kthread_t *t, cred_t *cred) { /* * A thread can always leave a TS/IA class */ return (0); } static int ts_fork(kthread_t *t, kthread_t *ct, void *bufp) { tsproc_t *ptspp; /* ptr to parent's tsproc structure */ tsproc_t *ctspp; /* ptr to child's tsproc structure */ ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); ctspp = (tsproc_t *)bufp; ASSERT(ctspp != NULL); ptspp = (tsproc_t *)t->t_cldata; /* * Initialize child's tsproc structure. */ thread_lock(t); ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum; ctspp->ts_cpupri = ptspp->ts_cpupri; ctspp->ts_boost = ptspp->ts_boost; ctspp->ts_uprilim = ptspp->ts_uprilim; ctspp->ts_upri = ptspp->ts_upri; TS_NEWUMDPRI(ctspp); ctspp->ts_nice = ptspp->ts_nice; ctspp->ts_dispwait = 0; ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE); ctspp->ts_tp = ct; thread_unlock(t); /* * Link new structure into tsproc list. */ ct->t_cldata = (void *)ctspp; TS_LIST_INSERT(ctspp); return (0); } /* * Child is placed at back of dispatcher queue and parent gives * up processor so that the child runs first after the fork. * This allows the child immediately execing to break the multiple * use of copy on write pages with no disk home. The parent will * get to steal them back rather than uselessly copying them. */ static void ts_forkret(kthread_t *t, kthread_t *ct) { proc_t *pp = ttoproc(t); proc_t *cp = ttoproc(ct); tsproc_t *tspp; ASSERT(t == curthread); ASSERT(MUTEX_HELD(&pidlock)); /* * Grab the child's p_lock before dropping pidlock to ensure * the process does not disappear before we set it running. */ mutex_enter(&cp->p_lock); mutex_exit(&pidlock); continuelwps(cp); mutex_exit(&cp->p_lock); mutex_enter(&pp->p_lock); continuelwps(pp); mutex_exit(&pp->p_lock); thread_lock(t); tspp = (tsproc_t *)(t->t_cldata); tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; TS_NEWUMDPRI(tspp); tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_dispwait = 0; t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); tspp->ts_flags &= ~TSKPRI; THREAD_TRANSITION(t); ts_setrun(t); thread_unlock(t); swtch(); } /* * Get information about the time-sharing class into the buffer * pointed to by tsinfop. The maximum configured user priority * is the only information we supply. ts_getclinfo() is called * for TS threads, and ia_getclinfo() is called for IA threads. */ static int ts_getclinfo(void *infop) { tsinfo_t *tsinfop = (tsinfo_t *)infop; tsinfop->ts_maxupri = ts_maxupri; return (0); } static int ia_getclinfo(void *infop) { iainfo_t *iainfop = (iainfo_t *)infop; iainfop->ia_maxupri = ia_maxupri; return (0); } /* * Return the global scheduling priority ranges for the timesharing * class in pcpri_t structure. */ static int ts_getclpri(pcpri_t *pcprip) { pcprip->pc_clpmax = ts_dptbl[ts_maxumdpri].ts_globpri; pcprip->pc_clpmin = ts_dptbl[0].ts_globpri; return (0); } static void ts_nullsys() {} /* * Get the time-sharing parameters of the thread pointed to by * tsprocp into the buffer pointed to by tsparmsp. ts_parmsget() * is called for TS threads, and ia_parmsget() is called for IA * threads. */ static void ts_parmsget(kthread_t *t, void *parmsp) { tsproc_t *tspp = (tsproc_t *)t->t_cldata; tsparms_t *tsparmsp = (tsparms_t *)parmsp; tsparmsp->ts_uprilim = tspp->ts_uprilim; tsparmsp->ts_upri = tspp->ts_upri; } static void ia_parmsget(kthread_t *t, void *parmsp) { tsproc_t *tspp = (tsproc_t *)t->t_cldata; iaparms_t *iaparmsp = (iaparms_t *)parmsp; iaparmsp->ia_uprilim = tspp->ts_uprilim; iaparmsp->ia_upri = tspp->ts_upri; if (tspp->ts_flags & TSIASET) iaparmsp->ia_mode = IA_SET_INTERACTIVE; else iaparmsp->ia_mode = IA_INTERACTIVE_OFF; iaparmsp->ia_nice = tspp->ts_nice; } /* * Check the validity of the time-sharing parameters in the buffer * pointed to by tsparmsp. * ts_parmsin() is called for TS threads, and ia_parmsin() is called * for IA threads. */ static int ts_parmsin(void *parmsp) { tsparms_t *tsparmsp = (tsparms_t *)parmsp; /* * Check validity of parameters. */ if ((tsparmsp->ts_uprilim > ts_maxupri || tsparmsp->ts_uprilim < -ts_maxupri) && tsparmsp->ts_uprilim != TS_NOCHANGE) return (EINVAL); if ((tsparmsp->ts_upri > ts_maxupri || tsparmsp->ts_upri < -ts_maxupri) && tsparmsp->ts_upri != TS_NOCHANGE) return (EINVAL); return (0); } static int ia_parmsin(void *parmsp) { iaparms_t *iaparmsp = (iaparms_t *)parmsp; if ((iaparmsp->ia_uprilim > ia_maxupri || iaparmsp->ia_uprilim < -ia_maxupri) && iaparmsp->ia_uprilim != IA_NOCHANGE) { return (EINVAL); } if ((iaparmsp->ia_upri > ia_maxupri || iaparmsp->ia_upri < -ia_maxupri) && iaparmsp->ia_upri != IA_NOCHANGE) { return (EINVAL); } return (0); } /* * Check the validity of the time-sharing parameters in the pc_vaparms_t * structure vaparmsp and put them in the buffer pointed to by tsparmsp. * pc_vaparms_t contains (key, value) pairs of parameter. * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called * for IA threads. ts_vaparmsin() is the variable parameter version of * ts_parmsin() and ia_vaparmsin() is the variable parameter version of * ia_parmsin(). */ static int ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) { tsparms_t *tsparmsp = (tsparms_t *)parmsp; int priflag = 0; int limflag = 0; uint_t cnt; pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; /* * TS_NOCHANGE (-32768) is outside of the range of values for * ts_uprilim and ts_upri. If the structure tsparms_t is changed, * TS_NOCHANGE should be replaced by a flag word (in the same manner * as in rt.c). */ tsparmsp->ts_uprilim = TS_NOCHANGE; tsparmsp->ts_upri = TS_NOCHANGE; /* * Get the varargs parameter and check validity of parameters. */ if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) return (EINVAL); for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { switch (vpp->pc_key) { case TS_KY_UPRILIM: if (limflag++) return (EINVAL); tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm; if (tsparmsp->ts_uprilim > ts_maxupri || tsparmsp->ts_uprilim < -ts_maxupri) return (EINVAL); break; case TS_KY_UPRI: if (priflag++) return (EINVAL); tsparmsp->ts_upri = (pri_t)vpp->pc_parm; if (tsparmsp->ts_upri > ts_maxupri || tsparmsp->ts_upri < -ts_maxupri) return (EINVAL); break; default: return (EINVAL); } } if (vaparmsp->pc_vaparmscnt == 0) { /* * Use default parameters. */ tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0; } return (0); } static int ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp) { iaparms_t *iaparmsp = (iaparms_t *)parmsp; int priflag = 0; int limflag = 0; int mflag = 0; uint_t cnt; pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; /* * IA_NOCHANGE (-32768) is outside of the range of values for * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is * changed, IA_NOCHANGE should be replaced by a flag word (in the * same manner as in rt.c). */ iaparmsp->ia_uprilim = IA_NOCHANGE; iaparmsp->ia_upri = IA_NOCHANGE; iaparmsp->ia_mode = IA_NOCHANGE; /* * Get the varargs parameter and check validity of parameters. */ if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) return (EINVAL); for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { switch (vpp->pc_key) { case IA_KY_UPRILIM: if (limflag++) return (EINVAL); iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm; if (iaparmsp->ia_uprilim > ia_maxupri || iaparmsp->ia_uprilim < -ia_maxupri) return (EINVAL); break; case IA_KY_UPRI: if (priflag++) return (EINVAL); iaparmsp->ia_upri = (pri_t)vpp->pc_parm; if (iaparmsp->ia_upri > ia_maxupri || iaparmsp->ia_upri < -ia_maxupri) return (EINVAL); break; case IA_KY_MODE: if (mflag++) return (EINVAL); iaparmsp->ia_mode = (int)vpp->pc_parm; if (iaparmsp->ia_mode != IA_SET_INTERACTIVE && iaparmsp->ia_mode != IA_INTERACTIVE_OFF) return (EINVAL); break; default: return (EINVAL); } } if (vaparmsp->pc_vaparmscnt == 0) { /* * Use default parameters. */ iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0; iaparmsp->ia_mode = IA_SET_INTERACTIVE; } return (0); } /* * Nothing to do here but return success. */ /* ARGSUSED */ static int ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp) { return (0); } /* * Copy all selected time-sharing class parameters to the user. * The parameters are specified by a key. */ static int ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) { tsparms_t *tsprmsp = (tsparms_t *)prmsp; int priflag = 0; int limflag = 0; uint_t cnt; pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) return (EINVAL); for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { switch (vpp->pc_key) { case TS_KY_UPRILIM: if (limflag++) return (EINVAL); if (copyout(&tsprmsp->ts_uprilim, (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) return (EFAULT); break; case TS_KY_UPRI: if (priflag++) return (EINVAL); if (copyout(&tsprmsp->ts_upri, (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) return (EFAULT); break; default: return (EINVAL); } } return (0); } /* * Copy all selected interactive class parameters to the user. * The parameters are specified by a key. */ static int ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp) { iaparms_t *iaprmsp = (iaparms_t *)prmsp; int priflag = 0; int limflag = 0; int mflag = 0; uint_t cnt; pc_vaparm_t *vpp = &vaparmsp->pc_parms[0]; ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT) return (EINVAL); for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) { switch (vpp->pc_key) { case IA_KY_UPRILIM: if (limflag++) return (EINVAL); if (copyout(&iaprmsp->ia_uprilim, (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) return (EFAULT); break; case IA_KY_UPRI: if (priflag++) return (EINVAL); if (copyout(&iaprmsp->ia_upri, (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t))) return (EFAULT); break; case IA_KY_MODE: if (mflag++) return (EINVAL); if (copyout(&iaprmsp->ia_mode, (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int))) return (EFAULT); break; default: return (EINVAL); } } return (0); } /* * Set the scheduling parameters of the thread pointed to by tsprocp * to those specified in the buffer pointed to by tsparmsp. * ts_parmsset() is called for TS threads, and ia_parmsset() is * called for IA threads. */ /* ARGSUSED */ static int ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) { char nice; pri_t reqtsuprilim; pri_t reqtsupri; tsparms_t *tsparmsp = (tsparms_t *)parmsp; tsproc_t *tspp = (tsproc_t *)tx->t_cldata; ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock)); if (tsparmsp->ts_uprilim == TS_NOCHANGE) reqtsuprilim = tspp->ts_uprilim; else reqtsuprilim = tsparmsp->ts_uprilim; if (tsparmsp->ts_upri == TS_NOCHANGE) reqtsupri = tspp->ts_upri; else reqtsupri = tsparmsp->ts_upri; /* * Make sure the user priority doesn't exceed the upri limit. */ if (reqtsupri > reqtsuprilim) reqtsupri = reqtsuprilim; /* * Basic permissions enforced by generic kernel code * for all classes require that a thread attempting * to change the scheduling parameters of a target * thread be privileged or have a real or effective * UID matching that of the target thread. We are not * called unless these basic permission checks have * already passed. The time-sharing class requires in * addition that the calling thread be privileged if it * is attempting to raise the upri limit above its current * value This may have been checked previously but if our * caller passed us a non-NULL credential pointer we assume * it hasn't and we check it here. */ if (reqpcredp != NULL && reqtsuprilim > tspp->ts_uprilim && secpolicy_setpriority(reqpcredp) != 0) return (EPERM); /* * Set ts_nice to the nice value corresponding to the user * priority we are setting. Note that setting the nice field * of the parameter struct won't affect upri or nice. */ nice = NZERO - (reqtsupri * NZERO) / ts_maxupri; if (nice >= 2 * NZERO) nice = 2 * NZERO - 1; thread_lock(tx); tspp->ts_uprilim = reqtsuprilim; tspp->ts_upri = reqtsupri; TS_NEWUMDPRI(tspp); tspp->ts_nice = nice; if ((tspp->ts_flags & TSKPRI) != 0) { thread_unlock(tx); return (0); } tspp->ts_dispwait = 0; ts_change_priority(tx, tspp); thread_unlock(tx); return (0); } static int ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp) { tsproc_t *tspp = (tsproc_t *)tx->t_cldata; iaparms_t *iaparmsp = (iaparms_t *)parmsp; proc_t *p; pid_t pid, pgid, sid; pid_t on, off; struct stdata *stp; int sess_held; /* * Handle user priority changes */ if (iaparmsp->ia_mode == IA_NOCHANGE) return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); /* * Check permissions for changing modes. */ if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) && secpolicy_setpriority(reqpcredp) != 0) { /* * Silently fail in case this is just a priocntl * call with upri and uprilim set to IA_NOCHANGE. */ return (0); } ASSERT(MUTEX_HELD(&pidlock)); if ((p = ttoproc(tx)) == NULL) { return (0); } ASSERT(MUTEX_HELD(&p->p_lock)); if (p->p_stat == SIDL) { return (0); } pid = p->p_pid; sid = p->p_sessp->s_sid; pgid = p->p_pgrp; if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { /* * session leaders must be turned on now so all processes * in the group controlling the tty will be turned on or off. * if the ia_mode is off for the session leader, * ia_set_process_group will return without setting the * processes in the group controlling the tty on. */ thread_lock(tx); tspp->ts_flags |= TSIASET; thread_unlock(tx); } mutex_enter(&p->p_sessp->s_lock); sess_held = 1; if ((pid == sid) && (p->p_sessp->s_vp != NULL) && ((stp = p->p_sessp->s_vp->v_stream) != NULL)) { if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) { pgid = stp->sd_pgidp->pid_id; sess_held = 0; mutex_exit(&p->p_sessp->s_lock); if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { off = 0; on = pgid; } else { off = pgid; on = 0; } TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN, "active chain:pid %d gid %d %p", pid, pgid, p); ia_set_process_group(sid, off, on); } } if (sess_held) mutex_exit(&p->p_sessp->s_lock); thread_lock(tx); if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) { tspp->ts_flags |= TSIASET; tspp->ts_boost = ia_boost; } else { tspp->ts_flags &= ~TSIASET; tspp->ts_boost = -ia_boost; } thread_unlock(tx); return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp)); } /* * Return the global scheduling priority that would be assigned * to a thread entering the time-sharing class with the ts_upri. */ static pri_t ts_globpri(kthread_t *t) { tsproc_t *tspp; pri_t tspri; ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); tspp = (tsproc_t *)t->t_cldata; tspri = tsmedumdpri + tspp->ts_upri; if (tspri > ts_maxumdpri) tspri = ts_maxumdpri; else if (tspri < 0) tspri = 0; return (ts_dptbl[tspri].ts_globpri); } /* * Arrange for thread to be placed in appropriate location * on dispatcher queue. * * This is called with the current thread in TS_ONPROC and locked. */ static void ts_preempt(kthread_t *t) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); klwp_t *lwp; #ifdef KSLICE extern int kslice; #endif pri_t oldpri = t->t_pri; ASSERT(t == curthread); ASSERT(THREAD_LOCK_HELD(curthread)); /* * If preempted in the kernel, make sure the thread has * a kernel priority if needed. */ lwp = curthread->t_lwp; if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) { tspp->ts_flags |= TSKPRI; THREAD_CHANGE_PRI(t, ts_kmdpris[0]); ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); t->t_trapret = 1; /* so ts_trapret will run */ aston(t); } /* * If preempted in user-land mark the thread * as swappable because I know it isn't holding any locks. */ ASSERT(t->t_schedflag & TS_DONT_SWAP); if (lwp != NULL && lwp->lwp_state == LWP_USER) t->t_schedflag &= ~TS_DONT_SWAP; /* * Check to see if we're doing "preemption control" here. If * we are, and if the user has requested that this thread not * be preempted, and if preemptions haven't been put off for * too long, let the preemption happen here but try to make * sure the thread is rescheduled as soon as possible. We do * this by putting it on the front of the highest priority run * queue in the TS class. If the preemption has been put off * for too long, clear the "nopreempt" bit and let the thread * be preempted. */ if (t->t_schedctl && schedctl_get_nopreempt(t)) { if (tspp->ts_timeleft > -SC_MAX_TICKS) { DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); if (!(tspp->ts_flags & TSKPRI)) { /* * If not already remembered, remember current * priority for restoration in ts_yield(). */ if (!(tspp->ts_flags & TSRESTORE)) { tspp->ts_scpri = t->t_pri; tspp->ts_flags |= TSRESTORE; } THREAD_CHANGE_PRI(t, ts_maxumdpri); t->t_schedflag |= TS_DONT_SWAP; } schedctl_set_yield(t, 1); setfrontdq(t); goto done; } else { if (tspp->ts_flags & TSRESTORE) { THREAD_CHANGE_PRI(t, tspp->ts_scpri); tspp->ts_flags &= ~TSRESTORE; } schedctl_set_nopreempt(t, 0); DTRACE_SCHED1(schedctl__preempt, kthread_t *, t); TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt", /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, tnf_lwpid, lwpid, t->t_tid); /* * Fall through and be preempted below. */ } } if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) { tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_dispwait = 0; tspp->ts_flags &= ~TSBACKQ; setbackdq(t); } else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) { tspp->ts_flags &= ~TSBACKQ; setbackdq(t); } else { #ifdef KSLICE if (kslice) setbackdq(t); else #endif setfrontdq(t); } done: TRACE_2(TR_FAC_DISP, TR_PREEMPT, "preempt:tid %p old pri %d", t, oldpri); } static void ts_setrun(kthread_t *t) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */ if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; TS_NEWUMDPRI(tspp); tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_dispwait = 0; if ((tspp->ts_flags & TSKPRI) == 0) { THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); } } tspp->ts_flags &= ~TSBACKQ; if (tspp->ts_flags & TSIA) { if (tspp->ts_flags & TSIASET) setfrontdq(t); else setbackdq(t); } else { if (t->t_disp_time != lbolt) setbackdq(t); else setfrontdq(t); } } /* * Prepare thread for sleep. We reset the thread priority so it will * run at the kernel priority level when it wakes up. */ static void ts_sleep(kthread_t *t) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); int flags; pri_t old_pri = t->t_pri; ASSERT(t == curthread); ASSERT(THREAD_LOCK_HELD(t)); flags = tspp->ts_flags; if (t->t_kpri_req) { tspp->ts_flags = flags | TSKPRI; THREAD_CHANGE_PRI(t, ts_kmdpris[0]); ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); t->t_trapret = 1; /* so ts_trapret will run */ aston(t); } else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { /* * If thread has blocked in the kernel (as opposed to * being merely preempted), recompute the user mode priority. */ tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; TS_NEWUMDPRI(tspp); tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_dispwait = 0; THREAD_CHANGE_PRI(curthread, ts_dptbl[tspp->ts_umdpri].ts_globpri); ASSERT(curthread->t_pri >= 0 && curthread->t_pri <= ts_maxglobpri); tspp->ts_flags = flags & ~TSKPRI; if (DISP_MUST_SURRENDER(curthread)) cpu_surrender(curthread); } else if (flags & TSKPRI) { THREAD_CHANGE_PRI(curthread, ts_dptbl[tspp->ts_umdpri].ts_globpri); ASSERT(curthread->t_pri >= 0 && curthread->t_pri <= ts_maxglobpri); tspp->ts_flags = flags & ~TSKPRI; if (DISP_MUST_SURRENDER(curthread)) cpu_surrender(curthread); } t->t_stime = lbolt; /* time stamp for the swapper */ TRACE_2(TR_FAC_DISP, TR_SLEEP, "sleep:tid %p old pri %d", t, old_pri); } /* * Return Values: * * -1 if the thread is loaded or is not eligible to be swapped in. * * effective priority of the specified thread based on swapout time * and size of process (epri >= 0 , epri <= SHRT_MAX). */ /* ARGSUSED */ static pri_t ts_swapin(kthread_t *t, int flags) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); long epri = -1; proc_t *pp = ttoproc(t); ASSERT(THREAD_LOCK_HELD(t)); /* * We know that pri_t is a short. * Be sure not to overrun its range. */ if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) { time_t swapout_time; swapout_time = (lbolt - t->t_stime) / hz; if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET))) epri = (long)DISP_PRIO(t) + swapout_time; else { /* * Threads which have been out for a long time, * have high user mode priority and are associated * with a small address space are more deserving */ epri = ts_dptbl[tspp->ts_umdpri].ts_globpri; ASSERT(epri >= 0 && epri <= ts_maxumdpri); epri += swapout_time - pp->p_swrss / nz(maxpgio)/2; } /* * Scale epri so SHRT_MAX/2 represents zero priority. */ epri += SHRT_MAX/2; if (epri < 0) epri = 0; else if (epri > SHRT_MAX) epri = SHRT_MAX; } return ((pri_t)epri); } /* * Return Values * -1 if the thread isn't loaded or is not eligible to be swapped out. * * effective priority of the specified thread based on if the swapper * is in softswap or hardswap mode. * * Softswap: Return a low effective priority for threads * sleeping for more than maxslp secs. * * Hardswap: Return an effective priority such that threads * which have been in memory for a while and are * associated with a small address space are swapped * in before others. * * (epri >= 0 , epri <= SHRT_MAX). */ time_t ts_minrun = 2; /* XXX - t_pri becomes 59 within 2 secs */ time_t ts_minslp = 2; /* min time on sleep queue for hardswap */ static pri_t ts_swapout(kthread_t *t, int flags) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); long epri = -1; proc_t *pp = ttoproc(t); time_t swapin_time; ASSERT(THREAD_LOCK_HELD(t)); if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) || (t->t_proc_flag & TP_LWPEXIT) || (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED | TS_ONPROC)) || !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t)) return (-1); ASSERT(t->t_state & (TS_SLEEP | TS_RUN)); /* * We know that pri_t is a short. * Be sure not to overrun its range. */ swapin_time = (lbolt - t->t_stime) / hz; if (flags == SOFTSWAP) { if (t->t_state == TS_SLEEP && swapin_time > maxslp) { epri = 0; } else { return ((pri_t)epri); } } else { pri_t pri; if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) || (t->t_state == TS_RUN && swapin_time > ts_minrun)) { pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; ASSERT(pri >= 0 && pri <= ts_maxumdpri); epri = swapin_time - (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri; } else { return ((pri_t)epri); } } /* * Scale epri so SHRT_MAX/2 represents zero priority. */ epri += SHRT_MAX/2; if (epri < 0) epri = 0; else if (epri > SHRT_MAX) epri = SHRT_MAX; return ((pri_t)epri); } /* * Check for time slice expiration. If time slice has expired * move thread to priority specified in tsdptbl for time slice expiration * and set runrun to cause preemption. */ static void ts_tick(kthread_t *t) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); klwp_t *lwp; pri_t oldpri = t->t_pri; ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); thread_lock(t); if ((tspp->ts_flags & TSKPRI) == 0) { if (--tspp->ts_timeleft <= 0) { pri_t new_pri; /* * If we're doing preemption control and trying to * avoid preempting this thread, just note that * the thread should yield soon and let it keep * running (unless it's been a while). */ if (t->t_schedctl && schedctl_get_nopreempt(t)) { if (tspp->ts_timeleft > -SC_MAX_TICKS) { DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t); schedctl_set_yield(t, 1); thread_unlock_nopreempt(t); return; } TNF_PROBE_2(schedctl_failsafe, "schedctl TS ts_tick", /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid, tnf_lwpid, lwpid, t->t_tid); } tspp->ts_flags &= ~TSRESTORE; tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; TS_NEWUMDPRI(tspp); tspp->ts_dispwait = 0; new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); /* * When the priority of a thread is changed, * it may be necessary to adjust its position * on a sleep queue or dispatch queue. * The function thread_change_pri accomplishes * this. */ if (thread_change_pri(t, new_pri, 0)) { if ((t->t_schedflag & TS_LOAD) && (lwp = t->t_lwp) && lwp->lwp_state == LWP_USER) t->t_schedflag &= ~TS_DONT_SWAP; tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; } else { tspp->ts_flags |= TSBACKQ; cpu_surrender(t); } TRACE_2(TR_FAC_DISP, TR_TICK, "tick:tid %p old pri %d", t, oldpri); } else if (t->t_state == TS_ONPROC && t->t_pri < t->t_disp_queue->disp_maxrunpri) { tspp->ts_flags |= TSBACKQ; cpu_surrender(t); } } thread_unlock_nopreempt(t); /* clock thread can't be preempted */ } /* * If thread is currently at a kernel mode priority (has slept) * we assign it the appropriate user mode priority and time quantum * here. If we are lowering the thread's priority below that of * other runnable threads we will normally set runrun via cpu_surrender() to * cause preemption. */ static void ts_trapret(kthread_t *t) { tsproc_t *tspp = (tsproc_t *)t->t_cldata; cpu_t *cp = CPU; pri_t old_pri = curthread->t_pri; ASSERT(THREAD_LOCK_HELD(t)); ASSERT(t == curthread); ASSERT(cp->cpu_dispthread == t); ASSERT(t->t_state == TS_ONPROC); t->t_kpri_req = 0; if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; TS_NEWUMDPRI(tspp); tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_dispwait = 0; /* * If thread has blocked in the kernel (as opposed to * being merely preempted), recompute the user mode priority. */ THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); cp->cpu_dispatch_pri = DISP_PRIO(t); ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); tspp->ts_flags &= ~TSKPRI; if (DISP_MUST_SURRENDER(t)) cpu_surrender(t); } else if (tspp->ts_flags & TSKPRI) { /* * If thread has blocked in the kernel (as opposed to * being merely preempted), recompute the user mode priority. */ THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); cp->cpu_dispatch_pri = DISP_PRIO(t); ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); tspp->ts_flags &= ~TSKPRI; if (DISP_MUST_SURRENDER(t)) cpu_surrender(t); } /* * Swapout lwp if the swapper is waiting for this thread to * reach a safe point. */ if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) { thread_unlock(t); swapout_lwp(ttolwp(t)); thread_lock(t); } TRACE_2(TR_FAC_DISP, TR_TRAPRET, "trapret:tid %p old pri %d", t, old_pri); } /* * Update the ts_dispwait values of all time sharing threads that * are currently runnable at a user mode priority and bump the priority * if ts_dispwait exceeds ts_maxwait. Called once per second via * timeout which we reset here. * * There are several lists of time sharing threads broken up by a hash on * the thread pointer. Each list has its own lock. This avoids blocking * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update * runs. ts_update traverses each list in turn. * * If multiple threads have their priorities updated to the same value, * the system implicitly favors the one that is updated first (since it * winds up first on the run queue). To avoid this unfairness, the * traversal of threads starts at the list indicated by a marker. When * threads in more than one list have their priorities updated, the marker * is moved. This changes the order the threads will be placed on the run * queue the next time ts_update is called and preserves fairness over the * long run. The marker doesn't need to be protected by a lock since it's * only accessed by ts_update, which is inherently single-threaded (only * one instance can be running at a time). */ static void ts_update(void *arg) { int i; int new_marker = -1; static int ts_update_marker; /* * Start with the ts_update_marker list, then do the rest. */ i = ts_update_marker; do { /* * If this is the first list after the current marker to * have threads with priorities updated, advance the marker * to this list for the next time ts_update runs. */ if (ts_update_list(i) && new_marker == -1 && i != ts_update_marker) { new_marker = i; } } while ((i = TS_LIST_NEXT(i)) != ts_update_marker); /* advance marker for next ts_update call */ if (new_marker != -1) ts_update_marker = new_marker; (void) timeout(ts_update, arg, hz); } /* * Updates priority for a list of threads. Returns 1 if the priority of * one of the threads was actually updated, 0 if none were for various * reasons (thread is no longer in the TS or IA class, isn't runnable, * hasn't waited long enough, has the preemption control no-preempt bit * set, etc.) */ static int ts_update_list(int i) { tsproc_t *tspp; kthread_t *tx; int updated = 0; mutex_enter(&ts_list_lock[i]); for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i]; tspp = tspp->ts_next) { tx = tspp->ts_tp; /* * Lock the thread and verify state. */ thread_lock(tx); /* * Skip the thread if it is no longer in the TS (or IA) class. */ if (tx->t_clfuncs != &ts_classfuncs.thread && tx->t_clfuncs != &ia_classfuncs.thread) goto next; tspp->ts_dispwait++; if ((tspp->ts_flags & TSKPRI) != 0) goto next; if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait) goto next; if (tx->t_schedctl && schedctl_get_nopreempt(tx)) goto next; if (tx->t_state != TS_RUN && (tx->t_state != TS_SLEEP || !ts_sleep_promote)) { /* make next syscall/trap do CL_TRAPRET */ tx->t_trapret = 1; aston(tx); goto next; } tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait; TS_NEWUMDPRI(tspp); tspp->ts_dispwait = 0; updated = 1; /* * Only dequeue it if needs to move; otherwise it should * just round-robin here. */ if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) { pri_t oldpri = tx->t_pri; ts_change_priority(tx, tspp); TRACE_2(TR_FAC_DISP, TR_UPDATE, "update:tid %p old pri %d", tx, oldpri); } next: thread_unlock(tx); } mutex_exit(&ts_list_lock[i]); return (updated); } /* * Processes waking up go to the back of their queue. We don't * need to assign a time quantum here because thread is still * at a kernel mode priority and the time slicing is not done * for threads running in the kernel after sleeping. The proper * time quantum will be assigned by ts_trapret before the thread * returns to user mode. */ static void ts_wakeup(kthread_t *t) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); ASSERT(THREAD_LOCK_HELD(t)); t->t_stime = lbolt; /* time stamp for the swapper */ if (tspp->ts_flags & TSKPRI) { tspp->ts_flags &= ~TSBACKQ; if (tspp->ts_flags & TSIASET) setfrontdq(t); else setbackdq(t); } else if (t->t_kpri_req) { /* * Give thread a priority boost if we were asked. */ tspp->ts_flags |= TSKPRI; THREAD_CHANGE_PRI(t, ts_kmdpris[0]); setbackdq(t); t->t_trapret = 1; /* so that ts_trapret will run */ aston(t); } else { if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) { tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret; TS_NEWUMDPRI(tspp); tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_dispwait = 0; THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); } tspp->ts_flags &= ~TSBACKQ; if (tspp->ts_flags & TSIA) { if (tspp->ts_flags & TSIASET) setfrontdq(t); else setbackdq(t); } else { if (t->t_disp_time != lbolt) setbackdq(t); else setfrontdq(t); } } } /* * When a thread yields, put it on the back of the run queue. */ static void ts_yield(kthread_t *t) { tsproc_t *tspp = (tsproc_t *)(t->t_cldata); ASSERT(t == curthread); ASSERT(THREAD_LOCK_HELD(t)); /* * Clear the preemption control "yield" bit since the user is * doing a yield. */ if (t->t_schedctl) schedctl_set_yield(t, 0); /* * If ts_preempt() artifically increased the thread's priority * to avoid preemption, restore the original priority now. */ if (tspp->ts_flags & TSRESTORE) { THREAD_CHANGE_PRI(t, tspp->ts_scpri); tspp->ts_flags &= ~TSRESTORE; } if (tspp->ts_timeleft <= 0) { /* * Time slice was artificially extended to avoid * preemption, so pretend we're preempting it now. */ DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft); tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp; TS_NEWUMDPRI(tspp); tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; tspp->ts_dispwait = 0; THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri); ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri); } tspp->ts_flags &= ~TSBACKQ; setbackdq(t); } /* * Increment the nice value of the specified thread by incr and * return the new value in *retvalp. */ static int ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp) { int newnice; tsproc_t *tspp = (tsproc_t *)(t->t_cldata); tsparms_t tsparms; ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock)); /* If there's no change to priority, just return current setting */ if (incr == 0) { if (retvalp) { *retvalp = tspp->ts_nice - NZERO; } return (0); } if ((incr < 0 || incr > 2 * NZERO) && secpolicy_setpriority(cr) != 0) return (EPERM); /* * Specifying a nice increment greater than the upper limit of * 2 * NZERO - 1 will result in the thread's nice value being * set to the upper limit. We check for this before computing * the new value because otherwise we could get overflow * if a privileged process specified some ridiculous increment. */ if (incr > 2 * NZERO - 1) incr = 2 * NZERO - 1; newnice = tspp->ts_nice + incr; if (newnice >= 2 * NZERO) newnice = 2 * NZERO - 1; else if (newnice < 0) newnice = 0; tsparms.ts_uprilim = tsparms.ts_upri = -((newnice - NZERO) * ts_maxupri) / NZERO; /* * Reset the uprilim and upri values of the thread. * Call ts_parmsset even if thread is interactive since we're * not changing mode. */ (void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL); /* * Although ts_parmsset already reset ts_nice it may * not have been set to precisely the value calculated above * because ts_parmsset determines the nice value from the * user priority and we may have truncated during the integer * conversion from nice value to user priority and back. * We reset ts_nice to the value we calculated above. */ tspp->ts_nice = (char)newnice; if (retvalp) *retvalp = newnice - NZERO; return (0); } /* * ia_set_process_group marks foreground processes as interactive * and background processes as non-interactive iff the session * leader is interactive. This routine is called from two places: * strioctl:SPGRP when a new process group gets * control of the tty. * ia_parmsset-when the process in question is a session leader. * ia_set_process_group assumes that pidlock is held by the caller, * either strioctl or priocntlsys. If the caller is priocntlsys * (via ia_parmsset) then the p_lock of the session leader is held * and the code needs to be careful about acquiring other p_locks. */ static void ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid) { proc_t *leader, *fg, *bg; tsproc_t *tspp; kthread_t *tx; int plocked = 0; ASSERT(MUTEX_HELD(&pidlock)); /* * see if the session leader is interactive AND * if it is currently "on" AND controlling a tty * iff it is then make the processes in the foreground * group interactive and the processes in the background * group non-interactive. */ if ((leader = (proc_t *)prfind(sid)) == NULL) { return; } if (leader->p_stat == SIDL) { return; } if ((tx = proctot(leader)) == NULL) { return; } /* * XXX do all the threads in the leader */ if (tx->t_cid != ia_cid) { return; } tspp = tx->t_cldata; /* * session leaders that are not interactive need not have * any processing done for them. They are typically shells * that do not have focus and are changing the process group * attatched to the tty, e.g. a process that is exiting */ mutex_enter(&leader->p_sessp->s_lock); if (!(tspp->ts_flags & TSIASET) || (leader->p_sessp->s_vp == NULL) || (leader->p_sessp->s_vp->v_stream == NULL)) { mutex_exit(&leader->p_sessp->s_lock); return; } mutex_exit(&leader->p_sessp->s_lock); /* * If we're already holding the leader's p_lock, we should use * mutex_tryenter instead of mutex_enter to avoid deadlocks from * lock ordering violations. */ if (mutex_owned(&leader->p_lock)) plocked = 1; if (fg_pgid == 0) goto skip; /* * now look for all processes in the foreground group and * make them interactive */ for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) { /* * if the process is SIDL it's begin forked, ignore it */ if (fg->p_stat == SIDL) { continue; } /* * sesssion leaders must be turned on/off explicitly * not implicitly as happens to other members of * the process group. */ if (fg->p_pid == fg->p_sessp->s_sid) { continue; } TRACE_1(TR_FAC_IA, TR_GROUP_ON, "group on:proc %p", fg); if (plocked) { if (mutex_tryenter(&fg->p_lock) == 0) continue; } else { mutex_enter(&fg->p_lock); } if ((tx = proctot(fg)) == NULL) { mutex_exit(&fg->p_lock); continue; } do { thread_lock(tx); /* * if this thread is not interactive continue */ if (tx->t_cid != ia_cid) { thread_unlock(tx); continue; } tspp = tx->t_cldata; tspp->ts_flags |= TSIASET; tspp->ts_boost = ia_boost; TS_NEWUMDPRI(tspp); if ((tspp->ts_flags & TSKPRI) != 0) { thread_unlock(tx); continue; } tspp->ts_dispwait = 0; ts_change_priority(tx, tspp); thread_unlock(tx); } while ((tx = tx->t_forw) != fg->p_tlist); mutex_exit(&fg->p_lock); } skip: if (bg_pgid == 0) return; for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) { if (bg->p_stat == SIDL) { continue; } /* * sesssion leaders must be turned off explicitly * not implicitly as happens to other members of * the process group. */ if (bg->p_pid == bg->p_sessp->s_sid) { continue; } TRACE_1(TR_FAC_IA, TR_GROUP_OFF, "group off:proc %p", bg); if (plocked) { if (mutex_tryenter(&bg->p_lock) == 0) continue; } else { mutex_enter(&bg->p_lock); } if ((tx = proctot(bg)) == NULL) { mutex_exit(&bg->p_lock); continue; } do { thread_lock(tx); /* * if this thread is not interactive continue */ if (tx->t_cid != ia_cid) { thread_unlock(tx); continue; } tspp = tx->t_cldata; tspp->ts_flags &= ~TSIASET; tspp->ts_boost = -ia_boost; TS_NEWUMDPRI(tspp); if ((tspp->ts_flags & TSKPRI) != 0) { thread_unlock(tx); continue; } tspp->ts_dispwait = 0; ts_change_priority(tx, tspp); thread_unlock(tx); } while ((tx = tx->t_forw) != bg->p_tlist); mutex_exit(&bg->p_lock); } } static void ts_change_priority(kthread_t *t, tsproc_t *tspp) { pri_t new_pri; ASSERT(THREAD_LOCK_HELD(t)); new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri; ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri); tspp->ts_flags &= ~TSRESTORE; if (t == curthread || t->t_state == TS_ONPROC) { /* curthread is always onproc */ cpu_t *cp = t->t_disp_queue->disp_cpu; THREAD_CHANGE_PRI(t, new_pri); if (t == cp->cpu_dispthread) cp->cpu_dispatch_pri = DISP_PRIO(t); if (DISP_MUST_SURRENDER(t)) { tspp->ts_flags |= TSBACKQ; cpu_surrender(t); } else { tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; } } else { int frontq; frontq = (tspp->ts_flags & TSIASET) != 0; /* * When the priority of a thread is changed, * it may be necessary to adjust its position * on a sleep queue or dispatch queue. * The function thread_change_pri accomplishes * this. */ if (thread_change_pri(t, new_pri, frontq)) { /* * The thread was on a run queue. Reset * its CPU timeleft from the quantum * associated with the new priority. */ tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum; } else { tspp->ts_flags |= TSBACKQ; } } } static int ts_alloc(void **p, int flag) { void *bufp; bufp = kmem_alloc(sizeof (tsproc_t), flag); if (bufp == NULL) { return (ENOMEM); } else { *p = bufp; return (0); } } static void ts_free(void *bufp) { if (bufp) kmem_free(bufp, sizeof (tsproc_t)); }