'\" .\" Copyright (C) 2008, Sun Microsystems, Inc. All Rights Reserved. .\" Copyright 2012 DEY Storage Systems, Inc. All rights reserved. .\" Copyright (c) 2013, Joyent, Inc. All rights reserved. .\" Copyright 2020 OmniOS Community Edition (OmniOSce) Association. .\" Copyright 2024 Oxide Computer Company .\" Copyright 1989 AT&T .\" .\" The contents of this file are subject to the terms of the .\" Common Development and Distribution License (the "License"). .\" You may not use this file except in compliance with the License. .\" .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE .\" or http://www.opensolaris.org/os/licensing. .\" See the License for the specific language governing permissions .\" and limitations under the License. .\" .\" When distributing Covered Code, include this CDDL HEADER in each .\" file and include the License file at usr/src/OPENSOLARIS.LICENSE. .\" If applicable, add the following below this CDDL HEADER, with the .\" fields enclosed by brackets "[]" replaced with your own identifying .\" information: Portions Copyright [yyyy] [name of copyright owner] .\" .Dd May 10, 2024 .Dt CORE 5 .Os .Sh NAME .Nm core .Nd process core file .Sh DESCRIPTION The operating system writes out a core file for a process when the process is terminated due to receiving certain signals. A core file is a disk copy of the contents of the process address space at the time the process received the signal, along with additional information about the state of the process. This information can be consumed by a debugger. Core files can also be generated by applying the .Xr gcore 1 utility to a running process. .Pp Typically, core files are produced following abnormal termination of a process resulting from a bug in the corresponding application. Whatever the cause, the core file itself provides invaluable information to the programmer or support engineer to aid in diagnosing the problem. The core file can be inspected using a debugger such as .Xr mdb 1 , gdb, dbx, or or by applying one of the .Xr proc 1 tools. .Pp The operating system attempts to create up to two core files for each abnormally terminating process, using a global core file name pattern and a per-process core file name pattern. These patterns are expanded to determine the pathname of the resulting core files, and can be configured by .Xr coreadm 8 . By default, the global core file pattern is disabled and not used, and the per-process core file pattern is set to .Sy core . Therefore, by default, the operating system attempts to create a core file named .Pa core in the process's current working directory. .Pp A process terminates and produces a core file whenever it receives one of the signals whose default disposition is to cause a core dump or the .Xr upanic 2 system call is used. The list of signals that result in generating a core file is shown in .Xr signal.h 3HEAD . Therefore, a process might not produce a core file if it has blocked or modified the behavior of the corresponding signal. Additionally, no core dump can be created under the following conditions: .Bl -bullet .It If normal file and directory access permissions prevent the creation or modification of the per-process core file pathname by the current process user and group ID. This test does not apply to the global core file pathname because, regardless of the UID of the process dumping core, the attempt to write the global core file is made as the superuser. .It Core files owned by the user .Sy nobody will not be produced. For example, core files generated for the superuser on an NFS directory are owned by .Sy nobody and are, therefore, not written. .It If the core file pattern expands to a pathname that contains intermediate directory components that do not exist. For example, if the global pattern is set to .Pa /var/core/%n/core.%p , and no directory .Pa /var/core/`uname -n` has been created, no global core files are produced. .It If the destination directory is part of a filesystem that is mounted read-only. .It If the resource limit .Dv RLIMIT_CORE has been set to .Sy 0 for the process, no per-process core file is produced. Refer to .Xr setrlimit 2 and .Xr ulimit 1 for more information on resource limits. .It If the core file name already exists in the destination directory and is not a regular file .Pq that is, is a symlink, block or character special-file, and so forth . .It If the kernel cannot open the destination file .Dv O_EXCL , which can occur if same file is being created by another process simultaneously. .It If the process's effective user ID is different from its real user ID or if its effective group ID is different from its real group ID. Similarly, set-user-ID and set-group-ID programs do not produce core files as this could potentially compromise system security. These processes can be explicitly granted permission to produce core files using .Xr coreadm 8 , at the risk of exposing secure information. .El .Pp The core file contains all the process information pertinent to debugging: contents of hardware registers, process status, and process data. The format of a core file is object file specific. .Pp For ELF executable programs .Po see .Xr a.out 5 .Pc , the core file generated is also an ELF file, containing ELF program and file headers. The .Fa e_type field in the file header has type .Dv ET_CORE . The program header contains an entry for every segment that was part of the process address space, including shared library segments. The contents of the mappings specified by .Xr coreadm 8 are also part of the core image. Each program header has its .Fa p_memsz field set to the size of the mapping. The program headers that represent mappings whose data is included in the core file have their .Fa p_filesz field set the same as .Fa p_memsz , otherwise .Fa p_filesz is .Sy zero . .Pp A mapping's data can be excluded due to the core file content settings .Po see .Xr coreadm 8 .Pc , due to a failure, or due to a signal received after core dump initiation but before its completion. If the data is excluded because of a failure, the program header entry will have the .Dv PF_SUNW_FAILURE flag set in its .Fa p_flags field; if the data is excluded because of a signal, the segment's .Fa p_flags field will have the .Dv PF_SUNW_KILLED flag set. .Pp The program headers of an .Sy ELF core file also contain entries for two .Sy NOTE segments, each containing several note entries as described below. The note entry header and core file note type .Pq Fa n_type definitions are contained in .In sys/elf.h . The first .Sy NOTE segment exists for binary compatibility with old programs that deal with core files. It contains structures defined in .In sys/old_procfs.h . New programs should recognize and skip this .Sy NOTE segment, advancing instead to the new .Sy NOTE segment. The old .Sy NOTE segment is deleted from core files in a future release. .Pp The old .Sy NOTE segment contains the following entries. Each has entry name .Sy "CORE" and presents the contents of a system structure: .Bl -tag -width prpsinfo_t .It Vt prpsinfo_t .Fa n_type : .Dv NT_PRPSINFO . This entry contains information of interest to the .Xr ps 1 command, such as process status, CPU usage, nice value, controlling terminal, user-ID, process-ID, the name of the executable, and so forth. The .Vt prpsinfo_t structure is defined in .In sys/old_procfs.h . .It Vt char[] .Fa n_type : .Dv NT_PLATFORM . This entry contains a string describing the specific model of the hardware platform on which this core file was created. This information is the same as provided by .Xr sysinfo 2 when invoked with the command .Dv SI_PLATFORM . .It Vt auxv_t[] .Fa n_type : .Dv NT_AUXV . This entry contains the array of .Vt Bauxv_t structures that was passed by the operating system as startup information to the dynamic linker. Auxiliary vector information is defined in .In sys/auxv.h . .El .Pp Following these entries, for each active (non-zombie) light-weight process .Pq LWP in the process, the old .Sy NOTE segment contains an entry with a .Vt prstatus_t structure, plus other optionally-present entries describing the LWP, as follows: .Bl -tag -width "prfpregset_t" .It Vt prstatus_t .Fa n_type : .Dv NT_PRSTATUS . This structure contains things of interest to a debugger from the operating system, such as the general registers, signal dispositions, state, reason for stopping, process-ID, and so forth. The .Vt prstatus_t structure is defined in .In sys/old_procfs.h . .It Vt prfpregset_t .Fa n_type : .Dv NT_PRFPREG . This entry is present only if the .Sy LWP used the floating-point hardware. It contains the floating-point registers. The .Vt prfpregset_t structure is defined in .In sys/procfs_isa.h . .It Vt gwindows_t .Fa n_type : .Dv NT_GWINDOWS . This entry is present only on a SPARC machine and only if the system was unable to flush all of the register windows to the stack. It contains all of the unspilled register windows. The .Vt gwindows_t structure is defined in .In sys/regset.h . .It Vt prxregset_t .Fa n_type : .Dv NT_PRXREG . This entry is no longer included in core files, but is of historical note because in the past it was included on SPARC-based systems. While since then the .Vt prxregset_t and extended register sets have been defined on other architectures, they do not emit this in the old note section because there is no binary compatibility. .El .Pp The new .Sy NOTE segment contains the following entries. Each has entry name .Sy "CORE" and presents the contents of a system structure: .Bl -tag -width prxregset_t .It Vt psinfo_t .Fa n_type : .Dv NT_PSINFO . This structure contains information of interest to the .Xr ps 1 command, such as process status, CPU usage, nice value, controlling terminal, user-ID, process-ID, the name of the executable, and so forth. The .Vt psinfo_t structure is defined in .In sys/procfs.h .It Vt pstatus_t .Fa n_type : .Dv NT_PSTATUS . This structure contains things of interest to a debugger from the operating system, such as pending signals, state, process-ID, and so forth. The .Vt pstatus_t structure is defined in .In sys/procfs.h . .It Vt char[] .Fa n_type : .Dv NT_PLATFORM . This entry contains a string describing the specific model of the hardware platform on which this core file was created. This information is the same as provided by .Xr sysinfo 2 when invoked with the command .Dv SI_PLATFORM . .It Vt auxv_t[] .Fa n_type : .Dv NT_AUXV . This entry contains the array of .Vt auxv_t structures that was passed by the operating system as startup information to the dynamic linker. Auxiliary vector information is defined in .In sys/auxv.h . .It Vt struct utsname .Fa n_type : .Dv NT_UTSNAME . This structure contains the system information that would have been returned to the process if it had performed a .Xr uname 2 system call prior to dumping core. The .Vt utsname structure is defined in .In sys/utsname.h . .It Vt pcred_t .Fa n_type : .Dv NT_PRCRED . This structure contains the process credentials, including the real, saved, and effective user and group IDs. The .Vt pcred_t structure is defined in .In sys/procfs.h . Following the structure is an optional array of supplementary group IDs. The total number of supplementary group IDs is given by the .Fa pr_ngroups member of the .Vt pcred_t structure, and the structure includes space for one supplementary group. If .Fa pr_ngroups is greater than 1, there is .So .Fa pr_ngroups - 1 .Sc .Fa gid_t items following the structure; otherwise, there is no additional data. .It Vt char[] .Fa n_type : .Dv NT_ZONENAME . This entry contains a string which describes the name of the zone in which the process was running. See .Xr zones 7 . The information is the same as provided by .Xr getzonenamebyid 3C when invoked with the numerical ID returned by .Xr getzoneid 3C . .It Vt prfdinfo_core_t .Fa n_type : .Dv NT_FDINFO . This structure contains information about any open file descriptors, including the path, flags, and .Xr stat 2 information. The .Vt prfdinfo_core_t structure is defined in .In sys/procfs.h . .It Vt struct ssd[] .Fa n_type : .Dv NT_LDT . This entry is present only on an 32-bit x86 machine and only if the process has set up a Local Descriptor Table .Pq LDT . It contains an array of structures of type .Vt struct ssd , each of which was typically used to set up the .Sy %gs segment register to be used to fetch the address of the current thread information structure in a multithreaded process. The .Vt ssd structure is defined in .In sys/sysi86.h . .It Vt core_content_t .Fa n_type : .Dv NT_CONTENT . This optional entry indicates which parts of the process image are specified to be included in the core file. See .Xr coreadm 8 . .It Vt prsecflags_t .Fa n_type : .Dv NT_SECFLAGS . This entry contains the process security-flags, see .Xr security-flags 7 , .Xr proc 5 , and .Xr psecflags 1 for more information. .It Vt prupanic_t .Fa n_type : .Dv NT_UPANIC . This entry is included if a process terminated through the .Xr upanic 2 system call. It is defined in .In sys/procfs.h . .Pp The .Fa pru_version member indicates the current revision of the structure, which is expected to be .Dv PRUPANIC_VERSION_1 .Pq 1 . The .Fa pru_flags member will be set to the bitwise-inclusive-OR of the following fields: .Bl -tag -offset indent -width PRUPANIC_FLAG_MSG_TRUNC .It Dv PRUPANIC_FLAG_MSG_VALID Indicates that .Fa pru_data member has valid contents and that the process provided a message in the .Xr upanic 2 call . .It Dv PRUPANIC_FLAG_MSG_ERROR Indicates that the calling process attempted to include a message; however, the provided address of the message did not point to valid memory. .It Dv PRUPANIC_FLAG_MSG_TRUNC Indicates that the calling process included a message; however, the message it wanted to provide was larger than the current message length. .El The .Fa pru_data array contains binary data that the terminating process used to indicate that the reason why it panicked. This member should be ignored if the .Dv PRUPANIC_FLAG_MSG_VALID flag is not set in .Fa pru_flags . While it is recommended that processes terminate with an ASCII string, consumers of this should not assume that the binary data is made of of printable characters. .It Vt prcwd_t .Fa n_type : .Dv NT_CWD . This entry describes information about the current working directory of the process at the time the core file is generated and information about the file system that the current working directory is found on. The .Vt prcwd_t is defined in .In sys/procfs.h . .Pp The members of the .Vt prcwd_t include: .Bl -tag -offset indent -width prcwd_mntspec .It Fa prcwd_fsid The file system ID. This is the same data that is found in the .Fa f_fsid member of the .Vt "struct statvfs" structure obtained through .Xr statvfs 2 . The file system ID is currently the device number .Po i.e. the .Vt dev_t .Pc and matches the .Fa mnt_major and .Fa mnt_minor of the .Vt "struct extmnttab" structure that is obtained through .Xr getextmntent 3C . .It Fa prcwd_fsname A NUL-terminated string containing the name of the file system itself, e.g. .Dq zfs , .Dq tmpfs , etc. This is the same as the .Fa f_bastype member of the .Vt "struct statvfs" and .Vt "mnt_fstype" of the .Vt "struct mnttab" . .It Fa prcwd_mntpt A NUL-terminated string that contains the path where the file system containing the current working directory is mounted. .It Fa prcwd_mntspec A NUL-terminated string that is the name of the mounted resource. This may be a ZFS dataset, a synthetic resource like .Dq swap , .Dq procfs , or .Dq bootfs , or the path to a particular disk or file. This corresponds to the .Fa mnt_special member of the .Vt "struct mnttab" . .It Fa prcwd_cwd A NUL-terminated string containing the current path of the process at the time the core file was generated. .El .Pp From the operating system's perspective, a path is often just a NUL-terminated collection of bytes. This means it is possible that a path may contain bytes that are not printable or meaningful in the locale of a process that is processing this particular structure. .El .Pp For each active and zombie .Sy LWP in the process, the new .Sy NOTE segment contains an entry with an .Vt lwpsinfo_t structure plus, for a non-zombie LWP, an entry with an .Vt lwpstatus_t structure, plus other optionally-present entries describing the LWP, as follows. A zombie LWP is a non-detached LWP that has terminated but has not yet been reaped by another LWP in the same process. .Bl -tag -width "prxregset_t" .It Vt lwpsinfo_t .Fa n_type : .Dv NT_LWPSINFO . This structure contains information of interest to the .Xr ps 1 command, such as LWP status, CPU usage, nice value, LWP-ID, and so forth. The .Vt lwpsinfo_t structure is defined in .In sys/procfs.h . This is the only entry present for a zombie LWP. .It lwpstatus_t .Fa n_type : .Dv NT_LWPSTATUS . This structure contains things of interest to a debugger from the operating system, such as the general registers, the floating point registers, state, reason for stopping, LWP-ID, and so forth. The .Vt lwpstatus_t structure is defined in .In sys/procfs.h . .Vt gwindows_t .Fa n_type : .Dv NT_GWINDOWS . This entry is present only on a SPARC machine and only if the system was unable to flush all of the register windows to the stack. It contains all of the unspilled register windows. The .Vt gwindows_t structure is defined in .In sys/regset.h . .It Vt prxregset_t .Fa n_type : .Dv NT_PRXREG . This entry is present only if the machine has extra register state associated with it. It contains the extra register state. The .Vt prxregset_t structure is defined in .In sys/procfs_isa.h ; however applications should include .In procfs.h to get access to it. On most architectures the .Vt prxregset_t is opaque and of variable size. .Xr proc 5 discusses the structure of the extended register set for each supported architecture. .It Vt asrset_t \fB\fBasrset_t\fR\fR .Fa n_type : .Dv NT_ASRS . This entry is present only on a SPARC V9 machine and only if the process is a 64-bit process. It contains the ancillary state registers for the LWP. The .Vt asrset_t asrset_t structure is defined in .In sys/regset.h . .It Vt psinfo_t .Fa n_type : .Dv NT_SPYMASTER . This entry is present only for an agent LWP and contains the .Vt psinfo_t of the process that created the agent LWP. See the .Xr proc 5 description of the .Sy spymaster entry for more details. .El .Pp Depending on the .Xr coreadm 8 settings, the section header of an ELF core file can contain entries for CTF, DWARF debug information, symbol table, and string table sections. The .Fa sh_addr fields are set to the base address of the first mapping of the load object that they came from to. This can be used to match those sections with the corresponding load object. .Pp The size of the core file created by a process can be controlled by the user .Po see .Xr getrlimit 2 .Pc .Sh SEE ALSO .Xr elfdump 1 , .Xr gcore 1 , .Xr mdb 1 , .Xr proc 1 , .Xr ps 1 , .Xr getrlimit 2 , .Xr setrlimit 2 , .Xr setuid 2 , .Xr statvfs 2 , .Xr sysinfo 2 , .Xr uname 2 , .Xr upanic 2 , .Xr getextmntent 3C , .Xr getzoneid 3C , .Xr getzonenamebyid 3C , .Xr elf 3ELF , .Xr signal.h 3HEAD , .Xr a.out 5 , .Xr proc 5 , .Xr security-flags 7 , .Xr zones 7 , .Xr coreadm 8