/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include "dapl.h" #include "dapl_tavor_hw.h" #include "dapl_tavor_wr.h" #include "dapl_tavor_ibtf_impl.h" #define HERMON_WQE_SGL_INVALID_LKEY 0x00000100 #define HERMON_WQE_SEND_FENCE_MASK 0x40 #define HERMON_WQE_NDS_MASK 0x3F #define HERMON_CQDB_NOTIFY_CQ_SOLICIT (0x1 << 24) #define HERMON_CQDB_NOTIFY_CQ (0x2 << 24) #define HERMON_CQE_RCV_SEND 0x1 #define HERMON_CQE_ERR_OPCODE 0x1E #define HERMON_CQE_RESIZE_OPCODE 0x16 #define HERMON_CQE_OPCODE_GET(cqe) (((uint8_t *)cqe)[31] & 0x1F) #define HERMON_CQE_SENDRECV_GET(cqe) (((uint8_t *)cqe)[31] & 0x40) #define HERMON_CQE_OWNER_IS_SW(cq, cqe) ((((uint8_t *)cqe)[31] >> 7) == \ ((cq->cq_consindx & cq->cq_size) >> cq->cq_log_cqsz)) #define HERMON_QP_WQEADDRSZ(wcnt) ((uint32_t)(wcnt << 6)) #define HERMON_WQE_SEND_SIGNALED_MASK 0x0000000C00000000ull #define HERMON_WQE_SEND_SOLICIT_MASK 0x0000000200000000ull #define HERMON_WQE_SETCTRL(desc, ctrl) \ ((uint64_t *)(desc))[1] = HTOBE_64(ctrl) #define HERMON_WQE_SETNEXT(desc, nopcode, size, fence) \ ((uint64_t *)(desc))[0] = HTOBE_64((nopcode) | (size) | (fence) | \ (((uint64_t)((uint8_t *)desc)[0] &0x80) << 56)) #define HERMON_WQE_BUILD_DATA_SEG(ds, sgl) \ { \ uint64_t *tmp; \ \ tmp = (uint64_t *)(ds); \ tmp[1] = HTOBE_64((sgl)->ds_va); \ ((uint32_t *)tmp)[1] = HTOBE_32((sgl)->ds_key); \ membar_producer(); \ ((uint32_t *)tmp)[0] = HTOBE_32((sgl)->ds_len); \ } /* handy macro, useful because of cq_resize dynamics */ #define cq_wrap_around_mask (cq->cq_size - 1) pthread_spinlock_t hermon_bf_lock; /* * Function signatures */ extern uint64_t dapls_tavor_wrid_get_entry(ib_cq_handle_t, tavor_hw_cqe_t *, uint_t, uint_t, dapls_tavor_wrid_entry_t *); extern void dapls_tavor_wrid_cq_reap(ib_cq_handle_t); extern DAPL_OS_LOCK g_tavor_uar_lock; #ifndef _LP64 extern void dapls_atomic_assign_64(uint64_t, uint64_t *); #endif static int dapli_hermon_wqe_send_build(ib_qp_handle_t, ibt_send_wr_t *, uint64_t *, uint_t *); static DAT_RETURN dapli_hermon_wqe_recv_build(ib_qp_handle_t, ibt_recv_wr_t *, uint64_t *, uint_t *); static int dapli_hermon_cq_cqe_consume(ib_cq_handle_t, uint32_t *, ibt_wc_t *); static int dapli_hermon_cq_errcqe_consume(ib_cq_handle_t, uint32_t *, ibt_wc_t *); extern void dapli_tavor_wrid_add_entry(dapls_tavor_workq_hdr_t *, uint64_t, uint32_t, uint_t); extern void dapli_tavor_wrid_add_entry_srq(ib_srq_handle_t, uint64_t, uint32_t); /* * Note: The 64 bit doorbells need to written atomically. * In 32 bit libraries we need to use the special assembly rtn * because compiler generated code splits into 2 word writes */ /* * dapli_hermon_cq_doorbell() * Takes the specified cq cmd and cq number and rings the cq doorbell */ static void dapli_hermon_cq_doorbell(dapls_hw_uar_t ia_uar, uint32_t cq_cmd, uint32_t cqn, uint32_t cmd_sn, uint32_t cq_param) { uint64_t doorbell; /* Build the doorbell from the parameters */ doorbell = (cmd_sn | cq_cmd | cqn); doorbell = (doorbell << 32) | cq_param; /* Write the doorbell to UAR */ #ifdef _LP64 ((tavor_hw_uar_t *)ia_uar)->cq = HTOBE_64(doorbell); /* 32 bit version */ #elif defined(i386) dapl_os_lock(&g_tavor_uar_lock); /* * For 32 bit intel we assign the doorbell in the order * prescribed by the Tavor PRM, lower to upper addresses */ ((tavor_hw_uar32_t *)ia_uar)->cq[0] = (uint32_t)HTOBE_32(doorbell >> 32); ((tavor_hw_uar32_t *)ia_uar)->cq[1] = (uint32_t)HTOBE_32(doorbell & 0x00000000ffffffff); dapl_os_unlock(&g_tavor_uar_lock); #else dapls_atomic_assign_64(HTOBE_64(doorbell), &((tavor_hw_uar_t *)ia_uar)->cq); #endif } /* * dapli_hermon_qp_send_doorbell() * Takes the specified qp number and rings the send doorbell. */ static void dapli_hermon_sq_dbreg(dapls_hw_uar_t ia_uar, uint32_t qpn) { uint64_t doorbell; doorbell = qpn << 8; /* Write the doorbell to UAR */ #ifdef _LP64 ((tavor_hw_uar_t *)ia_uar)->send = HTOBE_64(doorbell); #else #if defined(i386) dapl_os_lock(&g_tavor_uar_lock); /* * For 32 bit intel we assign the doorbell in the order * prescribed by the Tavor PRM, lower to upper addresses */ ((tavor_hw_uar32_t *)ia_uar)->send[0] = (uint32_t)HTOBE_32(doorbell >> 32); ((tavor_hw_uar32_t *)ia_uar)->send[1] = (uint32_t)HTOBE_32(doorbell & 0x00000000ffffffff); dapl_os_unlock(&g_tavor_uar_lock); #else dapls_atomic_assign_64(HTOBE_64(doorbell), &((tavor_hw_uar_t *)ia_uar)->send); #endif #endif } /* * dapli_hermon_wqe_send_build() * Constructs a WQE for a given ibt_send_wr_t */ static int dapli_hermon_wqe_send_build(ib_qp_handle_t qp, ibt_send_wr_t *wr, uint64_t *addr, uint_t *size) { tavor_hw_snd_wqe_remaddr_t *rc; tavor_hw_snd_wqe_bind_t *bn; tavor_hw_wqe_sgl_t *ds; ibt_wr_ds_t *sgl; uint8_t *src, *dst, *maxdst; uint32_t nds; int len, thislen, maxlen; uint32_t new_rkey; uint32_t old_rkey; int i, num_ds; int max_inline_bytes = -1; uint64_t ctrl; uint64_t nopcode; uint_t my_size; nds = wr->wr_nds; sgl = wr->wr_sgl; num_ds = 0; ctrl = ((wr->wr_flags & IBT_WR_SEND_SIGNAL) ? HERMON_WQE_SEND_SIGNALED_MASK : 0) | ((wr->wr_flags & IBT_WR_SEND_SOLICIT) ? HERMON_WQE_SEND_SOLICIT_MASK : 0); /* * RC is the only supported transport in UDAPL * For RC requests, we allow "Send", "RDMA Read", "RDMA Write" */ switch (wr->wr_opcode) { case IBT_WRC_SEND: /* * If this is a Send request, then all we need is * the Data Segment processing below. * Initialize the information for the Data Segments */ ds = (tavor_hw_wqe_sgl_t *)((uintptr_t)addr + sizeof (tavor_hw_snd_wqe_nextctrl_t)); if (qp->qp_sq_inline != 0) max_inline_bytes = qp->qp_sq_wqesz - TAVOR_INLINE_HEADER_SIZE_SEND; nopcode = TAVOR_WQE_SEND_NOPCODE_SEND; break; case IBT_WRC_RDMAW: if (qp->qp_sq_inline != 0) max_inline_bytes = qp->qp_sq_wqesz - TAVOR_INLINE_HEADER_SIZE_RDMAW; nopcode = TAVOR_WQE_SEND_NOPCODE_RDMAW; /* FALLTHROUGH */ case IBT_WRC_RDMAR: if (wr->wr_opcode == IBT_WRC_RDMAR) { if (qp->qp_sq_inline < 0) qp->qp_sq_inline = 0; nopcode = TAVOR_WQE_SEND_NOPCODE_RDMAR; } /* * If this is an RDMA Read or RDMA Write request, then fill * in the "Remote Address" header fields. */ rc = (tavor_hw_snd_wqe_remaddr_t *)((uintptr_t)addr + sizeof (tavor_hw_snd_wqe_nextctrl_t)); /* * Build the Remote Address Segment for the WQE, using * the information from the RC work request. */ TAVOR_WQE_BUILD_REMADDR(rc, &wr->wr.rc.rcwr.rdma); /* Update "ds" for filling in Data Segments (below) */ ds = (tavor_hw_wqe_sgl_t *)((uintptr_t)rc + sizeof (tavor_hw_snd_wqe_remaddr_t)); break; case IBT_WRC_BIND: /* * Generate a new R_key * Increment the upper "unconstrained" bits and need to keep * the lower "constrained" bits the same it represents * the MPT index. */ #if 0 /* XXX - need equiv of "hermon_wr_bind_check(state, wr);" */ /* XXX - uses hermon_mr_keycalc - what about Sinai vs. Arbel??? */ #endif old_rkey = wr->wr.rc.rcwr.bind->bind_rkey; new_rkey = old_rkey >> 8; /* index */ old_rkey = (old_rkey + 1) & 0xff; /* incremented key */ new_rkey = (new_rkey << 8) | old_rkey; wr->wr.rc.rcwr.bind->bind_rkey_out = new_rkey; bn = (tavor_hw_snd_wqe_bind_t *)((uintptr_t)addr + sizeof (tavor_hw_snd_wqe_nextctrl_t)); /* * Build the Bind Memory Window Segments for the WQE, * using the information from the RC Bind memory * window work request. */ TAVOR_WQE_BUILD_BIND(bn, wr->wr.rc.rcwr.bind); /* * Update the "ds" pointer. Even though the "bind" * operation requires no SGLs, this is necessary to * facilitate the correct descriptor size calculations * (below). */ ds = (tavor_hw_wqe_sgl_t *)((uintptr_t)bn + sizeof (tavor_hw_snd_wqe_bind_t)); nds = 0; nopcode = TAVOR_WQE_SEND_NOPCODE_BIND; break; default: dapl_dbg_log(DAPL_DBG_TYPE_ERR, "dapli_hermon_wqe_send_build: invalid wr_opcode=%d\n", wr->wr_opcode); return (DAT_INTERNAL_ERROR); } /* * Now fill in the Data Segments (SGL) for the Send WQE based on * the values setup above (i.e. "sgl", "nds", and the "ds" pointer * Start by checking for a valid number of SGL entries */ if (nds > qp->qp_sq_sgl) { return (DAT_INVALID_PARAMETER); } /* * For each SGL in the Send Work Request, fill in the Send WQE's data * segments. Note: We skip any SGL with zero size because Tavor * hardware cannot handle a zero for "byte_cnt" in the WQE. Actually * the encoding for zero means a 2GB transfer. Because of this special * encoding in the hardware, we mask the requested length with * TAVOR_WQE_SGL_BYTE_CNT_MASK (so that 2GB will end up encoded as * zero.) */ if (max_inline_bytes != -1) { /* compute total_len */ len = 0; for (i = 0; i < nds; i++) len += sgl[i].ds_len; if (len == 0) max_inline_bytes = -1; /* do not inline */ else { /* need to reduce the length by dword "len" fields */ max_inline_bytes -= (len / 64) * sizeof (uint32_t); if (len > max_inline_bytes) max_inline_bytes = -1; /* too big for inline */ } } if (max_inline_bytes != -1) { /* do "inline" */ dst = (uint8_t *)((uint32_t *)ds + 1); maxdst = (uint8_t *)(((uintptr_t)dst + 64) & ~(64 - 1)); maxlen = maxdst - dst; thislen = 0; i = 0; src = (uint8_t *)(uintptr_t)sgl[i].ds_va; len = sgl[i].ds_len; do { /* if this sgl overflows the inline segment */ if (len > maxlen) { if (maxlen) /* might be 0 */ (void) dapl_os_memcpy(dst, src, maxlen); membar_producer(); *(uint32_t *)ds = HTOBE_32((thislen + maxlen) | TAVOR_WQE_SGL_INLINE_MASK); thislen = 0; len -= maxlen; src += maxlen; dst = maxdst + sizeof (uint32_t); ds = (tavor_hw_wqe_sgl_t *)(void *)maxdst; maxdst += 64; maxlen = 64 - sizeof (uint32_t); } else { /* this sgl fully fits */ (void) dapl_os_memcpy(dst, src, len); maxlen -= len; /* room left */ thislen += len; dst += len; while (++i < nds) if (sgl[i].ds_len) break; if (i >= nds) break; src = (uint8_t *)(uintptr_t)sgl[i].ds_va; len = sgl[i].ds_len; } } while (i < nds); membar_producer(); *(uint32_t *)ds = HTOBE_32(thislen | TAVOR_WQE_SGL_INLINE_MASK); /* Return the size of descriptor (in 16-byte chunks) */ my_size = ((uintptr_t)dst - (uintptr_t)addr + 15) >> 4; if (my_size <= (256 >> 4)) *size = my_size; /* use Hermon Blueflame */ else *size = 0; } else { for (i = 0; i < nds; i++) { if (sgl[i].ds_len == 0) { continue; } /* * Fill in the Data Segment(s) for the current WQE, * using the information contained in the * scatter-gather list of the work request. */ HERMON_WQE_BUILD_DATA_SEG(&ds[num_ds], &sgl[i]); num_ds++; } /* Return the size of descriptor (in 16-byte chunks) */ my_size = ((uintptr_t)&ds[num_ds] - (uintptr_t)addr) >> 4; *size = 0; /* do not use Hermon Blueflame */ } HERMON_WQE_SETCTRL(addr, ctrl); membar_producer(); HERMON_WQE_SETNEXT(addr, nopcode << 32, my_size, (wr->wr_flags & IBT_WR_SEND_FENCE) ? HERMON_WQE_SEND_FENCE_MASK : 0); return (DAT_SUCCESS); } /* * dapli_hermon_wqe_recv_build() * Builds the recv WQE for a given ibt_recv_wr_t */ static DAT_RETURN dapli_hermon_wqe_recv_build(ib_qp_handle_t qp, ibt_recv_wr_t *wr, uint64_t *addr, uint_t *size) { tavor_hw_wqe_sgl_t *ds; int i; int num_ds; /* Fill in the Data Segments (SGL) for the Recv WQE */ ds = (tavor_hw_wqe_sgl_t *)addr; num_ds = 0; /* Check for valid number of SGL entries */ if (wr->wr_nds > qp->qp_rq_sgl) { return (DAT_INVALID_PARAMETER); } /* * For each SGL in the Recv Work Request, fill in the Recv WQE's data * segments. Note: We skip any SGL with zero size because Tavor * hardware cannot handle a zero for "byte_cnt" in the WQE. Actually * the encoding for zero means a 2GB transfer. Because of this special * encoding in the hardware, we mask the requested length with * TAVOR_WQE_SGL_BYTE_CNT_MASK (so that 2GB will end up encoded as * zero.) */ for (i = 0; i < wr->wr_nds; i++) { if (wr->wr_sgl[i].ds_len == 0) { continue; } /* * Fill in the Data Segment(s) for the receive WQE, using the * information contained in the scatter-gather list of the * work request. */ TAVOR_WQE_BUILD_DATA_SEG(&ds[num_ds], &wr->wr_sgl[i]); num_ds++; } if (i < qp->qp_rq_sgl) { ibt_wr_ds_t sgl; sgl.ds_va = (ib_vaddr_t)0; sgl.ds_len = (ib_msglen_t)0; sgl.ds_key = (ibt_lkey_t)HERMON_WQE_SGL_INVALID_LKEY; TAVOR_WQE_BUILD_DATA_SEG(&ds[num_ds], &sgl); } /* Return the size of descriptor (in 16-byte chunks) */ *size = qp->qp_rq_wqesz >> 4; return (DAT_SUCCESS); } /* * dapli_hermon_wqe_srq_build() * Builds the recv WQE for a given ibt_recv_wr_t */ static DAT_RETURN dapli_hermon_wqe_srq_build(ib_srq_handle_t srq, ibt_recv_wr_t *wr, uint64_t *addr) { tavor_hw_wqe_sgl_t *ds; ibt_wr_ds_t end_sgl; int i; int num_ds; /* Fill in the Data Segments (SGL) for the Recv WQE */ ds = (tavor_hw_wqe_sgl_t *)((uintptr_t)addr + sizeof (tavor_hw_rcv_wqe_nextctrl_t)); num_ds = 0; /* Check for valid number of SGL entries */ if (wr->wr_nds > srq->srq_wq_sgl) { return (DAT_INVALID_PARAMETER); } /* * For each SGL in the Recv Work Request, fill in the Recv WQE's data * segments. Note: We skip any SGL with zero size because Tavor * hardware cannot handle a zero for "byte_cnt" in the WQE. Actually * the encoding for zero means a 2GB transfer. Because of this special * encoding in the hardware, we mask the requested length with * TAVOR_WQE_SGL_BYTE_CNT_MASK (so that 2GB will end up encoded as * zero.) */ for (i = 0; i < wr->wr_nds; i++) { if (wr->wr_sgl[i].ds_len == 0) { continue; } /* * Fill in the Data Segment(s) for the receive WQE, using the * information contained in the scatter-gather list of the * work request. */ TAVOR_WQE_BUILD_DATA_SEG(&ds[num_ds], &wr->wr_sgl[i]); num_ds++; } /* * For SRQ, if the number of data segments is less than the maximum * specified at alloc, then we have to fill in a special "key" entry in * the sgl entry after the last valid one in this post request. We do * that here. */ if (num_ds < srq->srq_wq_sgl) { end_sgl.ds_va = (ib_vaddr_t)0; end_sgl.ds_len = (ib_msglen_t)0; end_sgl.ds_key = (ibt_lkey_t)HERMON_WQE_SGL_INVALID_LKEY; TAVOR_WQE_BUILD_DATA_SEG(&ds[num_ds], &end_sgl); } return (DAT_SUCCESS); } /* * dapli_hermon_cq_peek() * Peeks into a given CQ to check if there are any events that can be * polled. It returns the number of CQEs that can be polled. */ static void dapli_hermon_cq_peek(ib_cq_handle_t cq, int *num_cqe) { uint32_t *cqe; uint32_t imm_eth_pkey_cred; uint32_t cons_indx; int polled_cnt; uint_t doorbell_cnt; uint_t opcode; /* Get the consumer index */ cons_indx = cq->cq_consindx & cq_wrap_around_mask; /* Calculate the pointer to the first CQ entry */ cqe = (uint32_t *)&cq->cq_addr[cons_indx]; /* * Count entries in the CQ until we find an entry owned by * the hardware. */ polled_cnt = 0; while (HERMON_CQE_OWNER_IS_SW(cq, cqe)) { opcode = HERMON_CQE_OPCODE_GET(cqe); /* Error CQE map to multiple work completions */ if (opcode == HERMON_CQE_ERR_OPCODE) { imm_eth_pkey_cred = TAVOR_CQE_IMM_ETH_PKEY_CRED_GET(cqe); doorbell_cnt = imm_eth_pkey_cred & TAVOR_CQE_ERR_DBDCNT_MASK; polled_cnt += (doorbell_cnt + 1); } else { polled_cnt++; } /* Increment the consumer index */ cons_indx = (cons_indx + 1) & cq_wrap_around_mask; /* Update the pointer to the next CQ entry */ cqe = (uint32_t *)&cq->cq_addr[cons_indx]; } *num_cqe = polled_cnt; } #define dapli_hermon_cq_update_ci(cq, dbp) \ (dbp)[0] = HTOBE_32(cq->cq_consindx & 0xFFFFFF) /* * dapli_hermon_cq_resize_helper() * This routine switches from the pre-cq_resize buffer to the new buffer. */ static int dapli_hermon_cq_resize_helper(ib_cq_handle_t cq) { int i; if ((cq->cq_resize_addr == 0) || (munmap((char *)cq->cq_addr, cq->cq_map_len) < 0)) { dapl_dbg_log(DAPL_DBG_TYPE_ERR, "cq_resize_helper: " "munmap(%p:0x%llx) failed(%d)\n", cq->cq_addr, cq->cq_map_len, errno); return (1); /* FAILED */ } cq->cq_addr = cq->cq_resize_addr; cq->cq_map_offset = cq->cq_resize_map_offset; cq->cq_map_len = cq->cq_resize_map_len; cq->cq_size = cq->cq_resize_size; cq->cq_cqesz = cq->cq_resize_cqesz; cq->cq_resize_addr = 0; cq->cq_resize_map_offset = 0; cq->cq_resize_map_len = 0; cq->cq_resize_size = 0; cq->cq_resize_cqesz = 0; for (i = 0; (1 << i) < cq->cq_size; i++) ; cq->cq_log_cqsz = i; cq->cq_consindx++; /* consume the RESIZE cqe */ return (0); /* SUCCESS */ } /* * dapli_hermon_cq_poll() * This routine polls CQEs out of a CQ and puts them into the ibt_wc_t * array that is passed in. */ static DAT_RETURN dapli_hermon_cq_poll(ib_cq_handle_t cq, ibt_wc_t *wc_p, uint_t num_wc, uint_t *num_polled) { uint32_t *cqe; uint32_t cons_indx; uint32_t polled_cnt; DAT_RETURN dat_status; int status; /* Get the consumer index */ cons_indx = cq->cq_consindx & cq_wrap_around_mask; /* Calculate the pointer to the first CQ entry */ cqe = (uint32_t *)&cq->cq_addr[cons_indx]; /* * Keep pulling entries from the CQ until we find an entry owned by * the hardware. As long as there the CQE's owned by SW, process * each entry by calling dapli_hermon_cq_cqe_consume() and updating the * CQ consumer index. Note: We only update the consumer index if * dapli_hermon_cq_cqe_consume() returns TAVOR_CQ_SYNC_AND_DB. * Otherwise, it indicates that we are going to "recycle" the CQE * (probably because it is a error CQE and corresponds to more than one * completion). */ polled_cnt = 0; while (HERMON_CQE_OWNER_IS_SW(cq, cqe)) { if (HERMON_CQE_OPCODE_GET(cqe) == HERMON_CQE_RESIZE_OPCODE) { if (dapli_hermon_cq_resize_helper(cq)) return (DAT_ERROR(DAT_INTERNAL_ERROR, 0)); cons_indx = cq->cq_consindx & cq_wrap_around_mask; cqe = (uint32_t *)&cq->cq_addr[cons_indx]; continue; } status = dapli_hermon_cq_cqe_consume(cq, cqe, &wc_p[polled_cnt++]); if (status == TAVOR_CQ_SYNC_AND_DB) { /* Reset to hardware ownership is implicit in Hermon */ cq->cq_consindx++; /* incr the total counter */ /* Increment the consumer index */ cons_indx = (cons_indx + 1) & cq_wrap_around_mask; /* Update the pointer to the next CQ entry */ cqe = (uint32_t *)&cq->cq_addr[cons_indx]; } /* * If we have run out of space to store work completions, * then stop and return the ones we have pulled of the CQ. */ if (polled_cnt >= num_wc) { break; } } dat_status = DAT_SUCCESS; /* * Now we only ring the doorbell (to update the consumer index) if * we've actually consumed a CQ entry. If we have, for example, * pulled from a CQE that we are still in the process of "recycling" * for error purposes, then we would not update the consumer index. */ if (polled_cnt != 0) { /* * Update the consumer index in both the CQ handle and the * doorbell record. */ dapli_hermon_cq_update_ci(cq, cq->cq_poll_dbp); } else if (polled_cnt == 0) { /* * If the CQ is empty, we can try to free up some of the WRID * list containers. */ if (cq->cq_wrid_reap_head) /* look before leaping */ dapls_tavor_wrid_cq_reap(cq); dat_status = DAT_ERROR(DAT_QUEUE_EMPTY, 0); } if (num_polled != NULL) { *num_polled = polled_cnt; } return (dat_status); } /* * dapli_hermon_cq_poll_one() * This routine polls one CQE out of a CQ and puts ot into the ibt_wc_t * that is passed in. See above for more comments/details. */ static DAT_RETURN dapli_hermon_cq_poll_one(ib_cq_handle_t cq, ibt_wc_t *wc_p) { uint32_t *cqe; uint32_t cons_indx; DAT_RETURN dat_status; int status; start_over: /* Get the consumer index */ cons_indx = cq->cq_consindx & cq_wrap_around_mask; /* Calculate the pointer to the first CQ entry */ cqe = (uint32_t *)&cq->cq_addr[cons_indx]; /* * Keep pulling entries from the CQ until we find an entry owned by * the hardware. As long as there the CQE's owned by SW, process * each entry by calling dapli_hermon_cq_cqe_consume() and updating the * CQ consumer index. Note: We only update the consumer index if * dapli_hermon_cq_cqe_consume() returns TAVOR_CQ_SYNC_AND_DB. * Otherwise, it indicates that we are going to "recycle" the CQE * (probably because it is a error CQE and corresponds to more than one * completion). */ if (HERMON_CQE_OWNER_IS_SW(cq, cqe)) { if (HERMON_CQE_OPCODE_GET(cqe) == HERMON_CQE_RESIZE_OPCODE) { if (dapli_hermon_cq_resize_helper(cq)) return (DAT_ERROR(DAT_INTERNAL_ERROR, 0)); goto start_over; } status = dapli_hermon_cq_cqe_consume(cq, cqe, wc_p); if (status == TAVOR_CQ_SYNC_AND_DB) { /* Reset to hardware ownership is implicit in Hermon */ /* Increment the consumer index */ cq->cq_consindx++; dapli_hermon_cq_update_ci(cq, cq->cq_poll_dbp); } dat_status = DAT_SUCCESS; } else { if (cq->cq_wrid_reap_head) /* look before leaping */ dapls_tavor_wrid_cq_reap(cq); dat_status = DAT_ERROR(DAT_QUEUE_EMPTY, 0); } return (dat_status); } /* * dapli_hermon_cq_cqe_consume() * Converts a given CQE into a ibt_wc_t object */ static int dapli_hermon_cq_cqe_consume(ib_cq_handle_t cqhdl, uint32_t *cqe, ibt_wc_t *wc) { uint_t flags; uint_t type; uint_t opcode; int status; /* * Determine if this is an "error" CQE by examining "opcode". If it * is an error CQE, then call dapli_hermon_cq_errcqe_consume() and * return whatever status it returns. Otherwise, this is a successful * completion. */ opcode = HERMON_CQE_OPCODE_GET(cqe); if (opcode == HERMON_CQE_ERR_OPCODE) { status = dapli_hermon_cq_errcqe_consume(cqhdl, cqe, wc); return (status); } TAVOR_CQE_WQEADDRSZ_SET(cqe, (HTOBE_32(cqe[6]) >> 10) & ~HERMON_WQE_NDS_MASK); /* * Fetch the Work Request ID using the information in the CQE. * See tavor_wr.c for more details. */ wc->wc_id = dapls_tavor_wrid_get_entry(cqhdl, (tavor_hw_cqe_t *)cqe, HERMON_CQE_SENDRECV_GET(cqe) >> 6, 0, NULL); wc->wc_qpn = TAVOR_CQE_QPNUM_GET(cqe); /* * Parse the CQE opcode to determine completion type. This will set * not only the type of the completion, but also any flags that might * be associated with it (e.g. whether immediate data is present). */ flags = IBT_WC_NO_FLAGS; if (HERMON_CQE_SENDRECV_GET(cqe) != TAVOR_COMPLETION_RECV) { /* * Send CQE * * The following opcodes will not be generated in uDAPL * case TAVOR_CQE_SND_RDMAWR_IMM: * case TAVOR_CQE_SND_SEND_IMM: * case TAVOR_CQE_SND_ATOMIC_CS: * case TAVOR_CQE_SND_ATOMIC_FA: */ switch (opcode) { case TAVOR_CQE_SND_RDMAWR: type = IBT_WRC_RDMAW; break; case TAVOR_CQE_SND_SEND: type = IBT_WRC_SEND; break; case TAVOR_CQE_SND_RDMARD: type = IBT_WRC_RDMAR; wc->wc_bytes_xfer = TAVOR_CQE_BYTECNT_GET(cqe); break; case TAVOR_CQE_SND_BIND_MW: type = IBT_WRC_BIND; break; default: wc->wc_status = IBT_WC_LOCAL_CHAN_OP_ERR; return (TAVOR_CQ_SYNC_AND_DB); } } else { /* * Receive CQE * * The following opcodes will not be generated in uDAPL * * case TAVOR_CQE_RCV_RECV_IMM: * case TAVOR_CQE_RCV_RECV_IMM2: * case TAVOR_CQE_RCV_RDMAWR_IMM: * case TAVOR_CQE_RCV_RDMAWR_IMM2: */ switch (opcode) { case HERMON_CQE_RCV_SEND: type = IBT_WRC_RECV; wc->wc_bytes_xfer = TAVOR_CQE_BYTECNT_GET(cqe); break; default: wc->wc_status = IBT_WC_LOCAL_CHAN_OP_ERR; return (TAVOR_CQ_SYNC_AND_DB); } } wc->wc_type = type; wc->wc_flags = flags; /* If we got here, completion status must be success */ wc->wc_status = IBT_WC_SUCCESS; return (TAVOR_CQ_SYNC_AND_DB); } /* * dapli_hermon_cq_errcqe_consume() */ static int dapli_hermon_cq_errcqe_consume(ib_cq_handle_t cqhdl, uint32_t *cqe, ibt_wc_t *wc) { dapls_tavor_wrid_entry_t wre; uint_t status; uint_t send_or_recv; dapl_dbg_log(DAPL_DBG_TYPE_EVD, "errcqe_consume:cqe.eth=%x, wqe=%x\n", TAVOR_CQE_IMM_ETH_PKEY_CRED_GET(cqe), TAVOR_CQE_WQEADDRSZ_GET(cqe)); status = ((uint8_t *)cqe)[0x1B]; TAVOR_CQE_WQEADDRSZ_SET(cqe, (HTOBE_32(cqe[6]) >> 10) & ~HERMON_WQE_NDS_MASK); if (HERMON_CQE_SENDRECV_GET(cqe) == 0) { send_or_recv = 0; } else { send_or_recv = 1; } /* * Fetch the Work Request ID using the information in the CQE. * See tavor_wr.c for more details. */ wc->wc_id = dapls_tavor_wrid_get_entry(cqhdl, (tavor_hw_cqe_t *)cqe, send_or_recv, 1, &wre); wc->wc_qpn = TAVOR_CQE_QPNUM_GET(cqe); /* * Parse the CQE opcode to determine completion type. We know that * the CQE is an error completion, so we extract only the completion * status here. */ switch (status) { case TAVOR_CQE_LOC_LEN_ERR: status = IBT_WC_LOCAL_LEN_ERR; break; case TAVOR_CQE_LOC_OP_ERR: status = IBT_WC_LOCAL_CHAN_OP_ERR; break; case TAVOR_CQE_LOC_PROT_ERR: status = IBT_WC_LOCAL_PROTECT_ERR; break; case TAVOR_CQE_WR_FLUSHED_ERR: status = IBT_WC_WR_FLUSHED_ERR; break; case TAVOR_CQE_MW_BIND_ERR: status = IBT_WC_MEM_WIN_BIND_ERR; break; case TAVOR_CQE_BAD_RESPONSE_ERR: status = IBT_WC_BAD_RESPONSE_ERR; break; case TAVOR_CQE_LOCAL_ACCESS_ERR: status = IBT_WC_LOCAL_ACCESS_ERR; break; case TAVOR_CQE_REM_INV_REQ_ERR: status = IBT_WC_REMOTE_INVALID_REQ_ERR; break; case TAVOR_CQE_REM_ACC_ERR: status = IBT_WC_REMOTE_ACCESS_ERR; break; case TAVOR_CQE_REM_OP_ERR: status = IBT_WC_REMOTE_OP_ERR; break; case TAVOR_CQE_TRANS_TO_ERR: status = IBT_WC_TRANS_TIMEOUT_ERR; break; case TAVOR_CQE_RNRNAK_TO_ERR: status = IBT_WC_RNR_NAK_TIMEOUT_ERR; break; /* * The following error codes are not supported in the Tavor driver * as they relate only to Reliable Datagram completion statuses: * case TAVOR_CQE_LOCAL_RDD_VIO_ERR: * case TAVOR_CQE_REM_INV_RD_REQ_ERR: * case TAVOR_CQE_EEC_REM_ABORTED_ERR: * case TAVOR_CQE_INV_EEC_NUM_ERR: * case TAVOR_CQE_INV_EEC_STATE_ERR: * case TAVOR_CQE_LOC_EEC_ERR: */ default: status = IBT_WC_LOCAL_CHAN_OP_ERR; break; } wc->wc_status = status; wc->wc_type = 0; /* * Consume the CQE * Return status to indicate that doorbell and sync may be * necessary. */ return (TAVOR_CQ_SYNC_AND_DB); } /* * dapli_hermon_cq_notify() * This function is used for arming the CQ by ringing the CQ doorbell. * * Note: there is something very subtle here. This code assumes a very * specific behavior of the kernel driver. The cmd_sn field of the * arm_dbr is updated by the kernel driver whenever a notification * event for the cq is received. This code extracts the cmd_sn field * from the arm_dbr to know the right value to use. The arm_dbr is * always updated atomically so that neither the kernel driver nor this * will get confused about what the other is doing. * * Note: param is not used here. It is necessary for arming a CQ for * N completions (param is N), but no uDAPL API supports this for now. * Thus, we declare ARGSUSED to make lint happy. */ /*ARGSUSED*/ static DAT_RETURN dapli_hermon_cq_notify(ib_cq_handle_t cq, int flags, uint32_t param) { uint32_t cqnum; uint32_t *target; uint32_t old_cmd, cmp, new, tmp, cmd_sn; /* * Determine if we are trying to get the next completion or the next * "solicited" completion. Then hit the appropriate doorbell. */ cqnum = cq->cq_num; target = cq->cq_arm_dbp; retry: cmp = *target; tmp = HTOBE_32(cmp); old_cmd = tmp & (0x7 << 24); cmd_sn = tmp & (0x3 << 28); if (flags == IB_NOTIFY_ON_NEXT_COMP) { if (old_cmd != HERMON_CQDB_NOTIFY_CQ) { new = HTOBE_32(cmd_sn | HERMON_CQDB_NOTIFY_CQ | (cq->cq_consindx & 0xFFFFFF)); tmp = atomic_cas_32(target, cmp, new); if (tmp != cmp) goto retry; dapli_hermon_cq_doorbell(cq->cq_iauar, HERMON_CQDB_NOTIFY_CQ, cqnum, cmd_sn, cq->cq_consindx); } /* else it's already armed */ } else if (flags == IB_NOTIFY_ON_NEXT_SOLICITED) { if (old_cmd != HERMON_CQDB_NOTIFY_CQ && old_cmd != HERMON_CQDB_NOTIFY_CQ_SOLICIT) { new = HTOBE_32(cmd_sn | HERMON_CQDB_NOTIFY_CQ_SOLICIT | (cq->cq_consindx & 0xFFFFFF)); tmp = atomic_cas_32(target, cmp, new); if (tmp != cmp) goto retry; dapli_hermon_cq_doorbell(cq->cq_iauar, HERMON_CQDB_NOTIFY_CQ_SOLICIT, cqnum, cmd_sn, cq->cq_consindx); } /* else it's already armed */ } else { return (DAT_INVALID_PARAMETER); } return (DAT_SUCCESS); } /* * Since uDAPL posts 1 wqe per request, we * only need to do stores for the last one. */ static void dapli_hermon_wqe_headroom(ib_qp_handle_t qp, uint32_t start) { uint32_t *wqe_start, *wqe_top, *wqe_base, qsize, invalue; int hdrmwqes, wqesizebytes, sectperwqe, i, j; qsize = qp->qp_sq_numwqe; wqesizebytes = qp->qp_sq_wqesz; sectperwqe = wqesizebytes >> 6; hdrmwqes = qp->qp_sq_headroom; wqe_base = (uint32_t *)TAVOR_QP_SQ_ENTRY(qp, 0); wqe_top = (uint32_t *)TAVOR_QP_SQ_ENTRY(qp, qsize); wqe_start = (uint32_t *)TAVOR_QP_SQ_ENTRY(qp, start); for (i = 0; i < hdrmwqes - 1; i++) { wqe_start += sectperwqe * 16; if (wqe_start == wqe_top) wqe_start = wqe_base; } invalue = HTOBE_32(*wqe_start); invalue |= 0x7FFFFFFF; *wqe_start = HTOBE_32(invalue); wqe_start += 16; for (j = 1; j < sectperwqe; j++) { *wqe_start = 0xFFFFFFFF; wqe_start += 16; } } /* * dapli_hermon_post_send() */ /* ARGSUSED */ static DAT_RETURN dapli_hermon_post_send(DAPL_EP *ep, ibt_send_wr_t *wr, boolean_t ns) { dapls_tavor_wrid_list_hdr_t *wridlist; dapls_tavor_wrid_entry_t *wre_last; uint64_t *desc; uint64_t *wqe_addr; uint32_t desc_sz; uint32_t wqeaddrsz, signaled_dbd; uint32_t head, tail, next_tail, qsize_msk; int status; ib_qp_handle_t qp; if ((ep->qp_state == IBT_STATE_RESET) || (ep->qp_state == IBT_STATE_INIT) || (ep->qp_state == IBT_STATE_RTR)) { dapl_dbg_log(DAPL_DBG_TYPE_ERR, "post_send: invalid qp_state %d\n", ep->qp_state); return (DAT_INVALID_STATE); } qp = ep->qp_handle; /* Grab the lock for the WRID list */ dapl_os_lock(&qp->qp_sq_wqhdr->wq_wrid_lock->wrl_lock); wridlist = qp->qp_sq_wqhdr->wq_wrid_post; /* Save away some initial QP state */ qsize_msk = qp->qp_sq_wqhdr->wq_size - 1; tail = qp->qp_sq_wqhdr->wq_tail; head = qp->qp_sq_wqhdr->wq_head; /* * Check for "queue full" condition. If the queue is already full, * then no more WQEs can be posted, return an error */ if (qp->qp_sq_wqhdr->wq_full != 0) { dapl_os_unlock(&qp->qp_sq_wqhdr->wq_wrid_lock->wrl_lock); return (DAT_INSUFFICIENT_RESOURCES); } /* * Increment the "tail index" and check for "queue full" condition. * If we detect that the current work request is going to fill the * work queue, then we mark this condition and continue. */ next_tail = (tail + 1) & qsize_msk; if (next_tail == head) { qp->qp_sq_wqhdr->wq_full = 1; } /* * Get the user virtual address of the location where the next * Send WQE should be built */ wqe_addr = TAVOR_QP_SQ_ENTRY(qp, tail); /* * Call tavor_wqe_send_build() to build the WQE at the given address. * This routine uses the information in the ibt_send_wr_t and * returns the size of the WQE when it returns. */ status = dapli_hermon_wqe_send_build(qp, wr, wqe_addr, &desc_sz); if (status != DAT_SUCCESS) { dapl_os_unlock(&qp->qp_sq_wqhdr->wq_wrid_lock->wrl_lock); return (status); } /* * Get the descriptor (io address) corresponding to the location * Send WQE was built. */ desc = TAVOR_QP_SQ_ENTRY(qp, tail); /* * Add a WRID entry to the WRID list. Need to calculate the * "wqeaddr" to pass to dapli_tavor_wrid_add_entry(). * signaled_dbd is still calculated, but ignored. */ wqeaddrsz = HERMON_QP_WQEADDRSZ(qp->qp_sq_counter); if (wr->wr_flags & IBT_WR_SEND_SIGNAL) { signaled_dbd = TAVOR_WRID_ENTRY_SIGNALED; } dapli_tavor_wrid_add_entry(qp->qp_sq_wqhdr, wr->wr_id, wqeaddrsz, signaled_dbd); dapli_hermon_wqe_headroom(qp, next_tail); *(uint8_t *)desc ^= 0x80; /* set owner bit */ /* * Now if the WRID tail entry is non-NULL, then this * represents the entry to which we are chaining the * new entries. Since we are going to ring the * doorbell for this WQE, we want set its "dbd" bit. * * On the other hand, if the tail is NULL, even though * we will have rung the doorbell for the previous WQE * (for the hardware's sake) it is irrelevant to our * purposes (for tracking WRIDs) because we know the * request must have already completed. */ wre_last = wridlist->wl_wre_old_tail; if (wre_last != NULL) { wre_last->wr_signaled_dbd |= TAVOR_WRID_ENTRY_DOORBELLED; } /* Update some of the state in the QP */ qp->qp_sq_lastwqeaddr = wqe_addr; qp->qp_sq_wqhdr->wq_tail = next_tail; if (desc_sz && qp->qp_ia_bf != NULL) { /* use Hermon Blueflame */ uint64_t *bf_dest, *src64; uint8_t *src8; int i; (void) pthread_spin_lock(&hermon_bf_lock); src8 = (uint8_t *)desc; src8[1] = (uint8_t)(qp->qp_sq_counter >> 8); src8[2] = (uint8_t)qp->qp_sq_counter; src8[4] = (uint8_t)(qp->qp_num >> 16); src8[5] = (uint8_t)(qp->qp_num >> 8); src8[6] = (uint8_t)qp->qp_num; src64 = (uint64_t *)desc; bf_dest = (uint64_t *)((uintptr_t)qp->qp_ia_bf + *qp->qp_ia_bf_toggle); *qp->qp_ia_bf_toggle ^= 256; /* 2 256-byte buffers */ for (i = 0; i < desc_sz * 2; i += 2) { bf_dest[i] = src64[i]; bf_dest[i + 1] = src64[i + 1]; } (void) pthread_spin_unlock(&hermon_bf_lock); } else { /* Ring the doorbell */ dapli_hermon_sq_dbreg(qp->qp_iauar, qp->qp_num); } qp->qp_sq_counter++; dapl_os_unlock(&qp->qp_sq_wqhdr->wq_wrid_lock->wrl_lock); return (DAT_SUCCESS); } /* * dapli_hermon_post_recv() */ /* ARGSUSED */ static DAT_RETURN dapli_hermon_post_recv(DAPL_EP *ep, ibt_recv_wr_t *wr, boolean_t ns) { dapls_tavor_wrid_list_hdr_t *wridlist; dapls_tavor_wrid_entry_t *wre_last; ib_qp_handle_t qp; DAT_RETURN status; uint64_t *wqe_addr; uint32_t desc_sz; uint32_t wqeaddrsz; uint32_t head, tail, next_tail, qsize_msk; if (ep->qp_state == IBT_STATE_RESET) { dapl_dbg_log(DAPL_DBG_TYPE_ERR, "post_recv: invalid qp_state %d\n", ep->qp_state); return (DAT_INVALID_STATE); } qp = ep->qp_handle; /* Grab the lock for the WRID list */ dapl_os_lock(&qp->qp_rq_wqhdr->wq_wrid_lock->wrl_lock); wridlist = qp->qp_rq_wqhdr->wq_wrid_post; /* Save away some initial QP state */ qsize_msk = qp->qp_rq_wqhdr->wq_size - 1; tail = qp->qp_rq_wqhdr->wq_tail; head = qp->qp_rq_wqhdr->wq_head; /* * For the ibt_recv_wr_t passed in, parse the request and build a * Recv WQE. Link the WQE with the previous WQE and ring the * door bell. */ /* * Check for "queue full" condition. If the queue is already full, * then no more WQEs can be posted. So return an error. */ if (qp->qp_rq_wqhdr->wq_full != 0) { dapl_os_unlock(&qp->qp_rq_wqhdr->wq_wrid_lock->wrl_lock); return (DAT_INSUFFICIENT_RESOURCES); } /* * Increment the "tail index" and check for "queue * full" condition. If we detect that the current * work request is going to fill the work queue, then * we mark this condition and continue. */ next_tail = (tail + 1) & qsize_msk; if (next_tail == head) { qp->qp_rq_wqhdr->wq_full = 1; } /* The user virtual address of the WQE to be built */ wqe_addr = TAVOR_QP_RQ_ENTRY(qp, tail); /* * Call tavor_wqe_recv_build() to build the WQE at the given * address. This routine uses the information in the * ibt_recv_wr_t and returns the size of the WQE. */ status = dapli_hermon_wqe_recv_build(qp, wr, wqe_addr, &desc_sz); if (status != DAT_SUCCESS) { dapl_os_unlock(&qp->qp_rq_wqhdr->wq_wrid_lock->wrl_lock); return (DAT_INTERNAL_ERROR); } /* * Add a WRID entry to the WRID list. Need to calculate the * "wqeaddr" and "signaled_dbd" values to pass to * dapli_tavor_wrid_add_entry(). * Note: all Recv WQEs are essentially "signaled" */ wqeaddrsz = HERMON_QP_WQEADDRSZ(qp->qp_rq_counter); dapli_tavor_wrid_add_entry(qp->qp_rq_wqhdr, wr->wr_id, wqeaddrsz, (uint32_t)TAVOR_WRID_ENTRY_SIGNALED); /* * Now if the WRID tail entry is non-NULL, then this * represents the entry to which we are chaining the * new entries. Since we are going to ring the * doorbell for this WQE, we want set its "dbd" bit. * * On the other hand, if the tail is NULL, even though * we will have rung the doorbell for the previous WQE * (for the hardware's sake) it is irrelevant to our * purposes (for tracking WRIDs) because we know the * request must have already completed. */ wre_last = wridlist->wl_wre_old_tail; if (wre_last != NULL) { wre_last->wr_signaled_dbd |= TAVOR_WRID_ENTRY_DOORBELLED; } /* Update some of the state in the QP */ qp->qp_rq_lastwqeaddr = wqe_addr; qp->qp_rq_wqhdr->wq_tail = next_tail; /* Update the doorbell record */ qp->qp_rq_counter++; (qp->qp_rq_dbp)[0] = HTOBE_32(qp->qp_rq_counter); dapl_os_unlock(&qp->qp_rq_wqhdr->wq_wrid_lock->wrl_lock); return (DAT_SUCCESS); } /* * dapli_hermon_post_srq() */ /* ARGSUSED */ static DAT_RETURN dapli_hermon_post_srq(DAPL_SRQ *srqp, ibt_recv_wr_t *wr, boolean_t ns) { ib_srq_handle_t srq; DAT_RETURN status; uint32_t desc; uint64_t *wqe_addr; uint32_t head, next_head, qsize_msk; uint32_t wqe_index; srq = srqp->srq_handle; /* Grab the lock for the WRID list */ dapl_os_lock(&srq->srq_wridlist->wl_lock->wrl_lock); /* * For the ibt_recv_wr_t passed in, parse the request and build a * Recv WQE. Link the WQE with the previous WQE and ring the * door bell. */ /* * Check for "queue full" condition. If the queue is already full, * ie. there are no free entries, then no more WQEs can be posted. * So return an error. */ if (srq->srq_wridlist->wl_freel_entries == 0) { dapl_os_unlock(&srq->srq_wridlist->wl_lock->wrl_lock); return (DAT_INSUFFICIENT_RESOURCES); } /* Save away some initial SRQ state */ qsize_msk = srq->srq_wridlist->wl_size - 1; head = srq->srq_wridlist->wl_freel_head; next_head = (head + 1) & qsize_msk; /* Get the descriptor (IO Address) of the WQE to be built */ desc = srq->srq_wridlist->wl_free_list[head]; wqe_index = TAVOR_SRQ_WQ_INDEX(srq->srq_wq_desc_addr, desc, srq->srq_wq_wqesz); /* The user virtual address of the WQE to be built */ wqe_addr = TAVOR_SRQ_WQ_ENTRY(srq, wqe_index); /* * Call dapli_hermon_wqe_srq_build() to build the WQE at the given * address. This routine uses the information in the * ibt_recv_wr_t and returns the size of the WQE. */ status = dapli_hermon_wqe_srq_build(srq, wr, wqe_addr); if (status != DAT_SUCCESS) { dapl_os_unlock(&srq->srq_wridlist->wl_lock->wrl_lock); return (status); } /* * Add a WRID entry to the WRID list. */ dapli_tavor_wrid_add_entry_srq(srq, wr->wr_id, wqe_index); #if 0 if (srq->srq_wq_lastwqeindex == -1) { last_wqe_addr = NULL; } else { last_wqe_addr = TAVOR_SRQ_WQ_ENTRY(srq, srq->srq_wq_lastwqeindex); } /* * Now link the chain to the old chain (if there was one) * and update the wqe_counter in the doorbell record. */ XXX dapli_tavor_wqe_srq_linknext(wqe_addr, ns, desc, last_wqe_addr); #endif /* Update some of the state in the SRQ */ srq->srq_wq_lastwqeindex = wqe_index; srq->srq_wridlist->wl_freel_head = next_head; srq->srq_wridlist->wl_freel_entries--; dapl_os_assert(srq->srq_wridlist->wl_freel_entries <= srq->srq_wridlist->wl_size); /* Update the doorbell record */ srq->srq_counter++; (srq->srq_dbp)[0] = HTOBE_32(srq->srq_counter); dapl_os_unlock(&srq->srq_wridlist->wl_lock->wrl_lock); return (DAT_SUCCESS); } /* * dapli_hermon_cq_srq_entries_flush() */ static void dapli_hermon_cq_srq_entries_flush(ib_qp_handle_t qp) { ib_cq_handle_t cq; dapls_tavor_workq_hdr_t *wqhdr; tavor_hw_cqe_t *cqe; tavor_hw_cqe_t *next_cqe; uint32_t cons_indx, tail_cons_indx; uint32_t new_indx, check_indx, indx; int cqe_qpnum, cqe_type; int outstanding_cqes, removed_cqes; int i; /* ASSERT(MUTEX_HELD(&qp->qp_rq_cqhdl->cq_lock)); */ cq = qp->qp_rq_cqhdl; wqhdr = qp->qp_rq_wqhdr; dapl_os_assert(wqhdr->wq_wrid_post != NULL); dapl_os_assert(wqhdr->wq_wrid_post->wl_srq_en != 0); /* Get the consumer index */ cons_indx = cq->cq_consindx; /* Calculate the pointer to the first CQ entry */ cqe = &cq->cq_addr[cons_indx]; /* * Loop through the CQ looking for entries owned by software. If an * entry is owned by software then we increment an 'outstanding_cqes' * count to know how many entries total we have on our CQ. We use this * value further down to know how many entries to loop through looking * for our same QP number. */ outstanding_cqes = 0; tail_cons_indx = cons_indx; while (TAVOR_CQE_OWNER_IS_SW(cqe)) { /* increment total cqes count */ outstanding_cqes++; /* increment the consumer index */ tail_cons_indx = (tail_cons_indx + 1) & cq_wrap_around_mask; /* update the pointer to the next cq entry */ cqe = &cq->cq_addr[tail_cons_indx]; } /* * Using the 'tail_cons_indx' that was just set, we now know how many * total CQEs possible there are. Set the 'check_indx' and the * 'new_indx' to the last entry identified by 'tail_cons_indx' */ check_indx = new_indx = (tail_cons_indx - 1) & cq_wrap_around_mask; for (i = 0; i < outstanding_cqes; i++) { cqe = &cq->cq_addr[check_indx]; /* Grab QP number from CQE */ cqe_qpnum = TAVOR_CQE_QPNUM_GET(cqe); cqe_type = HERMON_CQE_SENDRECV_GET(cqe); /* * If the QP number is the same in the CQE as the QP that we * have on this SRQ, then we must free up the entry off the * SRQ. We also make sure that the completion type is of the * 'TAVOR_COMPLETION_RECV' type. So any send completions on * this CQ will be left as-is. The handling of returning * entries back to HW ownership happens further down. */ if (cqe_qpnum == qp->qp_num && cqe_type == TAVOR_COMPLETION_RECV) { /* Add back to SRQ free list */ (void) dapli_tavor_wrid_find_match_srq( wqhdr->wq_wrid_post, cqe); } else { /* Do Copy */ if (check_indx != new_indx) { next_cqe = &cq->cq_addr[new_indx]; /* * Copy the CQE into the "next_cqe" * pointer. */ (void) dapl_os_memcpy(next_cqe, cqe, sizeof (tavor_hw_cqe_t)); } new_indx = (new_indx - 1) & cq_wrap_around_mask; } /* Move index to next CQE to check */ check_indx = (check_indx - 1) & cq_wrap_around_mask; } /* Initialize removed cqes count */ removed_cqes = 0; /* If an entry was removed */ if (check_indx != new_indx) { /* * Set current pointer back to the beginning consumer index. * At this point, all unclaimed entries have been copied to the * index specified by 'new_indx'. This 'new_indx' will be used * as the new consumer index after we mark all freed entries as * having HW ownership. We do that here. */ /* Loop through all entries until we reach our new pointer */ for (indx = cons_indx; indx <= new_indx; indx = (indx + 1) & cq_wrap_around_mask) { removed_cqes++; cqe = &cq->cq_addr[indx]; /* Reset entry to hardware ownership */ TAVOR_CQE_OWNER_SET_HW(cqe); } } /* * Update consumer index to be the 'new_indx'. This moves it past all * removed entries. Because 'new_indx' is pointing to the last * previously valid SW owned entry, we add 1 to point the cons_indx to * the first HW owned entry. */ cons_indx = (new_indx + 1) & cq_wrap_around_mask; /* * Now we only ring the doorbell (to update the consumer index) if * we've actually consumed a CQ entry. If we found no QP number * matches above, then we would not have removed anything. So only if * something was removed do we ring the doorbell. */ if ((removed_cqes != 0) && (cq->cq_consindx != cons_indx)) { /* * Update the consumer index in both the CQ handle and the * doorbell record. */ cq->cq_consindx = cons_indx; dapli_hermon_cq_update_ci(cq, cq->cq_poll_dbp); } } static void dapli_hermon_rq_prelink(caddr_t first, uint32_t desc_off, uint32_t wqesz, uint32_t numwqe, uint32_t nds) { int i; uint32_t *p = (uint32_t *)(uintptr_t)first; uint32_t off = desc_off; uint32_t pincr = wqesz / sizeof (uint32_t); ibt_wr_ds_t sgl; sgl.ds_va = (ib_vaddr_t)0; sgl.ds_key = HERMON_WQE_SGL_INVALID_LKEY; sgl.ds_len = (ib_msglen_t)0; for (i = 0; i < numwqe - 1; i++, p += pincr) { off += wqesz; p[0] = HTOBE_32(off); /* link curr to next */ p[1] = nds; /* nds is 0 for SRQ */ TAVOR_WQE_BUILD_DATA_SEG((void *)&p[2], &sgl); } p[0] = HTOBE_32(desc_off); /* link last to first */ p[1] = nds; TAVOR_WQE_BUILD_DATA_SEG((void *)&p[2], &sgl); } static void dapli_hermon_sq_init(caddr_t first, uint32_t wqesz, uint32_t numwqe) { int i, j; uint64_t *wqe = (uint64_t *)(uintptr_t)first; for (i = 0; i < numwqe; i++) { for (j = 0; j < wqesz; j += 64, wqe += 8) *(uint32_t *)wqe = 0xFFFFFFFF; } } static void dapli_hermon_qp_init(ib_qp_handle_t qp) { dapli_hermon_sq_init(qp->qp_sq_buf, qp->qp_sq_wqesz, qp->qp_sq_numwqe); qp->qp_rq_counter = 0; qp->qp_sq_counter = 0; } static void dapli_hermon_cq_init(ib_cq_handle_t cq) { uint32_t i; (cq->cq_arm_dbp)[0] = HTOBE_32(1 << 28); for (i = 0; (1 << i) < cq->cq_size; i++) ; cq->cq_log_cqsz = i; cq->cq_consindx = 0; /* cq_resize -- needs testing */ } static void dapli_hermon_srq_init(ib_srq_handle_t srq) { /* pre-link the whole shared receive queue */ dapli_hermon_rq_prelink(srq->srq_addr, srq->srq_wq_desc_addr, srq->srq_wq_wqesz, srq->srq_wq_numwqe, 0); srq->srq_counter = 0; /* needs testing */ } void dapls_init_funcs_hermon(DAPL_HCA *hca_ptr) { hca_ptr->post_send = dapli_hermon_post_send; hca_ptr->post_recv = dapli_hermon_post_recv; hca_ptr->post_srq = dapli_hermon_post_srq; hca_ptr->cq_peek = dapli_hermon_cq_peek; hca_ptr->cq_poll = dapli_hermon_cq_poll; hca_ptr->cq_poll_one = dapli_hermon_cq_poll_one; hca_ptr->cq_notify = dapli_hermon_cq_notify; hca_ptr->srq_flush = dapli_hermon_cq_srq_entries_flush; hca_ptr->qp_init = dapli_hermon_qp_init; hca_ptr->cq_init = dapli_hermon_cq_init; hca_ptr->srq_init = dapli_hermon_srq_init; hca_ptr->hermon_resize_cq = 1; (void) pthread_spin_init(&hermon_bf_lock, 0); }