/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" /* * Given a single type (not a mask of types), return the type in a human * readable form. */ const char * zfs_type_to_name(zfs_type_t type) { switch (type) { case ZFS_TYPE_FILESYSTEM: return (dgettext(TEXT_DOMAIN, "filesystem")); case ZFS_TYPE_SNAPSHOT: return (dgettext(TEXT_DOMAIN, "snapshot")); case ZFS_TYPE_VOLUME: return (dgettext(TEXT_DOMAIN, "volume")); } zfs_baderror(type); return (NULL); } /* * Given a path and mask of ZFS types, return a string describing this dataset. * This is used when we fail to open a dataset and we cannot get an exact type. * We guess what the type would have been based on the path and the mask of * acceptable types. */ static const char * path_to_str(const char *path, int types) { /* * When given a single type, always report the exact type. */ if (types == ZFS_TYPE_SNAPSHOT) return (dgettext(TEXT_DOMAIN, "snapshot")); if (types == ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); if (types == ZFS_TYPE_VOLUME) return (dgettext(TEXT_DOMAIN, "volume")); /* * The user is requesting more than one type of dataset. If this is the * case, consult the path itself. If we're looking for a snapshot, and * a '@' is found, then report it as "snapshot". Otherwise, remove the * snapshot attribute and try again. */ if (types & ZFS_TYPE_SNAPSHOT) { if (strchr(path, '@') != NULL) return (dgettext(TEXT_DOMAIN, "snapshot")); return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHOT)); } /* * The user has requested either filesystems or volumes. * We have no way of knowing a priori what type this would be, so always * report it as "filesystem" or "volume", our two primitive types. */ if (types & ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); assert(types & ZFS_TYPE_VOLUME); return (dgettext(TEXT_DOMAIN, "volume")); } /* * Validate a ZFS path. This is used even before trying to open the dataset, to * provide a more meaningful error message. We place a more useful message in * 'buf' detailing exactly why the name was not valid. */ static int zfs_validate_name(const char *path, int type, char *buf, size_t buflen) { namecheck_err_t why; char what; if (dataset_namecheck(path, &why, &what) != 0) { if (buf != NULL) { switch (why) { case NAME_ERR_TOOLONG: (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "name is too long"), buflen); break; case NAME_ERR_LEADING_SLASH: (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "leading slash"), buflen); break; case NAME_ERR_EMPTY_COMPONENT: (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "empty component"), buflen); break; case NAME_ERR_TRAILING_SLASH: (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "trailing slash"), buflen); break; case NAME_ERR_INVALCHAR: (void) snprintf(buf, buflen, dgettext(TEXT_DOMAIN, "invalid character " "'%c'"), what); break; case NAME_ERR_MULTIPLE_AT: (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "multiple '@' delimiters"), buflen); break; } } return (0); } if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) { if (buf != NULL) (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "snapshot delimiter '@'"), buflen); return (0); } return (1); } int zfs_name_valid(const char *name, zfs_type_t type) { return (zfs_validate_name(name, type, NULL, NULL)); } /* * Utility function to gather stats (objset and zpl) for the given object. */ static int get_stats(zfs_handle_t *zhp) { zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_config_src = (uint64_t)(uintptr_t)zfs_malloc(1024); zc.zc_config_src_size = 1024; while (ioctl(zfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { if (errno == ENOMEM) { zc.zc_config_src = (uint64_t)(uintptr_t) zfs_malloc(zc.zc_config_src_size); } else { free((void *)(uintptr_t)zc.zc_config_src); return (-1); } } bcopy(&zc.zc_objset_stats, &zhp->zfs_dmustats, sizeof (zc.zc_objset_stats)); verify(nvlist_unpack((void *)(uintptr_t)zc.zc_config_src, zc.zc_config_src_size, &zhp->zfs_props, 0) == 0); zhp->zfs_volsize = zc.zc_volsize; zhp->zfs_volblocksize = zc.zc_volblocksize; return (0); } /* * Refresh the properties currently stored in the handle. */ void zfs_refresh_properties(zfs_handle_t *zhp) { (void) get_stats(zhp); } /* * Makes a handle from the given dataset name. Used by zfs_open() and * zfs_iter_* to create child handles on the fly. */ zfs_handle_t * make_dataset_handle(const char *path) { zfs_handle_t *zhp = zfs_malloc(sizeof (zfs_handle_t)); (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name)); if (get_stats(zhp) != 0) { free(zhp); return (NULL); } /* * We've managed to open the dataset and gather statistics. Determine * the high-level type. */ if (zhp->zfs_dmustats.dds_is_snapshot) zhp->zfs_type = ZFS_TYPE_SNAPSHOT; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_type = ZFS_TYPE_FILESYSTEM; else /* we should never see any other dataset types */ zfs_baderror(zhp->zfs_dmustats.dds_type); return (zhp); } /* * Opens the given snapshot, filesystem, or volume. The 'types' * argument is a mask of acceptable types. The function will print an * appropriate error message and return NULL if it can't be opened. */ zfs_handle_t * zfs_open(const char *path, int types) { zfs_handle_t *zhp; /* * Validate the name before we even try to open it. We don't care about * the verbose invalid messages here; just report a generic error. */ if (!zfs_validate_name(path, types, NULL, 0)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot open '%s': invalid %s name"), path, path_to_str(path, types)); return (NULL); } /* * Try to get stats for the dataset, which will tell us if it exists. */ errno = 0; if ((zhp = make_dataset_handle(path)) == NULL) { switch (errno) { case ENOENT: /* * The dataset doesn't exist. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot open '%s': no such %s"), path, path_to_str(path, types)); break; case EBUSY: /* * We were able to open the dataset but couldn't * get the stats. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot open '%s': %s is busy"), path, path_to_str(path, types)); break; default: zfs_baderror(errno); } return (NULL); } if (!(types & zhp->zfs_type)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot open '%s': operation " "not supported for %ss"), path, zfs_type_to_name(zhp->zfs_type)); free(zhp); return (NULL); } return (zhp); } /* * Release a ZFS handle. Nothing to do but free the associated memory. */ void zfs_close(zfs_handle_t *zhp) { if (zhp->zfs_mntopts) free(zhp->zfs_mntopts); free(zhp); } struct { const char *name; uint64_t value; } checksum_table[] = { { "on", ZIO_CHECKSUM_ON }, { "off", ZIO_CHECKSUM_OFF }, { "fletcher2", ZIO_CHECKSUM_FLETCHER_2 }, { "fletcher4", ZIO_CHECKSUM_FLETCHER_4 }, { "sha256", ZIO_CHECKSUM_SHA256 }, { NULL } }; struct { const char *name; uint64_t value; } compress_table[] = { { "on", ZIO_COMPRESS_ON }, { "off", ZIO_COMPRESS_OFF }, { "lzjb", ZIO_COMPRESS_LZJB }, { NULL } }; struct { const char *name; uint64_t value; } snapdir_table[] = { { "hidden", ZFS_SNAPDIR_HIDDEN }, { "visible", ZFS_SNAPDIR_VISIBLE }, { NULL } }; struct { const char *name; uint64_t value; } acl_mode_table[] = { { "discard", DISCARD }, { "groupmask", GROUPMASK }, { "passthrough", PASSTHROUGH }, { NULL } }; struct { const char *name; uint64_t value; } acl_inherit_table[] = { { "discard", DISCARD }, { "noallow", NOALLOW }, { "secure", SECURE }, { "passthrough", PASSTHROUGH }, { NULL } }; /* * Given a numeric suffix, convert the value into a number of bits that the * resulting value must be shifted. */ static int str2shift(const char *buf, char *reason, size_t len) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) snprintf(reason, len, dgettext(TEXT_DOMAIN, "invalid " "numeric suffix '%s'"), buf); return (-1); } /* * We want to allow trailing 'b' characters for 'GB' or 'Mb'. But don't * allow 'BB' - that's just weird. */ if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0' && toupper(buf[0]) != 'B')) { return (10*i); } (void) snprintf(reason, len, dgettext(TEXT_DOMAIN, "invalid numeric " "suffix '%s'"), buf); return (-1); } /* * Convert a string of the form '100G' into a real number. Used when setting * properties or creating a volume. 'buf' is used to place an extended error * message for the caller to use. */ static int nicestrtonum(const char *value, uint64_t *num, char *buf, size_t buflen) { char *end; int shift; *num = 0; /* Check to see if this looks like a number. */ if ((value[0] < '0' || value[0] > '9') && value[0] != '.') { (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "must be a numeric value"), buflen); return (-1); } /* Rely on stroll() to process the numeric portion. */ errno = 0; *num = strtoll(value, &end, 10); /* * Check for ERANGE, which indicates that the value is too large to fit * in a 64-bit value. */ if (errno == ERANGE) { (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "value is too large"), buflen); return (-1); } /* * If we have a decimal value, then do the computation with floating * point arithmetic. Otherwise, use standard arithmetic. */ if (*end == '.') { double fval = strtod(value, &end); if ((shift = str2shift(end, buf, buflen)) == -1) return (-1); fval *= pow(2, shift); if (fval > UINT64_MAX) { (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "value is too large"), buflen); return (-1); } *num = (uint64_t)fval; } else { if ((shift = str2shift(end, buf, buflen)) == -1) return (-1); /* Check for overflow */ if (shift >= 64 || (*num << shift) >> shift != *num) { (void) strlcpy(buf, dgettext(TEXT_DOMAIN, "value is too large"), buflen); return (-1); } *num <<= shift; } return (0); } int zfs_nicestrtonum(const char *str, uint64_t *val) { char buf[1]; return (nicestrtonum(str, val, buf, sizeof (buf))); } /* * Given a property type and value, verify that the value is appropriate. Used * by zfs_prop_set() and some libzfs consumers. */ int zfs_prop_validate(zfs_prop_t prop, const char *value, uint64_t *intval) { const char *propname = zfs_prop_to_name(prop); uint64_t number; char reason[64]; int i; /* * Check to see if this a read-only property. */ if (zfs_prop_readonly(prop)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s property: read-only property"), propname); return (-1); } /* See if the property value is too long */ if (strlen(value) >= ZFS_MAXPROPLEN) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': value is too long"), propname, value); return (-1); } /* Perform basic checking based on property type */ switch (zfs_prop_get_type(prop)) { case prop_type_boolean: if (strcmp(value, "on") == 0) { number = 1; } else if (strcmp(value, "off") == 0) { number = 0; } else { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': must be 'on' or 'off'"), propname, value); return (-1); } break; case prop_type_number: /* treat 'none' as 0 */ if (strcmp(value, "none") == 0) { number = 0; break; } if (nicestrtonum(value, &number, reason, sizeof (reason)) != 0) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': %s"), propname, value, reason); return (-1); } /* don't allow 0 for quota, use 'none' instead */ if (prop == ZFS_PROP_QUOTA && number == 0 && strcmp(value, "none") != 0) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': use '%s=none' to disable"), propname, value, propname); return (-1); } /* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */ if (prop == ZFS_PROP_RECORDSIZE || prop == ZFS_PROP_VOLBLOCKSIZE) { if (number < SPA_MINBLOCKSIZE || number > SPA_MAXBLOCKSIZE || !ISP2(number)) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': " "must be power of 2 from %u to %uk"), propname, value, (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); return (-1); } } break; case prop_type_string: case prop_type_index: /* * The two writable string values, 'mountpoint' and * 'checksum' need special consideration. The 'index' types are * specified as strings by the user, but passed to the kernel as * integers. */ switch (prop) { case ZFS_PROP_MOUNTPOINT: if (strcmp(value, ZFS_MOUNTPOINT_NONE) == 0 || strcmp(value, ZFS_MOUNTPOINT_LEGACY) == 0) break; if (value[0] != '/') { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': must be an absolute " "path, 'none', or 'legacy'"), propname, value); return (-1); } break; case ZFS_PROP_CHECKSUM: for (i = 0; checksum_table[i].name != NULL; i++) { if (strcmp(value, checksum_table[i].name) == 0) { number = checksum_table[i].value; break; } } if (checksum_table[i].name == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': must be 'on', 'off', " "'fletcher2', 'fletcher4', or 'sha256'"), propname, value); return (-1); } break; case ZFS_PROP_COMPRESSION: for (i = 0; compress_table[i].name != NULL; i++) { if (strcmp(value, compress_table[i].name) == 0) { number = compress_table[i].value; break; } } if (compress_table[i].name == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': must be 'on', 'off', " "or 'lzjb'"), propname, value); return (-1); } break; case ZFS_PROP_SNAPDIR: for (i = 0; snapdir_table[i].name != NULL; i++) { if (strcmp(value, snapdir_table[i].name) == 0) { number = snapdir_table[i].value; break; } } if (snapdir_table[i].name == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': must be 'hidden' " "or 'visible'"), propname, value); return (-1); } break; case ZFS_PROP_ACLMODE: for (i = 0; acl_mode_table[i].name != NULL; i++) { if (strcmp(value, acl_mode_table[i].name) == 0) { number = acl_mode_table[i].value; break; } } if (acl_mode_table[i].name == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': must be 'discard', " "'groupmask' or 'passthrough'"), propname, value); return (-1); } break; case ZFS_PROP_ACLINHERIT: for (i = 0; acl_inherit_table[i].name != NULL; i++) { if (strcmp(value, acl_inherit_table[i].name) == 0) { number = acl_inherit_table[i].value; break; } } if (acl_inherit_table[i].name == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': must be 'discard', " "'noallow', 'secure' or 'passthrough'"), propname, value); return (-1); } break; case ZFS_PROP_SHARENFS: /* * Nothing to do for 'sharenfs', this gets passed on to * share(1M) verbatim. */ break; } } if (intval != NULL) *intval = number; return (0); } /* * Given a property name and value, set the property for the given dataset. */ int zfs_prop_set(zfs_handle_t *zhp, zfs_prop_t prop, const char *propval) { const char *propname = zfs_prop_to_name(prop); uint64_t number; zfs_cmd_t zc = { 0 }; int ret; prop_changelist_t *cl; if (zfs_prop_validate(prop, propval, &number) != 0) return (-1); /* * Check to see if the value applies to this type */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': property does not apply to %ss"), propname, zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); return (-1); } /* * For the mountpoint and sharenfs properties, check if it can be set * in a global/non-global zone based on the zoned property value: * * global zone non-global zone * ----------------------------------------------------- * zoned=on mountpoint (no) mountpoint (yes) * sharenfs (no) sharenfs (no) * * zoned=off mountpoint (yes) N/A * sharenfs (yes) */ if (prop == ZFS_PROP_MOUNTPOINT || prop == ZFS_PROP_SHARENFS) { if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { if (getzoneid() == GLOBAL_ZONEID) { zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': " "dataset is used in a non-global zone"), propname, zhp->zfs_name); return (-1); } else if (prop == ZFS_PROP_SHARENFS) { zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': filesystems " "cannot be shared in a non-global zone"), propname, zhp->zfs_name); return (-1); } } else if (getzoneid() != GLOBAL_ZONEID) { /* * If zoned property is 'off', this must be in * a globle zone. If not, something is wrong. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': dataset is " "used in a non-global zone, but 'zoned' " "property is not set"), propname, zhp->zfs_name); return (-1); } } if ((cl = changelist_gather(zhp, prop, 0)) == NULL) return (-1); if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s', " "child dataset with inherited mountpoint is used " "in a non-global zone"), propname, zhp->zfs_name); ret = -1; goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); switch (prop) { case ZFS_PROP_QUOTA: zc.zc_cookie = number; ret = ioctl(zfs_fd, ZFS_IOC_SET_QUOTA, &zc); break; case ZFS_PROP_RESERVATION: zc.zc_cookie = number; ret = ioctl(zfs_fd, ZFS_IOC_SET_RESERVATION, &zc); break; case ZFS_PROP_MOUNTPOINT: case ZFS_PROP_SHARENFS: /* * These properties are passed down as real strings. */ (void) strlcpy(zc.zc_prop_name, propname, sizeof (zc.zc_prop_name)); (void) strlcpy(zc.zc_prop_value, propval, sizeof (zc.zc_prop_value)); zc.zc_intsz = 1; zc.zc_numints = strlen(propval) + 1; ret = ioctl(zfs_fd, ZFS_IOC_SET_PROP, &zc); break; case ZFS_PROP_VOLSIZE: zc.zc_volsize = number; ret = ioctl(zfs_fd, ZFS_IOC_SET_VOLSIZE, &zc); break; case ZFS_PROP_VOLBLOCKSIZE: zc.zc_volblocksize = number; ret = ioctl(zfs_fd, ZFS_IOC_SET_VOLBLOCKSIZE, &zc); break; default: (void) strlcpy(zc.zc_prop_name, propname, sizeof (zc.zc_prop_name)); /* LINTED - alignment */ *(uint64_t *)zc.zc_prop_value = number; zc.zc_intsz = 8; zc.zc_numints = 1; ret = ioctl(zfs_fd, ZFS_IOC_SET_PROP, &zc); break; } if (ret != 0) { switch (errno) { case EPERM: zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': permission " "denied"), propname, zhp->zfs_name); break; case ENOENT: zfs_error(dgettext(TEXT_DOMAIN, "cannot open '%s': no such %s"), zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; case ENOSPC: /* * For quotas and reservations, ENOSPC indicates * something different; setting a quota or reservation * doesn't use any disk space. */ switch (prop) { case ZFS_PROP_QUOTA: zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s " "for '%s': size is less than current " "used or reserved space"), propname, zhp->zfs_name); break; case ZFS_PROP_RESERVATION: zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s " "for '%s': size is greater than available " "space"), propname, zhp->zfs_name); break; default: zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': out of space"), propname, zhp->zfs_name); break; } break; case EBUSY: if (prop == ZFS_PROP_VOLBLOCKSIZE) { zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': " "volume already contains data"), propname, zhp->zfs_name); } else { zfs_baderror(errno); } break; case EROFS: zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for " "'%s': read only %s"), propname, zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; case EOVERFLOW: /* * This platform can't address a volume this big. */ #ifdef _ILP32 if (prop == ZFS_PROP_VOLSIZE) { zfs_error(dgettext(TEXT_DOMAIN, "cannot set %s for '%s': " "max volume size is 1TB on 32-bit systems"), propname, zhp->zfs_name); break; } #endif zfs_baderror(errno); default: zfs_baderror(errno); } } else { /* * Refresh the statistics so the new property value * is reflected. */ if ((ret = changelist_postfix(cl)) != 0) goto error; (void) get_stats(zhp); } error: changelist_free(cl); return (ret); } /* * Given a property, inherit the value from the parent dataset. */ int zfs_prop_inherit(zfs_handle_t *zhp, zfs_prop_t prop) { const char *propname = zfs_prop_to_name(prop); zfs_cmd_t zc = { 0 }; int ret; prop_changelist_t *cl; /* * Verify that this property is inheritable. */ if (zfs_prop_readonly(prop)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s': property is read-only"), propname, zhp->zfs_name); return (-1); } if (!zfs_prop_inheritable(prop)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s': property is not inheritable"), propname, zhp->zfs_name); return (-1); } /* * Check to see if the value applies to this type */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s': property does " "not apply to %ss"), propname, zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); return (-1); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_prop_name, propname, sizeof (zc.zc_prop_name)); if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s', " "dataset is used in a non-global zone"), propname, zhp->zfs_name); return (-1); } /* * Determine datasets which will be affected by this change, if any. */ if ((cl = changelist_gather(zhp, prop, 0)) == NULL) return (-1); if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s', " "child dataset with inherited mountpoint is " "used in a non-global zone"), propname, zhp->zfs_name); ret = -1; goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; zc.zc_numints = 0; if ((ret = ioctl(zfs_fd, ZFS_IOC_SET_PROP, &zc)) != 0) { switch (errno) { case EPERM: zfs_error(dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s': permission " "denied"), propname, zhp->zfs_name); break; case ENOENT: zfs_error(dgettext(TEXT_DOMAIN, "cannot open '%s': no such %s"), zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; case ENOSPC: zfs_error(dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s': " "out of space"), propname, zhp->zfs_name); break; default: zfs_baderror(errno); } } else { if ((ret = changelist_postfix(cl)) != 0) goto error; /* * Refresh the statistics so the new property is reflected. */ (void) get_stats(zhp); } error: changelist_free(cl); return (ret); } static void nicebool(int value, char *buf, size_t buflen) { if (value) (void) strlcpy(buf, "on", buflen); else (void) strlcpy(buf, "off", buflen); } /* * True DSL properties are stored in an nvlist. The following two functions * extract them appropriately. */ static uint64_t getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; uint64_t value; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZFS_PROP_VALUE, &value) == 0); verify(nvlist_lookup_string(nv, ZFS_PROP_SOURCE, source) == 0); } else { value = zfs_prop_default_numeric(prop); *source = ""; } return (value); } static char * getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; char *value; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_string(nv, ZFS_PROP_VALUE, &value) == 0); verify(nvlist_lookup_string(nv, ZFS_PROP_SOURCE, source) == 0); } else { if ((value = (char *)zfs_prop_default_string(prop)) == NULL) value = ""; *source = ""; } return (value); } /* * Internal function for getting a numeric property. Both zfs_prop_get() and * zfs_prop_get_int() are built using this interface. * * Certain properties can be overridden using 'mount -o'. In this case, scan * the contents of the /etc/mnttab entry, searching for the appropriate options. * If they differ from the on-disk values, report the current values and mark * the source "temporary". */ static uint64_t get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zfs_source_t *src, char **source) { uint64_t val; struct mnttab mnt; *source = NULL; if (zhp->zfs_mntopts == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = zhp->zfs_mntopts; switch (prop) { case ZFS_PROP_ATIME: val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_ATIME) && !val) { val = TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NOATIME) && val) { val = FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } return (val); case ZFS_PROP_AVAILABLE: return (zhp->zfs_dmustats.dds_available); case ZFS_PROP_DEVICES: val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_DEVICES) && !val) { val = TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NODEVICES) && val) { val = FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } return (val); case ZFS_PROP_EXEC: val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_EXEC) && !val) { val = TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NOEXEC) && val) { val = FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } return (val); case ZFS_PROP_RECORDSIZE: case ZFS_PROP_COMPRESSION: case ZFS_PROP_ZONED: val = getprop_uint64(zhp, prop, source); return (val); case ZFS_PROP_READONLY: val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_RO) && !val) { val = TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_RW) && val) { val = FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } return (val); case ZFS_PROP_QUOTA: if (zhp->zfs_dmustats.dds_quota == 0) *source = ""; /* default */ else *source = zhp->zfs_name; return (zhp->zfs_dmustats.dds_quota); case ZFS_PROP_RESERVATION: if (zhp->zfs_dmustats.dds_reserved == 0) *source = ""; /* default */ else *source = zhp->zfs_name; return (zhp->zfs_dmustats.dds_reserved); case ZFS_PROP_COMPRESSRATIO: /* * Using physical space and logical space, calculate the * compression ratio. We return the number as a multiple of * 100, so '2.5x' would be returned as 250. */ if (zhp->zfs_dmustats.dds_compressed_bytes == 0) return (100ULL); else return (zhp->zfs_dmustats.dds_uncompressed_bytes * 100 / zhp->zfs_dmustats.dds_compressed_bytes); case ZFS_PROP_REFERENCED: /* * 'referenced' refers to the amount of physical space * referenced (possibly shared) by this object. */ return (zhp->zfs_dmustats.dds_space_refd); case ZFS_PROP_SETUID: val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, MNTOPT_SETUID) && !val) { val = TRUE; if (src) *src = ZFS_SRC_TEMPORARY; } else if (hasmntopt(&mnt, MNTOPT_NOSETUID) && val) { val = FALSE; if (src) *src = ZFS_SRC_TEMPORARY; } return (val); case ZFS_PROP_VOLSIZE: return (zhp->zfs_volsize); case ZFS_PROP_VOLBLOCKSIZE: return (zhp->zfs_volblocksize); case ZFS_PROP_USED: return (zhp->zfs_dmustats.dds_space_used); case ZFS_PROP_CREATETXG: return (zhp->zfs_dmustats.dds_creation_txg); case ZFS_PROP_MOUNTED: /* * Unlike other properties, we defer calculation of 'MOUNTED' * until actually requested. This is because the getmntany() * call can be extremely expensive on systems with a large * number of filesystems, and the property isn't needed in * normal use cases. */ if (zhp->zfs_mntopts == NULL) { struct mnttab search = { 0 }, entry; search.mnt_special = (char *)zhp->zfs_name; rewind(mnttab_file); if (getmntany(mnttab_file, &entry, &search) == 0) zhp->zfs_mntopts = zfs_strdup(entry.mnt_mntopts); } return (zhp->zfs_mntopts != NULL); default: zfs_baderror(EINVAL); } return (0); } /* * Calculate the source type, given the raw source string. */ static void get_source(zfs_handle_t *zhp, zfs_source_t *srctype, char *source, char *statbuf, size_t statlen) { if (statbuf == NULL || *srctype == ZFS_SRC_TEMPORARY) return; if (source == NULL) { *srctype = ZFS_SRC_NONE; } else if (source[0] == '\0') { *srctype = ZFS_SRC_DEFAULT; } else { if (strcmp(source, zhp->zfs_name) == 0) { *srctype = ZFS_SRC_LOCAL; } else { (void) strlcpy(statbuf, source, statlen); *srctype = ZFS_SRC_INHERITED; } } } /* * Retrieve a property from the given object. If 'literal' is specified, then * numbers are left as exact values. Otherwise, numbers are converted to a * human-readable form. * * Returns 0 on success, or -1 on error. */ int zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen, zfs_source_t *src, char *statbuf, size_t statlen, int literal) { char *source = NULL; uint64_t val; char *str; int i; const char *root; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (-1); if (src) *src = ZFS_SRC_NONE; switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_READONLY: case ZFS_PROP_SETUID: case ZFS_PROP_ZONED: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: /* * Basic boolean values are built on top of * get_numeric_property(). */ nicebool(get_numeric_property(zhp, prop, src, &source), propbuf, proplen); break; case ZFS_PROP_AVAILABLE: case ZFS_PROP_RECORDSIZE: case ZFS_PROP_CREATETXG: case ZFS_PROP_REFERENCED: case ZFS_PROP_USED: case ZFS_PROP_VOLSIZE: case ZFS_PROP_VOLBLOCKSIZE: /* * Basic numeric values are built on top of * get_numeric_property(). */ val = get_numeric_property(zhp, prop, src, &source); if (literal) (void) snprintf(propbuf, proplen, "%llu", val); else zfs_nicenum(val, propbuf, proplen); break; case ZFS_PROP_COMPRESSION: val = getprop_uint64(zhp, prop, &source); for (i = 0; compress_table[i].name != NULL; i++) { if (compress_table[i].value == val) break; } assert(compress_table[i].name != NULL); (void) strlcpy(propbuf, compress_table[i].name, proplen); break; case ZFS_PROP_CHECKSUM: val = getprop_uint64(zhp, prop, &source); for (i = 0; checksum_table[i].name != NULL; i++) { if (checksum_table[i].value == val) break; } assert(checksum_table[i].name != NULL); (void) strlcpy(propbuf, checksum_table[i].name, proplen); break; case ZFS_PROP_SNAPDIR: val = getprop_uint64(zhp, prop, &source); for (i = 0; snapdir_table[i].name != NULL; i++) { if (snapdir_table[i].value == val) break; } assert(snapdir_table[i].name != NULL); (void) strlcpy(propbuf, snapdir_table[i].name, proplen); break; case ZFS_PROP_ACLMODE: val = getprop_uint64(zhp, prop, &source); for (i = 0; acl_mode_table[i].name != NULL; i++) { if (acl_mode_table[i].value == val) break; } assert(acl_mode_table[i].name != NULL); (void) strlcpy(propbuf, acl_mode_table[i].name, proplen); break; case ZFS_PROP_ACLINHERIT: val = getprop_uint64(zhp, prop, &source); for (i = 0; acl_inherit_table[i].name != NULL; i++) { if (acl_inherit_table[i].value == val) break; } assert(acl_inherit_table[i].name != NULL); (void) strlcpy(propbuf, acl_inherit_table[i].name, proplen); break; case ZFS_PROP_CREATION: /* * 'creation' is a time_t stored in the statistics. We convert * this into a string unless 'literal' is specified. */ { time_t time = (time_t) zhp->zfs_dmustats.dds_creation_time; struct tm t; if (literal || localtime_r(&time, &t) == NULL || strftime(propbuf, proplen, "%a %b %e %k:%M %Y", &t) == 0) (void) snprintf(propbuf, proplen, "%llu", zhp->zfs_dmustats.dds_creation_time); } break; case ZFS_PROP_MOUNTPOINT: /* * Getting the precise mountpoint can be tricky. * * - for 'none' or 'legacy', return those values. * - for default mountpoints, construct it as /zfs/ * - for inherited mountpoints, we want to take everything * after our ancestor and append it to the inherited value. * * If the pool has an alternate root, we want to prepend that * root to any values we return. */ root = zhp->zfs_dmustats.dds_altroot; str = getprop_string(zhp, prop, &source); if (str[0] == '\0') { (void) snprintf(propbuf, proplen, "%s/zfs/%s", root, zhp->zfs_name); } else if (str[0] == '/') { const char *relpath = zhp->zfs_name + strlen(source); if (relpath[0] == '/') relpath++; if (str[1] == '\0') str++; if (relpath[0] == '\0') (void) snprintf(propbuf, proplen, "%s%s", root, str); else (void) snprintf(propbuf, proplen, "%s%s%s%s", root, str, relpath[0] == '@' ? "" : "/", relpath); } else { /* 'legacy' or 'none' */ (void) strlcpy(propbuf, str, proplen); } break; case ZFS_PROP_SHARENFS: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); break; case ZFS_PROP_ORIGIN: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); /* * If there is no parent at all, return failure to indicate that * it doesn't apply to this dataset. */ if (propbuf[0] == '\0') return (-1); break; case ZFS_PROP_QUOTA: case ZFS_PROP_RESERVATION: val = get_numeric_property(zhp, prop, src, &source); /* * If quota or reservation is 0, we translate this into 'none' * (unless literal is set), and indicate that it's the default * value. Otherwise, we print the number nicely and indicate * that its set locally. */ if (val == 0) { if (literal) (void) strlcpy(propbuf, "0", proplen); else (void) strlcpy(propbuf, "none", proplen); } else { if (literal) (void) snprintf(propbuf, proplen, "%llu", val); else zfs_nicenum(val, propbuf, proplen); } break; case ZFS_PROP_COMPRESSRATIO: val = get_numeric_property(zhp, prop, src, &source); (void) snprintf(propbuf, proplen, "%lld.%02lldx", val / 100, val % 100); break; case ZFS_PROP_TYPE: switch (zhp->zfs_type) { case ZFS_TYPE_FILESYSTEM: str = "filesystem"; break; case ZFS_TYPE_VOLUME: str = "volume"; break; case ZFS_TYPE_SNAPSHOT: str = "snapshot"; break; default: zfs_baderror(zhp->zfs_type); } (void) snprintf(propbuf, proplen, "%s", str); break; case ZFS_PROP_MOUNTED: /* * The 'mounted' property is a pseudo-property that described * whether the filesystem is currently mounted. Even though * it's a boolean value, the typical values of "on" and "off" * don't make sense, so we translate to "yes" and "no". */ if (get_numeric_property(zhp, ZFS_PROP_MOUNTED, src, &source)) (void) strlcpy(propbuf, "yes", proplen); else (void) strlcpy(propbuf, "no", proplen); break; case ZFS_PROP_NAME: /* * The 'name' property is a pseudo-property derived from the * dataset name. It is presented as a real property to simplify * consumers. */ (void) strlcpy(propbuf, zhp->zfs_name, proplen); break; default: zfs_baderror(EINVAL); } get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Utility function to get the given numeric property. Does no validation that * the given property is the appropriate type; should only be used with * hard-coded property types. */ uint64_t zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop) { char *source; zfs_source_t sourcetype = ZFS_SRC_NONE; return (get_numeric_property(zhp, prop, &sourcetype, &source)); } /* * Similar to zfs_prop_get(), but returns the value as an integer. */ int zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value, zfs_source_t *src, char *statbuf, size_t statlen) { char *source; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (-1); if (src) *src = ZFS_SRC_NONE; *value = get_numeric_property(zhp, prop, src, &source); get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Returns the name of the given zfs handle. */ const char * zfs_get_name(const zfs_handle_t *zhp) { return (zhp->zfs_name); } /* * Returns the type of the given zfs handle. */ zfs_type_t zfs_get_type(const zfs_handle_t *zhp) { return (zhp->zfs_type); } /* * Iterate over all child filesystems */ int zfs_iter_filesystems(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; for ((void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ioctl(zfs_fd, ZFS_IOC_DATASET_LIST_NEXT, &zc) == 0; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name))) { /* * Ignore private dataset names. */ if (dataset_name_hidden(zc.zc_name)) continue; /* * Silently ignore errors, as the only plausible explanation is * that the pool has since been removed. */ if ((nzhp = make_dataset_handle(zc.zc_name)) == NULL) continue; if ((ret = func(nzhp, data)) != 0) return (ret); } /* * An errno value of ESRCH indicates normal completion. If ENOENT is * returned, then the underlying dataset has been removed since we * obtained the handle. */ if (errno != ESRCH && errno != ENOENT) zfs_baderror(errno); return (0); } /* * Iterate over all snapshots */ int zfs_iter_snapshots(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; for ((void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ioctl(zfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name))) { if ((nzhp = make_dataset_handle(zc.zc_name)) == NULL) continue; if ((ret = func(nzhp, data)) != 0) return (ret); } /* * An errno value of ESRCH indicates normal completion. If ENOENT is * returned, then the underlying dataset has been removed since we * obtained the handle. Silently ignore this case, and return success. */ if (errno != ESRCH && errno != ENOENT) zfs_baderror(errno); return (0); } /* * Iterate over all children, snapshots and filesystems */ int zfs_iter_children(zfs_handle_t *zhp, zfs_iter_f func, void *data) { int ret; if ((ret = zfs_iter_filesystems(zhp, func, data)) != 0) return (ret); return (zfs_iter_snapshots(zhp, func, data)); } /* * Given a complete name, return just the portion that refers to the parent. * Can return NULL if this is a pool. */ static int parent_name(const char *path, char *buf, size_t buflen) { char *loc; if ((loc = strrchr(path, '/')) == NULL) return (-1); (void) strncpy(buf, path, MIN(buflen, loc - path)); buf[loc - path] = '\0'; return (0); } /* * Checks to make sure that the given path has a parent, and that it exists. */ static int check_parents(const char *path, zfs_type_t type) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; char *slash; zfs_handle_t *zhp; /* get parent, and check to see if this is just a pool */ if (parent_name(path, parent, sizeof (parent)) != 0) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': missing dataset name"), path, zfs_type_to_name(type)); zfs_error(dgettext(TEXT_DOMAIN, "use 'zpool create' to create a storage pool")); return (-1); } /* check to see if the pool exists */ if ((slash = strchr(parent, '/')) == NULL) slash = parent + strlen(parent); (void) strncpy(zc.zc_name, parent, slash - parent); zc.zc_name[slash - parent] = '\0'; if (ioctl(zfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 && errno == ENOENT) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': no such pool '%s'"), path, zc.zc_name); return (-1); } /* check to see if the parent dataset exists */ if ((zhp = make_dataset_handle(parent)) == NULL) { switch (errno) { case ENOENT: zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': parent does not exist"), path); return (-1); default: zfs_baderror(errno); } } /* we are in a non-global zone, but parent is in the global zone */ if (getzoneid() != GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': permission denied"), path); zfs_close(zhp); return (-1); } /* make sure parent is a filesystem */ if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': parent is not a filesystem"), path); zfs_close(zhp); return (-1); } zfs_close(zhp); return (0); } /* * Create a new filesystem or volume. 'sizestr' and 'blocksizestr' are used * only for volumes, and indicate the size and blocksize of the volume. */ int zfs_create(const char *path, zfs_type_t type, const char *sizestr, const char *blocksizestr) { char reason[64]; zfs_cmd_t zc = { 0 }; int ret; uint64_t size = 0; uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* convert sizestr into integer size */ if (sizestr != NULL && nicestrtonum(sizestr, &size, reason, sizeof (reason)) != 0) { zfs_error(dgettext(TEXT_DOMAIN, "bad volume size '%s': %s"), sizestr, reason); return (-1); } /* convert blocksizestr into integer blocksize */ if (blocksizestr != NULL && nicestrtonum(blocksizestr, &blocksize, reason, sizeof (reason)) != 0) { zfs_error(dgettext(TEXT_DOMAIN, "bad volume blocksize '%s': %s"), blocksizestr, reason); return (-1); } /* validate the path, taking care to note the extended error message */ if (!zfs_validate_name(path, type, reason, sizeof (reason))) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': %s in %s name"), path, reason, zfs_type_to_name(type)); if (strstr(reason, "snapshot") != NULL) zfs_error(dgettext(TEXT_DOMAIN, "use 'zfs snapshot' to create a snapshot")); return (-1); } /* validate parents exist */ if (check_parents(path, type) != 0) return (-1); /* * The failure modes when creating a dataset of a different type over * one that already exists is a little strange. In particular, if you * try to create a dataset on top of an existing dataset, the ioctl() * will return ENOENT, not EEXIST. To prevent this from happening, we * first try to see if the dataset exists. */ (void) strlcpy(zc.zc_name, path, sizeof (zc.zc_name)); if (ioctl(zfs_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': dataset exists"), path); return (-1); } if (type == ZFS_TYPE_VOLUME) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; if (type == ZFS_TYPE_VOLUME) { /* * If we are creating a volume, the size and block size must * satisfy a few restraints. First, the blocksize must be a * valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the * volsize must be a multiple of the block size, and cannot be * zero. */ if (size == 0) { zfs_error(dgettext(TEXT_DOMAIN, "bad volume size '%s': cannot be zero"), sizestr); return (-1); } if (blocksize < SPA_MINBLOCKSIZE || blocksize > SPA_MAXBLOCKSIZE || !ISP2(blocksize)) { zfs_error(dgettext(TEXT_DOMAIN, "bad volume block size '%s': " "must be power of 2 from %u to %uk"), blocksizestr, (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); return (-1); } if (size % blocksize != 0) { char buf[64]; zfs_nicenum(blocksize, buf, sizeof (buf)); zfs_error(dgettext(TEXT_DOMAIN, "bad volume size '%s': " "must be multiple of volume block size (%s)"), sizestr, buf); return (-1); } zc.zc_volsize = size; zc.zc_volblocksize = blocksize; } /* create the dataset */ ret = ioctl(zfs_fd, ZFS_IOC_CREATE, &zc); if (ret == 0 && type == ZFS_TYPE_VOLUME) ret = zvol_create_link(path); /* check for failure */ if (ret != 0) { char parent[ZFS_MAXNAMELEN]; (void) parent_name(path, parent, sizeof (parent)); switch (errno) { case ENOENT: /* * The parent dataset has been deleted since our * previous check. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': no such parent '%s'"), path, parent); break; case EPERM: /* * The user doesn't have permission to create a new * dataset here. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': permission denied"), path); break; case EDQUOT: case ENOSPC: /* * The parent dataset does not have enough free space * to create a new dataset. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': not enough space in '%s'"), path, parent); break; case EEXIST: /* * The target dataset already exists. We should have * caught this above, but there may be some unexplained * race condition. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': dataset exists"), path); break; case EINVAL: /* * The target dataset does not support children. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': children unsupported in '%s'"), path, parent); break; case EDOM: zfs_error(dgettext(TEXT_DOMAIN, "bad %s value '%s': " "must be power of 2 from %u to %uk"), zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), blocksizestr ? blocksizestr : "", (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); break; #ifdef _ILP32 case EOVERFLOW: /* * This platform can't address a volume this big. */ if (type == ZFS_TYPE_VOLUME) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': " "max volume size is 1TB on 32-bit systems"), path); break; } #endif default: zfs_baderror(errno); } return (-1); } return (0); } /* * Destroys the given dataset. The caller must make sure that the filesystem * isn't mounted, and that there are no active dependents. */ int zfs_destroy(zfs_handle_t *zhp) { zfs_cmd_t zc = { 0 }; int ret; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); /* * We use the check for 'zfs_volblocksize' instead of ZFS_TYPE_VOLUME * so that we do the right thing for snapshots of volumes. */ if (zhp->zfs_volblocksize != 0) { if (zvol_remove_link(zhp->zfs_name) != 0) return (-1); zc.zc_objset_type = DMU_OST_ZVOL; } else { zc.zc_objset_type = DMU_OST_ZFS; } ret = ioctl(zfs_fd, ZFS_IOC_DESTROY, &zc); if (ret != 0) { switch (errno) { case EPERM: /* * We don't have permission to destroy this dataset. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot destroy '%s': permission denied"), zhp->zfs_name); break; case ENOENT: /* * We've hit a race condition where the dataset has been * destroyed since we opened it. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot destroy '%s': no such %s"), zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; case EBUSY: /* * Even if we destroy all children, there is a chance we * can hit this case if: * * - A child dataset has since been created * - A filesystem is mounted * * This error message is awful, but hopefully we've * already caught the common cases (and aborted more * appropriately) before calling this function. There's * nothing else we can do at this point. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot destroy '%s': %s is busy"), zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; default: zfs_baderror(errno); } return (-1); } remove_mountpoint(zhp); return (0); } /* * Clones the given dataset. The target must be of the same type as the source. */ int zfs_clone(zfs_handle_t *zhp, const char *target) { char reason[64]; zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; int ret; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); /* validate the target name */ if (!zfs_validate_name(target, ZFS_TYPE_FILESYSTEM, reason, sizeof (reason))) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': %s in filesystem name"), target, reason, zfs_type_to_name(ZFS_TYPE_FILESYSTEM)); return (-1); } /* validate parents exist */ if (check_parents(target, zhp->zfs_type) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* do the clone */ if (zhp->zfs_volblocksize != 0) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, target, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_filename, zhp->zfs_name, sizeof (zc.zc_filename)); ret = ioctl(zfs_fd, ZFS_IOC_CREATE, &zc); if (ret != 0) { switch (errno) { case EPERM: /* * The user doesn't have permission to create the clone. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': permission denied"), target); break; case ENOENT: /* * The parent doesn't exist. We should have caught this * above, but there may a race condition that has since * destroyed the parent. * * At this point, we don't know whether it's the source * that doesn't exist anymore, or whether the target * dataset doesn't exist. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': no such parent '%s'"), target, parent); break; case EDQUOT: case ENOSPC: /* * There is not enough space in the target dataset */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': not enough space in '%s'"), target, parent); break; case EEXIST: /* * The target already exists. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': dataset exists"), target); break; case EXDEV: /* * The source and target pools differ. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': " "source and target pools differ"), target); break; default: zfs_baderror(errno); } } else if (zhp->zfs_volblocksize != 0) { ret = zvol_create_link(target); } return (ret); } /* * Takes a snapshot of the given dataset */ int zfs_snapshot(const char *path) { char reason[64]; const char *delim; char *parent; zfs_handle_t *zhp; zfs_cmd_t zc = { 0 }; int ret; /* validate the snapshot name */ if (!zfs_validate_name(path, ZFS_TYPE_SNAPSHOT, reason, sizeof (reason))) { zfs_error(dgettext(TEXT_DOMAIN, "cannot snapshot '%s': %s in snapshot name"), path, reason); return (-1); } /* make sure we have a snapshot */ if ((delim = strchr(path, '@')) == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "cannot snapshot '%s': missing '@' delim in snapshot " "name"), path); zfs_error(dgettext(TEXT_DOMAIN, "use 'zfs create' to create a filesystem")); return (-1); } /* make sure the parent exists and is of the appropriate type */ parent = zfs_malloc(delim - path + 1); (void) strncpy(parent, path, delim - path); parent[delim - path] = '\0'; if ((zhp = zfs_open(parent, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { free(parent); return (-1); } (void) strlcpy(zc.zc_name, path, sizeof (zc.zc_name)); if (zhp->zfs_type == ZFS_TYPE_VOLUME) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; ret = ioctl(zfs_fd, ZFS_IOC_CREATE, &zc); if (ret == 0 && zhp->zfs_type == ZFS_TYPE_VOLUME) { ret = zvol_create_link(path); if (ret != 0) (void) ioctl(zfs_fd, ZFS_IOC_DESTROY, &zc); } if (ret != 0) { switch (errno) { case EPERM: /* * User doesn't have permission to create a snapshot */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': " "permission denied"), path); break; case EDQUOT: case ENOSPC: /* * Out of space in parent. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': " "not enough space in '%s'"), path, parent); break; case EEXIST: /* * Snapshot already exists. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': " "snapshot exists"), path); break; case ENOENT: /* * Shouldn't happen because we verified the parent * above. But there may be a race condition where it * has since been removed. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot open '%s': " "no such %s"), parent, zfs_type_to_name(zhp->zfs_type)); break; default: zfs_baderror(errno); } } free(parent); zfs_close(zhp); return (ret); } /* * Dumps a backup of tosnap, incremental from fromsnap if it isn't NULL. */ int zfs_backup(zfs_handle_t *zhp_to, zfs_handle_t *zhp_from) { zfs_cmd_t zc = { 0 }; int ret; /* do the ioctl() */ (void) strlcpy(zc.zc_name, zhp_to->zfs_name, sizeof (zc.zc_name)); if (zhp_from) { (void) strlcpy(zc.zc_prop_value, zhp_from->zfs_name, sizeof (zc.zc_name)); } else { zc.zc_prop_value[0] = '\0'; } zc.zc_cookie = STDOUT_FILENO; ret = ioctl(zfs_fd, ZFS_IOC_SENDBACKUP, &zc); if (ret != 0) { switch (errno) { case EPERM: /* * User doesn't have permission to do a backup */ zfs_error(dgettext(TEXT_DOMAIN, "cannot backup '%s': " "permission denied"), zhp_to->zfs_name); break; case EXDEV: zfs_error(dgettext(TEXT_DOMAIN, "cannot do incremental backup from %s:\n" "it is not an earlier snapshot from the " "same fs as %s"), zhp_from->zfs_name, zhp_to->zfs_name); break; case ENOENT: /* * Shouldn't happen because we verified the parent * above. But there may be a race condition where it * has since been removed. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot open: " "no such snapshot")); break; case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error(dgettext(TEXT_DOMAIN, "cannot write backup stream: %s"), strerror(errno)); break; case EINTR: zfs_error(dgettext(TEXT_DOMAIN, "backup failed: signal recieved")); break; default: zfs_baderror(errno); } } return (ret); } /* * Restores a backup of tosnap from stdin. */ int zfs_restore(const char *tosnap, int isprefix, int verbose, int dryrun) { zfs_cmd_t zc = { 0 }; time_t begin_time; int ioctl_err, err, bytes, size; char *cp; dmu_replay_record_t drr; struct drr_begin *drrb = &zc.zc_begin_record; begin_time = time(NULL); /* trim off snapname, if any */ (void) strcpy(zc.zc_name, tosnap); cp = strchr(zc.zc_name, '@'); if (cp) *cp = '\0'; /* read in the BEGIN record */ cp = (char *)&drr; bytes = 0; do { size = read(STDIN_FILENO, cp, sizeof (drr) - bytes); cp += size; bytes += size; } while (size > 0); if (size < 0 || bytes != sizeof (drr)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: invalid backup stream " "(couldn't read first record)")); return (-1); } zc.zc_begin_record = drr.drr_u.drr_begin; if (drrb->drr_magic != DMU_BACKUP_MAGIC && drrb->drr_magic != BSWAP_64(DMU_BACKUP_MAGIC)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: invalid backup stream " "(invalid magic number)")); return (-1); } if (drrb->drr_version != DMU_BACKUP_VERSION && drrb->drr_version != BSWAP_64(DMU_BACKUP_VERSION)) { if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) drrb->drr_version = BSWAP_64(drrb->drr_version); zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: only backup version 0x%llx is supported, " "stream is version %llx."), DMU_BACKUP_VERSION, drrb->drr_version); return (-1); } /* * Determine name of destination snapshot. */ (void) strcpy(drrb->drr_toname, tosnap); if (isprefix) { if (strchr(tosnap, '@') != NULL) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: " "argument to -d must be a filesystem")); return (-1); } cp = strchr(drr.drr_u.drr_begin.drr_toname, '/'); if (cp == NULL) cp = drr.drr_u.drr_begin.drr_toname; else cp++; (void) strcat(drrb->drr_toname, "/"); (void) strcat(drrb->drr_toname, cp); } else if (strchr(tosnap, '@') == NULL) { /* * they specified just a filesystem; tack on the * snapname from the backup. */ cp = strchr(drr.drr_u.drr_begin.drr_toname, '@'); if (cp == NULL || strlen(tosnap) + strlen(cp) >= MAXNAMELEN) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: invalid backup stream " "(invalid snapshot name)")); return (-1); } (void) strcat(drrb->drr_toname, cp); } if (drrb->drr_fromguid) { zfs_handle_t *h; /* incremental backup stream */ /* do the ioctl to the containing fs */ (void) strcpy(zc.zc_name, drrb->drr_toname); cp = strchr(zc.zc_name, '@'); *cp = '\0'; /* make sure destination fs exists */ h = zfs_open(zc.zc_name, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (h == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore incrememtal backup: destination\n" "filesystem %s does not exist"), zc.zc_name); return (-1); } if (!dryrun) { /* unmount destination fs or remove device link. */ if (h->zfs_type == ZFS_TYPE_FILESYSTEM) { (void) zfs_unmount(h, NULL, 0); } else { (void) zvol_remove_link(h->zfs_name); } } zfs_close(h); } else { /* full backup stream */ (void) strcpy(zc.zc_name, drrb->drr_toname); /* make sure they aren't trying to restore into the root */ if (strchr(zc.zc_name, '/') == NULL) { cp = strchr(zc.zc_name, '@'); if (cp) *cp = '\0'; zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: destination fs %s already exists"), zc.zc_name); return (-1); } if (isprefix) { zfs_handle_t *h; /* make sure prefix exists */ h = zfs_open(tosnap, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (h == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: " "filesystem %s does not exist"), tosnap); return (-1); } /* create any necessary ancestors up to prefix */ zc.zc_objset_type = DMU_OST_ZFS; /* * zc.zc_name is now the full name of the snap * we're restoring into */ cp = zc.zc_name + strlen(tosnap) + 1; while (cp = strchr(cp, '/')) { *cp = '\0'; err = ioctl(zfs_fd, ZFS_IOC_CREATE, &zc); if (err && errno != ENOENT && errno != EEXIST) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: " "couldn't create ancestor %s"), zc.zc_name); return (-1); } *cp = '/'; cp++; } } /* Make sure destination fs does not exist */ cp = strchr(zc.zc_name, '@'); *cp = '\0'; if (ioctl(zfs_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0) { zfs_error(dgettext(TEXT_DOMAIN, "cannot restore full backup: " "destination filesystem %s already exists"), zc.zc_name); return (-1); } /* Do the recvbackup ioctl to the fs's parent. */ cp = strrchr(zc.zc_name, '/'); *cp = '\0'; } (void) strcpy(zc.zc_prop_value, tosnap); zc.zc_cookie = STDIN_FILENO; zc.zc_intsz = isprefix; if (verbose) { (void) printf("%s %s backup of %s into %s\n", dryrun ? "would restore" : "restoring", drrb->drr_fromguid ? "incremental" : "full", drr.drr_u.drr_begin.drr_toname, zc.zc_begin_record.drr_toname); (void) fflush(stdout); } if (dryrun) return (0); err = ioctl_err = ioctl(zfs_fd, ZFS_IOC_RECVBACKUP, &zc); if (ioctl_err != 0) { switch (errno) { case ENODEV: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: " "most recent snapshot does not " "match incremental backup source")); break; case ETXTBSY: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: " "destination has been modified since " "most recent snapshot --\n" "use 'zfs rollback' to discard changes")); break; case EEXIST: if (drrb->drr_fromguid == 0) { /* it's the containing fs that exists */ cp = strchr(drrb->drr_toname, '@'); *cp = '\0'; } zfs_error(dgettext(TEXT_DOMAIN, "cannot restore to %s: destination already exists"), drrb->drr_toname); break; case ENOENT: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: destination does not exist")); break; case EBUSY: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: destination is in use")); break; case ENOSPC: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: out of space")); break; case EDQUOT: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: quota exceeded")); break; case EINTR: zfs_error(dgettext(TEXT_DOMAIN, "restore failed: signal recieved")); break; case EINVAL: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: invalid backup stream")); break; case EPERM: zfs_error(dgettext(TEXT_DOMAIN, "cannot restore: permission denied")); break; default: zfs_baderror(errno); } } /* * Mount or recreate the /dev links for the target filesystem * (if created, or if we tore them down to do an incremental * restore), and the /dev links for the new snapshot (if * created). */ cp = strchr(drrb->drr_toname, '@'); if (cp && (ioctl_err == 0 || drrb->drr_fromguid)) { zfs_handle_t *h; *cp = '\0'; h = zfs_open(drrb->drr_toname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); *cp = '@'; if (h) { if (h->zfs_type == ZFS_TYPE_FILESYSTEM) { err = zfs_mount(h, NULL, 0); } else { err = zvol_create_link(h->zfs_name); if (err == 0 && ioctl_err == 0) { err = zvol_create_link(drrb->drr_toname); } } zfs_close(h); } } if (err || ioctl_err) return (-1); if (verbose) { char buf1[64]; char buf2[64]; uint64_t bytes = zc.zc_cookie; time_t delta = time(NULL) - begin_time; if (delta == 0) delta = 1; zfs_nicenum(bytes, buf1, sizeof (buf1)); zfs_nicenum(bytes/delta, buf2, sizeof (buf1)); (void) printf("restored %sb backup in %lu seconds (%sb/sec)\n", buf1, delta, buf2); } return (0); } /* * Destroy any more recent snapshots. We invoke this callback on any dependents * of the snapshot first. If the 'cb_dependent' member is non-zero, then this * is a dependent and we should just destroy it without checking the transaction * group. */ typedef struct rollback_data { const char *cb_target; /* the snapshot */ uint64_t cb_create; /* creation time reference */ prop_changelist_t *cb_clp; /* changelist pointer */ int cb_error; int cb_dependent; } rollback_data_t; static int rollback_destroy(zfs_handle_t *zhp, void *data) { rollback_data_t *cbp = data; if (!cbp->cb_dependent) { if (strcmp(zhp->zfs_name, cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { cbp->cb_dependent = TRUE; (void) zfs_iter_dependents(zhp, rollback_destroy, cbp); cbp->cb_dependent = FALSE; if (zfs_destroy(zhp) != 0) cbp->cb_error = 1; else changelist_remove(zhp, cbp->cb_clp); } } else { if (zfs_destroy(zhp) != 0) cbp->cb_error = 1; else changelist_remove(zhp, cbp->cb_clp); } zfs_close(zhp); return (0); } /* * Rollback the dataset to its latest snapshot. */ static int do_rollback(zfs_handle_t *zhp) { int ret; zfs_cmd_t zc = { 0 }; assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM || zhp->zfs_type == ZFS_TYPE_VOLUME); if (zhp->zfs_type == ZFS_TYPE_VOLUME && zvol_remove_link(zhp->zfs_name) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zhp->zfs_volblocksize != 0) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; /* * We rely on the consumer to verify that there are no newer snapshots * for the given dataset. Given these constraints, we can simply pass * the name on to the ioctl() call. There is still an unlikely race * condition where the user has taken a snapshot since we verified that * this was the most recent. */ if ((ret = ioctl(zfs_fd, ZFS_IOC_ROLLBACK, &zc)) != 0) { switch (errno) { case EPERM: /* * The user doesn't have permission to rollback the * given dataset. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot rollback '%s': " "permission denied"), zhp->zfs_name); break; case EDQUOT: case ENOSPC: /* * The parent dataset doesn't have enough space to * rollback to the last snapshot. */ { char parent[ZFS_MAXNAMELEN]; (void) parent_name(zhp->zfs_name, parent, sizeof (parent)); zfs_error(dgettext(TEXT_DOMAIN, "cannot " "rollback '%s': out of space"), parent); } break; case ENOENT: /* * The dataset doesn't exist. This shouldn't happen * except in race conditions. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot rollback '%s': " "no such %s"), zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; case EBUSY: /* * The filesystem is busy. This should have been caught * by the caller before getting here, but there may be * an unexpected problem. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot rollback '%s': " "%s is busy"), zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; default: zfs_baderror(errno); } } else if (zhp->zfs_type == ZFS_TYPE_VOLUME) { ret = zvol_create_link(zhp->zfs_name); } return (ret); } /* * Given a dataset, rollback to a specific snapshot, discarding any * data changes since then and making it the active dataset. * * Any snapshots more recent than the target are destroyed, along with * their dependents. */ int zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, int flag) { int ret; rollback_data_t cb = { 0 }; prop_changelist_t *clp; /* * Unmount all dependendents of the dataset and the dataset itself. * The list we need to gather is the same as for doing rename */ clp = changelist_gather(zhp, ZFS_PROP_NAME, flag ? MS_FORCE: 0); if (clp == NULL) return (-1); if ((ret = changelist_prefix(clp)) != 0) goto out; /* * Destroy all recent snapshots and its dependends. */ cb.cb_target = snap->zfs_name; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); cb.cb_clp = clp; (void) zfs_iter_children(zhp, rollback_destroy, &cb); if ((ret = cb.cb_error) != 0) { (void) changelist_postfix(clp); goto out; } /* * Now that we have verified that the snapshot is the latest, * rollback to the given snapshot. */ ret = do_rollback(zhp); if (ret != 0) { (void) changelist_postfix(clp); goto out; } /* * We only want to re-mount the filesystem if it was mounted in the * first place. */ ret = changelist_postfix(clp); out: changelist_free(clp); return (ret); } /* * Iterate over all dependents for a given dataset. This includes both * hierarchical dependents (children) and data dependents (snapshots and * clones). The bulk of the processing occurs in get_dependents() in * libzfs_graph.c. */ int zfs_iter_dependents(zfs_handle_t *zhp, zfs_iter_f func, void *data) { char **dependents; size_t count; int i; zfs_handle_t *child; int ret = 0; dependents = get_dependents(zhp->zfs_name, &count); for (i = 0; i < count; i++) { if ((child = make_dataset_handle(dependents[i])) == NULL) continue; if ((ret = func(child, data)) != 0) break; } for (i = 0; i < count; i++) free(dependents[i]); free(dependents); return (ret); } /* * Renames the given dataset. */ int zfs_rename(zfs_handle_t *zhp, const char *target) { int ret; zfs_cmd_t zc = { 0 }; char reason[64]; char *delim; prop_changelist_t *cl; char parent[ZFS_MAXNAMELEN]; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_prop_value, target, sizeof (zc.zc_prop_value)); /* if we have the same exact name, just return success */ if (strcmp(zhp->zfs_name, target) == 0) return (0); /* * Make sure the target name is valid */ if (!zfs_validate_name(target, zhp->zfs_type, reason, sizeof (reason))) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create '%s': %s in %s name"), target, reason, zfs_type_to_name(zhp->zfs_type)); return (-1); } if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { if ((delim = strchr(target, '@')) == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "cannot rename to '%s': not a snapshot"), target); return (-1); } /* * Make sure we're renaming within the same dataset. */ if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '@') { zfs_error(dgettext(TEXT_DOMAIN, "cannot rename to '%s': snapshots must be part " "of same dataset"), target); return (-1); } (void) strncpy(parent, target, delim - target); parent[delim - target] = '\0'; } else { /* validate parents */ if (check_parents(target, zhp->zfs_type) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* make sure we're in the same pool */ verify((delim = strchr(target, '/')) != NULL); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '/') { zfs_error(dgettext(TEXT_DOMAIN, "cannot rename to '%s': " "datasets must be within same pool"), target); return (-1); } } if (getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot rename %s, " "dataset is used in a non-global zone"), zhp->zfs_name); return (-1); } if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0)) == NULL) return (1); if (changelist_haszonedchild(cl)) { zfs_error(dgettext(TEXT_DOMAIN, "cannot rename '%s': child dataset with inherited " "mountpoint is used in a non-global zone"), zhp->zfs_name); ret = -1; goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; if (zhp->zfs_volblocksize != 0) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; if ((ret = ioctl(zfs_fd, ZFS_IOC_RENAME, &zc)) != 0) { switch (errno) { case EPERM: /* * The user doesn't have permission to rename the * given dataset. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot rename '%s': " "permission denied"), zhp->zfs_name); break; case EDQUOT: case ENOSPC: /* * Not enough space in the parent dataset. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot " "rename '%s': not enough space in '%s'"), zhp->zfs_name, parent); break; case ENOENT: /* * The destination doesn't exist. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot rename '%s' " "to '%s': destination doesn't exist"), zhp->zfs_name, target); break; case EEXIST: /* * The destination already exists. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot rename '%s' " "to '%s': destination already exists"), zhp->zfs_name, target); break; case EBUSY: /* * The filesystem is busy. This should have been caught * by the caller before getting here, but there may be * an unexpected problem. */ zfs_error(dgettext(TEXT_DOMAIN, "cannot rename '%s': " "%s is busy"), zhp->zfs_name, zfs_type_to_name(zhp->zfs_type)); break; default: zfs_baderror(errno); } /* * On failure, we still want to remount any filesystems that * were previously mounted, so we don't alter the system state. */ (void) changelist_postfix(cl); } else { changelist_rename(cl, zfs_get_name(zhp), target); ret = changelist_postfix(cl); } error: changelist_free(cl); return (ret); } /* * Given a zvol dataset, issue the ioctl to create the appropriate minor node, * poke devfsadm to create the /dev link, and then wait for the link to appear. */ int zvol_create_link(const char *dataset) { zfs_cmd_t zc = { 0 }; di_devlink_handle_t hdl; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); /* * Issue the appropriate ioctl. */ if (ioctl(zfs_fd, ZFS_IOC_CREATE_MINOR, &zc) != 0) { switch (errno) { case EPERM: zfs_error(dgettext(TEXT_DOMAIN, "cannot create " "device links for '%s': permission denied"), dataset); break; case EEXIST: /* * Silently ignore the case where the link already * exists. This allows 'zfs volinit' to be run multiple * times without errors. */ return (0); default: zfs_baderror(errno); } return (-1); } /* * Call devfsadm and wait for the links to magically appear. */ if ((hdl = di_devlink_init(ZFS_DRIVER, DI_MAKE_LINK)) == NULL) { zfs_error(dgettext(TEXT_DOMAIN, "cannot create device links for '%s'"), dataset); (void) ioctl(zfs_fd, ZFS_IOC_REMOVE_MINOR, &zc); return (-1); } else { (void) di_devlink_fini(&hdl); } return (0); } /* * Remove a minor node for the given zvol and the associated /dev links. */ int zvol_remove_link(const char *dataset) { zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); if (ioctl(zfs_fd, ZFS_IOC_REMOVE_MINOR, &zc) != 0) { switch (errno) { case EPERM: zfs_error(dgettext(TEXT_DOMAIN, "cannot remove " "device links for '%s': permission denied"), dataset); break; case EBUSY: zfs_error(dgettext(TEXT_DOMAIN, "cannot remove " "device links for '%s': volume is in use"), dataset); break; case ENXIO: /* * Silently ignore the case where the link no longer * exists, so that 'zfs volfini' can be run multiple * times without errors. */ return (0); default: zfs_baderror(errno); } return (-1); } return (0); }