/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * Copyright 2018, Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include "Pcontrol.h" #include "Pstack.h" static uchar_t int_syscall_instr[] = { 0xCD, T_SYSCALLINT }; const char * Ppltdest(struct ps_prochandle *P, uintptr_t pltaddr) { map_info_t *mp = Paddr2mptr(P, pltaddr); uintptr_t r_addr; file_info_t *fp; Elf32_Rel r; size_t i; if (mp == NULL || (fp = mp->map_file) == NULL || fp->file_plt_base == 0 || pltaddr - fp->file_plt_base >= fp->file_plt_size) { errno = EINVAL; return (NULL); } i = (pltaddr - fp->file_plt_base) / M_PLT_ENTSIZE - M_PLT_XNumber; r_addr = fp->file_jmp_rel + i * sizeof (r); if (Pread(P, &r, sizeof (r), r_addr) == sizeof (r) && (i = ELF32_R_SYM(r.r_info)) < fp->file_dynsym.sym_symn) { Elf_Data *data = fp->file_dynsym.sym_data_pri; Elf32_Sym *symp = &(((Elf32_Sym *)data->d_buf)[i]); return (fp->file_dynsym.sym_strs + symp->st_name); } return (NULL); } int Pissyscall(struct ps_prochandle *P, uintptr_t addr) { uchar_t instr[16]; if (Pread(P, instr, sizeof (int_syscall_instr), addr) != sizeof (int_syscall_instr)) return (0); if (memcmp(instr, int_syscall_instr, sizeof (int_syscall_instr)) == 0) return (1); return (0); } int Pissyscall_prev(struct ps_prochandle *P, uintptr_t addr, uintptr_t *dst) { int ret; if (ret = Pissyscall(P, addr - sizeof (int_syscall_instr))) { if (dst) *dst = addr - sizeof (int_syscall_instr); return (ret); } return (0); } /* ARGSUSED */ int Pissyscall_text(struct ps_prochandle *P, const void *buf, size_t buflen) { if (buflen < sizeof (int_syscall_instr)) return (0); if (memcmp(buf, int_syscall_instr, sizeof (int_syscall_instr)) == 0) return (1); return (0); } #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ static boolean_t argcount_ctf(struct ps_prochandle *P, long pc, uint_t *countp) { GElf_Sym sym; ctf_file_t *ctfp; ctf_funcinfo_t finfo; prsyminfo_t si = { 0 }; if (Pxlookup_by_addr(P, pc, NULL, 0, &sym, &si) != 0) return (B_FALSE); if ((ctfp = Paddr_to_ctf(P, pc)) == NULL) return (B_FALSE); if (ctf_func_info(ctfp, si.prs_id, &finfo) == CTF_ERR) return (B_FALSE); *countp = finfo.ctc_argc; return (B_TRUE); } /* * Given a return address, determine the likely number of arguments * that were pushed on the stack prior to its execution. We do this by * expecting that a typical call sequence consists of pushing arguments on * the stack, executing a call instruction, and then performing an add * on %esp to restore it to the value prior to pushing the arguments for * the call. We attempt to detect such an add, and divide the addend * by the size of a word to determine the number of pushed arguments. * * If we do not find such an add, this does not necessarily imply that the * function took no arguments. It is not possible to reliably detect such a * void function because hand-coded assembler does not always perform an add * to %esp immediately after the "call" instruction (eg. _sys_call()). * Because of this, we default to returning MIN(sz, TR_ARG_MAX) instead of 0 * in the absence of an add to %esp. */ static ulong_t argcount(struct ps_prochandle *P, long pc, ssize_t sz) { uchar_t instr[6]; ulong_t count, max; max = MIN(sz / sizeof (long), TR_ARG_MAX); /* * Read the instruction at the return location. */ if (Pread(P, instr, sizeof (instr), pc) != sizeof (instr) || instr[1] != 0xc4) return (max); switch (instr[0]) { case 0x81: /* count is a longword */ count = instr[2]+(instr[3]<<8)+(instr[4]<<16)+(instr[5]<<24); break; case 0x83: /* count is a byte */ count = instr[2]; break; default: return (max); } count /= sizeof (long); return (MIN(count, max)); } static void ucontext_n_to_prgregs(const ucontext_t *src, prgregset_t dst) { (void) memcpy(dst, src->uc_mcontext.gregs, sizeof (gregset_t)); } int Pstack_iter(struct ps_prochandle *P, const prgregset_t regs, proc_stack_f *func, void *arg) { prgreg_t *prevfp = NULL; uint_t pfpsize = 0; int nfp = 0; struct { long fp; long pc; long args[32]; } frame; uint_t argc; ssize_t sz; prgregset_t gregs; prgreg_t fp, pfp; prgreg_t pc, ctf_pc; int rv; /* * Type definition for a structure corresponding to an IA32 * signal frame. Refer to the comments in Pstack.c for more info */ typedef struct { long fp; long pc; int signo; ucontext_t *ucp; siginfo_t *sip; } sf_t; uclist_t ucl; ucontext_t uc; uintptr_t uc_addr; init_uclist(&ucl, P); (void) memcpy(gregs, regs, sizeof (gregs)); fp = regs[R_FP]; ctf_pc = pc = regs[R_PC]; while (fp != 0 || pc != 0) { if (stack_loop(fp, &prevfp, &nfp, &pfpsize)) break; if (fp != 0 && (sz = Pread(P, &frame, sizeof (frame), (uintptr_t)fp) >= (ssize_t)(2* sizeof (long)))) { /* * One more trick for signal frames: the kernel sets * the return pc of the signal frame to 0xffffffff on * Intel IA32, so argcount won't work. */ if (frame.pc != -1L) { sz -= 2* sizeof (long); if (argcount_ctf(P, ctf_pc, &argc)) { argc = MIN(argc, 32); } else { argc = argcount(P, (long)frame.pc, sz); } } else argc = 3; /* sighandler(signo, sip, ucp) */ } else { (void) memset(&frame, 0, sizeof (frame)); argc = 0; } ctf_pc = frame.pc; gregs[R_FP] = fp; gregs[R_PC] = pc; if ((rv = func(arg, gregs, argc, frame.args)) != 0) break; /* * In order to allow iteration over java frames (which can have * their own frame pointers), we allow the iterator to change * the contents of gregs. If we detect a change, then we assume * that the new values point to the next frame. */ if (gregs[R_FP] != fp || gregs[R_PC] != pc) { fp = gregs[R_FP]; pc = gregs[R_PC]; continue; } pfp = fp; fp = frame.fp; pc = frame.pc; if (find_uclink(&ucl, pfp + sizeof (sf_t))) uc_addr = pfp + sizeof (sf_t); else uc_addr = (uintptr_t)NULL; if (uc_addr != (uintptr_t)NULL && Pread(P, &uc, sizeof (uc), uc_addr) == sizeof (uc)) { ucontext_n_to_prgregs(&uc, gregs); fp = gregs[R_FP]; pc = gregs[R_PC]; } } if (prevfp) free(prevfp); free_uclist(&ucl); return (rv); } uintptr_t Psyscall_setup(struct ps_prochandle *P, int nargs, int sysindex, uintptr_t sp) { sp -= sizeof (int) * (nargs+2); /* space for arg list + CALL parms */ P->status.pr_lwp.pr_reg[EAX] = sysindex; P->status.pr_lwp.pr_reg[R_SP] = sp; P->status.pr_lwp.pr_reg[R_PC] = P->sysaddr; return (sp); } int Psyscall_copyinargs(struct ps_prochandle *P, int nargs, argdes_t *argp, uintptr_t ap) { int32_t arglist[MAXARGS+2]; int i; argdes_t *adp; for (i = 0, adp = argp; i < nargs; i++, adp++) arglist[1 + i] = (int32_t)adp->arg_value; arglist[0] = P->status.pr_lwp.pr_reg[R_PC]; if (Pwrite(P, &arglist[0], sizeof (int) * (nargs+1), (uintptr_t)ap) != sizeof (int) * (nargs+1)) return (-1); return (0); } int Psyscall_copyoutargs(struct ps_prochandle *P, int nargs, argdes_t *argp, uintptr_t ap) { uint32_t arglist[MAXARGS + 2]; int i; argdes_t *adp; if (Pread(P, &arglist[0], sizeof (int) * (nargs+1), (uintptr_t)ap) != sizeof (int) * (nargs+1)) return (-1); for (i = 0, adp = argp; i < nargs; i++, adp++) adp->arg_value = arglist[i]; return (0); }