/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #if defined(__amd64) #include #include #endif #include "P32ton.h" dev_t prexpldev(dev32_t d) { if (d != (dev32_t)-1L) return (makedev((d >> NBITSMINOR32) & MAXMAJ32, d & MAXMIN32)); return ((dev_t)PRNODEV); } dev32_t prcmpldev(dev_t d) { #ifdef _LP64 if (d == PRNODEV) { return (PRNODEV32); } else { major_t maj = major(d); minor_t min = minor(d); if (maj == (major_t)PRNODEV || min == (minor_t)PRNODEV) return (PRNODEV32); return ((dev32_t)((maj << NBITSMINOR32) | min)); } #else return ((dev32_t)d); #endif } #ifdef _LP64 void timestruc_32_to_n(const timestruc32_t *src, timestruc_t *dst) { dst->tv_sec = (time_t)(uint32_t)src->tv_sec; dst->tv_nsec = (long)(uint32_t)src->tv_nsec; } void stack_32_to_n(const stack32_t *src, stack_t *dst) { dst->ss_sp = (caddr_t)(uintptr_t)src->ss_sp; dst->ss_size = src->ss_size; dst->ss_flags = src->ss_flags; } void sigaction_32_to_n(const struct sigaction32 *src, struct sigaction *dst) { (void) memset(dst, 0, sizeof (struct sigaction)); dst->sa_flags = src->sa_flags; dst->sa_handler = (void (*)())(uintptr_t)src->sa_handler; (void) memcpy(&dst->sa_mask, &src->sa_mask, sizeof (dst->sa_mask)); } void siginfo_32_to_n(const siginfo32_t *src, siginfo_t *dst) { (void) memset(dst, 0, sizeof (siginfo_t)); /* * The absolute minimum content is si_signo and si_code. */ dst->si_signo = src->si_signo; if ((dst->si_code = src->si_code) == SI_NOINFO) return; /* * A siginfo generated by user level is structured * differently from one generated by the kernel. */ if (SI_FROMUSER(src)) { dst->si_pid = src->si_pid; dst->si_ctid = src->si_ctid; dst->si_zoneid = src->si_zoneid; dst->si_uid = src->si_uid; if (SI_CANQUEUE(src->si_code)) { dst->si_value.sival_int = (long)(uint32_t)src->si_value.sival_int; } return; } dst->si_errno = src->si_errno; switch (src->si_signo) { default: dst->si_pid = src->si_pid; dst->si_ctid = src->si_ctid; dst->si_zoneid = src->si_zoneid; dst->si_uid = src->si_uid; dst->si_value.sival_int = (long)(uint32_t)src->si_value.sival_int; break; case SIGCLD: dst->si_pid = src->si_pid; dst->si_ctid = src->si_ctid; dst->si_zoneid = src->si_zoneid; dst->si_status = src->si_status; dst->si_stime = src->si_stime; dst->si_utime = src->si_utime; break; case SIGSEGV: case SIGBUS: case SIGILL: case SIGTRAP: case SIGFPE: case SIGEMT: dst->si_addr = (void *)(uintptr_t)src->si_addr; dst->si_trapno = src->si_trapno; dst->si_pc = (void *)(uintptr_t)src->si_pc; break; case SIGPOLL: case SIGXFSZ: dst->si_fd = src->si_fd; dst->si_band = src->si_band; break; case SIGPROF: dst->si_faddr = (void *)(uintptr_t)src->si_faddr; dst->si_tstamp.tv_sec = src->si_tstamp.tv_sec; dst->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec; dst->si_syscall = src->si_syscall; dst->si_nsysarg = src->si_nsysarg; dst->si_fault = src->si_fault; break; } } void auxv_32_to_n(const auxv32_t *src, auxv_t *dst) { /* * This is a little sketchy: we have three types of values stored * in an auxv (long, void *, and void (*)()) so the only sign-extension * issue is with the long. We could case on all possible AT_* types, * but this seems silly since currently none of the types which use * a_un.a_val actually use negative numbers as a value. For this * reason, it seems simpler to just do an unsigned expansion for now. */ dst->a_type = src->a_type; dst->a_un.a_ptr = (void *)(uintptr_t)src->a_un.a_ptr; } #if defined(__sparc) void rwindow_32_to_n(const struct rwindow32 *src, struct rwindow *dst) { int i; for (i = 0; i < 8; i++) { dst->rw_local[i] = (uint64_t)(uint32_t)src->rw_local[i]; dst->rw_in[i] = (uint64_t)(uint32_t)src->rw_in[i]; } } void gwindows_32_to_n(const gwindows32_t *src, gwindows_t *dst) { int i; (void) memset(dst, 0, sizeof (gwindows_t)); dst->wbcnt = src->wbcnt; for (i = 0; i < src->wbcnt; i++) { if (src->spbuf[i] != 0) { rwindow_32_to_n(&src->wbuf[i], &dst->wbuf[i]); dst->spbuf[i] = (greg_t *)(uintptr_t)src->spbuf[i]; } } } #endif /* __sparc */ void prgregset_32_to_n(const prgreg32_t *src, prgreg_t *dst) { #ifdef __amd64 (void) memset(dst, 0, NPRGREG * sizeof (prgreg_t)); dst[REG_GS] = (uint32_t)src[GS]; dst[REG_FS] = (uint32_t)src[FS]; dst[REG_DS] = (uint32_t)src[DS]; dst[REG_ES] = (uint32_t)src[ES]; dst[REG_RDI] = (uint32_t)src[EDI]; dst[REG_RSI] = (uint32_t)src[ESI]; dst[REG_RBP] = (uint32_t)src[EBP]; dst[REG_RBX] = (uint32_t)src[EBX]; dst[REG_RDX] = (uint32_t)src[EDX]; dst[REG_RCX] = (uint32_t)src[ECX]; dst[REG_RAX] = (uint32_t)src[EAX]; dst[REG_TRAPNO] = (uint32_t)src[TRAPNO]; dst[REG_ERR] = (uint32_t)src[ERR]; dst[REG_RIP] = (uint32_t)src[EIP]; dst[REG_CS] = (uint32_t)src[CS]; dst[REG_RFL] = (uint32_t)src[EFL]; dst[REG_RSP] = (uint32_t)src[UESP]; dst[REG_SS] = (uint32_t)src[SS]; #else int i; for (i = 0; i < NPRGREG; i++) dst[i] = (prgreg_t)(uint32_t)src[i]; #endif } void prfpregset_32_to_n(const prfpregset32_t *src, prfpregset_t *dst) { #if defined(__sparc) int i; (void) memset(dst, 0, sizeof (prfpregset_t)); for (i = 0; i < 32; i++) dst->pr_fr.pr_regs[i] = src->pr_fr.pr_regs[i]; /* * We deliberately do not convert pr_qcnt or pr_q because it is a long- * standing /proc bug that this information is not exported, and another * bug further caused these values to be returned as uninitialized data * when the 64-bit kernel exported them for a 32-bit process with en=0. */ dst->pr_filler = src->pr_filler; dst->pr_fsr = src->pr_fsr; dst->pr_q_entrysize = src->pr_q_entrysize; dst->pr_en = src->pr_en; #elif defined(__amd64) struct _fpstate32 *src32 = (struct _fpstate32 *)src; struct fpchip_state *dst64 = (struct fpchip_state *)dst; int i; (void) memcpy(dst64->st, src32->_st, sizeof (src32->_st)); (void) memcpy(dst64->xmm, src32->xmm, sizeof (src32->xmm)); (void) memset((caddr_t)dst64->xmm + sizeof (src32->xmm), 0, sizeof (dst64->xmm) - sizeof (src32->xmm)); dst64->cw = (uint16_t)src32->cw; dst64->sw = (uint16_t)src32->sw; dst64->fop = 0; dst64->rip = src32->ipoff; dst64->rdp = src32->dataoff; dst64->mxcsr = src32->mxcsr; dst64->mxcsr_mask = 0; dst64->status = src32->status; dst64->xstatus = src32->xstatus; /* * Converting from the tag field to the compressed fctw is easy. * If the two tag bits are 3, then the register is empty and we * clear the bit in fctw. Otherwise we set the bit. */ dst64->fctw = 0; for (i = 0; i < 8; i++) if (((src32->tag >> (i * 2)) & 3) != 3) dst64->fctw |= 1 << i; #else #error "unrecognized ISA" #endif } void lwpstatus_32_to_n(const lwpstatus32_t *src, lwpstatus_t *dst) { int i; dst->pr_flags = src->pr_flags; dst->pr_lwpid = src->pr_lwpid; dst->pr_why = src->pr_why; dst->pr_what = src->pr_what; dst->pr_cursig = src->pr_cursig; siginfo_32_to_n(&src->pr_info, &dst->pr_info); dst->pr_lwppend = src->pr_lwppend; dst->pr_lwphold = src->pr_lwphold; sigaction_32_to_n(&src->pr_action, &dst->pr_action); stack_32_to_n(&src->pr_altstack, &dst->pr_altstack); dst->pr_oldcontext = src->pr_oldcontext; dst->pr_syscall = src->pr_syscall; dst->pr_nsysarg = src->pr_nsysarg; dst->pr_errno = src->pr_errno; for (i = 0; i < PRSYSARGS; i++) dst->pr_sysarg[i] = (long)(uint32_t)src->pr_sysarg[i]; dst->pr_rval1 = (long)(uint32_t)src->pr_rval1; dst->pr_rval2 = (long)(uint32_t)src->pr_rval2; (void) memcpy(&dst->pr_clname[0], &src->pr_clname[0], PRCLSZ); timestruc_32_to_n(&src->pr_tstamp, &dst->pr_tstamp); dst->pr_ustack = src->pr_ustack; dst->pr_instr = src->pr_instr; prgregset_32_to_n(src->pr_reg, dst->pr_reg); prfpregset_32_to_n(&src->pr_fpreg, &dst->pr_fpreg); } void pstatus_32_to_n(const pstatus32_t *src, pstatus_t *dst) { dst->pr_flags = src->pr_flags; dst->pr_nlwp = src->pr_nlwp; dst->pr_nzomb = src->pr_nzomb; dst->pr_pid = src->pr_pid; dst->pr_ppid = src->pr_ppid; dst->pr_pgid = src->pr_pgid; dst->pr_sid = src->pr_sid; dst->pr_taskid = src->pr_taskid; dst->pr_projid = src->pr_projid; dst->pr_zoneid = src->pr_zoneid; dst->pr_aslwpid = src->pr_aslwpid; dst->pr_agentid = src->pr_agentid; dst->pr_sigpend = src->pr_sigpend; dst->pr_brkbase = src->pr_brkbase; dst->pr_brksize = src->pr_brksize; dst->pr_stkbase = src->pr_stkbase; dst->pr_stksize = src->pr_stksize; timestruc_32_to_n(&src->pr_utime, &dst->pr_utime); timestruc_32_to_n(&src->pr_stime, &dst->pr_stime); timestruc_32_to_n(&src->pr_cutime, &dst->pr_cutime); timestruc_32_to_n(&src->pr_cstime, &dst->pr_cstime); dst->pr_sigtrace = src->pr_sigtrace; dst->pr_flttrace = src->pr_flttrace; dst->pr_sysentry = src->pr_sysentry; dst->pr_sysexit = src->pr_sysexit; dst->pr_dmodel = src->pr_dmodel; lwpstatus_32_to_n(&src->pr_lwp, &dst->pr_lwp); } void lwpsinfo_32_to_n(const lwpsinfo32_t *src, lwpsinfo_t *dst) { dst->pr_flag = src->pr_flag; dst->pr_lwpid = src->pr_lwpid; dst->pr_addr = src->pr_addr; dst->pr_wchan = src->pr_wchan; dst->pr_stype = src->pr_stype; dst->pr_state = src->pr_state; dst->pr_sname = src->pr_sname; dst->pr_nice = src->pr_nice; dst->pr_syscall = src->pr_syscall; dst->pr_oldpri = src->pr_oldpri; dst->pr_cpu = src->pr_cpu; dst->pr_pri = src->pr_pri; dst->pr_pctcpu = src->pr_pctcpu; timestruc_32_to_n(&src->pr_start, &dst->pr_start); timestruc_32_to_n(&src->pr_time, &dst->pr_time); (void) memcpy(&dst->pr_clname[0], &src->pr_clname[0], PRCLSZ); (void) memcpy(&dst->pr_name[0], &src->pr_name[0], PRFNSZ); dst->pr_onpro = src->pr_onpro; dst->pr_bindpro = src->pr_bindpro; dst->pr_bindpset = src->pr_bindpset; dst->pr_lgrp = src->pr_lgrp; } void psinfo_32_to_n(const psinfo32_t *src, psinfo_t *dst) { dst->pr_flag = src->pr_flag; dst->pr_nlwp = src->pr_nlwp; dst->pr_nzomb = src->pr_nzomb; dst->pr_pid = src->pr_pid; dst->pr_pgid = src->pr_pgid; dst->pr_sid = src->pr_sid; dst->pr_taskid = src->pr_taskid; dst->pr_projid = src->pr_projid; dst->pr_zoneid = src->pr_zoneid; dst->pr_uid = src->pr_uid; dst->pr_euid = src->pr_euid; dst->pr_gid = src->pr_gid; dst->pr_egid = src->pr_egid; dst->pr_addr = src->pr_addr; dst->pr_size = src->pr_size; dst->pr_rssize = src->pr_rssize; dst->pr_ttydev = prexpldev(src->pr_ttydev); dst->pr_pctcpu = src->pr_pctcpu; dst->pr_pctmem = src->pr_pctmem; timestruc_32_to_n(&src->pr_start, &dst->pr_start); timestruc_32_to_n(&src->pr_time, &dst->pr_time); timestruc_32_to_n(&src->pr_ctime, &dst->pr_ctime); (void) memcpy(&dst->pr_fname[0], &src->pr_fname[0], PRFNSZ); (void) memcpy(&dst->pr_psargs[0], &src->pr_psargs[0], PRARGSZ); dst->pr_wstat = src->pr_wstat; dst->pr_argc = src->pr_argc; dst->pr_argv = src->pr_argv; dst->pr_envp = src->pr_envp; dst->pr_dmodel = src->pr_dmodel; lwpsinfo_32_to_n(&src->pr_lwp, &dst->pr_lwp); } void timestruc_n_to_32(const timestruc_t *src, timestruc32_t *dst) { dst->tv_sec = (time32_t)src->tv_sec; dst->tv_nsec = (int32_t)src->tv_nsec; } void stack_n_to_32(const stack_t *src, stack32_t *dst) { dst->ss_sp = (caddr32_t)(uintptr_t)src->ss_sp; dst->ss_size = src->ss_size; dst->ss_flags = src->ss_flags; } void sigaction_n_to_32(const struct sigaction *src, struct sigaction32 *dst) { (void) memset(dst, 0, sizeof (struct sigaction32)); dst->sa_flags = src->sa_flags; dst->sa_handler = (caddr32_t)(uintptr_t)src->sa_handler; (void) memcpy(&dst->sa_mask, &src->sa_mask, sizeof (dst->sa_mask)); } void siginfo_n_to_32(const siginfo_t *src, siginfo32_t *dst) { (void) memset(dst, 0, sizeof (siginfo32_t)); /* * The absolute minimum content is si_signo and si_code. */ dst->si_signo = src->si_signo; if ((dst->si_code = src->si_code) == SI_NOINFO) return; /* * A siginfo generated by user level is structured * differently from one generated by the kernel. */ if (SI_FROMUSER(src)) { dst->si_pid = src->si_pid; dst->si_ctid = src->si_ctid; dst->si_zoneid = src->si_zoneid; dst->si_uid = src->si_uid; if (SI_CANQUEUE(src->si_code)) { dst->si_value.sival_int = (int32_t)src->si_value.sival_int; } return; } dst->si_errno = src->si_errno; switch (src->si_signo) { default: dst->si_pid = src->si_pid; dst->si_ctid = src->si_ctid; dst->si_zoneid = src->si_zoneid; dst->si_uid = src->si_uid; dst->si_value.sival_int = (int32_t)src->si_value.sival_int; break; case SIGCLD: dst->si_pid = src->si_pid; dst->si_ctid = src->si_ctid; dst->si_zoneid = src->si_zoneid; dst->si_status = src->si_status; dst->si_stime = src->si_stime; dst->si_utime = src->si_utime; break; case SIGSEGV: case SIGBUS: case SIGILL: case SIGTRAP: case SIGFPE: case SIGEMT: dst->si_addr = (caddr32_t)(uintptr_t)src->si_addr; dst->si_trapno = src->si_trapno; dst->si_pc = (caddr32_t)(uintptr_t)src->si_pc; break; case SIGPOLL: case SIGXFSZ: dst->si_fd = src->si_fd; dst->si_band = src->si_band; break; case SIGPROF: dst->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr; dst->si_tstamp.tv_sec = src->si_tstamp.tv_sec; dst->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec; dst->si_syscall = src->si_syscall; dst->si_nsysarg = src->si_nsysarg; dst->si_fault = src->si_fault; break; } } void auxv_n_to_32(const auxv_t *src, auxv32_t *dst) { dst->a_type = src->a_type; dst->a_un.a_ptr = (caddr32_t)(uintptr_t)src->a_un.a_ptr; } void prgregset_n_to_32(const prgreg_t *src, prgreg32_t *dst) { #ifdef __amd64 (void) memset(dst, 0, NPRGREG32 * sizeof (prgreg32_t)); dst[GS] = src[REG_GS]; dst[FS] = src[REG_FS]; dst[DS] = src[REG_DS]; dst[ES] = src[REG_ES]; dst[EDI] = src[REG_RDI]; dst[ESI] = src[REG_RSI]; dst[EBP] = src[REG_RBP]; dst[EBX] = src[REG_RBX]; dst[EDX] = src[REG_RDX]; dst[ECX] = src[REG_RCX]; dst[EAX] = src[REG_RAX]; dst[TRAPNO] = src[REG_TRAPNO]; dst[ERR] = src[REG_ERR]; dst[EIP] = src[REG_RIP]; dst[CS] = src[REG_CS]; dst[EFL] = src[REG_RFL]; dst[UESP] = src[REG_RSP]; dst[SS] = src[REG_SS]; #else int i; for (i = 0; i < NPRGREG; i++) dst[i] = (prgreg32_t)src[i]; #endif } void prfpregset_n_to_32(const prfpregset_t *src, prfpregset32_t *dst) { #if defined(__sparc) int i; (void) memset(dst, 0, sizeof (prfpregset32_t)); for (i = 0; i < 32; i++) dst->pr_fr.pr_regs[i] = src->pr_fr.pr_regs[i]; dst->pr_filler = src->pr_filler; dst->pr_fsr = src->pr_fsr; dst->pr_q_entrysize = src->pr_q_entrysize; dst->pr_en = src->pr_en; #elif defined(__amd64) struct _fpstate32 *dst32 = (struct _fpstate32 *)dst; struct fpchip_state *src64 = (struct fpchip_state *)src; uint32_t top; int i; (void) memcpy(dst32->_st, src64->st, sizeof (dst32->_st)); (void) memcpy(dst32->xmm, src64->xmm, sizeof (dst32->xmm)); dst32->cw = src64->cw; dst32->sw = src64->sw; dst32->ipoff = (unsigned int)src64->rip; dst32->cssel = 0; dst32->dataoff = (unsigned int)src64->rdp; dst32->datasel = 0; dst32->status = src64->status; dst32->mxcsr = src64->mxcsr; dst32->xstatus = src64->xstatus; /* * AMD64 stores the tag in a compressed form. It is * necessary to extract the original 2-bit tag value. * See AMD64 Architecture Programmer's Manual Volume 2: * System Programming, Chapter 11. */ top = (src64->sw & FPS_TOP) >> 11; dst32->tag = 0; for (i = 0; i < 8; i++) { /* * Recall that we need to use the current TOP-of-stack value to * associate the _st[] index back to a physical register number, * since tag word indices are physical register numbers. Then * to get the tag value, we shift over two bits for each tag * index, and then grab the bottom two bits. */ uint_t tag_index = (i + top) & 7; uint_t tag_fctw = (src64->fctw >> tag_index) & 1; uint_t tag_value; uint_t exp; /* * Union for overlaying _fpreg structure on to quad-precision * floating-point value (long double). */ union { struct _fpreg reg; long double ld; } fpru; fpru.ld = src64->st[i].__fpr_pad._q; exp = fpru.reg.exponent & 0x7fff; if (tag_fctw == 0) { tag_value = 3; /* empty */ } else if (exp == 0) { if (fpru.reg.significand[0] == 0 && fpru.reg.significand[1] == 0 && fpru.reg.significand[2] == 0 && fpru.reg.significand[3] == 0) tag_value = 1; /* zero */ else tag_value = 2; /* special: denormal */ } else if (exp == 0x7fff) { tag_value = 2; /* special: infinity or NaN */ } else if (fpru.reg.significand[3] & 0x8000) { tag_value = 0; /* valid */ } else { tag_value = 2; /* special: unnormal */ } dst32->tag |= tag_value << (tag_index * 2); } #else #error "unrecognized ISA" #endif } void lwpstatus_n_to_32(const lwpstatus_t *src, lwpstatus32_t *dst) { int i; dst->pr_flags = src->pr_flags; dst->pr_lwpid = src->pr_lwpid; dst->pr_why = src->pr_why; dst->pr_what = src->pr_what; dst->pr_cursig = src->pr_cursig; siginfo_n_to_32(&src->pr_info, &dst->pr_info); dst->pr_lwppend = src->pr_lwppend; dst->pr_lwphold = src->pr_lwphold; sigaction_n_to_32(&src->pr_action, &dst->pr_action); stack_n_to_32(&src->pr_altstack, &dst->pr_altstack); dst->pr_oldcontext = (caddr32_t)src->pr_oldcontext; dst->pr_syscall = src->pr_syscall; dst->pr_nsysarg = src->pr_nsysarg; dst->pr_errno = src->pr_errno; for (i = 0; i < PRSYSARGS; i++) dst->pr_sysarg[i] = (int32_t)src->pr_sysarg[i]; dst->pr_rval1 = (int32_t)src->pr_rval1; dst->pr_rval2 = (int32_t)src->pr_rval2; (void) memcpy(&dst->pr_clname[0], &src->pr_clname[0], PRCLSZ); timestruc_n_to_32(&src->pr_tstamp, &dst->pr_tstamp); dst->pr_ustack = (caddr32_t)src->pr_ustack; dst->pr_instr = src->pr_instr; prgregset_n_to_32(src->pr_reg, dst->pr_reg); prfpregset_n_to_32(&src->pr_fpreg, &dst->pr_fpreg); } void pstatus_n_to_32(const pstatus_t *src, pstatus32_t *dst) { dst->pr_flags = src->pr_flags; dst->pr_nlwp = src->pr_nlwp; dst->pr_nzomb = src->pr_nzomb; dst->pr_pid = (pid32_t)src->pr_pid; dst->pr_ppid = (pid32_t)src->pr_ppid; dst->pr_pgid = (pid32_t)src->pr_pgid; dst->pr_sid = (pid32_t)src->pr_sid; dst->pr_taskid = (id32_t)src->pr_taskid; dst->pr_projid = (id32_t)src->pr_projid; dst->pr_zoneid = (id32_t)src->pr_zoneid; dst->pr_aslwpid = (id32_t)src->pr_aslwpid; dst->pr_agentid = (id32_t)src->pr_agentid; dst->pr_sigpend = src->pr_sigpend; dst->pr_brkbase = (caddr32_t)src->pr_brkbase; dst->pr_brksize = (size32_t)src->pr_brksize; dst->pr_stkbase = (caddr32_t)src->pr_stkbase; dst->pr_stksize = (size32_t)src->pr_stksize; timestruc_n_to_32(&src->pr_utime, &dst->pr_utime); timestruc_n_to_32(&src->pr_stime, &dst->pr_stime); timestruc_n_to_32(&src->pr_cutime, &dst->pr_cutime); timestruc_n_to_32(&src->pr_cstime, &dst->pr_cstime); dst->pr_sigtrace = src->pr_sigtrace; dst->pr_flttrace = src->pr_flttrace; dst->pr_sysentry = src->pr_sysentry; dst->pr_sysexit = src->pr_sysexit; dst->pr_dmodel = src->pr_dmodel; lwpstatus_n_to_32(&src->pr_lwp, &dst->pr_lwp); } void lwpsinfo_n_to_32(const lwpsinfo_t *src, lwpsinfo32_t *dst) { dst->pr_flag = src->pr_flag; dst->pr_lwpid = (id32_t)src->pr_lwpid; dst->pr_addr = (caddr32_t)src->pr_addr; dst->pr_wchan = (caddr32_t)src->pr_wchan; dst->pr_stype = src->pr_stype; dst->pr_state = src->pr_state; dst->pr_sname = src->pr_sname; dst->pr_nice = src->pr_nice; dst->pr_syscall = src->pr_syscall; dst->pr_oldpri = src->pr_oldpri; dst->pr_cpu = src->pr_cpu; dst->pr_pri = src->pr_pri; dst->pr_pctcpu = src->pr_pctcpu; timestruc_n_to_32(&src->pr_start, &dst->pr_start); timestruc_n_to_32(&src->pr_time, &dst->pr_time); (void) memcpy(&dst->pr_clname[0], &src->pr_clname[0], PRCLSZ); (void) memcpy(&dst->pr_name[0], &src->pr_name[0], PRFNSZ); dst->pr_onpro = src->pr_onpro; dst->pr_bindpro = src->pr_bindpro; dst->pr_bindpset = src->pr_bindpset; dst->pr_lgrp = src->pr_lgrp; } void psinfo_n_to_32(const psinfo_t *src, psinfo32_t *dst) { dst->pr_flag = src->pr_flag; dst->pr_nlwp = src->pr_nlwp; dst->pr_nzomb = src->pr_nzomb; dst->pr_pid = (pid32_t)src->pr_pid; dst->pr_pgid = (pid32_t)src->pr_pgid; dst->pr_sid = (pid32_t)src->pr_sid; dst->pr_taskid = (id32_t)src->pr_taskid; dst->pr_projid = (id32_t)src->pr_projid; dst->pr_zoneid = (id32_t)src->pr_zoneid; dst->pr_uid = (uid32_t)src->pr_uid; dst->pr_euid = (uid32_t)src->pr_euid; dst->pr_gid = (gid32_t)src->pr_gid; dst->pr_egid = (gid32_t)src->pr_egid; dst->pr_addr = (caddr32_t)src->pr_addr; dst->pr_size = (size32_t)src->pr_size; dst->pr_rssize = (size32_t)src->pr_rssize; dst->pr_ttydev = prcmpldev(src->pr_ttydev); dst->pr_pctcpu = src->pr_pctcpu; dst->pr_pctmem = src->pr_pctmem; timestruc_n_to_32(&src->pr_start, &dst->pr_start); timestruc_n_to_32(&src->pr_time, &dst->pr_time); timestruc_n_to_32(&src->pr_ctime, &dst->pr_ctime); (void) memcpy(&dst->pr_fname[0], &src->pr_fname[0], PRFNSZ); (void) memcpy(&dst->pr_psargs[0], &src->pr_psargs[0], PRARGSZ); dst->pr_wstat = src->pr_wstat; dst->pr_argc = src->pr_argc; dst->pr_argv = (caddr32_t)src->pr_argv; dst->pr_envp = (caddr32_t)src->pr_envp; dst->pr_dmodel = src->pr_dmodel; lwpsinfo_n_to_32(&src->pr_lwp, &dst->pr_lwp); } #endif /* _LP64 */