/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak __tgamma = tgamma /* INDENT OFF */ /* * True gamma function * double tgamma(double x) * * Error: * ------ * Less that one ulp for both positive and negative arguments. * * Algorithm: * --------- * A: For negative argument * (1) gamma(-n or -inf) is NaN * (2) Underflow Threshold * (3) Reduction to gamma(1+x) * B: For x between 1 and 2 * C: For x between 0 and 1 * D: For x between 2 and 8 * E: Overflow thresold {see over.c} * F: For overflow_threshold >= x >= 8 * * Implementation details * ----------------------- * -pi * (A) For negative argument, use gamma(-x) = ------------------------. * (sin(pi*x)*gamma(1+x)) * * (1) gamma(-n or -inf) is NaN with invalid signal by SUSv3 spec. * (Ideally, gamma(-n) = 1/sinpi(n) = (-1)**(n+1) * inf.) * * (2) Underflow Threshold. For each precision, there is a value T * such that when x>T and when x is not an integer, gamma(-x) will * always underflow. A table of the underflow threshold value is given * below. For proof, see file "under.c". * * Precision underflow threshold T = * ---------------------------------------------------------------------- * single 41.000041962 = 41 + 11 ULP * (machine format) 4224000B * double 183.000000000000312639 = 183 + 11 ULP * (machine format) 4066E000 0000000B * quad 1774.0000000000000000000000000000017749370 = 1774 + 9 ULP * (machine format) 4009BB80000000000000000000000009 * ---------------------------------------------------------------------- * * (3) Reduction to gamma(1+x). * Because of (1) and (2), we need only consider non-integral x * such that 00, is: * Let k = int(x), z = x-k. * For z in (I) * k+1 * (-1) * gamma(-x) = ------------------- ; * kpsin(z)*gamma(1+x) * * otherwise, for z in (II), * k+1 * (-1) * gamma(-x) = ----------------------- ; * kpcos(0.5-z)*gamma(1+x) * * otherwise, for z in (III), * k+1 * (-1) * gamma(-x) = --------------------- . * kpsin(1-z)*gamma(1+x) * * Thus, the computation of gamma(-x) reduced to the computation of * gamma(1+x) and kpsin(), kpcos(). * * (B) For x between 1 and 2. We break [1,2] into three parts: * GT1 = [1.0000, 1.2845] * GT2 = [1.2844, 1.6374] * GT3 = [1.6373, 2.0000] * * For x in GTi, i=1,2,3, let * z1 = 1.134861805732790769689793935774652917006 * gz1 = gamma(z1) = 0.9382046279096824494097535615803269576988 * tz1 = gamma'(z1) = -0.3517214357852935791015625000000000000000 * * z2 = 1.461632144968362341262659542325721328468e+0000 * gz2 = gamma(z2) = 0.8856031944108887002788159005825887332080 * tz2 = gamma'(z2) = 0.00 * * z3 = 1.819773101100500601787868704921606996312e+0000 * gz3 = gamma(z3) = 0.9367814114636523216188468970808378497426 * tz3 = gamma'(z3) = 0.2805306315422058105468750000000000000000 * * and * y = x-zi ... for extra precision, write y = y.h + y.l * Then * gamma(x) = gzi + tzi*(y.h+y.l) + y*y*Ri(y), * = gzi.h + (tzi*y.h + ((tzi*y.l+gzi.l) + y*y*Ri(y))) * = gy.h + gy.l * where * (I) For double precision * * Ri(y) = Pi(y)/Qi(y), i=1,2,3; * * P1(y) = p1[0] + p1[1]*y + ... + p1[4]*y^4 * Q1(y) = q1[0] + q1[1]*y + ... + q1[5]*y^5 * * P2(y) = p2[0] + p2[1]*y + ... + p2[3]*y^3 * Q2(y) = q2[0] + q2[1]*y + ... + q2[6]*y^6 * * P3(y) = p3[0] + p3[1]*y + ... + p3[4]*y^4 * Q3(y) = q3[0] + q3[1]*y + ... + q3[5]*y^5 * * Remez precision of Ri(y): * |gamma(x)-(gzi+tzi*y) - y*y*Ri(y)| <= 2**-62.3 ... for i = 1 * <= 2**-59.4 ... for i = 2 * <= 2**-62.1 ... for i = 3 * * (II) For quad precision * * Ri(y) = Pi(y)/Qi(y), i=1,2,3; * * P1(y) = p1[0] + p1[1]*y + ... + p1[9]*y^9 * Q1(y) = q1[0] + q1[1]*y + ... + q1[8]*y^8 * * P2(y) = p2[0] + p2[1]*y + ... + p2[9]*y^9 * Q2(y) = q2[0] + q2[1]*y + ... + q2[9]*y^9 * * P3(y) = p3[0] + p3[1]*y + ... + p3[9]*y^9 * Q3(y) = q3[0] + q3[1]*y + ... + q3[9]*y^9 * * Remez precision of Ri(y): * |gamma(x)-(gzi+tzi*y) - y*y*Ri(y)| <= 2**-118.2 ... for i = 1 * <= 2**-126.8 ... for i = 2 * <= 2**-119.5 ... for i = 3 * * (III) For single precision * * Ri(y) = Pi(y), i=1,2,3; * * P1(y) = p1[0] + p1[1]*y + ... + p1[5]*y^5 * * P2(y) = p2[0] + p2[1]*y + ... + p2[5]*y^5 * * P3(y) = p3[0] + p3[1]*y + ... + p3[4]*y^4 * * Remez precision of Ri(y): * |gamma(x)-(gzi+tzi*y) - y*y*Ri(y)| <= 2**-30.8 ... for i = 1 * <= 2**-31.6 ... for i = 2 * <= 2**-29.5 ... for i = 3 * * Notes. (1) GTi and zi are choosen to balance the interval width and * minimize the distant between gamma(x) and the tangent line at * zi. In particular, we have * |gamma(x)-(gzi+tzi*(x-zi))| <= 0.01436... for x in [1,z2] * <= 0.01265... for x in [z2,2] * * (2) zi are slightly adjusted so that tzi=gamma'(zi) is very * close to a single precision value. * * Coefficents: Single precision * i= 1: * P1[0] = 7.09087253435088360271451613398019280077561279443e-0001 * P1[1] = -5.17229560788652108545141978238701790105241761089e-0001 * P1[2] = 5.23403394528150789405825222323770647162337764327e-0001 * P1[3] = -4.54586308717075010784041566069480411732634814899e-0001 * P1[4] = 4.20596490915239085459964590559256913498190955233e-0001 * P1[5] = -3.57307589712377520978332185838241458642142185789e-0001 * * i = 2: * p2[0] = 4.28486983980295198166056119223984284434264344578e-0001 * p2[1] = -1.30704539487709138528680121627899735386650103914e-0001 * p2[2] = 1.60856285038051955072861219352655851542955430871e-0001 * p2[3] = -9.22285161346010583774458802067371182158937943507e-0002 * p2[4] = 7.19240511767225260740890292605070595560626179357e-0002 * p2[5] = -4.88158265593355093703112238534484636193260459574e-0002 * * i = 3 * p3[0] = 3.82409531118807759081121479786092134814808872880e-0001 * p3[1] = 2.65309888180188647956400403013495759365167853426e-0002 * p3[2] = 8.06815109775079171923561169415370309376296739835e-0002 * p3[3] = -1.54821591666137613928840890835174351674007764799e-0002 * p3[4] = 1.76308239242717268530498313416899188157165183405e-0002 * * Coefficents: Double precision * i = 1: * p1[0] = 0.70908683619977797008004927192814648151397705078125000 * p1[1] = 1.71987061393048558089579513384356441668351720061e-0001 * p1[2] = -3.19273345791990970293320316122813960527705450671e-0002 * p1[3] = 8.36172645419110036267169600390549973563534476989e-0003 * p1[4] = 1.13745336648572838333152213474277971244629758101e-0003 * q1[0] = 1.0 * q1[1] = 9.71980217826032937526460731778472389791321968082e-0001 * q1[2] = -7.43576743326756176594084137256042653497087666030e-0002 * q1[3] = -1.19345944932265559769719470515102012246995255372e-0001 * q1[4] = 1.59913445751425002620935120470781382215050284762e-0002 * q1[5] = 1.12601136853374984566572691306402321911547550783e-0003 * i = 2: * p2[0] = 0.42848681585558601181418225678498856723308563232421875 * p2[1] = 6.53596762668970816023718845105667418483122103629e-0002 * p2[2] = -6.97280829631212931321050770925128264272768936731e-0003 * p2[3] = 6.46342359021981718947208605674813260166116632899e-0003 * q2[0] = 1.0 * q2[1] = 4.57572620560506047062553957454062012327519313936e-0001 * q2[2] = -2.52182594886075452859655003407796103083422572036e-0001 * q2[3] = -1.82970945407778594681348166040103197178711552827e-0002 * q2[4] = 2.43574726993169566475227642128830141304953840502e-0002 * q2[5] = -5.20390406466942525358645957564897411258667085501e-0003 * q2[6] = 4.79520251383279837635552431988023256031951133885e-0004 * i = 3: * p3[0] = 0.382409479734567459008331979930517263710498809814453125 * p3[1] = 1.42876048697668161599069814043449301572928034140e-0001 * p3[2] = 3.42157571052250536817923866013561760785748899071e-0003 * p3[3] = -5.01542621710067521405087887856991700987709272937e-0004 * p3[4] = 8.89285814866740910123834688163838287618332122670e-0004 * q3[0] = 1.0 * q3[1] = 3.04253086629444201002215640948957897906299633168e-0001 * q3[2] = -2.23162407379999477282555672834881213873185520006e-0001 * q3[3] = -1.05060867741952065921809811933670131427552903636e-0002 * q3[4] = 1.70511763916186982473301861980856352005926669320e-0002 * q3[5] = -2.12950201683609187927899416700094630764182477464e-0003 * * Note that all pi0 are exact in double, which is obtained by a * special Remez Algorithm. * * Coefficents: Quad precision * i = 1: * p1[0] = 0.709086836199777919037185741507610124611513720557 * p1[1] = 4.45754781206489035827915969367354835667391606951e-0001 * p1[2] = 3.21049298735832382311662273882632210062918153852e-0002 * p1[3] = -5.71296796342106617651765245858289197369688864350e-0003 * p1[4] = 6.04666892891998977081619174969855831606965352773e-0003 * p1[5] = 8.99106186996888711939627812174765258822658645168e-0004 * p1[6] = -6.96496846144407741431207008527018441810175568949e-0005 * p1[7] = 1.52597046118984020814225409300131445070213882429e-0005 * p1[8] = 5.68521076168495673844711465407432189190681541547e-0007 * p1[9] = 3.30749673519634895220582062520286565610418952979e-0008 * q1[0] = 1.0+0000 * q1[1] = 1.35806511721671070408570853537257079579490650668e+0000 * q1[2] = 2.97567810153429553405327140096063086994072952961e-0001 * q1[3] = -1.52956835982588571502954372821681851681118097870e-0001 * q1[4] = -2.88248519561420109768781615289082053597954521218e-0002 * q1[5] = 1.03475311719937405219789948456313936302378395955e-0002 * q1[6] = 4.12310203243891222368965360124391297374822742313e-0004 * q1[7] = -3.12653708152290867248931925120380729518332507388e-0004 * q1[8] = 2.36672170850409745237358105667757760527014332458e-0005 * * i = 2: * p2[0] = 0.428486815855585429730209907810650616737756697477 * p2[1] = 2.63622124067885222919192651151581541943362617352e-0001 * p2[2] = 3.85520683670028865731877276741390421744971446855e-0002 * p2[3] = 3.05065978278128549958897133190295325258023525862e-0003 * p2[4] = 2.48232934951723128892080415054084339152450445081e-0003 * p2[5] = 3.67092777065632360693313762221411547741550105407e-0004 * p2[6] = 3.81228045616085789674530902563145250532194518946e-0006 * p2[7] = 4.61677225867087554059531455133839175822537617677e-0006 * p2[8] = 2.18209052385703200438239200991201916609364872993e-0007 * p2[9] = 1.00490538985245846460006244065624754421022542454e-0008 * q2[0] = 1.0 * q2[1] = 9.20276350207639290567783725273128544224570775056e-0001 * q2[2] = -4.79533683654165107448020515733883781138947771495e-0003 * q2[3] = -1.24538337585899300494444600248687901947684291683e-0001 * q2[4] = 4.49866050763472358547524708431719114204535491412e-0003 * q2[5] = 7.20715455697920560621638325356292640604078591907e-0003 * q2[6] = -8.68513169029126780280798337091982780598228096116e-0004 * q2[7] = -1.25104431629401181525027098222745544809974229874e-0004 * q2[8] = 3.10558344839000038489191304550998047521253437464e-0005 * q2[9] = -1.76829227852852176018537139573609433652506765712e-0006 * * i = 3 * p3[0] = 0.3824094797345675048502747661075355640070439388902 * p3[1] = 3.42198093076618495415854906335908427159833377774e-0001 * p3[2] = 9.63828189500585568303961406863153237440702754858e-0002 * p3[3] = 8.76069421042696384852462044188520252156846768667e-0003 * p3[4] = 1.86477890389161491224872014149309015261897537488e-0003 * p3[5] = 8.16871354540309895879974742853701311541286944191e-0004 * p3[6] = 6.83783483674600322518695090864659381650125625216e-0005 * p3[7] = -1.10168269719261574708565935172719209272190828456e-0006 * p3[8] = 9.66243228508380420159234853278906717065629721016e-0007 * p3[9] = 2.31858885579177250541163820671121664974334728142e-0008 * q3[0] = 1.0 * q3[1] = 8.25479821168813634632437430090376252512793067339e-0001 * q3[2] = -1.62251363073937769739639623669295110346015576320e-0002 * q3[3] = -1.10621286905916732758745130629426559691187579852e-0001 * q3[4] = 3.48309693970985612644446415789230015515365291459e-0003 * q3[5] = 6.73553737487488333032431261131289672347043401328e-0003 * q3[6] = -7.63222008393372630162743587811004613050245128051e-0004 * q3[7] = -1.35792670669190631476784768961953711773073251336e-0004 * q3[8] = 3.19610150954223587006220730065608156460205690618e-0005 * q3[9] = -1.82096553862822346610109522015129585693354348322e-0006 * * (C) For x between 0 and 1. * Let P stand for the number of significant bits in the working precision. * -P 1 * (1)For 0 <= x <= 2 , gamma(x) is computed by --- rounded to nearest. * x * The error is bound by 0.739 ulp(gamma(x)) in IEEE double precision. * Proof. * 1 2 * Since -------- ~ x + 0.577...*x - ..., we have, for small x, * gamma(x) * 1 1 * ----------- < gamma(x) < --- and * x(1+0.578x) x * 1 1 1 * 0 < --- - gamma(x) <= --- - ----------- < 0.578 * x x x(1+0.578x) * 1 1 -P * The error is thus bounded by --- ulp(---) + 0.578. Since x <= 2 , * 2 x * 1 P 1 P 1 * --- >= 2 , ulp(---) >= ulp(2 ) >= 2. Thus 0.578=0.289*2<=0.289ulp(-) * x x x * Thus * 1 1 * | gamma(x) - [---] rounded | <= (0.5+0.289)*ulp(---). * x x * -P 1 * Note that for x<= 2 , it is easy to see that ulp(---)=ulp(gamma(x)) * x * n 1 * except only when x = 2 , (n<= -53). In such cases, --- is exact * x * and therefore the error is bounded by * 1 * 0.298*ulp(---) = 0.298*2*ulp(gamma(x)) = 0.578ulp(gamma(x)). * x * Thus we conclude that the error in gamma is less than 0.739 ulp. * * (2)Otherwise, for x in GTi-1 (see B), let y = x-(zi-1). From (B) we obtain * gamma(1+x) * gamma(1+x) = gy.h + gy.l, then compute gamma(x) by -----------. * x * gy.h * Implementaion note. Write x = x.h+x.l, and Let th = ----- chopped to * x * 20 bits, then * gy.h+gy.l * gamma(x) = th + (---------- - th ) * x * 1 * = th + ---*(gy.h-th*x.h+gy.l-th*x.l) * x * * (D) For x between 2 and 8. Let n = 1+x chopped to an integer. Then * * gamma(x)=(x-1)*(x-2)*...*(x-n)*gamma(x-n) * * Since x-n is between 1 and 2, we can apply (B) to compute gamma(x). * * Implementation detail. The computation of (x-1)(x-2)...(x-n) in simulated * higher precision arithmetic can be somewhat optimized. For example, in * computing (x-1)*(x-2)*(x-3)*(x-4), if we compute (x-1)*(x-4) = z.h+z.l, * then (x-2)(x-3) = z.h+2+z.l readily. In below, we list the expression * of the formula to compute gamma(x). * * Assume x-n is in GTi (i=1,2, or 3, see B for detail). Let y = x - n - zi. * By (B) we have gamma(x-n) = gy.h+gy.l. If x = x.h+x.l, then we have * n=1 (x in [2,3]): * gamma(x) = (x-1)*gamma(x-1) = (x-1)*(gy.h+gy.l) * = [(x.h-1)+x.l]*(gy.h+gy.l) * n=2 (x in [3,4]): * gamma(x) = (x-1)(x-2)*gamma(x-2) = (x-1)*(x-2)*(gy.h+gy.l) * = ((x.h-2)+x.l)*((x.h-1)+x.l)*(gy.h+gy.l) * = [x.h*(x.h-3)+2+x.l*(x+(x.h-3))]*(gy.h+gy.l) * n=3 (x in [4,5]) * gamma(x) = (x-1)(x-2)(x-3)*(gy.h+gy.l) * = (x.h*(x.h-3)+2+x.l*(x+(x.h-3)))*[((x.h-3)+x.l)(gy.h+gy.l)] * n=4 (x in [5,6]) * gamma(x) = [(x-1)(x-4)]*[(x-2)(x-3)]*(gy.h+gy.l) * = [(x.h*(x.h-5)+4+x.l(x+(x.h-5)))]*[(x-2)*(x-3)]*(gy.h+gy.l) * = (y.h+y.l)*(y.h+1+y.l)*(gy.h+gy.l) * n=5 (x in [6,7]) * gamma(x) = [(x-1)(x-4)]*[(x-2)(x-3)]*[(x-5)*(gy.h+gy.l)] * n=6 (x in [7,8]) * gamma(x) = [(x-1)(x-6)]*[(x-2)(x-5)]*[(x-3)(x-4)]*(gy.h+gy.l)] * = [(y.h+y.l)(y.h+4+y.l)][(y.h+6+y.l)(gy.h+gy.l)] * * (E)Overflow Thresold. For x > Overflow thresold of gamma, * return huge*huge (overflow). * * By checking whether lgamma(x) >= 2**{128,1024,16384}, one can * determine the overflow threshold for x in single, double, and * quad precision. See over.c for details. * * The overflow threshold of gamma(x) are * * single: x = 3.5040096283e+01 * = 0x420C290F (IEEE single) * double: x = 1.71624376956302711505e+02 * = 0x406573FAE561F647 (IEEE double) * quad: x = 1.7555483429044629170038892160702032034177e+03 * = 0x4009B6E3180CD66A5C4206F128BA77F4 (quad) * * (F)For overflow_threshold >= x >= 8, we use asymptotic approximation. * (1) Stirling's formula * * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + (1/x)*P(1/(x*x)) * = L1 + L2 + L3, * where * L1(x) = (x-.5)*(log(x)-1), * L2 = .5(log(2pi)-1) = 0.41893853...., * L3(x) = (1/x)P(1/(x*x)), * * The range of L1,L2, and L3 are as follows: * * ------------------------------------------------------------------ * Range(L1) = (single) [8.09..,88.30..] =[2** 3.01..,2** 6.46..] * (double) [8.09..,709.3..] =[2** 3.01..,2** 9.47..] * (quad) [8.09..,11356.10..]=[2** 3.01..,2** 13.47..] * Range(L2) = 0.41893853..... * Range(L3) = [0.0104...., 0.00048....] =[2**-6.58..,2**-11.02..] * ------------------------------------------------------------------ * * Gamma(x) is then computed by exp(L1+L2+L3). * * (2) Error analysis of (F): * -------------------------- * The error in Gamma(x) depends on the error inherited in the computation * of L= L1+L2+L3. Let L' be the computed value of L. The absolute error * in L' is t = L-L'. Since exp(L') = exp(L-t) = exp(L)*exp(t) ~ * (1+t)*exp(L), the relative error in exp(L') is approximately t. * * To guarantee the relatively accuracy in exp(L'), we would like * |t| < 2**(-P-5) where P denotes for the number of significant bits * of the working precision. Consequently, each of the L1,L2, and L3 * must be computed with absolute error bounded by 2**(-P-5) in absolute * value. * * Since L2 is a constant, it can be pre-computed to the desired accuracy. * Also |L3| < 2**-6; therefore, it suffices to compute L3 with the * working precision. That is, * L3(x) approxmiate log(G(x))-(x-.5)(log(x)-1)-.5(log(2pi)-1) * to a precision bounded by 2**(-P-5). * * 2**(-6) * _________V___________________ * L1(x): |_________|___________________| * __ ________________________ * L2: |__|________________________| * __________________________ * + L3(x): |__________________________| * ------------------------------------------- * [leading] + [Trailing] * * For L1(x)=(x-0.5)*(log(x)-1), we need ilogb(L1(x))+5 extra bits for * both multiplicants to guarantee L1(x)'s absolute error is bounded by * 2**(-P-5) in absolute value. Here ilogb(y) is defined to be the unbias * binary exponent of y in IEEE format. We can get x-0.5 to the desire * accuracy easily. It remains to compute log(x)-1 with ilogb(L1(x))+5 * extra bits accracy. Note that the range of L1 is 88.30.., 709.3.., and * 11356.10... for single, double, and quadruple precision, we have * * single double quadruple * ------------------------------------ * ilogb(L1(x))+5 <= 11 14 18 * ------------------------------------ * * (3) Table Driven Method for log(x)-1: * -------------------------------------- * Let x = 2**n * y, where 1 <= y < 2. Let Z={z(i),i=1,...,m} * be a set of predetermined evenly distributed floating point numbers * in [1, 2]. Let z(j) be the closest one to y, then * log(x)-1 = n*log(2)-1 + log(y) * = n*log(2)-1 + log(z(j)*y/z(j)) * = n*log(2)-1 + log(z(j)) + log(y/z(j)) * = T1(n) + T2(j) + T3, * * where T1(n) = n*log(2)-1 and T2(j) = log(z(j)). Both T1 and T2 can be * pre-calculated and be looked-up in a table. Note that 8 <= x < 1756 * implies 3<=n<=10 implies 1.079.. < T1(n) < 6.931. * * * y-z(i) y 1+s * For T3, let s = --------; then ----- = ----- and * y+z(i) z(i) 1-s * 1+s 2 3 2 5 * T3 = log(-----) = 2s + --- s + --- s + .... * 1-s 3 5 * * Suppose the first term 2s is compute in extra precision. The * dominating error in T3 would then be the rounding error of the * second term 2/3*s**3. To force the rounding bounded by * the required accuracy, we have * single: |2/3*s**3| < 2**-11 == > |s|<0.09014... * double: |2/3*s**3| < 2**-14 == > |s|<0.04507... * quad : |2/3*s**3| < 2**-18 == > |s|<0.01788... = 2**(-5.80..) * * Base on this analysis, we choose Z = {z(i)|z(i)=1+i/64+1/128, 0<=i<=63}. * For any y in [1,2), let j = [64*y] chopped to integer, then z(j) is * the closest to y, and it is not difficult to see that |s| < 2**(-8). * Please note that the polynomial approximation of T3 must be accurate * -24-11 -35 -53-14 -67 -113-18 -131 * to 2 =2 , 2 = 2 , and 2 =2 * for single, double, and quadruple precision respectively. * * Inplementation notes. * (1) Table look-up entries for T1(n) and T2(j), as well as the calculation * of the leading term 2s in T3, are broken up into leading and trailing * part such that (leading part)* 2**24 will always be an integer. That * will guarantee the addition of the leading parts will be exact. * * 2**(-24) * _________V___________________ * T1(n): |_________|___________________| * _______ ______________________ * T2(j): |_______|______________________| * ____ _______________________ * 2s: |____|_______________________| * __________________________ * + T3(s)-2s: |__________________________| * ------------------------------------------- * [leading] + [Trailing] * * (2) How to compute 2s accurately. * (A) Compute v = 2s to the working precision. If |v| < 2**(-18), * stop. * (B) chopped v to 2**(-24): v = ((int)(v*2**24))/2**24 * (C) 2s = v + (2s - v), where * 1 * 2s - v = --- * (2(y-z) - v*(y+z) ) * y+z * 1 * = --- * ( [2(y-z) - v*(y+z)_h ] - v*(y+z)_l ) * y+z * where (y+z)_h = (y+z) rounded to 24 bits by (double)(float), * and (y+z)_l = ((z+z)-(y+z)_h)+(y-z). Note the the quantity * in [] is exact. * 2 4 * (3) Remez approximation for (T3(s)-2s)/s = T3[0]*s + T3[1]*s + ...: * Single precision: 1 term (compute in double precision arithmetic) * T3(s) = 2s + S1*s^3, S1 = 0.6666717231848518054693623697539230 * Remez error: |T3(s)/s - (2s+S1*s^3)| < 2**(-35.87) * Double precision: 3 terms, Remez error is bounded by 2**(-72.40), * see "tgamma_log" * Quad precision: 7 terms, Remez error is bounded by 2**(-136.54), * see "tgammal_log" * * The computation of 0.5*(ln(2pi)-1): * 0.5*(ln(2pi)-1) = 0.4189385332046727417803297364056176398614... * split 0.5*(ln(2pi)-1) to hln2pi_h + hln2pi_l, where hln2pi_h is the * leading 21 bits of the constant. * hln2pi_h= 0.4189383983612060546875 * hln2pi_l= 1.348434666870928297364056176398612173648e-07 * * The computation of 1/x*P(1/x^2) = log(G(x))-(x-.5)(ln(x)-1)-(.5ln(2pi)-1): * Let s = 1/x <= 1/8 < 0.125. We have * quad precision * |GP(s) - s*P(s^2)| <= 2**(-120.6), where * 3 5 39 * GP(s) = GP0*s+GP1*s +GP2*s +... +GP19*s , * GP0 = 0.083333333333333333333333333333333172839171301 * hex 0x3ffe5555 55555555 55555555 55555548 * GP1 = -2.77777777777777777777777777492501211999399424104e-0003 * GP2 = 7.93650793650793650793635650541638236350020883243e-0004 * GP3 = -5.95238095238095238057299772679324503339241961704e-0004 * GP4 = 8.41750841750841696138422987977683524926142600321e-0004 * GP5 = -1.91752691752686682825032547823699662178842123308e-0003 * GP6 = 6.41025641022403480921891559356473451161279359322e-0003 * GP7 = -2.95506535798414019189819587455577003732808185071e-0002 * GP8 = 1.79644367229970031486079180060923073476568732136e-0001 * GP9 = -1.39243086487274662174562872567057200255649290646e+0000 * GP10 = 1.34025874044417962188677816477842265259608269775e+0001 * GP11 = -1.56803713480127469414495545399982508700748274318e+0002 * GP12 = 2.18739841656201561694927630335099313968924493891e+0003 * GP13 = -3.55249848644100338419187038090925410976237921269e+0004 * GP14 = 6.43464880437835286216768959439484376449179576452e+0005 * GP15 = -1.20459154385577014992600342782821389605893904624e+0007 * GP16 = 2.09263249637351298563934942349749718491071093210e+0008 * GP17 = -2.96247483183169219343745316433899599834685703457e+0009 * GP18 = 2.88984933605896033154727626086506756972327292981e+0010 * GP19 = -1.40960434146030007732838382416230610302678063984e+0011 * * double precision * |GP(s) - s*P(s^2)| <= 2**(-63.5), where * 3 5 7 9 11 13 15 * GP(s) = GP0*s+GP1*s +GP2*s +GP3*s +GP4*s +GP5*s +GP6*s +GP7*s , * * GP0= 0.0833333333333333287074040640618477 (3FB55555 55555555) * GP1= -2.77777777776649355200565611114627670089130772843e-0003 * GP2= 7.93650787486083724805476194170211775784158551509e-0004 * GP3= -5.95236628558314928757811419580281294593903582971e-0004 * GP4= 8.41566473999853451983137162780427812781178932540e-0004 * GP5= -1.90424776670441373564512942038926168175921303212e-0003 * GP6= 5.84933161530949666312333949534482303007354299178e-0003 * GP7= -1.59453228931082030262124832506144392496561694550e-0002 * single precision * |GP(s) - s*P(s^2)| <= 2**(-37.78), where * 3 5 * GP(s) = GP0*s+GP1*s +GP2*s * GP0 = 8.33333330959694065245736888749042811909994573178e-0002 * GP1 = -2.77765545601667179767706600890361535225507762168e-0003 * GP2 = 7.77830853479775281781085278324621033523037489883e-0004 * * * Implementation note: * z = (1/x), z2 = z*z, z4 = z2*z2; * p = z*(GP0+z2*(GP1+....+z2*GP7)) * = z*(GP0+(z4*(GP2+z4*(GP4+z4*GP6))+z2*(GP1+z4*(GP3+z4*(GP5+z4*GP7))))) * * Adding everything up: * t = rr.h*ww.h+hln2pi_h ... exact * w = (hln2pi_l + ((x-0.5)*ww.l+rr.l*ww.h)) + p * * Computing exp(t+w): * s = t+w; write s = (n+j/32)*ln2+r, |r|<=(1/64)*ln2, then * exp(s) = 2**n * (2**(j/32) + 2**(j/32)*expm1(r)), where * expm1(r) = r + Et1*r^2 + Et2*r^3 + ... + Et5*r^6, and * 2**(j/32) is obtained by table look-up S[j]+S_trail[j]. * Remez error bound: * |exp(r) - (1+r+Et1*r^2+...+Et5*r^6)| <= 2^(-63). */ #include "libm.h" #define __HI(x) ((int *) &x)[HIWORD] #define __LO(x) ((unsigned *) &x)[LOWORD] struct Double { double h; double l; }; /* Hex value of GP0 shoule be 3FB55555 55555555 */ static const double c[] = { +1.0, +2.0, +0.5, +1.0e-300, +6.66666666666666740682e-01, /* A1=T3[0] */ +3.99999999955626478023093908674902212920e-01, /* A2=T3[1] */ +2.85720221533145659809237398709372330980e-01, /* A3=T3[2] */ +0.0833333333333333287074040640618477, /* GP[0] */ -2.77777777776649355200565611114627670089130772843e-03, +7.93650787486083724805476194170211775784158551509e-04, -5.95236628558314928757811419580281294593903582971e-04, +8.41566473999853451983137162780427812781178932540e-04, -1.90424776670441373564512942038926168175921303212e-03, +5.84933161530949666312333949534482303007354299178e-03, -1.59453228931082030262124832506144392496561694550e-02, +4.18937683105468750000e-01, /* hln2pi_h */ +8.50099203991780279640e-07, /* hln2pi_l */ +4.18938533204672741744150788368695779923320328369e-01, /* hln2pi */ +2.16608493865351192653e-02, /* ln2_32hi */ +5.96317165397058656257e-12, /* ln2_32lo */ +4.61662413084468283841e+01, /* invln2_32 */ +5.0000000000000000000e-1, /* Et1 */ +1.66666666665223585560605991943703896196054020060e-01, /* Et2 */ +4.16666666665895103520154073534275286743788421687e-02, /* Et3 */ +8.33336844093536520775865096538773197505523826029e-03, /* Et4 */ +1.38889201930843436040204096950052984793587640227e-03, /* Et5 */ }; #define one c[0] #define two c[1] #define half c[2] #define tiny c[3] #define A1 c[4] #define A2 c[5] #define A3 c[6] #define GP0 c[7] #define GP1 c[8] #define GP2 c[9] #define GP3 c[10] #define GP4 c[11] #define GP5 c[12] #define GP6 c[13] #define GP7 c[14] #define hln2pi_h c[15] #define hln2pi_l c[16] #define hln2pi c[17] #define ln2_32hi c[18] #define ln2_32lo c[19] #define invln2_32 c[20] #define Et1 c[21] #define Et2 c[22] #define Et3 c[23] #define Et4 c[24] #define Et5 c[25] /* * double precision coefficients for computing log(x)-1 in tgamma. * See "algorithm" for details * * log(x) - 1 = T1(n) + T2(j) + T3(s), where x = 2**n * y, 1<=y<2, * j=[64*y], z[j]=1+j/64+1/128, s = (y-z[j])/(y+z[j]), and * T1(n) = T1[2n,2n+1] = n*log(2)-1, * T2(j) = T2[2j,2j+1] = log(z[j]), * T3(s) = 2s + T3[0]s^3 + T3[1]s^5 + T3[2]s^7 * = 2s + A1*s^3 + A2*s^5 + A3*s^7 (see const A1,A2,A3) * Note * (1) the leading entries are truncated to 24 binary point. * See Remezpak/sun/tgamma_log_64.c * (2) Remez error for T3(s) is bounded by 2**(-72.4) * See mpremez/work/Log/tgamma_log_4_outr2 */ static const double T1[] = { -1.00000000000000000000e+00, /* 0xBFF00000 0x00000000 */ +0.00000000000000000000e+00, /* 0x00000000 0x00000000 */ -3.06852817535400390625e-01, /* 0xBFD3A37A 0x00000000 */ -1.90465429995776763166e-09, /* 0xBE205C61 0x0CA86C38 */ +3.86294305324554443359e-01, /* 0x3FD8B90B 0xC0000000 */ +5.57953361754750897367e-08, /* 0x3E6DF473 0xDE6AF279 */ +1.07944148778915405273e+00, /* 0x3FF14564 0x70000000 */ +5.38906818755173187963e-08, /* 0x3E6CEEAD 0xCDA06BB5 */ +1.77258867025375366211e+00, /* 0x3FFC5C85 0xF0000000 */ +5.19860275755595544734e-08, /* 0x3E6BE8E7 0xBCD5E4F2 */ +2.46573585271835327148e+00, /* 0x4003B9D3 0xB8000000 */ +5.00813732756017835330e-08, /* 0x3E6AE321 0xAC0B5E2E */ +3.15888303518295288086e+00, /* 0x40094564 0x78000000 */ +4.81767189756440192100e-08, /* 0x3E69DD5B 0x9B40D76B */ +3.85203021764755249023e+00, /* 0x400ED0F5 0x38000000 */ +4.62720646756862482697e-08, /* 0x3E68D795 0x8A7650A7 */ +4.54517740011215209961e+00, /* 0x40122E42 0xFC000000 */ +4.43674103757284839467e-08, /* 0x3E67D1CF 0x79ABC9E4 */ +5.23832458257675170898e+00, /* 0x4014F40B 0x5C000000 */ +4.24627560757707130063e-08, /* 0x3E66CC09 0x68E14320 */ +5.93147176504135131836e+00, /* 0x4017B9D3 0xBC000000 */ +4.05581017758129486834e-08, /* 0x3E65C643 0x5816BC5D */ }; static const double T2[] = { +7.78210163116455078125e-03, /* 0x3F7FE020 0x00000000 */ +3.88108903981662140884e-08, /* 0x3E64D620 0xCF11F86F */ +2.31670141220092773438e-02, /* 0x3F97B918 0x00000000 */ +4.51595251008850513740e-08, /* 0x3E683EAD 0x88D54940 */ +3.83188128471374511719e-02, /* 0x3FA39E86 0x00000000 */ +5.14549991480218823411e-08, /* 0x3E6B9FEB 0xD5FA9016 */ +5.32444715499877929688e-02, /* 0x3FAB42DC 0x00000000 */ +4.29688244898971182165e-08, /* 0x3E671197 0x1BEC28D1 */ +6.79506063461303710938e-02, /* 0x3FB16536 0x00000000 */ +5.55623773783008185114e-08, /* 0x3E6DD46F 0x5C1D0C4C */ +8.24436545372009277344e-02, /* 0x3FB51B07 0x00000000 */ +1.46738736635337847313e-08, /* 0x3E4F830C 0x1FB493C7 */ +9.67295765876770019531e-02, /* 0x3FB8C345 0x00000000 */ +4.98708741103424492282e-08, /* 0x3E6AC633 0x641EB597 */ +1.10814332962036132812e-01, /* 0x3FBC5E54 0x00000000 */ +3.33782539813823062226e-08, /* 0x3E61EB78 0xE862BAC3 */ +1.24703466892242431641e-01, /* 0x3FBFEC91 0x00000000 */ +1.16087148042227818450e-08, /* 0x3E48EDF5 0x5D551729 */ +1.38402283191680908203e-01, /* 0x3FC1B72A 0x80000000 */ +3.96674382274822001957e-08, /* 0x3E654BD9 0xE80A4181 */ +1.51916027069091796875e-01, /* 0x3FC371FC 0x00000000 */ +1.49567501781968021494e-08, /* 0x3E500F47 0xBA1DE6CB */ +1.65249526500701904297e-01, /* 0x3FC526E5 0x80000000 */ +4.63946052585787334062e-08, /* 0x3E68E86D 0x0DE8B900 */ +1.78407609462738037109e-01, /* 0x3FC6D60F 0x80000000 */ +4.80100802600100279538e-08, /* 0x3E69C674 0x8723551E */ +1.91394805908203125000e-01, /* 0x3FC87FA0 0x00000000 */ +4.70914263296092971436e-08, /* 0x3E694832 0x44240802 */ +2.04215526580810546875e-01, /* 0x3FCA23BC 0x00000000 */ +1.48478803446288209001e-08, /* 0x3E4FE2B5 0x63193712 */ +2.16873884201049804688e-01, /* 0x3FCBC286 0x00000000 */ +5.40995645549315919488e-08, /* 0x3E6D0B63 0x358A7E74 */ +2.29374051094055175781e-01, /* 0x3FCD5C21 0x00000000 */ +4.99707906542102284117e-08, /* 0x3E6AD3EE 0xE456E443 */ +2.41719901561737060547e-01, /* 0x3FCEF0AD 0x80000000 */ +3.53254081075974352804e-08, /* 0x3E62F716 0x4D948638 */ +2.53915190696716308594e-01, /* 0x3FD04025 0x80000000 */ +1.92842471355435739091e-08, /* 0x3E54B4D0 0x40DAE27C */ +2.65963494777679443359e-01, /* 0x3FD1058B 0xC0000000 */ +5.37194584979797487125e-08, /* 0x3E6CD725 0x6A8C4FD0 */ +2.77868449687957763672e-01, /* 0x3FD1C898 0xC0000000 */ +1.31549854251447496506e-09, /* 0x3E16999F 0xAFBC68E7 */ +2.89633274078369140625e-01, /* 0x3FD2895A 0x00000000 */ +1.85046735362538929911e-08, /* 0x3E53DE86 0xA35EB493 */ +3.01261305809020996094e-01, /* 0x3FD347DD 0x80000000 */ +2.47691407849191245052e-08, /* 0x3E5A987D 0x54D64567 */ +3.12755703926086425781e-01, /* 0x3FD40430 0x80000000 */ +6.07781046260499658610e-09, /* 0x3E3A1A9F 0x8EF4304A */ +3.24119448661804199219e-01, /* 0x3FD4BE5F 0x80000000 */ +1.99924077768719198045e-08, /* 0x3E557778 0xA0DB4C99 */ +3.35355520248413085938e-01, /* 0x3FD57677 0x00000000 */ +2.16727247443196802771e-08, /* 0x3E57455A 0x6C549AB7 */ +3.46466720104217529297e-01, /* 0x3FD62C82 0xC0000000 */ +4.72419910516215900493e-08, /* 0x3E695CE3 0xCA97B7B0 */ +3.57455849647521972656e-01, /* 0x3FD6E08E 0x80000000 */ +3.92742818015697624778e-08, /* 0x3E6515D0 0xF1C609CA */ +3.68325531482696533203e-01, /* 0x3FD792A5 0x40000000 */ +2.96760111198451042238e-08, /* 0x3E5FDD47 0xA27C15DA */ +3.79078328609466552734e-01, /* 0x3FD842D1 0xC0000000 */ +2.43255029056564770289e-08, /* 0x3E5A1E8B 0x17493B14 */ +3.89716744422912597656e-01, /* 0x3FD8F11E 0x80000000 */ +6.71711261571421332726e-09, /* 0x3E3CD98B 0x1DF85DA7 */ +4.00243163108825683594e-01, /* 0x3FD99D95 0x80000000 */ +1.01818702333557515008e-09, /* 0x3E117E08 0xACBA92EF */ +4.10659909248352050781e-01, /* 0x3FDA4840 0x80000000 */ +1.57369163351530571459e-08, /* 0x3E50E5BB 0x0A2BFCA7 */ +4.20969247817993164062e-01, /* 0x3FDAF129 0x00000000 */ +4.68261364720663662040e-08, /* 0x3E6923BC 0x358899C2 */ +4.31173443794250488281e-01, /* 0x3FDB9858 0x80000000 */ +2.10241208525779214510e-08, /* 0x3E569310 0xFB598FB1 */ +4.41274523735046386719e-01, /* 0x3FDC3DD7 0x80000000 */ +3.70698288427707487748e-08, /* 0x3E63E6D6 0xA6B9D9E1 */ +4.51274633407592773438e-01, /* 0x3FDCE1AF 0x00000000 */ +1.07318658117071930723e-08, /* 0x3E470BE7 0xD6F6FA58 */ +4.61175680160522460938e-01, /* 0x3FDD83E7 0x00000000 */ +3.49616477054305011286e-08, /* 0x3E62C517 0x9F2828AE */ +4.70979690551757812500e-01, /* 0x3FDE2488 0x00000000 */ +2.46670332000468969567e-08, /* 0x3E5A7C6C 0x261CBD8F */ +4.80688512325286865234e-01, /* 0x3FDEC399 0xC0000000 */ +1.70204650424422423704e-08, /* 0x3E52468C 0xC0175CEE */ +4.90303933620452880859e-01, /* 0x3FDF6123 0xC0000000 */ +5.44247409572909703749e-08, /* 0x3E6D3814 0x5630A2B6 */ +4.99827861785888671875e-01, /* 0x3FDFFD2E 0x00000000 */ +7.77056065794633071345e-09, /* 0x3E40AFE9 0x30AB2FA0 */ +5.09261846542358398438e-01, /* 0x3FE04BDF 0x80000000 */ +5.52474495483665749052e-08, /* 0x3E6DA926 0xD265FCC1 */ +5.18607735633850097656e-01, /* 0x3FE0986F 0x40000000 */ +2.85741955344967264536e-08, /* 0x3E5EAE6A 0x41723FB5 */ +5.27867078781127929688e-01, /* 0x3FE0E449 0x80000000 */ +1.08397144554263914271e-08, /* 0x3E474732 0x2FDBAB97 */ +5.37041425704956054688e-01, /* 0x3FE12F71 0x80000000 */ +4.01919275998792285777e-08, /* 0x3E6593EF 0xBC530123 */ +5.46132385730743408203e-01, /* 0x3FE179EA 0xA0000000 */ +5.18673922421792693237e-08, /* 0x3E6BD899 0xA0BFC60E */ +5.55141448974609375000e-01, /* 0x3FE1C3B8 0x00000000 */ +5.85658922177154808539e-08, /* 0x3E6F713C 0x24BC94F9 */ +5.64070105552673339844e-01, /* 0x3FE20CDC 0xC0000000 */ +3.27321296262276338905e-08, /* 0x3E6192AB 0x6D93503D */ +5.72919726371765136719e-01, /* 0x3FE2555B 0xC0000000 */ +2.71900203723740076878e-08, /* 0x3E5D31EF 0x96780876 */ +5.81691682338714599609e-01, /* 0x3FE29D37 0xE0000000 */ +5.72959078829112371070e-08, /* 0x3E6EC2B0 0x8AC85CD7 */ +5.90387403964996337891e-01, /* 0x3FE2E474 0x20000000 */ +4.26371800367512948470e-08, /* 0x3E66E402 0x68405422 */ +5.99008142948150634766e-01, /* 0x3FE32B13 0x20000000 */ +4.66979327646159769249e-08, /* 0x3E69121D 0x71320557 */ +6.07555210590362548828e-01, /* 0x3FE37117 0xA0000000 */ +3.96341792466729582847e-08, /* 0x3E654747 0xB5C5DD02 */ +6.16029858589172363281e-01, /* 0x3FE3B684 0x40000000 */ +1.86263416563663175432e-08, /* 0x3E53FFF8 0x455F1DBE */ +6.24433279037475585938e-01, /* 0x3FE3FB5B 0x80000000 */ +8.97441791510503832111e-09, /* 0x3E4345BD 0x096D3A75 */ +6.32766664028167724609e-01, /* 0x3FE43F9F 0xE0000000 */ +5.54287010493641158796e-09, /* 0x3E37CE73 0x3BD393DD */ +6.41031146049499511719e-01, /* 0x3FE48353 0xC0000000 */ +3.33714317793368531132e-08, /* 0x3E61EA88 0xDF73D5E9 */ +6.49227917194366455078e-01, /* 0x3FE4C679 0xA0000000 */ +2.94307433638127158696e-08, /* 0x3E5F99DC 0x7362D1DA */ +6.57358050346374511719e-01, /* 0x3FE50913 0xC0000000 */ +2.23619855184231409785e-08, /* 0x3E5802D0 0xD6979675 */ +6.65422618389129638672e-01, /* 0x3FE54B24 0x60000000 */ +1.41559608102782173188e-08, /* 0x3E4E6652 0x5EA4550A */ +6.73422634601593017578e-01, /* 0x3FE58CAD 0xA0000000 */ +4.06105737027198329700e-08, /* 0x3E65CD79 0x893092F2 */ +6.81359171867370605469e-01, /* 0x3FE5CDB1 0xC0000000 */ +5.29405324634793230630e-08, /* 0x3E6C6C17 0x648CF6E4 */ +6.89233243465423583984e-01, /* 0x3FE60E32 0xE0000000 */ +3.77733853963405370102e-08, /* 0x3E644788 0xD8CA7C89 */ }; /* S[j],S_trail[j] = 2**(j/32.) for the final computation of exp(t+w) */ static const double S[] = { +1.00000000000000000000e+00, /* 3FF0000000000000 */ +1.02189714865411662714e+00, /* 3FF059B0D3158574 */ +1.04427378242741375480e+00, /* 3FF0B5586CF9890F */ +1.06714040067682369717e+00, /* 3FF11301D0125B51 */ +1.09050773266525768967e+00, /* 3FF172B83C7D517B */ +1.11438674259589243221e+00, /* 3FF1D4873168B9AA */ +1.13878863475669156458e+00, /* 3FF2387A6E756238 */ +1.16372485877757747552e+00, /* 3FF29E9DF51FDEE1 */ +1.18920711500272102690e+00, /* 3FF306FE0A31B715 */ +1.21524735998046895524e+00, /* 3FF371A7373AA9CB */ +1.24185781207348400201e+00, /* 3FF3DEA64C123422 */ +1.26905095719173321989e+00, /* 3FF44E086061892D */ +1.29683955465100964055e+00, /* 3FF4BFDAD5362A27 */ +1.32523664315974132322e+00, /* 3FF5342B569D4F82 */ +1.35425554693689265129e+00, /* 3FF5AB07DD485429 */ +1.38390988196383202258e+00, /* 3FF6247EB03A5585 */ +1.41421356237309514547e+00, /* 3FF6A09E667F3BCD */ +1.44518080697704665027e+00, /* 3FF71F75E8EC5F74 */ +1.47682614593949934623e+00, /* 3FF7A11473EB0187 */ +1.50916442759342284141e+00, /* 3FF82589994CCE13 */ +1.54221082540794074411e+00, /* 3FF8ACE5422AA0DB */ +1.57598084510788649659e+00, /* 3FF93737B0CDC5E5 */ +1.61049033194925428347e+00, /* 3FF9C49182A3F090 */ +1.64575547815396494578e+00, /* 3FFA5503B23E255D */ +1.68179283050742900407e+00, /* 3FFAE89F995AD3AD */ +1.71861929812247793414e+00, /* 3FFB7F76F2FB5E47 */ +1.75625216037329945351e+00, /* 3FFC199BDD85529C */ +1.79470907500310716820e+00, /* 3FFCB720DCEF9069 */ +1.83400808640934243066e+00, /* 3FFD5818DCFBA487 */ +1.87416763411029996256e+00, /* 3FFDFC97337B9B5F */ +1.91520656139714740007e+00, /* 3FFEA4AFA2A490DA */ +1.95714412417540017941e+00, /* 3FFF50765B6E4540 */ }; static const double S_trail[] = { +0.00000000000000000000e+00, +5.10922502897344389359e-17, /* 3C8D73E2A475B465 */ +8.55188970553796365958e-17, /* 3C98A62E4ADC610A */ -7.89985396684158212226e-17, /* BC96C51039449B3A */ -3.04678207981247114697e-17, /* BC819041B9D78A76 */ +1.04102784568455709549e-16, /* 3C9E016E00A2643C */ +8.91281267602540777782e-17, /* 3C99B07EB6C70573 */ +3.82920483692409349872e-17, /* 3C8612E8AFAD1255 */ +3.98201523146564611098e-17, /* 3C86F46AD23182E4 */ -7.71263069268148813091e-17, /* BC963AEABF42EAE2 */ +4.65802759183693679123e-17, /* 3C8ADA0911F09EBC */ +2.66793213134218609523e-18, /* 3C489B7A04EF80D0 */ +2.53825027948883149593e-17, /* 3C7D4397AFEC42E2 */ -2.85873121003886075697e-17, /* BC807ABE1DB13CAC */ +7.70094837980298946162e-17, /* 3C96324C054647AD */ -6.77051165879478628716e-17, /* BC9383C17E40B497 */ -9.66729331345291345105e-17, /* BC9BDD3413B26456 */ -3.02375813499398731940e-17, /* BC816E4786887A99 */ -3.48399455689279579579e-17, /* BC841577EE04992F */ -1.01645532775429503911e-16, /* BC9D4C1DD41532D8 */ +7.94983480969762085616e-17, /* 3C96E9F156864B27 */ -1.01369164712783039808e-17, /* BC675FC781B57EBC */ +2.47071925697978878522e-17, /* 3C7C7C46B071F2BE */ -1.01256799136747726038e-16, /* BC9D2F6EDB8D41E1 */ +8.19901002058149652013e-17, /* 3C97A1CD345DCC81 */ -1.85138041826311098821e-17, /* BC75584F7E54AC3B */ +2.96014069544887330703e-17, /* 3C811065895048DD */ +1.82274584279120867698e-17, /* 3C7503CBD1E949DB */ +3.28310722424562658722e-17, /* 3C82ED02D75B3706 */ -6.12276341300414256164e-17, /* BC91A5CD4F184B5C */ -1.06199460561959626376e-16, /* BC9E9C23179C2893 */ +8.96076779103666776760e-17, /* 3C99D3E12DD8A18B */ }; /* Primary interval GTi() */ static const double cr[] = { /* p1, q1 */ +0.70908683619977797008004927192814648151397705078125000, +1.71987061393048558089579513384356441668351720061e-0001, -3.19273345791990970293320316122813960527705450671e-0002, +8.36172645419110036267169600390549973563534476989e-0003, +1.13745336648572838333152213474277971244629758101e-0003, +1.0, +9.71980217826032937526460731778472389791321968082e-0001, -7.43576743326756176594084137256042653497087666030e-0002, -1.19345944932265559769719470515102012246995255372e-0001, +1.59913445751425002620935120470781382215050284762e-0002, +1.12601136853374984566572691306402321911547550783e-0003, /* p2, q2 */ +0.42848681585558601181418225678498856723308563232421875, +6.53596762668970816023718845105667418483122103629e-0002, -6.97280829631212931321050770925128264272768936731e-0003, +6.46342359021981718947208605674813260166116632899e-0003, +1.0, +4.57572620560506047062553957454062012327519313936e-0001, -2.52182594886075452859655003407796103083422572036e-0001, -1.82970945407778594681348166040103197178711552827e-0002, +2.43574726993169566475227642128830141304953840502e-0002, -5.20390406466942525358645957564897411258667085501e-0003, +4.79520251383279837635552431988023256031951133885e-0004, /* p3, q3 */ +0.382409479734567459008331979930517263710498809814453125, +1.42876048697668161599069814043449301572928034140e-0001, +3.42157571052250536817923866013561760785748899071e-0003, -5.01542621710067521405087887856991700987709272937e-0004, +8.89285814866740910123834688163838287618332122670e-0004, +1.0, +3.04253086629444201002215640948957897906299633168e-0001, -2.23162407379999477282555672834881213873185520006e-0001, -1.05060867741952065921809811933670131427552903636e-0002, +1.70511763916186982473301861980856352005926669320e-0002, -2.12950201683609187927899416700094630764182477464e-0003, }; #define P10 cr[0] #define P11 cr[1] #define P12 cr[2] #define P13 cr[3] #define P14 cr[4] #define Q10 cr[5] #define Q11 cr[6] #define Q12 cr[7] #define Q13 cr[8] #define Q14 cr[9] #define Q15 cr[10] #define P20 cr[11] #define P21 cr[12] #define P22 cr[13] #define P23 cr[14] #define Q20 cr[15] #define Q21 cr[16] #define Q22 cr[17] #define Q23 cr[18] #define Q24 cr[19] #define Q25 cr[20] #define Q26 cr[21] #define P30 cr[22] #define P31 cr[23] #define P32 cr[24] #define P33 cr[25] #define P34 cr[26] #define Q30 cr[27] #define Q31 cr[28] #define Q32 cr[29] #define Q33 cr[30] #define Q34 cr[31] #define Q35 cr[32] static const double GZ1_h = +0.938204627909682398190, GZ1_l = +5.121952600248205157935e-17, GZ2_h = +0.885603194410888749921, GZ2_l = -4.964236872556339810692e-17, GZ3_h = +0.936781411463652347038, GZ3_l = -2.541923110834479415023e-17, TZ1 = -0.3517214357852935791015625, TZ3 = +0.280530631542205810546875; /* INDENT ON */ /* compute gamma(y=yh+yl) for y in GT1 = [1.0000, 1.2845] */ /* assume yh got 20 significant bits */ static struct Double GT1(double yh, double yl) { double t3, t4, y, z; struct Double r; y = yh + yl; z = y * y; t3 = (z * (P10 + y * ((P11 + y * P12) + z * (P13 + y * P14)))) / (Q10 + y * ((Q11 + y * Q12) + z * ((Q13 + Q14 * y) + z * Q15))); t3 += (TZ1 * yl + GZ1_l); t4 = TZ1 * yh; r.h = (double) ((float) (t4 + GZ1_h + t3)); t3 += (t4 - (r.h - GZ1_h)); r.l = t3; return (r); } /* compute gamma(y=yh+yl) for y in GT2 = [1.2844, 1.6374] */ /* assume yh got 20 significant bits */ static struct Double GT2(double yh, double yl) { double t3, y, z; struct Double r; y = yh + yl; z = y * y; t3 = (z * (P20 + y * P21 + z * (P22 + y * P23))) / (Q20 + (y * ((Q21 + Q22 * y) + z * Q23) + (z * z) * ((Q24 + Q25 * y) + z * Q26))) + GZ2_l; r.h = (double) ((float) (GZ2_h + t3)); r.l = t3 - (r.h - GZ2_h); return (r); } /* compute gamma(y=yh+yl) for y in GT3 = [1.6373, 2.0000] */ /* assume yh got 20 significant bits */ static struct Double GT3(double yh, double yl) { double t3, t4, y, z; struct Double r; y = yh + yl; z = y * y; t3 = (z * (P30 + y * ((P31 + y * P32) + z * (P33 + y * P34)))) / (Q30 + y * ((Q31 + y * Q32) + z * ((Q33 + Q34 * y) + z * Q35))); t3 += (TZ3 * yl + GZ3_l); t4 = TZ3 * yh; r.h = (double) ((float) (t4 + GZ3_h + t3)); t3 += (t4 - (r.h - GZ3_h)); r.l = t3; return (r); } /* INDENT OFF */ /* * return tgamma(x) scaled by 2**-m for 8> 20) - 0x3ff; /* exponent of x, range:3-7 */ n2 += n2; /* 2n */ ix = (ix & 0x000fffff) | 0x3ff00000; /* y = scale x to [1,2] */ __HI(y) = ix; __LO(y) = lx; __HI(z) = (ix & 0xffffc000) | 0x2000; /* z[j]=1+j/64+1/128 */ __LO(z) = 0; j2 = (ix >> 13) & 0x7e; /* 2j */ t1 = y + z; t2 = y - z; r = one / t1; t1 = (double) ((float) t1); u = r * t2; /* u = (y-z)/(y+z) */ t4 = T2[j2 + 1] + T1[n2 + 1]; z2 = u * u; k = __HI(u) & 0x7fffffff; t3 = T2[j2] + T1[n2]; if ((k >> 20) < 0x3ec) { /* |u|<2**-19 */ t2 = t4 + u * ((two + z2 * A1) + (z2 * z2) * (A2 + z2 * A3)); } else { t5 = t4 + u * (z2 * A1 + (z2 * z2) * (A2 + z2 * A3)); u2 = u + u; v = (double) ((int) (u2 * t24)) * p24; t2 = t5 + r * ((two * t2 - v * t1) - v * (y - (t1 - z))); t3 += v; } ss_h = (double) ((float) (t2 + t3)); ss_l = t2 - (ss_h - t3); /* * compute ww = (x-.5)*(log(x)-1) + .5*(log(2pi)-1) + 1/x*(P(1/x^2))) * where ss = log(x) - 1 in already in extra precision */ z = one / x; r = x - half; r_h = (double) ((float) r); w_h = r_h * ss_h + hln2pi_h; z2 = z * z; w = (r - r_h) * ss_h + r * ss_l; z4 = z2 * z2; t1 = z2 * (GP1 + z4 * (GP3 + z4 * (GP5 + z4 * GP7))); t2 = z4 * (GP2 + z4 * (GP4 + z4 * GP6)); t1 += t2; w += hln2pi_l; w_l = z * (GP0 + t1) + w; k = (int) ((w_h + w_l) * invln2_32 + half); /* compute the exponential of w_h+w_l */ j = k & 0x1f; *m = (k >> 5); t3 = (double) k; /* perform w - k*ln2_32 (represent as w_h - w_l) */ t1 = w_h - t3 * ln2_32hi; t2 = t3 * ln2_32lo; w = w_l - t2; w_h = t1 + w_l; w_l = t2 - (w_l - (w_h - t1)); /* compute exp(w_h+w_l) */ z = w_h - w_l; z2 = z * z; t1 = z2 * (Et1 + z2 * (Et3 + z2 * Et5)); t2 = z2 * (Et2 + z2 * Et4); t3 = w_h - (w_l - (t1 + z * t2)); zz.l = S_trail[j] * (one + t3) + S[j] * t3; zz.h = S[j]; return (zz); } /* INDENT OFF */ /* * kpsin(x)= sin(pi*x)/pi * 3 5 7 9 11 13 15 * = x+ks[0]*x +ks[1]*x +ks[2]*x +ks[3]*x +ks[4]*x +ks[5]*x +ks[6]*x */ static const double ks[] = { -1.64493406684822640606569, +8.11742425283341655883668741874008920850698590621e-0001, -1.90751824120862873825597279118304943994042258291e-0001, +2.61478477632554278317289628332654539353521911570e-0002, -2.34607978510202710377617190278735525354347705866e-0003, +1.48413292290051695897242899977121846763824221705e-0004, -6.87730769637543488108688726777687262485357072242e-0006, }; /* INDENT ON */ /* assume x is not tiny and positive */ static struct Double kpsin(double x) { double z, t1, t2, t3, t4; struct Double xx; z = x * x; xx.h = x; t1 = z * x; t2 = z * z; t4 = t1 * ks[0]; t3 = (t1 * z) * ((ks[1] + z * ks[2] + t2 * ks[3]) + (z * t2) * (ks[4] + z * ks[5] + t2 * ks[6])); xx.l = t4 + t3; return (xx); } /* INDENT OFF */ /* * kpcos(x)= cos(pi*x)/pi * 2 4 6 8 10 12 * = 1/pi +kc[0]*x +kc[1]*x +kc[2]*x +kc[3]*x +kc[4]*x +kc[5]*x */ static const double one_pi_h = 0.318309886183790635705292970, one_pi_l = 3.583247455607534006714276420e-17; static const double npi_2_h = -1.5625, npi_2_l = -0.00829632679489661923132169163975055099555883223; static const double kc[] = { -1.57079632679489661923132169163975055099555883223e+0000, +1.29192819501230224953283586722575766189551966008e+0000, -4.25027339940149518500158850753393173519732149213e-0001, +7.49080625187015312373925142219429422375556727752e-0002, -8.21442040906099210866977352284054849051348692715e-0003, +6.10411356829515414575566564733632532333904115968e-0004, }; /* INDENT ON */ /* assume x is not tiny and positive */ static struct Double kpcos(double x) { double z, t1, t2, t3, t4, x4, x8; struct Double xx; z = x * x; xx.h = one_pi_h; t1 = (double) ((float) x); x4 = z * z; t2 = npi_2_l * z + npi_2_h * (x + t1) * (x - t1); t3 = one_pi_l + x4 * ((kc[1] + z * kc[2]) + x4 * (kc[3] + z * kc[4] + x4 * kc[5])); t4 = t1 * t1; /* 48 bits mantissa */ x8 = t2 + t3; t4 *= npi_2_h; /* npi_2_h is 5 bits const. The product is exact */ xx.l = x8 + t4; /* that will minimized the rounding error in xx.l */ return (xx); } /* INDENT OFF */ static const double /* 0.134861805732790769689793935774652917006 */ t0z1 = 0.1348618057327907737708, t0z1_l = -4.0810077708578299022531e-18, /* 0.461632144968362341262659542325721328468 */ t0z2 = 0.4616321449683623567850, t0z2_l = -1.5522348162858676890521e-17, /* 0.819773101100500601787868704921606996312 */ t0z3 = 0.8197731011005006118708, t0z3_l = -1.0082945122487103498325e-17; /* 1.134861805732790769689793935774652917006 */ /* INDENT ON */ /* gamma(x+i) for 0 <= x < 1 */ static struct Double gam_n(int i, double x) { struct Double rr = {0.0L, 0.0L}, yy; double r1, r2, t2, z, xh, xl, yh, yl, zh, z1, z2, zl, x5, wh, wl; /* compute yy = gamma(x+1) */ if (x > 0.2845) { if (x > 0.6374) { r1 = x - t0z3; r2 = (double) ((float) (r1 - t0z3_l)); t2 = r1 - r2; yy = GT3(r2, t2 - t0z3_l); } else { r1 = x - t0z2; r2 = (double) ((float) (r1 - t0z2_l)); t2 = r1 - r2; yy = GT2(r2, t2 - t0z2_l); } } else { r1 = x - t0z1; r2 = (double) ((float) (r1 - t0z1_l)); t2 = r1 - r2; yy = GT1(r2, t2 - t0z1_l); } /* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0= 0x7ff00000) /* +Inf -> +Inf, -Inf or NaN -> NaN */ return (x * ((hx < 0)? 0.0 : x)); if (hx > 0x406573fa || /* x > 171.62... overflow to +inf */ (hx == 0x406573fa && lx > 0xE561F647)) { z = x / tiny; return (z * z); } if (hx >= 0x40200000) { /* x >= 8 */ ww = large_gam(x, &m); w = ww.h + ww.l; __HI(w) += m << 20; return (w); } if (hx > 0) { /* 0 < x < 8 */ i = (int) x; ww = gam_n(i, x - (double) i); return (ww.h + ww.l); } /* negative x */ /* INDENT OFF */ /* * compute: xk = * -2 ... x is an even int (-inf is even) * -1 ... x is an odd int * +0 ... x is not an int but chopped to an even int * +1 ... x is not an int but chopped to an odd int */ /* INDENT ON */ xk = 0; if (ix >= 0x43300000) { if (ix >= 0x43400000) xk = -2; else xk = -2 + (lx & 1); } else if (ix >= 0x3ff00000) { k = (ix >> 20) - 0x3ff; if (k > 20) { j = lx >> (52 - k); if ((j << (52 - k)) == lx) xk = -2 + (j & 1); else xk = j & 1; } else { j = ix >> (20 - k); if ((j << (20 - k)) == ix && lx == 0) xk = -2 + (j & 1); else xk = j & 1; } } if (xk < 0) /* ideally gamma(-n)= (-1)**(n+1) * inf, but c99 expect NaN */ return ((x - x) / (x - x)); /* 0/0 = NaN */ /* negative underflow thresold */ if (ix > 0x4066e000 || (ix == 0x4066e000 && lx > 11)) { /* x < -183.0 - 11ulp */ z = tiny / x; if (xk == 1) z = -z; return (z * tiny); } /* now compute gamma(x) by -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x */ /* * First compute ss = -sin(pi*y)/pi , so that * gamma(x) = 1/(ss*gamma(1+y)) */ y = -x; j = (int) y; z = y - (double) j; if (z > 0.3183098861837906715377675) if (z > 0.6816901138162093284622325) ss = kpsin(one - z); else ss = kpcos(0.5 - z); else ss = kpsin(z); if (xk == 0) { ss.h = -ss.h; ss.l = -ss.l; } /* Then compute ww = gamma(1+y), note that result scale to 2**m */ m = 0; if (j < 7) { ww = gam_n(j + 1, z); } else { w = y + one; if ((lx & 1) == 0) { /* y+1 exact (note that y<184) */ ww = large_gam(w, &m); } else { t = w - one; if (t == y) { /* y+one exact */ ww = large_gam(w, &m); } else { /* use y*gamma(y) */ if (j == 7) ww = gam_n(j, z); else ww = large_gam(y, &m); t4 = ww.h + ww.l; t1 = (double) ((float) y); t2 = (double) ((float) t4); /* t4 will not be too large */ ww.l = y * (ww.l - (t2 - ww.h)) + (y - t1) * t2; ww.h = t1 * t2; } } } /* compute 1/(ss*ww) */ t3 = ss.h + ss.l; t4 = ww.h + ww.l; t1 = (double) ((float) t3); t2 = (double) ((float) t4); z1 = ss.l - (t1 - ss.h); /* (t1,z1) = ss */ z2 = ww.l - (t2 - ww.h); /* (t2,z2) = ww */ t3 = t3 * t4; /* t3 = ss*ww */ z3 = one / t3; /* z3 = 1/(ss*ww) */ t5 = t1 * t2; z5 = z1 * t4 + t1 * z2; /* (t5,z5) = ss*ww */ t1 = (double) ((float) t3); /* (t1,z1) = ss*ww */ z1 = z5 - (t1 - t5); t2 = (double) ((float) z3); /* leading 1/(ss*ww) */ z2 = z3 * (t2 * z1 - (one - t2 * t1)); z = t2 - z2; /* check whether z*2**-m underflow */ if (m != 0) { hx = __HI(z); i = hx & 0x80000000; ix = hx ^ i; j = ix >> 20; if (j > m) { ix -= m << 20; __HI(z) = ix ^ i; } else if ((m - j) > 52) { /* underflow */ if (xk == 0) z = -tiny * tiny; else z = tiny * tiny; } else { /* subnormal */ m -= 60; t = one; __HI(t) -= 60 << 20; ix -= m << 20; __HI(z) = ix ^ i; z *= t; } } return (z); }