/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include "fenv_synonyms.h" #include #include #if defined(__SUNPRO_C) #include #else #include #endif #include "fex_handler.h" #include "fenv_inlines.h" #if !defined(REG_PC) #define REG_PC EIP #endif #if !defined(REG_PS) #define REG_PS EFL #endif #ifdef __amd64 #define regno(X) ((X < 4)? REG_RAX - X : \ ((X > 4)? REG_RAX + 1 - X : REG_RSP)) #else #define regno(X) (EAX - X) #endif /* * Support for SSE instructions */ /* * Decode an SSE instruction. Fill in *inst and return the length of the * instruction in bytes. Return 0 if the instruction is not recognized. */ int __fex_parse_sse(ucontext_t *uap, sseinst_t *inst) { unsigned char *ip; char *addr; int i, dbl, simd, rex, modrm, sib, r; i = 0; ip = (unsigned char *)uap->uc_mcontext.gregs[REG_PC]; /* look for pseudo-prefixes */ dbl = 0; simd = SIMD; if (ip[i] == 0xF3) { simd = 0; i++; } else if (ip[i] == 0x66) { dbl = DOUBLE; i++; } else if (ip[i] == 0xF2) { dbl = DOUBLE; simd = 0; i++; } /* look for AMD64 REX prefix */ rex = 0; if (ip[i] >= 0x40 && ip[i] <= 0x4F) { rex = ip[i]; i++; } /* parse opcode */ if (ip[i++] != 0x0F) return 0; switch (ip[i++]) { case 0x2A: inst->op = (int)cvtsi2ss + simd + dbl; if (!simd) inst->op = (int)inst->op + (rex & 8); break; case 0x2C: inst->op = (int)cvttss2si + simd + dbl; if (!simd) inst->op = (int)inst->op + (rex & 8); break; case 0x2D: inst->op = (int)cvtss2si + simd + dbl; if (!simd) inst->op = (int)inst->op + (rex & 8); break; case 0x2E: /* oddball: scalar instruction in a SIMD opcode group */ if (!simd) return 0; inst->op = (int)ucomiss + dbl; break; case 0x2F: /* oddball: scalar instruction in a SIMD opcode group */ if (!simd) return 0; inst->op = (int)comiss + dbl; break; case 0x51: inst->op = (int)sqrtss + simd + dbl; break; case 0x58: inst->op = (int)addss + simd + dbl; break; case 0x59: inst->op = (int)mulss + simd + dbl; break; case 0x5A: inst->op = (int)cvtss2sd + simd + dbl; break; case 0x5B: if (dbl) { if (simd) inst->op = cvtps2dq; else return 0; } else { inst->op = (simd)? cvtdq2ps : cvttps2dq; } break; case 0x5C: inst->op = (int)subss + simd + dbl; break; case 0x5D: inst->op = (int)minss + simd + dbl; break; case 0x5E: inst->op = (int)divss + simd + dbl; break; case 0x5F: inst->op = (int)maxss + simd + dbl; break; case 0xC2: inst->op = (int)cmpss + simd + dbl; break; case 0xE6: if (simd) { if (dbl) inst->op = cvttpd2dq; else return 0; } else { inst->op = (dbl)? cvtpd2dq : cvtdq2pd; } break; default: return 0; } /* locate operands */ modrm = ip[i++]; if (inst->op == cvtss2si || inst->op == cvttss2si || inst->op == cvtsd2si || inst->op == cvttsd2si || inst->op == cvtss2siq || inst->op == cvttss2siq || inst->op == cvtsd2siq || inst->op == cvttsd2siq) { /* op1 is a gp register */ r = ((rex & 4) << 1) | ((modrm >> 3) & 7); inst->op1 = (sseoperand_t *)&uap->uc_mcontext.gregs[regno(r)]; } else if (inst->op == cvtps2pi || inst->op == cvttps2pi || inst->op == cvtpd2pi || inst->op == cvttpd2pi) { /* op1 is a mmx register */ #ifdef __amd64 inst->op1 = (sseoperand_t *)&uap->uc_mcontext.fpregs.fp_reg_set. fpchip_state.st[(modrm >> 3) & 7]; #else inst->op1 = (sseoperand_t *)(10 * ((modrm >> 3) & 7) + (char *)&uap->uc_mcontext.fpregs.fp_reg_set. fpchip_state.state[7]); #endif } else { /* op1 is a xmm register */ r = ((rex & 4) << 1) | ((modrm >> 3) & 7); inst->op1 = (sseoperand_t *)&uap->uc_mcontext.fpregs. fp_reg_set.fpchip_state.xmm[r]; } if ((modrm >> 6) == 3) { if (inst->op == cvtsi2ss || inst->op == cvtsi2sd || inst->op == cvtsi2ssq || inst->op == cvtsi2sdq) { /* op2 is a gp register */ r = ((rex & 1) << 3) | (modrm & 7); inst->op2 = (sseoperand_t *)&uap->uc_mcontext. gregs[regno(r)]; } else if (inst->op == cvtpi2ps || inst->op == cvtpi2pd) { /* op2 is a mmx register */ #ifdef __amd64 inst->op2 = (sseoperand_t *)&uap->uc_mcontext.fpregs. fp_reg_set.fpchip_state.st[modrm & 7]; #else inst->op2 = (sseoperand_t *)(10 * (modrm & 7) + (char *)&uap->uc_mcontext.fpregs.fp_reg_set. fpchip_state.state[7]); #endif } else { /* op2 is a xmm register */ r = ((rex & 1) << 3) | (modrm & 7); inst->op2 = (sseoperand_t *)&uap->uc_mcontext.fpregs. fp_reg_set.fpchip_state.xmm[r]; } } else if ((modrm & 0xc7) == 0x05) { #ifdef __amd64 /* address of next instruction + offset */ r = i + 4; if (inst->op == cmpss || inst->op == cmpps || inst->op == cmpsd || inst->op == cmppd) r++; inst->op2 = (sseoperand_t *)(ip + r + *(int *)(ip + i)); #else /* absolute address */ inst->op2 = (sseoperand_t *)(*(int *)(ip + i)); #endif i += 4; } else { /* complex address */ if ((modrm & 7) == 4) { /* parse sib byte */ sib = ip[i++]; if ((sib & 7) == 5 && (modrm >> 6) == 0) { /* start with absolute address */ addr = (char *)(uintptr_t)(*(int *)(ip + i)); i += 4; } else { /* start with base */ r = ((rex & 1) << 3) | (sib & 7); addr = (char *)uap->uc_mcontext.gregs[regno(r)]; } r = ((rex & 2) << 2) | ((sib >> 3) & 7); if (r != 4) { /* add scaled index */ addr += uap->uc_mcontext.gregs[regno(r)] << (sib >> 6); } } else { r = ((rex & 1) << 3) | (modrm & 7); addr = (char *)uap->uc_mcontext.gregs[regno(r)]; } /* add displacement, if any */ if ((modrm >> 6) == 1) { addr += (char)ip[i++]; } else if ((modrm >> 6) == 2) { addr += *(int *)(ip + i); i += 4; } inst->op2 = (sseoperand_t *)addr; } if (inst->op == cmpss || inst->op == cmpps || inst->op == cmpsd || inst->op == cmppd) { /* get the immediate operand */ inst->imm = ip[i++]; } return i; } static enum fp_class_type my_fp_classf(float *x) { int i = *(int *)x & ~0x80000000; if (i < 0x7f800000) { if (i < 0x00800000) return ((i == 0)? fp_zero : fp_subnormal); return fp_normal; } else if (i == 0x7f800000) return fp_infinity; else if (i & 0x400000) return fp_quiet; else return fp_signaling; } static enum fp_class_type my_fp_class(double *x) { int i = *(1+(int *)x) & ~0x80000000; if (i < 0x7ff00000) { if (i < 0x00100000) return (((i | *(int *)x) == 0)? fp_zero : fp_subnormal); return fp_normal; } else if (i == 0x7ff00000 && *(int *)x == 0) return fp_infinity; else if (i & 0x80000) return fp_quiet; else return fp_signaling; } /* * Inspect a scalar SSE instruction that incurred an invalid operation * exception to determine which type of exception it was. */ static enum fex_exception __fex_get_sse_invalid_type(sseinst_t *inst) { enum fp_class_type t1, t2; /* check op2 for signaling nan */ t2 = ((int)inst->op & DOUBLE)? my_fp_class(&inst->op2->d[0]) : my_fp_classf(&inst->op2->f[0]); if (t2 == fp_signaling) return fex_inv_snan; /* eliminate all single-operand instructions */ switch (inst->op) { case cvtsd2ss: case cvtss2sd: /* hmm, this shouldn't have happened */ return (enum fex_exception) -1; case sqrtss: case sqrtsd: return fex_inv_sqrt; case cvtss2si: case cvtsd2si: case cvttss2si: case cvttsd2si: case cvtss2siq: case cvtsd2siq: case cvttss2siq: case cvttsd2siq: return fex_inv_int; default: break; } /* check op1 for signaling nan */ t1 = ((int)inst->op & DOUBLE)? my_fp_class(&inst->op1->d[0]) : my_fp_classf(&inst->op1->f[0]); if (t1 == fp_signaling) return fex_inv_snan; /* check two-operand instructions for other cases */ switch (inst->op) { case cmpss: case cmpsd: case minss: case minsd: case maxss: case maxsd: case comiss: case comisd: return fex_inv_cmp; case addss: case addsd: case subss: case subsd: if (t1 == fp_infinity && t2 == fp_infinity) return fex_inv_isi; break; case mulss: case mulsd: if ((t1 == fp_zero && t2 == fp_infinity) || (t2 == fp_zero && t1 == fp_infinity)) return fex_inv_zmi; break; case divss: case divsd: if (t1 == fp_zero && t2 == fp_zero) return fex_inv_zdz; if (t1 == fp_infinity && t2 == fp_infinity) return fex_inv_idi; default: break; } return (enum fex_exception)-1; } /* inline templates */ extern void sse_cmpeqss(float *, float *, int *); extern void sse_cmpltss(float *, float *, int *); extern void sse_cmpless(float *, float *, int *); extern void sse_cmpunordss(float *, float *, int *); extern void sse_minss(float *, float *, float *); extern void sse_maxss(float *, float *, float *); extern void sse_addss(float *, float *, float *); extern void sse_subss(float *, float *, float *); extern void sse_mulss(float *, float *, float *); extern void sse_divss(float *, float *, float *); extern void sse_sqrtss(float *, float *); extern void sse_ucomiss(float *, float *); extern void sse_comiss(float *, float *); extern void sse_cvtss2sd(float *, double *); extern void sse_cvtsi2ss(int *, float *); extern void sse_cvttss2si(float *, int *); extern void sse_cvtss2si(float *, int *); #ifdef __amd64 extern void sse_cvtsi2ssq(long long *, float *); extern void sse_cvttss2siq(float *, long long *); extern void sse_cvtss2siq(float *, long long *); #endif extern void sse_cmpeqsd(double *, double *, long long *); extern void sse_cmpltsd(double *, double *, long long *); extern void sse_cmplesd(double *, double *, long long *); extern void sse_cmpunordsd(double *, double *, long long *); extern void sse_minsd(double *, double *, double *); extern void sse_maxsd(double *, double *, double *); extern void sse_addsd(double *, double *, double *); extern void sse_subsd(double *, double *, double *); extern void sse_mulsd(double *, double *, double *); extern void sse_divsd(double *, double *, double *); extern void sse_sqrtsd(double *, double *); extern void sse_ucomisd(double *, double *); extern void sse_comisd(double *, double *); extern void sse_cvtsd2ss(double *, float *); extern void sse_cvtsi2sd(int *, double *); extern void sse_cvttsd2si(double *, int *); extern void sse_cvtsd2si(double *, int *); #ifdef __amd64 extern void sse_cvtsi2sdq(long long *, double *); extern void sse_cvttsd2siq(double *, long long *); extern void sse_cvtsd2siq(double *, long long *); #endif /* * Fill in *info with the operands, default untrapped result, and * flags produced by a scalar SSE instruction, and return the type * of trapped exception (if any). On entry, the mxcsr must have * all exceptions masked and all flags clear. The same conditions * will hold on exit. * * This routine does not work if the instruction specified by *inst * is not a scalar instruction. */ enum fex_exception __fex_get_sse_op(ucontext_t *uap, sseinst_t *inst, fex_info_t *info) { unsigned int e, te, mxcsr, oldmxcsr, subnorm; /* * Perform the operation with traps disabled and check the * exception flags. If the underflow trap was enabled, also * check for an exact subnormal result. */ __fenv_getmxcsr(&oldmxcsr); subnorm = 0; if ((int)inst->op & DOUBLE) { if (inst->op == cvtsi2sd) { info->op1.type = fex_int; info->op1.val.i = inst->op2->i[0]; info->op2.type = fex_nodata; } else if (inst->op == cvtsi2sdq) { info->op1.type = fex_llong; info->op1.val.l = inst->op2->l[0]; info->op2.type = fex_nodata; } else if (inst->op == sqrtsd || inst->op == cvtsd2ss || inst->op == cvttsd2si || inst->op == cvtsd2si || inst->op == cvttsd2siq || inst->op == cvtsd2siq) { info->op1.type = fex_double; info->op1.val.d = inst->op2->d[0]; info->op2.type = fex_nodata; } else { info->op1.type = fex_double; info->op1.val.d = inst->op1->d[0]; info->op2.type = fex_double; info->op2.val.d = inst->op2->d[0]; } info->res.type = fex_double; switch (inst->op) { case cmpsd: info->op = fex_cmp; info->res.type = fex_llong; switch (inst->imm & 3) { case 0: sse_cmpeqsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.l); break; case 1: sse_cmpltsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.l); break; case 2: sse_cmplesd(&info->op1.val.d, &info->op2.val.d, &info->res.val.l); break; case 3: sse_cmpunordsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.l); } if (inst->imm & 4) info->res.val.l ^= 0xffffffffffffffffull; break; case minsd: info->op = fex_other; sse_minsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.d); break; case maxsd: info->op = fex_other; sse_maxsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.d); break; case addsd: info->op = fex_add; sse_addsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.d); if (my_fp_class(&info->res.val.d) == fp_subnormal) subnorm = 1; break; case subsd: info->op = fex_sub; sse_subsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.d); if (my_fp_class(&info->res.val.d) == fp_subnormal) subnorm = 1; break; case mulsd: info->op = fex_mul; sse_mulsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.d); if (my_fp_class(&info->res.val.d) == fp_subnormal) subnorm = 1; break; case divsd: info->op = fex_div; sse_divsd(&info->op1.val.d, &info->op2.val.d, &info->res.val.d); if (my_fp_class(&info->res.val.d) == fp_subnormal) subnorm = 1; break; case sqrtsd: info->op = fex_sqrt; sse_sqrtsd(&info->op1.val.d, &info->res.val.d); break; case cvtsd2ss: info->op = fex_cnvt; info->res.type = fex_float; sse_cvtsd2ss(&info->op1.val.d, &info->res.val.f); if (my_fp_classf(&info->res.val.f) == fp_subnormal) subnorm = 1; break; case cvtsi2sd: info->op = fex_cnvt; sse_cvtsi2sd(&info->op1.val.i, &info->res.val.d); break; case cvttsd2si: info->op = fex_cnvt; info->res.type = fex_int; sse_cvttsd2si(&info->op1.val.d, &info->res.val.i); break; case cvtsd2si: info->op = fex_cnvt; info->res.type = fex_int; sse_cvtsd2si(&info->op1.val.d, &info->res.val.i); break; #ifdef __amd64 case cvtsi2sdq: info->op = fex_cnvt; sse_cvtsi2sdq(&info->op1.val.l, &info->res.val.d); break; case cvttsd2siq: info->op = fex_cnvt; info->res.type = fex_llong; sse_cvttsd2siq(&info->op1.val.d, &info->res.val.l); break; case cvtsd2siq: info->op = fex_cnvt; info->res.type = fex_llong; sse_cvtsd2siq(&info->op1.val.d, &info->res.val.l); break; #endif case ucomisd: info->op = fex_cmp; info->res.type = fex_nodata; sse_ucomisd(&info->op1.val.d, &info->op2.val.d); break; case comisd: info->op = fex_cmp; info->res.type = fex_nodata; sse_comisd(&info->op1.val.d, &info->op2.val.d); break; default: break; } } else { if (inst->op == cvtsi2ss) { info->op1.type = fex_int; info->op1.val.i = inst->op2->i[0]; info->op2.type = fex_nodata; } else if (inst->op == cvtsi2ssq) { info->op1.type = fex_llong; info->op1.val.l = inst->op2->l[0]; info->op2.type = fex_nodata; } else if (inst->op == sqrtss || inst->op == cvtss2sd || inst->op == cvttss2si || inst->op == cvtss2si || inst->op == cvttss2siq || inst->op == cvtss2siq) { info->op1.type = fex_float; info->op1.val.f = inst->op2->f[0]; info->op2.type = fex_nodata; } else { info->op1.type = fex_float; info->op1.val.f = inst->op1->f[0]; info->op2.type = fex_float; info->op2.val.f = inst->op2->f[0]; } info->res.type = fex_float; switch (inst->op) { case cmpss: info->op = fex_cmp; info->res.type = fex_int; switch (inst->imm & 3) { case 0: sse_cmpeqss(&info->op1.val.f, &info->op2.val.f, &info->res.val.i); break; case 1: sse_cmpltss(&info->op1.val.f, &info->op2.val.f, &info->res.val.i); break; case 2: sse_cmpless(&info->op1.val.f, &info->op2.val.f, &info->res.val.i); break; case 3: sse_cmpunordss(&info->op1.val.f, &info->op2.val.f, &info->res.val.i); } if (inst->imm & 4) info->res.val.i ^= 0xffffffffu; break; case minss: info->op = fex_other; sse_minss(&info->op1.val.f, &info->op2.val.f, &info->res.val.f); break; case maxss: info->op = fex_other; sse_maxss(&info->op1.val.f, &info->op2.val.f, &info->res.val.f); break; case addss: info->op = fex_add; sse_addss(&info->op1.val.f, &info->op2.val.f, &info->res.val.f); if (my_fp_classf(&info->res.val.f) == fp_subnormal) subnorm = 1; break; case subss: info->op = fex_sub; sse_subss(&info->op1.val.f, &info->op2.val.f, &info->res.val.f); if (my_fp_classf(&info->res.val.f) == fp_subnormal) subnorm = 1; break; case mulss: info->op = fex_mul; sse_mulss(&info->op1.val.f, &info->op2.val.f, &info->res.val.f); if (my_fp_classf(&info->res.val.f) == fp_subnormal) subnorm = 1; break; case divss: info->op = fex_div; sse_divss(&info->op1.val.f, &info->op2.val.f, &info->res.val.f); if (my_fp_classf(&info->res.val.f) == fp_subnormal) subnorm = 1; break; case sqrtss: info->op = fex_sqrt; sse_sqrtss(&info->op1.val.f, &info->res.val.f); break; case cvtss2sd: info->op = fex_cnvt; info->res.type = fex_double; sse_cvtss2sd(&info->op1.val.f, &info->res.val.d); break; case cvtsi2ss: info->op = fex_cnvt; sse_cvtsi2ss(&info->op1.val.i, &info->res.val.f); break; case cvttss2si: info->op = fex_cnvt; info->res.type = fex_int; sse_cvttss2si(&info->op1.val.f, &info->res.val.i); break; case cvtss2si: info->op = fex_cnvt; info->res.type = fex_int; sse_cvtss2si(&info->op1.val.f, &info->res.val.i); break; #ifdef __amd64 case cvtsi2ssq: info->op = fex_cnvt; sse_cvtsi2ssq(&info->op1.val.l, &info->res.val.f); break; case cvttss2siq: info->op = fex_cnvt; info->res.type = fex_llong; sse_cvttss2siq(&info->op1.val.f, &info->res.val.l); break; case cvtss2siq: info->op = fex_cnvt; info->res.type = fex_llong; sse_cvtss2siq(&info->op1.val.f, &info->res.val.l); break; #endif case ucomiss: info->op = fex_cmp; info->res.type = fex_nodata; sse_ucomiss(&info->op1.val.f, &info->op2.val.f); break; case comiss: info->op = fex_cmp; info->res.type = fex_nodata; sse_comiss(&info->op1.val.f, &info->op2.val.f); break; default: break; } } __fenv_getmxcsr(&mxcsr); info->flags = mxcsr & 0x3d; __fenv_setmxcsr(&oldmxcsr); /* determine which exception would have been trapped */ te = ~(uap->uc_mcontext.fpregs.fp_reg_set.fpchip_state.mxcsr >> 7) & 0x3d; e = mxcsr & te; if (e & FE_INVALID) return __fex_get_sse_invalid_type(inst); if (e & FE_DIVBYZERO) return fex_division; if (e & FE_OVERFLOW) return fex_overflow; if ((e & FE_UNDERFLOW) || (subnorm && (te & FE_UNDERFLOW))) return fex_underflow; if (e & FE_INEXACT) return fex_inexact; return (enum fex_exception)-1; } /* * Emulate a SIMD SSE instruction to determine which exceptions occur * in each part. For i = 0, 1, 2, and 3, set e[i] to indicate the * trapped exception that would occur if the i-th part of the SIMD * instruction were executed in isolation; set e[i] to -1 if no * trapped exception would occur in this part. Also fill in info[i] * with the corresponding operands, default untrapped result, and * flags. * * This routine does not work if the instruction specified by *inst * is not a SIMD instruction. */ void __fex_get_simd_op(ucontext_t *uap, sseinst_t *inst, enum fex_exception *e, fex_info_t *info) { sseinst_t dummy; int i; e[0] = e[1] = e[2] = e[3] = -1; /* perform each part of the SIMD operation */ switch (inst->op) { case cmpps: dummy.op = cmpss; dummy.imm = inst->imm; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case minps: dummy.op = minss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case maxps: dummy.op = maxss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case addps: dummy.op = addss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case subps: dummy.op = subss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case mulps: dummy.op = mulss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case divps: dummy.op = divss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case sqrtps: dummy.op = sqrtss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtdq2ps: dummy.op = cvtsi2ss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->i[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvttps2dq: dummy.op = cvttss2si; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtps2dq: dummy.op = cvtss2si; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtpi2ps: dummy.op = cvtsi2ss; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->i[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvttps2pi: dummy.op = cvttss2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtps2pi: dummy.op = cvtss2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cmppd: dummy.op = cmpsd; dummy.imm = inst->imm; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case minpd: dummy.op = minsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case maxpd: dummy.op = maxsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case addpd: dummy.op = addsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case subpd: dummy.op = subsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case mulpd: dummy.op = mulsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case divpd: dummy.op = divsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case sqrtpd: dummy.op = sqrtsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtpi2pd: case cvtdq2pd: dummy.op = cvtsi2sd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->i[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvttpd2pi: case cvttpd2dq: dummy.op = cvttsd2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtpd2pi: case cvtpd2dq: dummy.op = cvtsd2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtps2pd: dummy.op = cvtss2sd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } break; case cvtpd2ps: dummy.op = cvtsd2ss; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; e[i] = __fex_get_sse_op(uap, &dummy, &info[i]); } default: break; } } /* * Store the result value from *info in the destination of the scalar * SSE instruction specified by *inst. If no result is given but the * exception is underflow or overflow, supply the default trapped result. * * This routine does not work if the instruction specified by *inst * is not a scalar instruction. */ void __fex_st_sse_result(ucontext_t *uap, sseinst_t *inst, enum fex_exception e, fex_info_t *info) { int i = 0; long long l = 0L;; float f = 0.0, fscl; double d = 0.0L, dscl; /* for compares that write eflags, just set the flags to indicate "unordered" */ if (inst->op == ucomiss || inst->op == comiss || inst->op == ucomisd || inst->op == comisd) { uap->uc_mcontext.gregs[REG_PS] |= 0x45; return; } /* if info doesn't specify a result value, try to generate the default trapped result */ if (info->res.type == fex_nodata) { /* set scale factors for exponent wrapping */ switch (e) { case fex_overflow: fscl = 1.262177448e-29f; /* 2^-96 */ dscl = 6.441148769597133308e-232; /* 2^-768 */ break; case fex_underflow: fscl = 7.922816251e+28f; /* 2^96 */ dscl = 1.552518092300708935e+231; /* 2^768 */ break; default: (void) __fex_get_sse_op(uap, inst, info); if (info->res.type == fex_nodata) return; goto stuff; } /* generate the wrapped result */ if (inst->op == cvtsd2ss) { info->op1.type = fex_double; info->op1.val.d = inst->op2->d[0]; info->op2.type = fex_nodata; info->res.type = fex_float; info->res.val.f = (float)(fscl * (fscl * info->op1.val.d)); } else if ((int)inst->op & DOUBLE) { info->op1.type = fex_double; info->op1.val.d = inst->op1->d[0]; info->op2.type = fex_double; info->op2.val.d = inst->op2->d[0]; info->res.type = fex_double; switch (inst->op) { case addsd: info->res.val.d = dscl * (dscl * info->op1.val.d + dscl * info->op2.val.d); break; case subsd: info->res.val.d = dscl * (dscl * info->op1.val.d - dscl * info->op2.val.d); break; case mulsd: info->res.val.d = (dscl * info->op1.val.d) * (dscl * info->op2.val.d); break; case divsd: info->res.val.d = (dscl * info->op1.val.d) / (info->op2.val.d / dscl); break; default: return; } } else { info->op1.type = fex_float; info->op1.val.f = inst->op1->f[0]; info->op2.type = fex_float; info->op2.val.f = inst->op2->f[0]; info->res.type = fex_float; switch (inst->op) { case addss: info->res.val.f = fscl * (fscl * info->op1.val.f + fscl * info->op2.val.f); break; case subss: info->res.val.f = fscl * (fscl * info->op1.val.f - fscl * info->op2.val.f); break; case mulss: info->res.val.f = (fscl * info->op1.val.f) * (fscl * info->op2.val.f); break; case divss: info->res.val.f = (fscl * info->op1.val.f) / (info->op2.val.f / fscl); break; default: return; } } } /* put the result in the destination */ stuff: if (inst->op == cmpss || inst->op == cvttss2si || inst->op == cvtss2si || inst->op == cvttsd2si || inst->op == cvtsd2si) { switch (info->res.type) { case fex_int: i = info->res.val.i; break; case fex_llong: i = info->res.val.l; break; case fex_float: i = info->res.val.f; break; case fex_double: i = info->res.val.d; break; case fex_ldouble: i = info->res.val.q; break; default: break; } inst->op1->i[0] = i; } else if (inst->op == cmpsd || inst->op == cvttss2siq || inst->op == cvtss2siq || inst->op == cvttsd2siq || inst->op == cvtsd2siq) { switch (info->res.type) { case fex_int: l = info->res.val.i; break; case fex_llong: l = info->res.val.l; break; case fex_float: l = info->res.val.f; break; case fex_double: l = info->res.val.d; break; case fex_ldouble: l = info->res.val.q; break; default: break; } inst->op1->l[0] = l; } else if ((((int)inst->op & DOUBLE) && inst->op != cvtsd2ss) || inst->op == cvtss2sd) { switch (info->res.type) { case fex_int: d = info->res.val.i; break; case fex_llong: d = info->res.val.l; break; case fex_float: d = info->res.val.f; break; case fex_double: d = info->res.val.d; break; case fex_ldouble: d = info->res.val.q; break; default: break; } inst->op1->d[0] = d; } else { switch (info->res.type) { case fex_int: f = info->res.val.i; break; case fex_llong: f = info->res.val.l; break; case fex_float: f = info->res.val.f; break; case fex_double: f = info->res.val.d; break; case fex_ldouble: f = info->res.val.q; break; default: break; } inst->op1->f[0] = f; } } /* * Store the results from a SIMD instruction. For each i, store * the result value from info[i] in the i-th part of the destination * of the SIMD SSE instruction specified by *inst. If no result * is given but the exception indicated by e[i] is underflow or * overflow, supply the default trapped result. * * This routine does not work if the instruction specified by *inst * is not a SIMD instruction. */ void __fex_st_simd_result(ucontext_t *uap, sseinst_t *inst, enum fex_exception *e, fex_info_t *info) { sseinst_t dummy; int i; /* store each part */ switch (inst->op) { case cmpps: dummy.op = cmpss; dummy.imm = inst->imm; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case minps: dummy.op = minss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case maxps: dummy.op = maxss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case addps: dummy.op = addss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case subps: dummy.op = subss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case mulps: dummy.op = mulss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case divps: dummy.op = divss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case sqrtps: dummy.op = sqrtss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvtdq2ps: dummy.op = cvtsi2ss; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->i[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvttps2dq: dummy.op = cvttss2si; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvtps2dq: dummy.op = cvtss2si; for (i = 0; i < 4; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvtpi2ps: dummy.op = cvtsi2ss; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->i[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvttps2pi: dummy.op = cvttss2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvtps2pi: dummy.op = cvtss2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cmppd: dummy.op = cmpsd; dummy.imm = inst->imm; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case minpd: dummy.op = minsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case maxpd: dummy.op = maxsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case addpd: dummy.op = addsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case subpd: dummy.op = subsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case mulpd: dummy.op = mulsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case divpd: dummy.op = divsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case sqrtpd: dummy.op = sqrtsd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvtpi2pd: case cvtdq2pd: dummy.op = cvtsi2sd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->i[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvttpd2pi: case cvttpd2dq: dummy.op = cvttsd2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } /* for cvttpd2dq, zero the high 64 bits of the destination */ if (inst->op == cvttpd2dq) inst->op1->l[1] = 0ll; break; case cvtpd2pi: case cvtpd2dq: dummy.op = cvtsd2si; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->i[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } /* for cvtpd2dq, zero the high 64 bits of the destination */ if (inst->op == cvtpd2dq) inst->op1->l[1] = 0ll; break; case cvtps2pd: dummy.op = cvtss2sd; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->d[i]; dummy.op2 = (sseoperand_t *)&inst->op2->f[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } break; case cvtpd2ps: dummy.op = cvtsd2ss; for (i = 0; i < 2; i++) { dummy.op1 = (sseoperand_t *)&inst->op1->f[i]; dummy.op2 = (sseoperand_t *)&inst->op2->d[i]; __fex_st_sse_result(uap, &dummy, e[i], &info[i]); } /* zero the high 64 bits of the destination */ inst->op1->l[1] = 0ll; default: break; } }