/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak __cpowf = cpowf #include "libm.h" #include "complex_wrapper.h" extern void sincospi(double, double *, double *); extern void sincospif(float, float *, float *); extern double atan2pi(double, double); extern float atan2pif(float, float); #if defined(__i386) && !defined(__amd64) extern int __swapRP(int); #endif static const double dpi = 3.1415926535897931160E0, /* Hex 2^ 1 * 1.921FB54442D18 */ dhalf = 0.5, dsqrt2 = 1.41421356237309514547, /* 3FF6A09E 667F3BCD */ dinvpi = 0.3183098861837906715377675; static const float one = 1.0F, zero = 0.0F; #define hiinf 0x7f800000 fcomplex cpowf(fcomplex z, fcomplex w) { fcomplex ans; float x, y, u, v, t, c, s; double dx, dy, du, dv, dt, dc, ds, dp, dq, dr; int ix, iy, hx, hy, hv, hu, iu, iv, j; x = F_RE(z); y = F_IM(z); u = F_RE(w); v = F_IM(w); hx = THE_WORD(x); hy = THE_WORD(y); hu = THE_WORD(u); hv = THE_WORD(v); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; iu = hu & 0x7fffffff; iv = hv & 0x7fffffff; j = 0; if (iv == 0) { /* z**(real) */ if (hu == 0x3f800000) { /* (anything) ** 1 is itself */ F_RE(ans) = x; F_IM(ans) = y; } else if (iu == 0) { /* (anything) ** 0 is 1 */ F_RE(ans) = one; F_IM(ans) = zero; } else if (iy == 0) { /* (real)**(real) */ F_IM(ans) = zero; if (hx < 0 && ix < hiinf && iu < hiinf) { /* -x ** u is exp(i*pi*u)*pow(x,u) */ t = powf(-x, u); sincospif(u, &s, &c); F_RE(ans) = (c == zero)? c: c * t; F_IM(ans) = (s == zero)? s: s * t; } else { F_RE(ans) = powf(x, u); } } else if (ix == 0 || ix >= hiinf || iy >= hiinf) { if (ix > hiinf || iy > hiinf || iu > hiinf) { F_RE(ans) = F_IM(ans) = x + y + u; } else { v = fabsf(y); if (ix != 0) v += fabsf(x); t = atan2pif(y, x); sincospif(t * u, &s, &c); F_RE(ans) = (c == zero)? c: c * v; F_IM(ans) = (s == zero)? s: s * v; } } else if (ix == iy) { /* if |x| == |y| */ #if defined(__i386) && !defined(__amd64) int rp = __swapRP(fp_extended); #endif dx = (double)x; du = (double)u; dt = (hx >= 0)? 0.25 : 0.75; if (hy < 0) dt = -dt; dr = pow(dsqrt2 * dx, du); sincospi(dt * du, &ds, &dc); F_RE(ans) = (float)(dr * dc); F_IM(ans) = (float)(dr * ds); #if defined(__i386) && !defined(__amd64) if (rp != fp_extended) (void) __swapRP(rp); #endif } else { j = 1; } if (j == 0) return (ans); } if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) { /* * non-zero imaginery part(s) with inf component(s) yields NaN */ t = fabsf(x) + fabsf(y) + fabsf(u) + fabsf(v); F_RE(ans) = F_IM(ans) = t - t; } else { #if defined(__i386) && !defined(__amd64) int rp = __swapRP(fp_extended); #endif /* INDENT OFF */ /* * r = u*log(hypot(x,y))-v*atan2(y,x), * q = u*atan2(y,x)+v*log(hypot(x,y)) * or * r = u*log(hypot(x,y))-v*pi*atan2pi(y,x), * q/pi = u*atan2pi(y,x)+v*log(hypot(x,y))/pi * ans = exp(r)*(cospi(q/pi) + i sinpi(q/pi)) */ /* INDENT ON */ dx = (double)x; dy = (double)y; du = (double)u; dv = (double)v; if (ix > 0x3f000000 && ix < 0x40000000) /* .5 < |x| < 2 */ dt = dhalf * log1p((dx - 1.0) * (dx + 1.0) + dy * dy); else if (iy > 0x3f000000 && iy < 0x40000000) /* .5 < |y| < 2 */ dt = dhalf * log1p((dy - 1.0) * (dy + 1.0) + dx * dx); else dt = dhalf * log(dx * dx + dy * dy); dp = atan2pi(dy, dx); if (iv == 0) { /* dv = 0 */ dr = exp(du * dt); dq = du * dp; } else { dr = exp(du * dt - dv * dp * dpi); dq = du * dp + dv * dt * dinvpi; } sincospi(dq, &ds, &dc); F_RE(ans) = (float)(dr * dc); F_IM(ans) = (float)(dr * ds); #if defined(__i386) && !defined(__amd64) if (rp != fp_extended) (void) __swapRP(rp); #endif } return (ans); }