/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * long double __k_tanl(long double x; long double y, int k); * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicate -- tan if k=0; else -1/tan * * Table look up algorithm * 1. by tan(-x) = -tan(x), need only to consider positive x * 2. if x < 5/32 = [0x3ffc4000, 0] = 0.15625 , then * if x < 2^-57 (hx < 0x3fc40000 0), set w=x with inexact if x != 0 * else * z = x*x; * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6)))))) * return (k == 0)? w: 1/w; * 3. else * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t) * lt = 0 * i = (hy-0x3ffc4000)>>11; (i<=64) * x' = (x - t)+y (|x'| ~<= 2^-7) * By * tan(t+x') * = (tan(t)+tan(x'))/(1-tan(x')tan(t)) * We have * sin(x')+tan(t)*(tan(t)*sin(x')) * = tan(t) + ------------------------------- for k=0 * cos(x') - tan(t)*sin(x') * * cos(x') - tan(t)*sin(x') * = - -------------------------------------- for k=1 * tan(t) + tan(t)*(cos(x')-1) + sin(x') * * * where tan(t) is from the table, * sin(x') = x + pp1*x^3 + ...+ pp5*x^11 * cos(x') = 1 + qq1*x^2 + ...+ qq5*x^10 */ #include "libm.h" extern const long double _TBL_tanl_hi[], _TBL_tanl_lo[]; static const long double one = 1.0L, /* * 3 11 -122.32 * |sin(x) - (x+pp1*x +...+ pp5*x )| <= 2 for |x|<1/64 */ pp1 = -1.666666666666666666666666666586782940810e-0001L, pp2 = +8.333333333333333333333003723660929317540e-0003L, pp3 = -1.984126984126984076045903483778337804470e-0004L, pp4 = +2.755731922361906641319723106210900949413e-0006L, pp5 = -2.505198398570947019093998469135012057673e-0008L, /* * 2 10 -123.84 * |cos(x) - (1+qq1*x +...+ qq5*x )| <= 2 for |x|<=1/128 */ qq1 = -4.999999999999999999999999999999378373641e-0001L, qq2 = +4.166666666666666666666665478399327703130e-0002L, qq3 = -1.388888888888888888058211230618051613494e-0003L, qq4 = +2.480158730156105377771585658905303111866e-0005L, qq5 = -2.755728099762526325736488376695157008736e-0007L, /* * |tan(x) - (x+t1*x^3+...+t6*x^13)| * |------------------------------ | <= 2^-59.73 for |x|<0.15625 * | x | */ t1 = +3.333333333333333333333333333333423342490e-0001L, t2 = +1.333333333333333333333333333093838744537e-0001L, t3 = +5.396825396825396825396827906318682662250e-0002L, t4 = +2.186948853615520282185576976994418486911e-0002L, t5 = +8.863235529902196573354554519991152936246e-0003L, t6 = +3.592128036572480064652191427543994878790e-0003L, t7 = +1.455834387051455257856833807581901305474e-0003L, t8 = +5.900274409318599857829983256201725587477e-0004L, t9 = +2.391291152117265181501116961901122362937e-0004L, t10 = +9.691533169382729742394024173194981882375e-0005L, t11 = +3.927994733186415603228178184225780859951e-0005L, t12 = +1.588300018848323824227640064883334101288e-0005L, t13 = +6.916271223396808311166202285131722231723e-0006L; #define i0 0 long double __k_tanl(long double x, long double y, int k) { long double a, t, z, w = 0, s, c; int *pt = (int *) &t, *px = (int *) &x; int i, j, hx, ix; t = 1.0L; hx = px[i0]; ix = hx & 0x7fffffff; if (ix < 0x3ffc4000) { *(3 - i0 + (int *) &t) = 1; /* make t = one+ulp */ if (ix < 0x3fc60000) { if (((int) (x * t)) < 1) /* generate inexact */ w = x; /* generate underflow if subnormal */ } else { z = x * x; if (ix < 0x3ff30000) /* 2**-12 */ t = z * (t1 + z * (t2 + z * (t3 + z * t4))); else t = z * (t1 + z * (t2 + z * (t3 + z * (t4 + z * (t5 + z * (t6 + z * (t7 + z * (t8 + z * (t9 + z * (t10 + z * (t11 + z * (t12 + z * t13)))))))))))); t = y + x * t; w = x + t; } return (k == 0 ? w : -one / w); } j = (ix + 0x400) & 0x7ffff800; i = (j - 0x3ffc4000) >> 11; pt[i0] = j; if (hx > 0) x = y - (t - x); else x = (-y) - (t + x); a = _TBL_tanl_hi[i]; z = x * x; /* cos(x)-1 */ t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); /* sin(x) */ s = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5))))); if (k == 0) { w = a * s; t = _TBL_tanl_lo[i] + (s + a * w) / (one - (w - t)); return (hx < 0 ? -a - t : a + t); } else { w = s + a * t; c = w + _TBL_tanl_lo[i]; z = one - (a * s - t); return (hx >= 0 ? z / (-a - c) : z / (a + c)); } }