/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak __hypotl = hypotl /* * hypotl(x,y) * Method : * If z=x*x+y*y has error less than sqrt(2)/2 ulp than sqrt(z) has * error less than 1 ulp. * So, compute sqrt(x*x+y*y) with some care as follows: * Assume x>y>0; * 1. save and set rounding to round-to-nearest * 2. if x > 2y use * x1*x1+(y*y+(x2*(x+x2))) for x*x+y*y * where x1 = x with lower 32 bits cleared, x2 = x-x1; else * 3. if x <= 2y use * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) * where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1, y1= y with * lower 32 bits cleared, y2 = y-y1. * * NOTE: DO NOT remove parenthsis! * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns sqrt(x^2+y^2) with error less than 1 ulps (units * in the last place) */ #include "libm.h" #if defined(__x86) extern enum fp_direction_type __swap87RD(enum fp_direction_type); #define k 0x7fff long double hypotl(long double x, long double y) { long double t1, t2, y1, y2, w; int *px = (int *) &x, *py = (int *) &y; int *pt1 = (int *) &t1, *py1 = (int *) &y1; enum fp_direction_type rd; int j, nx, ny, nz; px[2] &= 0x7fff; /* clear sign bit and padding bits of x and y */ py[2] &= 0x7fff; nx = px[2]; /* biased exponent of x and y */ ny = py[2]; if (ny > nx) { w = x; x = y; y = w; nz = ny; ny = nx; nx = nz; } /* force nx >= ny */ if (nx - ny >= 66) return (x + y); /* x / y >= 2**65 */ if (nx < 0x5ff3 && ny > 0x205b) { /* medium x,y */ /* save and set RD to Rounding to nearest */ rd = __swap87RD(fp_nearest); w = x - y; if (w > y) { pt1[2] = px[2]; pt1[1] = px[1]; pt1[0] = 0; t2 = x - t1; x = sqrtl(t1 * t1 - (y * (-y) - t2 * (x + t1))); } else { x += x; py1[2] = py[2]; py1[1] = py[1]; py1[0] = 0; y2 = y - y1; pt1[2] = px[2]; pt1[1] = px[1]; pt1[0] = 0; t2 = x - t1; x = sqrtl(t1 * y1 - (w * (-w) - (t2 * y1 + y2 * x))); } if (rd != fp_nearest) __swap87RD(rd); /* restore rounding mode */ return (x); } else { if (nx == k || ny == k) { /* x or y is INF or NaN */ /* since nx >= ny; nx is always k within this block */ if (px[1] == 0x80000000 && px[0] == 0) return (x); else if (ny == k && py[1] == 0x80000000 && py[0] == 0) return (y); else return (x + y); } if (ny == 0) { if (y == 0.L || x == 0.L) return (x + y); pt1[2] = 0x3fff + 16381; pt1[1] = 0x80000000; pt1[0] = 0; py1[2] = 0x3fff - 16381; py1[1] = 0x80000000; py1[0] = 0; x *= t1; y *= t1; return (y1 * hypotl(x, y)); } j = nx - 0x3fff; px[2] -= j; py[2] -= j; pt1[2] = nx; pt1[1] = 0x80000000; pt1[0] = 0; return (t1 * hypotl(x, y)); } } #endif