/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak sin = __sin /* INDENT OFF */ /* * sin(x) * Accurate Table look-up algorithm by K.C. Ng, May, 1995. * * Algorithm: see sincos.c */ #include "libm.h" static const double sc[] = { /* ONE = */ 1.0, /* NONE = */ -1.0, /* * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 */ /* PP1 = */ -0.166666666666316558867252052378889521480627858683055567, /* PP2 = */ .008333315652997472323564894248466758248475374977974017927, /* * |(sin(x) - (x+p1*x^3+...+p4*x^9)| * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 * | x | */ /* P1 = */ -1.666666666666629669805215138920301589656e-0001, /* P2 = */ 8.333333332390951295683993455280336376663e-0003, /* P3 = */ -1.984126237997976692791551778230098403960e-0004, /* P4 = */ 2.753403624854277237649987622848330351110e-0006, /* * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) */ /* QQ1 = */ -0.4999999999975492381842911981948418542742729, /* QQ2 = */ 0.041666542904352059294545209158357640398771740, /* PI_H = */ 3.1415926535897931159979634685, /* PI_L = */ 1.22464679914735317722606593227425e-16, /* PI_L0 = */ 1.22464679914558443311283879205095e-16, /* PI_L1 = */ 1.768744113227140223300005233735517376e-28, /* PI2_H = */ 6.2831853071795862319959269370, /* PI2_L = */ 2.44929359829470635445213186454850e-16, /* PI2_L0 = */ 2.44929359829116886622567758410190e-16, /* PI2_L1 = */ 3.537488226454280446600010467471034752e-28, }; /* INDENT ON */ #define ONEA sc #define ONE sc[0] #define NONE sc[1] #define PP1 sc[2] #define PP2 sc[3] #define P1 sc[4] #define P2 sc[5] #define P3 sc[6] #define P4 sc[7] #define QQ1 sc[8] #define QQ2 sc[9] #define PI_H sc[10] #define PI_L sc[11] #define PI_L0 sc[12] #define PI_L1 sc[13] #define PI2_H sc[14] #define PI2_L sc[15] #define PI2_L0 sc[16] #define PI2_L1 sc[17] extern const double _TBL_sincos[], _TBL_sincosx[]; double sin(double x) { double z, y[2], w, s, v, p, q; int i, j, n, hx, ix, lx; hx = ((int *)&x)[HIWORD]; lx = ((int *)&x)[LOWORD]; ix = hx & ~0x80000000; if (ix <= 0x3fc50000) { /* |x| < .1640625 */ if (ix < 0x3e400000) /* |x| < 2**-27 */ if ((int)x == 0) return (x); z = x * x; if (ix < 0x3f800000) /* |x| < 2**-8 */ w = (z * x) * (PP1 + z * PP2); else w = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4)); return (x + w); } /* for .1640625 < x < M, */ n = ix >> 20; if (n < 0x402) { /* x < 8 */ i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); j = i - 10; x = fabs(x); v = x - _TBL_sincosx[j]; if (((j - 181) ^ (j - 201)) < 0) { /* near pi, sin(x) = sin(pi-x) */ p = PI_H - x; i = ix - 0x400921fb; x = p + PI_L; if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { /* very close to pi */ x = p + PI_L0; return ((hx >= 0)? x + PI_L1 : -(x + PI_L1)); } z = x * x; if (((ix - 0x40092000) >> 11) == 0) { /* |pi-x|<2**-8 */ w = PI_L + (z * x) * (PP1 + z * PP2); } else { w = PI_L + (z * x) * ((P1 + z * P2) + (z * z) * (P3 + z * P4)); } return ((hx >= 0)? p + w : -p - w); } s = v * v; if (((j - 382) ^ (j - 402)) < 0) { /* near 2pi, sin(x) = sin(x-2pi) */ p = x - PI2_H; i = ix - 0x401921fb; x = p - PI2_L; if ((i | ((lx - 0x54442D00) & 0xffffff00)) == 0) { /* very close to 2pi */ x = p - PI2_L0; return ((hx >= 0)? x - PI2_L1 : -(x - PI2_L1)); } z = x * x; if (((ix - 0x40192000) >> 10) == 0) { /* |x-2pi|<2**-8 */ w = (z * x) * (PP1 + z * PP2) - PI2_L; } else { w = (z * x) * ((P1 + z * P2) + (z * z) * (P3 + z * P4)) - PI2_L; } return ((hx >= 0)? p + w : -p - w); } j <<= 1; w = _TBL_sincos[j+1]; z = _TBL_sincos[j]; p = v + (v * s) * (PP1 + s * PP2); q = s * (QQ1 + s * QQ2); v = w * p + z * q; return ((hx >= 0)? z + v : -z - v); } if (ix >= 0x7ff00000) /* sin(Inf or NaN) is NaN */ return (x / x); /* argument reduction needed */ n = __rem_pio2(x, y); switch (n & 3) { case 0: return (__k_sin(y[0], y[1])); case 1: return (__k_cos(y[0], y[1])); case 2: return (-__k_sin(y[0], y[1])); default: return (-__k_cos(y[0], y[1])); } }