/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * __rem_pio2(x, y) passes back a better-than-double-precision * approximation to x mod pi/2 in y[0]+y[1] and returns an integer * congruent mod 8 to the integer part of x/(pi/2). * * This implementation tacitly assumes that x is finite and at * least about pi/4 in magnitude. */ #include "libm.h" extern const int _TBL_ipio2_inf[]; /* INDENT OFF */ /* * invpio2: 53 bits of 2/pi * pio2_1: first 33 bit of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 33 bit of pi/2 * pio2_2t: pi/2 - pio2_2 * pio2_3: third 33 bit of pi/2 * pio2_3t: pi/2 - pio2_3 */ static const double half = 0.5, invpio2 = 0.636619772367581343075535, /* 2^ -1 * 1.45F306DC9C883 */ pio2_1 = 1.570796326734125614166, /* 2^ 0 * 1.921FB54400000 */ pio2_1t = 6.077100506506192601475e-11, /* 2^-34 * 1.0B4611A626331 */ pio2_2 = 6.077100506303965976596e-11, /* 2^-34 * 1.0B4611A600000 */ pio2_2t = 2.022266248795950732400e-21, /* 2^-69 * 1.3198A2E037073 */ pio2_3 = 2.022266248711166455796e-21, /* 2^-69 * 1.3198A2E000000 */ pio2_3t = 8.478427660368899643959e-32; /* 2^-104 * 1.B839A252049C1 */ /* INDENT ON */ int __rem_pio2(double x, double *y) { double w, t, r, fn; double tx[3]; int e0, i, j, nx, n, ix, hx, lx; hx = ((int *)&x)[HIWORD]; ix = hx & 0x7fffffff; if (ix < 0x4002d97c) { /* |x| < 3pi/4, special case with n=1 */ t = fabs(x) - pio2_1; if (ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = t - pio2_1t; y[1] = (t - y[0]) - pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ t -= pio2_2; y[0] = t - pio2_2t; y[1] = (t - y[0]) - pio2_2t; } if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return (-1); } return (1); } if (ix <= 0x413921fb) { /* |x| <= 2^19 pi */ t = fabs(x); n = (int)(t * invpio2 + half); fn = (double)n; r = t - fn * pio2_1; j = ix >> 20; w = fn * pio2_1t; /* 1st round good to 85 bit */ y[0] = r - w; i = j - ((((int *)y)[HIWORD] >> 20) & 0x7ff); if (i > 16) { /* 2nd iteration (rare) */ /* 2nd round good to 118 bit */ if (i < 35) { t = r; /* r-fn*pio2_2 may not be exact */ w = fn * pio2_2; r = t - w; w = fn * pio2_2t - ((t - r) - w); y[0] = r - w; } else { r -= fn * pio2_2; w = fn * pio2_2t; y[0] = r - w; i = j - ((((int *)y)[HIWORD] >> 20) & 0x7ff); if (i > 49) { /* 3rd iteration (extremely rare) */ if (i < 68) { t = r; w = fn * pio2_3; r = t - w; w = fn * pio2_3t - ((t - r) - w); y[0] = r - w; } else { /* * 3rd round good to 151 bits; * covered all possible cases */ r -= fn * pio2_3; w = fn * pio2_3t; y[0] = r - w; } } } } y[1] = (r - y[0]) - w; if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return (-n); } return (n); } e0 = (ix >> 20) - 1046; /* e0 = ilogb(x)-23; */ /* break x into three 24 bit pieces */ lx = ((int *)&x)[LOWORD]; i = (lx & 0x1f) << 19; tx[2] = (double)i; j = (lx >> 5) & 0xffffff; tx[1] = (double)j; tx[0] = (double)((((ix & 0xfffff) | 0x100000) << 3) | ((unsigned)lx >> 29)); nx = 3; if (i == 0) { /* skip zero term */ nx--; if (j == 0) nx--; } n = __rem_pio2m(tx, y, e0, nx, 2, _TBL_ipio2_inf); if (hx < 0) { y[0] = -y[0]; y[1] = -y[1]; return (-n); } return (n); }