/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* INDENT OFF */ /* * __k_cos(double x; double y) * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * * Accurate Table look-up algorithm by K.C. Ng, May, 1995. * * Algorithm: see __sincos.c */ #include "libm.h" static const double sc[] = { /* ONE = */ 1.0, /* NONE = */ -1.0, /* * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 */ /* PP1 = */ -0.166666666666316558867252052378889521480627858683055567, /* PP2 = */ .008333315652997472323564894248466758248475374977974017927, /* * |(sin(x) - (x+p1*x^3+...+p4*x^9)| * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 * | x | */ /* P1 = */ -1.666666666666629669805215138920301589656e-0001, /* P2 = */ 8.333333332390951295683993455280336376663e-0003, /* P3 = */ -1.984126237997976692791551778230098403960e-0004, /* P4 = */ 2.753403624854277237649987622848330351110e-0006, /* * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) */ /* QQ1 = */ -0.4999999999975492381842911981948418542742729, /* QQ2 = */ 0.041666542904352059294545209158357640398771740, /* * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64) */ /* Q1 = */ -0.5, /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, }; /* INDENT ON */ #define ONE sc[0] #define NONE sc[1] #define PP1 sc[2] #define PP2 sc[3] #define P1 sc[4] #define P2 sc[5] #define P3 sc[6] #define P4 sc[7] #define QQ1 sc[8] #define QQ2 sc[9] #define Q1 sc[10] #define Q2 sc[11] #define Q3 sc[12] #define Q4 sc[13] extern const double _TBL_sincos[], _TBL_sincosx[]; double __k_cos(double x, double y) { double z, w, s, v, p, q; int i, j, n, hx, ix; hx = ((int *)&x)[HIWORD]; ix = hx & ~0x80000000; if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ if (ix < 0x3e400000) /* |x| < 2**-27 */ if ((int)x == 0) return (ONE); z = x * x; if (ix < 0x3f800000) /* |x| < 0.008 */ q = z * (QQ1 + z * QQ2); else q = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z * Q4)); return (ONE + q); } else { /* 0.164062500 < |x| < ~pi/4 */ n = ix >> 20; i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); j = i - 10; if (hx < 0) v = -y - (_TBL_sincosx[j] + x); else v = y - (_TBL_sincosx[j] - x); s = v * v; j <<= 1; w = _TBL_sincos[j]; z = _TBL_sincos[j+1]; p = s * (PP1 + s * PP2); q = s * (QQ1 + s * QQ2); p = v + v * p; return (z - (w * p - z * q)); } }